1
|
Saad DE, Mansour SZ, Kandil EI, Hassan A, Moawed FSM, Elbakry MMM. Boswellic acid synergizes with low-dose ionizing radiation to mitigate thioacetamide-induced hepatic encephalopathy in rats. BMC Pharmacol Toxicol 2025; 26:6. [PMID: 39806460 PMCID: PMC11727435 DOI: 10.1186/s40360-024-00831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Hepatic encephalopathy (HE) is a syndrome that arises from acute or chronic liver failure. This study was devised to assess the impact of a combination of boswellic acid (BA) and low doses of gamma radiation (LDR) on thioacetamide (TAA)-induced HE in an animal model. The effect of daily BA treatment (175 mg/kg body weight, for four weeks) and/or fractionated low-dose γ-radiation (LDR; 0.25 Gy, twice the total dose of 0.5 Gy) was evaluated against TAA (200 mg/kg, intraperitoneal) twice-weekly for four weeks to induce liver damage and HE in rats. TAA-exposed rats exhibited a significant elevation in serum activities of liver enzymes (GGT, ALP) and plasma ammonia levels at P < 0.05 (Duncan's test) compared to the control group. Moreover, there was an increase in the levels of proinflammatory cytokines (IL6, IL12, IL18) in the TAA-exposed animals accompanied by a depletion in the activities of paraoxonase-1 and neurotransmitter contents compared with normal control rats (P < 0.05). However, the administration of BA alone or in combination with LDR led to improvements in liver and brain parameter indices. Furthermore, the histopathological assessments of liver and brain tissues supported the findings of the biochemical investigations. From the statistical analysis, it can be concluded that the combined administration of BA and exposure to LDR may possess potential hepatoprotective effects against hepatic encephalopathy-associated hyperammonemia and the consequent damage to the liver and brain. This study proposes that a combination of therapeutic approaches, LDR and BA could be a new therapeutic candidate for the management of hepatic encephalopathy.
Collapse
Affiliation(s)
- Dina E Saad
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Eman I Kandil
- Biochemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| | - Asmaa Hassan
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma S M Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Mustafa M M Elbakry
- Biochemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Shosha MI, El-Ablack FZ, Saad EA. New thiazole derivative as a potential anticancer and topoisomerase II inhibitor. Sci Rep 2025; 15:710. [PMID: 39753588 PMCID: PMC11698983 DOI: 10.1038/s41598-024-81294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025] Open
Abstract
To shed light on the significance of thiazole derivatives in the advancement of cancer medication and to contribute to therapeutic innovation, we have designed the synthesis and antiproliferative activity investigation of 5-(1,3-dioxoisoindolin-2-yl)-7-(4-nitrophenyl)-2-thioxo-3,7-dihydro-2H-pyrano[2,3-d] thiazole-6-carbonitrile, the structure of thiazole derivative was confirmed by spectroscopic techniques UV, IR and NMR. The cytotoxic activity (in vitro) of the new hybrid synthesized compound on five human cancer cell lines; human liver hepatocellular carcinoma (HepG-2), colorectal carcinoma (HCT-116), breast adenocarcinoma (MCF-7), and epithelioid carcinoma (Hela), and a normal human lung fibroblast (WI-38) was studied using MTT assay. The compound exhibited a strong cytotoxicity effect against HepG-2 and MCF-7. The interaction of the newly synthesized compound with calf-thymus DNA (CT-DNA) was investigated at pH 7.2 by using UV-Vis absorption measurements, also, molecular docking was carried out to investigate the DNA binding affinity of the proposed compound with the prospective target, DNA (PDB ID: 1d12). Finally, molecular docking was carried out to examine the binding patterns with the prospective target, DNA-Topo II complex (PDB-code: 3QX3). Results indicated that the investigated compound strongly binds to CT-DNA via intercalative mode, and correlated with those obtained from molecular docking and in agreement with that of in vitro cytotoxicity activity.
