1
|
Liu KC, Chen YC, Hsieh CF, Wang MH, Zhong MX, Cheng NC. Scaffold-free 3D culture systems for stem cell-based tissue regeneration. APL Bioeng 2024; 8:041501. [PMID: 39364211 PMCID: PMC11446583 DOI: 10.1063/5.0225807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Recent advances in scaffold-free three-dimensional (3D) culture methods have significantly enhanced the potential of stem cell-based therapies in regenerative medicine. This cutting-edge technology circumvents the use of exogenous biomaterial and prevents its associated complications. The 3D culture system preserves crucial intercellular interactions and extracellular matrix support, closely mimicking natural biological niches. Therefore, stem cells cultured in 3D formats exhibit distinct characteristics, showcasing their capabilities in promoting angiogenesis and immunomodulation. This review aims to elucidate foundational technologies and recent breakthroughs in 3D scaffold-free stem cell engineering, offering comprehensive guidance for researchers to advance this technology across various clinical applications. We first introduce the various sources of stem cells and provide a comparative analysis of two-dimensional (2D) and 3D culture systems. Given the advantages of 3D culture systems, we delve into the specific fabrication and harvesting techniques for cell sheets and spheroids. Furthermore, we explore their applications in pre-clinical studies, particularly in large animal models and clinical trials. We also discuss multidisciplinary strategies to overcome existing limitations such as insufficient efficacy, hostile microenvironments, and the need for scalability and standardization of stem cell-based products.
Collapse
Affiliation(s)
- Ke-Chun Liu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Yueh-Chen Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Chi-Fen Hsieh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Mu-Hui Wang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Meng-Xun Zhong
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | - Nai-Chen Cheng
- Author to whom correspondence should be addressed:. Tel.: 886 2 23123456 ext 265919. Fax: 886 2 23934358
| |
Collapse
|
2
|
Guo Y, Tian T, Yang S, Cai Y. Ginsenoside Rg1/ADSCs supplemented with hyaluronic acid as the matrix improves rabbit temporomandibular joint osteoarthrosis. Biotechnol Genet Eng Rev 2024; 40:253-274. [PMID: 36892223 DOI: 10.1080/02648725.2023.2183575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE To investigate whether and how ginsenoside Rg1/ADSCs supplemented with hyaluronic acid as the matrix can improve rabbit temporomandibular joint osteoarthrosis. METHOD Isolate and culture adipose stem cells, measure the activity of differentiated chondrocytes by MTT assay and expression of type II collagen in these cells by immunohistochemistry, in order to evaluate the effect of ginsenoside Rg1 on adipose stem cell proliferation and differentiation into chondrocytes.32 New Zealand white rabbits were randomly divided into four groups: blank group, model group, control group and experimental group, 8 in each group. Osteoarthritis model was established by intra-articular injection of papain. Two weeks after successful model building, medication was given for the rabbits in control group and experimental group. 0.6 mL ginsenoside Rg1/ ADSCs suspension was injected into superior joint space for the rabbits in control group, once a week; 0.6 mL ginsenoside Rg1/ ADSCs complex was injected for the rabbits in experimental group, once a week. RESULTS Ginsenoside Rg1 can promote ADSCs-derived chondrocytes' activity and expression of type II collagen. Scanning electron microscopy histology images showed cartilage lesions of the experimental group was significantly improved in comparison with control group. CONCLUSION Ginsenoside Rg1 can promote ADSCs differentiate into chondrocytes, and Ginsenoside Rg1/ADSCs supplemented with hyaluronic acid as the matrix can significantly improve rabbit temporomandibular joint osteoarthrosis.
