1
|
Liu X, Zhang Y, Qi X, Zhao D, Rao H, Zhao X, Li Y, Liu J, Qin Z, Hao J, Liu X. Advances of microbial xylanases in the application of flour industries: A comprehensive review. Int J Biol Macromol 2024; 282:137205. [PMID: 39489265 DOI: 10.1016/j.ijbiomac.2024.137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Microbial xylanase has a wide range of applications, and many researchers favoring its utilization as an alternative to improve flour products. Wheat flour is the main raw material of flour products, although the content of arabinoxylan is not high in flour products, but it has a great influence on the quality of flour products, microbial xylanase can act on wheat arabinoxylan, so as to play the role of flour product improvement. This review carries out a description of the research progress on the application of xylanases in flour products in terms of xylanase properties, different families of xylanases and improvement mechanisms of xylanases in flour products. According to the properties of various microbial sources of xylanases, the suitable xylanase can be added to flour products, and the effect of xylanase towards wheat arabinoxylan in flour can be used to improve the quality of flour products. The molecular modification based on the properties of xylanase and the crystal structure of different families of xylanase and their substrate specificity toward wheat arabinoxylan are discussed. The article reviews the information about microbial xylanases in order to achieve better results in flour products and to provide a theoretical basis for their industrial application.
Collapse
Affiliation(s)
- Xingyu Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yuxi Zhang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xiaoya Qi
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Dandan Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Huan Rao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xia Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yanxiao Li
- College of Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing 100083, People's Republic of China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Baoshan District, No. 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Jianxiong Hao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| | - Xueqiang Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| |
Collapse
|
2
|
Kiribayeva A, Silayev D, Akishev Z, Baltin K, Aktayeva S, Ramankulov Y, Khassenov B. An impact of N-glycosylation on biochemical properties of a recombinant α-amylase from Bacillus licheniformis. Heliyon 2024; 10:e28064. [PMID: 38515717 PMCID: PMC10956057 DOI: 10.1016/j.heliyon.2024.e28064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Amylases are enzymes that are known to hydrolyze starch. High efficiency of amylolytic enzymes allows them to compete in the industry with the technology of chemical hydrolysis of starch. A Bacillus licheniformis strain with high amylolytic activity was isolated from soil and designated as T5. The gene encoding α-amylase from B. licheniformis T5 was successfully expressed in both Escherichia coli (rAmyT5-E) and Pichia pastoris (as rAmyT5-P). According to the study, the recombinant α-amylases rAmyT5-E and rAmyT5-P exhibited the highest activity at pH 6.0 and temperatures of 70 and 80 °C, respectively. Over 80% of the rAmyT5-E enzyme activity was preserved following incubation within the pH range of 5-9; the same was true for rAmyT5-P after incubation at pH 6-9. N-glycosylation reduced the thermal and pH stability of the enzyme. The specific activity and catalytic efficiency of the recombinant AmyT5 α-amylase were also diminished by N-glycosylation.
Collapse
Affiliation(s)
- Assel Kiribayeva
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Dmitriy Silayev
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Zhiger Akishev
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Kairat Baltin
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Saniya Aktayeva
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| | - Bekbolat Khassenov
- National Center for Biotechnology, 13/5 Kurgalzhynskoye Road, Astana, 010000, Kazakhstan
| |
Collapse
|
3
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Zhou H, Cai Y, Long M, Zheng N, Zhang Z, You C, Hussain A, Xia X. Computer-Aided Reconstruction and Application of Bacillus halodurans S7 Xylanase with Heat and Alkali Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1213-1227. [PMID: 38183306 DOI: 10.1021/acs.jafc.3c08221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
β-1,4-Endoxylanase is the most critical hydrolase for xylan degradation during lignocellulosic biomass utilization. However, its poor stability and activity in hot and alkaline environments hinder its widespread application. In this study, BhS7Xyl from Bacillus halodurans S7 was improved using a computer-aided design through isothermal compressibility (βT) perturbation engineering and by combining three thermostability prediction algorithms (ICPE-TPA). The best variant with remarkable improvement in specific activity, heat resistance (70 °C), and alkaline resistance (both pH 9.0 and 70 °C), R69F/E137M/E145L, exhibited a 4.9-fold increase by wild-type in specific activity (1368.6 U/mg), a 39.4-fold increase in temperature half-life (458.1 min), and a 57.6-fold increase in pH half-life (383.1 min). Furthermore, R69F/E137M/E145L was applied to the hydrolysis of agricultural waste (corncob and hardwood pulp) to efficiently obtain a higher yield of high-value xylooligosaccharides. Overall, the ICPE-TPA strategy has the potential to improve the functional performance of enzymes under extreme conditions for the high-value utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Huimin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yongchao Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Cuiping You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Asif Hussain
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300000, China
| |
Collapse
|
5
|