Collapse
Affiliation(s)
- Mayada I Shosha
- Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt
| | - Fawzia Z El-Ablack
- Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt
| | - Entsar A Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt.
| |
Collapse
|
3
|
El Ezaby NM, Saad EA, El Basuni MA. Acetylsalicylic Acid with Ascorbate: A Promising Combination Therapy for Solid Tumors. Drugs R D 2024; 24:303-316. [PMID: 39012613 PMCID: PMC11315826 DOI: 10.1007/s40268-024-00479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Cancer is a deadly disease with high mortality rates in developing countries. A recent preclinical study found promising results in treating hepatocellular carcinoma (HCC) by combining acetylsalicylic acid (ASA) and ascorbate (AS), which might offer a safer alternative to expensive clinical chemotherapeutics; however, the impact of this combination on other tumors remains unexplored. Therefore, this study aims to investigate the effectiveness of combining ASA and AS in treating Ehrlich solid tumors. METHODS Eighty female Swiss albino mice were divided into eight groups (10 mice/group): four healthy groups (healthy, AS, ASA, and AS+ASA) and four groups with carcinoma (Ehrlich ascites carcinoma [EAC], EAC+AS, EAC+ASA, and EAC+AS+ASA). AS was injected intraperitoneally (4 g/kg) daily for 10 days, whereas ASA was ingested orally at 60 mg/kg/day for 10 days. Carcinoma was induced by subcutaneous injection of 1×106 EAC cells/mouse once. Treatment of carcinoma started after 10 days of tumor inoculation. Blood, livers, and tumors were obtained, and tumor weights, volumes, and levels of hemoglobin, aminotransferases, albumin, bilirubin, urea, creatinine, lipid profile, malondialdehyde, nitric oxide, glutathione, catalase, total antioxidant capacity, lactate dehydrogenase, and creatine kinase were estimated. The percentage increase in lifespan was also assessed. RESULTS Tumor treatment alleviated tumor burden. Tumor size was reduced, lifespan increased, organs (liver, kidney, and heart) functions adjusted, hemoglobin, lipid profile improved, and oxidative stress decreased. Combining ASA with AS showed more effective antitumor effects than only ASA or AS alone. CONCLUSION After more validation research, combining ASA with AS may provide benefit in cancer treatment.
Collapse
Affiliation(s)
- Nada M El Ezaby
- Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517, New-Damietta, Egypt
| | - Entsar A Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517, New-Damietta, Egypt.
| | - Mohamed A El Basuni
- Department of Laboratories, Immunology Laboratory, Mansoura University Children's Hospital, Mansoura, Egypt
| |
Collapse
|
4
|
Somade OT, Ajayi BO, Adeyi OE, Dada TA, Ayofe MA, Inalu DC, Ajiboye OI, Shonoiki OM, Adelabu AO, Onikola RT, Isiaka ID, Omotoso O, James AS, Olaniyan TO, Adegoke AM, Akamo AJ, Oyinloye BE, Adewole E. Ferulic acid interventions ameliorate NDEA-CCl 4-induced hepatocellular carcinoma via Nrf2 and p53 upregulation and Akt/PKB-NF-κB-TNF-α pathway downregulation in male Wistar rats. Toxicol Rep 2024; 12:119-127. [PMID: 38293309 PMCID: PMC10825481 DOI: 10.1016/j.toxrep.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
Hepatocellular carcinoma is a prevalent form of liver cancer that is life threatening. Many chemically synthesized anti-cancer drugs have various degrees of side effects. Hence, this study investigated the effect of FEAC interventions on NDEA-CCl4-induced HCAR in male Wistar rats. HCAR was induced by intraperitoneal administration of 200 mg/kg of NDEA and 0.5 mL/kg CCl4 (as a promoter of HCAR). Following the induction of HCAR, rats were treated differently with two different doses (25 and 50 mg/kg) of FEAC. HCAR induction was confirmed by the significant elevation of serum levels of ALT, AST, and α-FP. Also elevated significantly were liver levels of Akt/PKB, NF-κB, TNF-α, MDA, GSH, and activities of GST, SOD, and CAT, while levels of liver p53 and Nrf2 were significantly lowered compared with normal rats. Treatment interventions with both 25 and 50 mg/kg of FEAC against the DEN-CCl4-induced HCAR gave comparable effects, marked by a significant reduction in the levels of serum ALT, AST and α-FP, as well as liver levels of MDA, GSH, Akt/PKB, NF-κB, TNF-α, GST, SOD, and CAT, while levels of liver p53 and Nrf2 were significantly elevated compared with normal rats. Put together and judging by the outcomes of this study, FEAC being a potent antioxidant may also be potent against chemical-induced HCAR via upregulation of p53 and Nrf2, as well as downregulation of the Akt/PKB-NF-κB pathway in rats.