Collapse
Affiliation(s)
- Yanwei Guo
- Department of Oral and Maxillofacial Surgery, Jining Stomatology Hospital, Jining City, Shandong Province, China
| | - Tingyu Tian
- The second Department of Pediatric Stomatology, Jinan Stomatology Hospital, Jinan City, Shandong Province, China
| | - Shimao Yang
- Department of Oral and Maxillofacial Surgery, Jinan Stomatology Hospital, Jinan City, Shandong Province, China
| | - Yuping Cai
- Department of prosthodontics, Jinan Stomatology Hospital, Jinan City, Shandong Province, China
| |
Collapse
|
3
|
Sahin N, Yesil H. Regenerative methods in osteoarthritis. Best Pract Res Clin Rheumatol 2023; 37:101824. [PMID: 37244803 DOI: 10.1016/j.berh.2023.101824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/29/2023]
Abstract
Osteoarthritis (OA) is the most common type of arthritis that can affect all joint structures. The primary goals of osteoarthritis treatment are to alleviate pain, reduce functional limitations, and improve quality of life. Despite its high prevalence, treatment options for osteoarthritis are limited, with most therapeutic approaches focusing on symptom management. Tissue engineering and regenerative strategies based on biomaterials, cells, and other bioactive molecules have emerged as viable options for osteoarthritis cartilage repair. Platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) are the most commonly used regenerative therapies today to protect, restore, or increase the function of damaged tissues. Despite promising results, there is conflicting evidence regarding the efficacy of regenerative therapies, and their efficacy remains unknown. The data suggest that more research and standardization are required for the use of these therapies in osteoarthritis. This article provides an overview of the application of MSCs and PRP applications.
Collapse
Affiliation(s)
- Nilay Sahin
- Balikesir University, Faculty of Medicine, Physical Medicine and Rehabilitation Department, Balıkesir, Turkey.
| | - Hilal Yesil
- Afyonkarahisar Health Sciences University, Faculty of Medicine, Physical Medicine and Rehabilitation Department, Afyon, Turkey.
| |
Collapse
|
4
|
Taninaka A, Kabata T, Hayashi K, Kajino Y, Inoue D, Ohmori T, Ueoka K, Yamamuro Y, Kataoka T, Saiki Y, Yanagi Y, Ima M, Iyobe T, Tsuchiya H. Chondroprotective Effects of Chondrogenic Differentiated Adipose-Derived Mesenchymal Stem Cells Sheet on Degenerated Articular Cartilage in an Experimental Rabbit Model. Bioengineering (Basel) 2023; 10:bioengineering10050574. [PMID: 37237645 DOI: 10.3390/bioengineering10050574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) have been studied for many years as a therapeutic option for osteoarthritis (OA); however, their efficacy remains insufficient. Since platelet-rich plasma (PRP) induces chondrogenic differentiation in ADSCs and the formation of a sheet structure by ascorbic acid can increase the number of viable cells, we hypothesized that the injection of chondrogenic cell sheets combined with the effects of PRP and ascorbic acid may hinder the progression of OA. The effects of induction of differentiation by PRP and formation of sheet structure by ascorbic acid on changes in chondrocyte markers (collagen II, aggrecan, Sox9) in ADSCs were evaluated. Changes in mucopolysaccharide and VEGF-A secretion from cells injected intra-articularly in a rabbit OA model were also evaluated. ADSCs treated by PRP strongly chondrocyte markers, including type II collagen, Sox9, and aggrecan, and their gene expression was maintained even after sheet-like structure formation induced by ascorbic acid. In this rabbit OA model study, the inhibition of OA progression by intra-articular injection was improved by inducing chondrocyte differentiation with PRP and sheet structure formation with ascorbic acid in ADSCs.