Wu X, Shi Z, Tian W, Liu M, Huang S, Liu X, Yin H, Wang L. A thermostable and CBM2-linked GH10 xylanase from Thermobifida fusca for paper bleaching. Front Bioeng Biotechnol 2022; 10:939550. [PMID: 36091429 PMCID: PMC9459120 DOI: 10.3389/fbioe.2022.939550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Xylanases have the potential to be used as bio-deinking and bio-bleaching materials and their application will decrease the consumption of the chlorine-based chemicals currently used for this purpose. However, xylanases with specific properties could act effectively, such as having significant thermostability and alkali resistance, etc. In this study, we found that TfXyl10A, a xylanase from Thermobifida fusca, was greatly induced to transcript by microcrystalline cellulose (MCC) substrate. Biochemical characterization showed that TfXyl10A is optimally effective at temperature of 80 °C and pH of 9.0. After removing the carbohydrate-binding module (CBM) and linker regions, the optimum temperature of TfXyl10A-CD was reduced by 10°C (to 70°C), at which the enzyme’s temperature tolerance was also weakened. While truncating only the CBM domain (TfXyl10AdC) had no significant effect on its thermostability. Importantly, polysaccharide-binding experiment showed that the auxiliary domain CBM2 could specifically bind to cellulose substrates, which endowed xylanase TfXyl10A with the ability to degrade xylan surrounding cellulose. These results indicated that TfXyl10A might be an excellent candidate in bio-bleaching processes of paper industry. In addition, the features of active-site architecture of TfXyl10A in GH10 family were further analyzed. By mutating each residue at the -2 and -1 subsites to alanine, the binding force and enzyme activity of mutants were observably decreased. Interestingly, the mutant E51A, locating at the distal -3 subsite, exhibited 90% increase in relative activity compared with wild-type (WT) enzyme TfXyl10A-CD (the catalytic domain of TfXyl110A). This study explored the function of a GH10 xylanase containing a CBM2 domain and the contribution of amino acids in active-site architecture to catalytic activity. The results obtained provide guidance for the rational design of xylanases for industrial applications under high heat and alkali-based operating conditions, such as paper bleaching.
Collapse
Affiliation(s)
- Xiuyun Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao, China
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zelu Shi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Wenya Tian
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Mengyu Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shuxia Huang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao, China
- *Correspondence: Hua Yin, ; Lushan Wang,
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Hua Yin, ; Lushan Wang,
| |
Collapse
|
6
|
Tian Y, Xu J, Shi J, Kong M, Guo C, Cui C, Wang Y, Wang Y, Zhou C. Cloning, Expression, and Characterization of a GHF 11 Xylanase from Alteromonas macleodii HY35 in Escherichia coli. J GEN APPL MICROBIOL 2022; 68:134-142. [PMID: 35965062 DOI: 10.2323/jgam.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A xylanase gene xynZT-1 from Alteromonas macleodii HY35 was cloned and expressed in Escherichia coli (E. coli). The sequencing results showed that the ORF of xynZT-1 was 831 bp. The xylanase DNA sequence encoded a 29 amino acids (aa) signal peptide and a 247-aa mature peptide. The XynZT-1 has been a calculated molecular weight (MW) of 27.93 kDa, isoelectric point (pI) of 5.11 and the formula C1266H1829N327O384S5. The amino acid sequence of the xynZT-1 had a high similarity with that of glycosyl hydrolase family 11 (GHF11) reported from other microorganisms. The DNA sequence encoding mature peptide was subcloned into pET-28a(+) expression vector. The resulted plasmid pET-28a-xynZT-1 was transformed into E. coli BL21(DE3), and the recombinant strain BL21(DE3)/xynZT-1 was obtained. The optimum temperature and pH of the recombinant XynZT-1 were 45 ℃ and 5.0, respectively.
Collapse
Affiliation(s)
- Yanjie Tian
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Jia Xu
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Jianing Shi
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Mengyuan Kong
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Changjiang Guo
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Caixia Cui
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Yongtao Wang
- The First Affiliated Hospital, Xinxiang Medical University
| | - Yan Wang
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Chenyan Zhou
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| |
Collapse
|
7
|
Winkelman DC, Nikolau BJ. The Effects of Carbon Source and Growth Temperature on the Fatty Acid Profiles of Thermobifida fusca. Front Mol Biosci 2022; 9:896226. [PMID: 35720111 PMCID: PMC9198275 DOI: 10.3389/fmolb.2022.896226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The aerobic, thermophilic Actinobacterium, Thermobifida fusca has been proposed as an organism to be used for the efficient conversion of plant biomass to fatty acid-derived precursors of biofuels or biorenewable chemicals. Despite the potential of T. fusca to catabolize plant biomass, there is remarkably little data available concerning the natural ability of this organism to produce fatty acids. Therefore, we determined the fatty acids that T. fusca produces when it is grown on different carbon sources (i.e., glucose, cellobiose, cellulose and avicel) and at two different growth temperatures, namely at the optimal growth temperature of 50°C and at a suboptimal temperature of 37°C. These analyses establish that T. fusca produces a combination of linear and branched chain fatty acids (BCFAs), including iso-, anteiso-, and 10-methyl BCFAs that range between 14- and 18-carbons in length. Although different carbon sources and growth temperatures both quantitatively and qualitatively affect the fatty acid profiles produced by T. fusca, growth temperature is the greater modifier of these traits. Additionally, genome scanning enabled the identification of many of the fatty acid biosynthetic genes encoded by T. fusca.