Collapse
Affiliation(s)
- Oluwatobi T. Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Babajide O. Ajayi
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Olubisi E. Adeyi
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Temitope A. Dada
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mukodaz A. Ayofe
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - David C. Inalu
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Opeyemi I. Ajiboye
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olaoluwawunmi M. Shonoiki
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Aminat O. Adelabu
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Rasaq T. Onikola
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ismaila D. Isiaka
- Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Opeyemi Omotoso
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Adewale S. James
- School of Biomedical Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Tunde O. Olaniyan
- Instituto Politécnico Nacional, Centro de Biotecnologĭa Genómica, Reynosa 88710, Mexico
| | - Ayodeji M. Adegoke
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Adio J. Akamo
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Babatunji E. Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB, 5454, Ado-Ekiti 360001, Nigeria
| | - Ezekiel Adewole
- Industrial Chemistry Unit, Department of Chemical Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
5
|
Guo D, Liao Y, Na J, Wu L, Yin Y, Mi Z, Fang S, Liu X, Huang Y. The Involvement of Ascorbic Acid in Cancer Treatment. Molecules 2024; 29:2295. [PMID: 38792156 PMCID: PMC11123810 DOI: 10.3390/molecules29102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Vitamin C (VC), also known as ascorbic acid, plays a crucial role as a water-soluble nutrient within the human body, contributing to a variety of metabolic processes. Research findings suggest that increased doses of VC demonstrate potential anti-tumor capabilities. This review delves into the mechanisms of VC absorption and its implications for cancer management. Building upon these foundational insights, we explore modern delivery systems for VC, evaluating its use in diverse cancer treatment methods. These include starvation therapy, chemodynamic therapy (CDT), photothermal/photodynamic therapy (PTT/PDT), electrothermal therapy, immunotherapy, cellular reprogramming, chemotherapy, radiotherapy, and various combination therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (D.G.); (Y.L.); (J.N.); (L.W.); (Y.Y.); (Z.M.); (S.F.)
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (D.G.); (Y.L.); (J.N.); (L.W.); (Y.Y.); (Z.M.); (S.F.)
| |
Collapse
|
6
|
El Sadda RR, Eissa MS, Elafndi RK, Moawed EA, El-Zahed MM, Saad HR. Synthesis and biological evaluation of titanium dioxide/thiopolyurethane composite: anticancer and antibacterial effects. BMC Chem 2024; 18:35. [PMID: 38368376 PMCID: PMC10874576 DOI: 10.1186/s13065-024-01138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024] Open
Abstract
Nanocomposites incorporating titanium dioxide (TiO2) have a significant potential for various industrial and medical applications. These nanocomposites exhibit selectivity as antimicrobial and anticancer agents. Antimicrobial activity is crucial for medical uses, including applications in food processing, packaging, and surgical instruments. Additionally, these nanocomposites exhibit selectivity as anticancer agents. A stable nanocomposite as a new anticancer and antibacterial chemical was prepared by coupling titanium dioxide nanoparticles with a polyurethane foam matrix through the thiourea group. The titanium dioxide/thiopolyurethane nanocomposite (TPU/TiO2) was synthesized from low-cost Ilmenite ore and commercial polyurethane foam. EDX analysis was used to determine the elemental composition of the titanium dioxide (TiO2) matrix. TiO2NPs were synthesized and were characterized using TEM, XRD, IR, and UV-Vis spectra. TiO2NPs and TPU foam formed a novel composite. The MTT assay assessed Cisplatin and HepG-2 and MCF-7 cytotoxicity in vitro. Its IC50 values for HepG-2 and MCF-7 were 122.99 ± 4.07 and 201.86 ± 6.82 µg/mL, respectively. The TPU/TiO2 exhibits concentration-dependent cytotoxicity against MCF-7 and HepG-2 cells in vitro. The selective index was measured against both cell lines; it showed its safety against healthy cells. Agar well-diffusion exhibited good inhibition zones against Escherichia coli (12 mm), Bacillus cereus (10 mm), and Aspergillus niger (19 mm). TEM of TPU/TiO2-treated bacteria showed ultrastructure changes, including plasma membrane detachment from the cell wall, which caused lysis and bacterial death. TPU/TiO2 can treat cancer and inhibit microbes in dentures and other items. Also, TPU/TiO2 inhibits E. coli, B. cereus, and A. niger microbial strains.