Collapse
Affiliation(s)
- Atsushi Taninaka
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Tamon Kabata
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yoshitomo Kajino
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Daisuke Inoue
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Takaaki Ohmori
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Ken Ueoka
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yuki Yamamuro
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Tomoyuki Kataoka
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yoshitomo Saiki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Yu Yanagi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Musashi Ima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Takahiro Iyobe
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8641, Japan
| |
Collapse
|
5
|
Lin YY, Kuan CY, Chang CT, Chuang MH, Syu WS, Zhang KL, Lee CH, Lin PC, Dong GC, Lin FH. 3D-Cultured Adipose-Derived Stem Cell Spheres Using Calcium-Alginate Scaffolds for Osteoarthritis Treatment in a Mono-Iodoacetate-Induced Rat Model. Int J Mol Sci 2023; 24:ijms24087062. [PMID: 37108239 PMCID: PMC10138691 DOI: 10.3390/ijms24087062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that causes pain, cartilage deformation, and joint inflammation. Mesenchymal stem cells (MSCs) are potential therapeutic agents for OA treatment. However, the 2D culture of MSCs could potentially affect their characteristics and functionality. In this study, calcium-alginate (Ca-Ag) scaffolds were prepared for human adipose-derived stem cell (hADSC) proliferation with a homemade functionally closed process bioreactor system; the feasibility of cultured hADSC spheres in heterologous stem cell therapy for OA treatment was then evaluated. hADSC spheres were collected from Ca-Ag scaffolds by removing calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation. In this study, 2D-cultured individual hADSCs or hADSC spheres were evaluated for treatment efficacy in a monosodium iodoacetate (MIA)-induced OA rat model. The results of gait analysis and histological sectioning showed that hADSC spheres were more effective at relieving arthritis degeneration. The results of serological and blood element analyses of hADSC-treated rats indicated that the hADSC spheres were a safe treatment in vivo. This study demonstrates that hADSC spheres are a promising treatment for OA and can be applied to other stem cell therapies or regenerative medical treatments.
Collapse
Affiliation(s)
- Yu-Ying Lin
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Che-Yung Kuan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10087, Taiwan
| | - Chia-Tien Chang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Ming-Hsi Chuang
- College of Management, Chung Hwa University, Hsinchu 30012, Taiwan
| | - Wan-Sin Syu
- Gwo Xi Stem Cell Applied Technology, Hsinchu 30261, Taiwan
| | - Kai-Ling Zhang
- Gwo Xi Stem Cell Applied Technology, Hsinchu 30261, Taiwan
- College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Hsin Lee
- Gwo Xi Stem Cell Applied Technology, Hsinchu 30261, Taiwan
| | - Po-Cheng Lin
- Gwo Xi Stem Cell Applied Technology, Hsinchu 30261, Taiwan
| | - Guo-Chung Dong
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Feng-Huei Lin
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053, Taiwan
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10087, Taiwan
| |
Collapse
|
6
|
Nativel F, Smith A, Boulestreau J, Lépine C, Baron J, Marquis M, Vignes C, Le Guennec Y, Veziers J, Lesoeur J, Loll F, Halgand B, Renard D, Abadie J, Legoff B, Blanchard F, Gauthier O, Vinatier C, Rieux AD, Guicheux J, Le Visage C. Micromolding-based encapsulation of mesenchymal stromal cells in alginate for intraarticular injection in osteoarthritis. Mater Today Bio 2023; 19:100581. [PMID: 36896417 PMCID: PMC9988569 DOI: 10.1016/j.mtbio.2023.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Osteoarthritis (OA) is an inflammatory joint disease that affects cartilage, subchondral bone, and joint tissues. Undifferentiated Mesenchymal Stromal Cells are a promising therapeutic option for OA due to their ability to release anti-inflammatory, immuno-modulatory, and pro-regenerative factors. They can be embedded in hydrogels to prevent their tissue engraftment and subsequent differentiation. In this study, human adipose stromal cells are successfully encapsulated in alginate microgels via a micromolding method. Microencapsulated cells retain their in vitro metabolic activity and bioactivity and can sense and respond to inflammatory stimuli, including synovial fluids from OA patients. After intra-articular injection in a rabbit model of post-traumatic OA, a single dose of microencapsulated human cells exhibit properties matching those of non-encapsulated cells. At 6 and 12 weeks post-injection, we evidenced a tendency toward a decreased OA severity, an increased expression of aggrecan, and a reduced expression of aggrecanase-generated catabolic neoepitope. Thus, these findings establish the feasibility, safety, and efficacy of injecting cells encapsulated in microgels, opening the door to a long-term follow-up in canine OA patients.
Collapse
Affiliation(s)
- Fabien Nativel
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Audrey Smith
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.,UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200, Bruxelles, Belgium
| | - Jeremy Boulestreau
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Charles Lépine
- Nantes Université, CHU Nantes, Department of Pathology, F-44000 Nantes, France
| | - Julie Baron
- Nantes Université, CHU Nantes, Department of Pathology, F-44000 Nantes, France
| | - Melanie Marquis
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, F-44300 Nantes, France
| | - Caroline Vignes
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Yoan Le Guennec
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Joelle Veziers
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Julie Lesoeur
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - François Loll
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Boris Halgand
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Denis Renard
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, F-44300 Nantes, France
| | - Jerome Abadie
- LabONIRIS, ONIRIS (Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering), F-44300 Nantes, France
| | - Benoit Legoff
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Frederic Blanchard
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Olivier Gauthier
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France.,ONIRIS Nantes-Atlantic College of Veterinary Medicine, Centre de Recherche et D'investigation Préclinique (CRIP), F-44300 Nantes, France
| | - Claire Vinatier
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Anne des Rieux
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200, Bruxelles, Belgium
| | - Jerome Guicheux
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| | - Catherine Le Visage
- Nantes Université, ONIRIS, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
7
|
Gao F, Mao X, Wu X. Mesenchymal stem cells in osteoarthritis: The need for translation into clinical therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:199-225. [PMID: 37678972 DOI: 10.1016/bs.pmbts.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Widely used for cell-based therapy in various medical fields, mesenchymal stem cells (MSCs) show capacity for anti-inflammatory effects, anti-apoptotic activity, immunomodulation, and tissue repair and regeneration. As such, they can potentially be used to treat osteoarthritis (OA). However, MSCs from different sources have distinct advantages and disadvantages, and various animal models and clinical trials using different sources of MSCs are being conducted in OA regenerative medicine. It is now widely believed that the primary tissue regeneration impact of MSCs is via paracrine effects, rather than direct differentiation and replacement. Cytokines and molecules produced by MSCs, including extracellular vesicles with mRNAs, microRNAs, and bioactive substances, play a significant role in OA repair. This chapter outlines the properties of MSCs and recent animal models and clinical trials involving MSCs-based OA therapy, as well as how the paracrine effect of MSCs acts in OA cartilage repair. Additionally, it discusses challenges and controversies in MSCs-based OA therapy. Despite its limits and unanticipated hazards, MSCs have the potential to be translated into therapeutic therapy for future OA treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoxin Wu
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Kimura M, Nakase J, Takata Y, Shimozaki K, Asai K, Yoshimizu R, Kanayama T, Yanatori Y, Tsuchiya H. Regeneration Using Adipose-Derived Stem Cell Sheets in a Rabbit Meniscal Defect Model Improves Tensile Strength and Load Distribution Function of the Meniscus at 12 Weeks. Arthroscopy 2023; 39:360-370. [PMID: 35995333 DOI: 10.1016/j.arthro.2022.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the mechanical properties, such as the tensile strength and load distribution function, of the meniscus tissue regenerated using adipose-derived stem cell (ADSC) sheets in a rabbit meniscal defect model. METHODS ADSC sheets were prepared from adipose tissue of rabbits. The anterior half of the medial meniscus was removed from both knees. One knee was transplanted with an ADSC sheet; the contralateral knee was closed without transplantation. Mechanical tests were performed at 4 and 12 weeks posttransplantation. In the tensile test, tensile force was applied to the entire medial meniscus, including the normal area (n = 10/group). Compression tests were performed on the entire knee, with soft tissues other than the ligament removed. A pressure-sensitive film was inserted under the medial meniscus and a 40-N load was applied (n = 5/group). RESULTS In the tensile test, the elastic modulus in ADSC-treated knees was higher at 12 weeks (ADSC: 70.30 ± 18.50 MPa, control: 43.71 ± 7.11 MPa, P = .009). The ultimate tensile strength (UTS) in ADSC-treated knees at 12 weeks was also higher (ADSC: 22.69 ± 5.87 N, control: 15.45 ± 4.08 N, P = .038). In the compression test, the contact area was larger in the ADSC group at 4 weeks (ADSC: 31.60 ± 8.17 mm2, control: 20.33 ± 2.86 mm2, P = .024) and 12 weeks (ADSC: 41.07 ± 6.09 mm2, control: 30.53 ± 5.47 mm2, P = .04). Peak pressure was significantly lower in ADSC-treated knees at 12 weeks (ADSC: 11.91 ± 1.03 MPa, control: 15.53 ± 2.3 MPa, P = .002). CONCLUSIONS The regenerated meniscus tissue, 12 weeks after transplantation of the ADSC sheets into the meniscal defect area, had high elastic modulus and UTS. In the meniscus-tibia compartment, the contact area was large and the peak pressure was low. CLINICAL RELEVANCE ADSC sheets promoted regeneration of meniscus. ADSC sheet transplantation for meniscal defects could be an effective regenerative therapy.