Collapse
Affiliation(s)
- Rana R El Sadda
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt.
| | - Mai S Eissa
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt
| | - Rokaya K Elafndi
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt
| | - Elhossein A Moawed
- Chemistry Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt
| | - Mohamed M El-Zahed
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Hoda R Saad
- Geology Department, Faulty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
7
|
Shirode DS, Raut DJ, Sarasawat N. Effect of Niosomal Encapsulation of Quercetin and Silymarin and their Combination on Dimethylnitrosoamine-induced and Phenobarbital promoted Hepatocellular Carcinoma in Rat Model. Curr Drug Discov Technol 2024; 21:e250124226254. [PMID: 38279723 DOI: 10.2174/0115701638278205231231153851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Hepatocellular carcinoma is a particularly dangerous and severe kind of liver cancer. Many anticancer drugs fail to complete the treatment of hepatocellular carcinoma without any side effects. There should be appropriate and without side effective treatments for hepatocellular carcinoma. OBJECTIVE The objective of the current study was to evaluate how quercetin and silymarin in a niosomal formulation affected hepatocyte carcinoma caused by diethylnitrosamine. METHODS Five groups were created from the thirty male rats. Normal control (untreated group), tumor group (administered dimethylnitrosoamine 200 mg/kg), treatment group I (administered 50 mg/kg of niosomal encapsulated quercetin), treatment group II (administered 50 mg/kg of niosomal encapsulated silymarin), and treatment group III (administered 50 mg/kg of niosomal encapsulated quercetin + silymarin). Then, biochemical estimation, serum analysis, and histopathological examination were carried out. RESULTS Treatment group III, treated with niosomal encapsulation of a combination of quercetin + silymarin 50 mg/kg, demonstrated the significant restoration of alpha-fetoprotein and carcinoembryonic antigen and also antioxidants like superoxide dismutase and nitric oxide. The histopathological examination showed improved liver architecture in this group compared to other treatment groups. CONCLUSION Our findings revealed that a potent anticancer effect was observed in treatment group III as niosomal formulation increased the bioavailability of the drug within the body. In order to completely understand the underlying processes and evaluate the therapeutic effectiveness of these chemicals in the therapy of hepatocellular carcinoma, further investigation and clinical trials are required.
Collapse
Affiliation(s)
- Devendra S Shirode
- Department of Pharmacology, Dr. D. Y. Patil College of Pharmacy Akurdi, Pune 411044, Maharashtra, India
| | - Dinesh J Raut
- Department of Pharmacology, Dr. D. Y. Patil College of Pharmacy Akurdi, Pune 411044, Maharashtra, India
| | - Nikita Sarasawat
- Department of Pharmacology, Dr. D. Y. Patil College of Pharmacy Akurdi, Pune 411044, Maharashtra, India
| |
Collapse
|
8
|
Basal OA, Zahran RF, Saad EA. Rifampicin efficacy against doxorubicin-induced cardiotoxicity in mice. Egypt Heart J 2023; 75:73. [PMID: 37603165 PMCID: PMC10441914 DOI: 10.1186/s43044-023-00403-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND The toxic effect of doxorubicin on the heart limits its clinical usage in cancer therapy. This work intended to investigate, for the first time, the efficacy of rifampicin administration against doxorubicin-induction of cardiotoxicity in mice. Forty adult male albino mice were distributed into four sets: Control, Doxorubicin, Doxorubicin + Rifampicin 0.107, and Doxorubicin + Rifampicin 0.214, with n = 10 for each. Heart histopathology and biochemical assays for heart function tests [creatine kinase (CK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), cardiac troponin I (cTnI), atrial natriuretic peptide (ANP), and vascular endothelial growth factor (VEGF)], oxidative stress [malondialdehyde (MDA) and superoxide dismutase (SOD)], and minerals [phosphorus, sodium, potassium, and calcium] were done. RESULTS Doxorubicin-induced cardiotoxicity using a total dose of 15 mg/kg was confirmed histologically. Cardiomyocytes showed congestion, necrosis, edema, and inflammatory cell infiltration. Biochemically, elevations in LDH, CK, and AST activities, p < 0.001, as well as increases in cTnI and ANP levels, p < 0.001, increased oxidative stress (MDA, p < 0.001), high minerals (Na, K, p < 0.001, P, p < 0.01, and Ca, p < 0.05), with reduced VEGF concentration, p < 0.001, and low antioxidant (SOD, p < 0.001) were observed in the Doxorubicin group compared to control. Co-treatment with rifampicin significantly (p < 0.001) reduced the increased oxidative stress, high Na and K, increased LDH, CK, AST, cTnI, and ANP, and elevated the low SOD toward the normal ranges. Our histological data supported our biochemical data; rifampicin dose 0.214 mg/kg showed better improvements than dose 0107. CONCLUSIONS Our results demonstrated that rifampicin could help protect the body against doxorubicin-induced cardiotoxicity through its antioxidative effect.