Collapse
Affiliation(s)
- Mitsuhiro Kimura
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Junsuke Nakase
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Yasushi Takata
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kengo Shimozaki
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kazuki Asai
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Rikuto Yoshimizu
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomoyuki Kanayama
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yusuke Yanatori
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Perucca Orfei C, Boffa A, Sourugeon Y, Laver L, Magalon J, Sánchez M, Tischer T, Filardo G, de Girolamo L. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models. A systematic review by the ESSKA Orthobiologic Initiative. Part 1: adipose tissue-derived cell-based injectable therapies. Knee Surg Sports Traumatol Arthrosc 2023; 31:641-655. [PMID: 36104484 PMCID: PMC9898370 DOI: 10.1007/s00167-022-07063-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this systematic review was to determine if adipose tissue-derived cell-based injectable therapies can induce disease-modifying effects in joints affected by osteoarthritis (OA). METHODS A systematic review was performed on three electronic databases (PubMed, Web of Science, Embase) according to PRISMA guidelines. A synthesis of the results was performed investigating disease-modifying effects in preclinical studies comparing injectable adipose-derived products with OA controls or other products, different formulations or injection intervals, and the combination with other products. The risk of bias was assessed according to the SYRCLE's tool. RESULTS Seventy-one studies were included (2,086 animals) with an increasing publication trend over time. Expanded cells were used in 65 studies, 3 studies applied point of care products, and 3 studies investigated both approaches. Overall, 48 out of 51 studies (94%) reported better results with adipose-derived products compared to OA controls, with positive findings in 17 out of 20 studies (85%) in macroscopic, in 37 out of 40 studies (93%) in histological, and in 22 out of 23 studies (96%) in immunohistochemical evaluations. Clinical and biomarker evaluations showed positive results in 14 studies out of 18 (78%) and 12 studies out of 14 (86%), while only 9 studies out of 17 (53%) of the imaging evaluations were able to detect differences versus controls. The risk of bias was low in 38% of items, unclear in 51%, and high in (11%). CONCLUSION The current preclinical models document consistent evidence of disease-modifying effects of adipose-derived cell-based therapies for the treatment of OA. The high heterogeneity of the published studies highlights the need for further targeted research to provide recommendations on the optimal methodologies for a more effective application of these injective therapies for the treatment of OA in clinical practice. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Carlotta Perucca Orfei
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Milan, Italy
| | - Angelo Boffa
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Yosef Sourugeon
- grid.413731.30000 0000 9950 8111Rambam Health Care Campus, Haifa, Israel
| | - Lior Laver
- grid.414084.d0000 0004 0470 6828Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel ,Arthrosport Clinic, Tel-Aviv, Israel ,grid.6451.60000000121102151Technion University Hospital (Israel Institute of Technology) - Rappaport Faculty of Medicine, Haifa, Israel
| | - Jérémy Magalon
- grid.414336.70000 0001 0407 1584Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France ,grid.5399.60000 0001 2176 4817INSERM, NRA, C2VN, Aix Marseille Univ, Marseille, France ,SAS Remedex, Marseille, France
| | - Mikel Sánchez
- grid.473696.9Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain ,Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Thomas Tischer
- grid.10493.3f0000000121858338Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
| | - Giuseppe Filardo
- grid.419038.70000 0001 2154 6641Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy ,grid.469433.f0000 0004 0514 7845Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland ,grid.29078.340000 0001 2203 2861Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Laura de Girolamo
- grid.417776.4IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Milan, Italy
| |
Collapse
|
10
|
Ju Y, Yi L, Li C, Wang T, Zhang W, Chai W, Yin X, Weng T. Comparison of biological characteristics of human adipose- and umbilical cord- derived mesenchymal stem cells and their effects on delaying the progression of osteoarthritis in a rat model. Acta Histochem 2022; 124:151911. [DOI: 10.1016/j.acthis.2022.151911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/25/2022]
|
11
|
Bai B, Hou M, Hao J, Liu Y, Ji G, Zhou G. Research progress in seed cells for cartilage tissue engineering. Regen Med 2022; 17:659-675. [PMID: 35703020 DOI: 10.2217/rme-2022-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cartilage defects trouble millions of patients worldwide and their repair via conventional treatment is difficult. Excitingly, tissue engineering technology provides a promising strategy for efficient cartilage regeneration with structural regeneration and functional reconstruction. Seed cells, as biological prerequisites for cartilage regeneration, determine the quality of regenerated cartilage. The proliferation, differentiation and chondrogenesis of seed cells are greatly affected by their type, origin and generation. Thus, a systematic description of the characteristics of seed cells is necessary. This article reviews in detail the cellular characteristics, research progress, clinical translation challenges and future research directions of seed cells while providing guidelines for selecting appropriate seed cells for cartilage regeneration.
Collapse
Affiliation(s)
- Baoshuai Bai
- Research Institute of Plastic Surgery, Wei Fang Medical University, Wei Fang, Shandong, 261053, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| | - Mengjie Hou
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| | - Junxiang Hao
- Research Institute of Plastic Surgery, Wei Fang Medical University, Wei Fang, Shandong, 261053, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| | - Yanhan Liu
- Shanghai JiaoTong University School of Medicine, Shanghai, 200240, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200240, China
| | - Guangdong Zhou
- Research Institute of Plastic Surgery, Wei Fang Medical University, Wei Fang, Shandong, 261053, China.,Shanghai Key Laboratory of Tissue Engineering, Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,National Tissue Engineering Center of China, Shanghai, 200240, China
| |
Collapse
|
12
|
Li Z, Liu L, Yang Y, Zheng H, Cai Y, Ma Y, Gu R, Xu K, Zhang R, Xu P. Metformin Ameliorates Senescence of Adipose-Derived Mesenchymal Stem Cells and Attenuates Osteoarthritis Progression via the AMPK-Dependent Autophagy Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4620254. [PMID: 35693701 PMCID: PMC9187432 DOI: 10.1155/2022/4620254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022]
Abstract
Osteoarthritis (OA) is one of the most serious age-related diseases worldwide that drastically affects the quality of life of patients. Despite advancements in the treatment of arthritis, especially with adipose-derived mesenchymal stem cells (ADSCs), senescence-induced alterations in ADSCs negatively affect the treatment outcomes. This study was aimed at mechanistically exploring whether metformin could ameliorate the senescence of ADSCs and at exploring the effect of metformin-preconditioned ADSCs in an experimental OA mouse model. In this study, an H2O2-induced mouse ADSC senescent model was established. Cell proliferation, senescence, and autophagy were investigated in vitro. Moreover, the effects of intra-articular injection of metformin-preconditioned ADSCs were investigated in vivo. Metformin could promote autophagy and activate the AMPK/mTOR pathway in ADSCs. The metformin-enhanced autophagy could improve the survival and reduce the senescence of ADSCs. The protective effects of metformin against senescence were partially blocked by 3-methyladenine and compound C. Injection of metformin-preconditioned ADSCs slowed OA progression and reduced OA pain in mice. The results suggest that metformin activates the AMPK/mTOR-dependent autophagy pathway in ADSCs against H2O2-induced senescence, while metformin-preconditioned ADSCs can potentially inhibit OA progression.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lin Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yanni Yang
- Department of Clinical Medicine of Traditional Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Haishi Zheng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yongsong Cai
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yao Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ruiying Gu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Recent Biomimetic Approaches for Articular Cartilage Tissue Engineering and Their Clinical Applications: Narrative Review of the Literature. Adv Orthop 2022; 2022:8670174. [PMID: 35497390 PMCID: PMC9054483 DOI: 10.1155/2022/8670174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Since articular cartilage is lacking blood vessels and nerves, its capacity to heal is extremely limited. This means that ruptured cartilage affects the joint as a whole. A health issue known as osteoarthritis can develop as a result of injury and deterioration. Osteoarthritis development can be speeded up by the widespread deterioration of articular cartilage, which ranks third on the list of musculoskeletal disorders requiring rehabilitation, behind only low back pain and broken bones. The current treatments for cartilage repair are ineffective and rarely restore full function or tissue normalcy. A promising new technology in tissue engineering may help create functional cartilage tissue substitutes. Ensuring that the cell source is loaded with bioactive molecules that promote cellular differentiation and/or maturation is the general approach. This review summarizes recent advances in cartilage tissue engineering, and recent clinical trials have been conducted to provide a comprehensive overview of the most recent research developments and clinical applications in the framework of degenerated articular cartilage and osteoarthritis.