Collapse
Affiliation(s)
- Omnia A Basal
- Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt
| | - Rasha F Zahran
- Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt
| | - Entsar A Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt.
| |
Collapse
|
9
|
Takata T, Motoo Y. Novel In Vitro Assay of the Effects of Kampo Medicines against Intra/Extracellular Advanced Glycation End-Products in Oral, Esophageal, and Gastric Epithelial Cells. Metabolites 2023; 13:878. [PMID: 37512585 PMCID: PMC10385496 DOI: 10.3390/metabo13070878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Kampo medicines are Japanese traditional medicines developed from Chinese traditional medicines. The action mechanisms of the numerous known compounds have been studied for approximately 100 years; however, many remain unclear. While components are normally affected through digestion, absorption, and metabolism, in vitro oral, esophageal, and gastric epithelial cell models avoid these influences and, thus, represent superior assay systems for Kampo medicines. We focused on two areas of the strong performance of this assay system: intracellular and extracellular advanced glycation end-products (AGEs). AGEs are generated from glucose, fructose, and their metabolites, and promote lifestyle-related diseases such as diabetes and cancer. While current technology cannot analyze whole intracellular AGEs in cells in some organs, some AGEs can be generated for 1-2 days, and the turnover time of oral and gastric epithelial cells is 7-14 days. Therefore, we hypothesized that we could detect these rapidly generated intracellular AGEs in such cells. Extracellular AEGs (e.g., dietary or in the saliva) bind to the receptor for AGEs (RAGE) and the toll-like receptor 4 (TLR4) on the surface of the epithelial cells and can induce cytotoxicity such as inflammation. The analysis of Kampo medicine effects against intra/extracellular AGEs in vitro is a novel model.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Yoshiharu Motoo
- Department of Medical Oncology and Kampo Medicines, Komatsu Sophia Hospital, Komatsu 923-0861, Ishikawa, Japan
| |
Collapse
|
10
|
Goltyaev MV, Varlamova EG. The Role of Selenium Nanoparticles in the Treatment of Liver Pathologies of Various Natures. Int J Mol Sci 2023; 24:10547. [PMID: 37445723 DOI: 10.3390/ijms241310547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The liver is the body's largest gland, and regulates a wide variety of physiological processes. The work of the liver can be disrupted in a variety of pathologies, the number of which is several hundred. It is extremely important to monitor the health of the liver and develop approaches to combat liver diseases. In recent decades, nanomedicine has become increasingly popular in the treatment of various liver pathologies, in which nanosized biomaterials, which are inorganic, polymeric, liposomal, albumin, and other nanoparticles, play an important role. Given the need to develop environmentally safe, inexpensive, simple, and high-performance biomedical agents for theragnostic purposes and showing few side effects, special attention is being paid to nanoparticles based on the important trace element selenium (Se). It is known that the metabolism of the microelement Se occurs in the liver, and its deficiency leads to the development of several serious diseases in this organ. In addition, the liver is the depot for most selenoproteins, which can reduce oxidative stress, inhibit tumor growth, and prevent other liver damage. This review is devoted to the description of the results of recent years, revealing the important role of selenium nanoparticles in the therapy and diagnosis of several liver pathologies, depending on the dose and physicochemical properties. The possibilities of selenium nanoparticles in the treatment of liver diseases, disclosed in the review, will not only reveal the advantages of their hepatoprotective properties but also significantly supplement the data on the role of the trace element selenium in the regulation of these diseases.
Collapse
Affiliation(s)
- Michael V Goltyaev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| | - Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Russia
| |
Collapse
|