Collapse
|
14
|
Daou F, Cochis A, Leigheb M, Rimondini L. Current Advances in the Regeneration of Degenerated Articular Cartilage: A Literature Review on Tissue Engineering and Its Recent Clinical Translation. MATERIALS 2021; 15:ma15010031. [PMID: 35009175 PMCID: PMC8745794 DOI: 10.3390/ma15010031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022]
Abstract
Functional ability is the basis of healthy aging. Articular cartilage degeneration is amongst the most prevalent degenerative conditions that cause adverse impacts on the quality of life; moreover, it represents a key predisposing factor to osteoarthritis (OA). Both the poor capacity of articular cartilage for self-repair and the unsatisfactory outcomes of available clinical interventions make innovative tissue engineering a promising therapeutic strategy for articular cartilage repair. Significant progress was made in this field; however, a marked heterogeneity in the applied biomaterials, biofabrication, and assessments is nowadays evident by the huge number of research studies published to date. Accordingly, this literature review assimilates the most recent advances in cell-based and cell-free tissue engineering of articular cartilage and also focuses on the assessments performed via various in vitro studies, ex vivo models, preclinical in vivo animal models, and clinical studies in order to provide a broad overview of the latest findings and clinical translation in the context of degenerated articular cartilage and OA.
Collapse
Affiliation(s)
- Farah Daou
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
| | - Massimiliano Leigheb
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
- Department of Orthopaedics and Traumatology, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
- Correspondence: ; Tel.: +39-0321-660-673
| |
Collapse
|
15
|
Peláez P, Damiá E, Torres-Torrillas M, Chicharro D, Cuervo B, Miguel L, del Romero A, Carrillo JM, Sopena JJ, Rubio M. Cell and Cell Free Therapies in Osteoarthritis. Biomedicines 2021; 9:1726. [PMID: 34829953 PMCID: PMC8615373 DOI: 10.3390/biomedicines9111726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common articular disease in adults and has a current prevalence of 12% in the population over 65 years old. This chronic disease causes damage to articular cartilage and synovial joints, causing pain and leading to a negative impact on patients' function, decreasing quality of life. There are many limitations regarding OA conventional therapies-pharmacological therapy can cause gastrointestinal, renal, and cardiac adverse effects, and some of them could even be a threat to life. On the other hand, surgical options, such as microfracture, have been used for the last 20 years, but hyaline cartilage has a limited regeneration capacity. In recent years, the interest in new therapies, such as cell-based and cell-free therapies, has been considerably increasing. The purpose of this review is to describe and compare bioregenerative therapies' efficacy for OA, with particular emphasis on the use of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP). In OA, these therapies might be an alternative and less invasive treatment than surgery, and a more effective option than conventional therapies.
Collapse
Affiliation(s)
- Pau Peláez
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Elena Damiá
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Marta Torres-Torrillas
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Deborah Chicharro
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Belén Cuervo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Laura Miguel
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Ayla del Romero
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Jose Maria Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Joaquín J. Sopena
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| | - Mónica Rubio
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain; (P.P.); (M.T.-T.); (D.C.); (B.C.); (L.M.); (A.d.R.); (J.M.C.); (J.J.S.); (M.R.)
- Garcia Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, 08006 Barcelona, Spain
| |
Collapse
|