Collapse
Affiliation(s)
| | - Basil J. Nikolau
- Department of Biochemistry, Biophysics and Molecular Biology and the Center of Metabolic Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Cloning, expression, and characterization of a recombinant xylanase from Bacillus sonorensis T6. PLoS One 2022; 17:e0265647. [PMID: 35298551 PMCID: PMC8929556 DOI: 10.1371/journal.pone.0265647] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/05/2022] [Indexed: 11/19/2022] Open
Abstract
Xylanase is one of industrial enzymes with diverse applications including the paper-bleaching industry and feed additives. Here, a strain having xylanolytic activity and identified as Bacillus sonorensis T6 was isolated from soil. A secretory enzyme was identified by mass-spectrometry as a xylanase of glycosyl hydrolase family 11, with a molecular weight of 23.3 kDa. The xylanase gene of Bacillus sonorensis T6 was cloned and expressed in Escherichia coli (yielding an enzyme designated as rXynT6-E) and in Pichia pastoris (yielding rXynT6-P). The recombinant xylanases were found to have optimal activity at 47–55°C and pH 6.0–7.0. The recombinant xylanase expressed in P. pastoris has 40% higher thermal stability than that expressed in E. coli. The recombinant xylanases retained 100% of activity after 10 h incubation in the pH range 3–11 and 68% of activity after 1 h at pH 2.0. The xylanase activities of rXynT6-E and rXynT6-P under optimal conditions were 1030.2 and 873.8 U/mg, respectively. The good stability in a wide range of pH and moderate temperatures may make the xylanase from Bacillus sonorensis T6 useful for various biotechnological applications, e.g., as an enzyme additive in the feed industry.
Collapse
|
9
|
He L, Zhang R, Shen J, Miao Y, Zeng C, Tang X, Wu Q, Zhou J, Huang Z. Improving the low-temperature properties of an exo-inulinase via the deletion of a loop fragment located in its catalytic pocket. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Lopes AMM, Martins M, Goldbeck R. Heterologous Expression of Lignocellulose-Modifying Enzymes in Microorganisms: Current Status. Mol Biotechnol 2021; 63:184-199. [PMID: 33484441 DOI: 10.1007/s12033-020-00288-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Heterologous expression of the carbohydrate-active enzymes in microorganisms is a promising approach to produce bio-based compounds, such as fuels, nutraceuticals and other value-added products from sustainable lignocellulosic sources. Several microorganisms, including Saccharomyces cerevisiae, Escherichia coli, and the filamentous fungi Aspergillus nidulans, have unique characteristics desirable for a biorefinery production approach like well-known genetic tools, thermotolerance, high fermentative capacity and product tolerance, and high amount of recombinant enzyme secretion. These microbial factories are already stablished in the heterologous production of the carbohydrate-active enzymes to produce, among others, ethanol, xylooligosaccharides and the valuable coniferol. A complete biocatalyst able to heterologous express the CAZymes of glycoside hydrolases, carbohydrate esterases and auxiliary activities families could release these compounds faster, with higher yield and specificity. Recent advances in the synthetic biology tools could expand the number and diversity of enzymes integrated in these microorganisms, and also modify those already integrated. This review outlines the heterologous expression of carbohydrate-active enzymes in microorganisms, as well as recent updates in synthetic biology.
Collapse
Affiliation(s)
- Alberto Moura Mendes Lopes
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato no 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil
| | - Manoela Martins
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato no 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato no 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
11
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
12
|
Yu J, Liu X, Guan L, Jiang Z, Yan Q, Yang S. High-level expression and enzymatic properties of a novel thermostable xylanase with high arabinoxylan degradation ability from Chaetomium sp. suitable for beer mashing. Int J Biol Macromol 2020; 168:223-232. [PMID: 33309660 DOI: 10.1016/j.ijbiomac.2020.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/16/2022]
Abstract
A novel thermostable xylanase gene from Chaetomium sp. CQ31 was cloned and codon-optimized (CsXynBop). The deduced protein sequence of the gene shared the highest similarity of 75% with the glycoside hydrolase (GH) family 10 xylanase from Achaetomium sp. Xz-8. CsXynBop was over-expressed in Pichia pastoris GS115 by high-cell density fermentation, with the highest xylanase yield of 10,017 U/mL. The recombinant xylanase (CsXynBop) was purified to homogeneity and biochemically characterized. CsXynBop was optimally active at pH 6.5 and 85 °C, respectively, and stable over a broad pH range of 5.0-9.5 and up to 60 °C. The enzyme exhibited strict substrate specificity towards oat-spelt xylan (2, 489 U/mg), beechwood xylan (1522 U/mg), birchwood xylan (1067 U/mg), and showed relatively high activity towards arabinoxylan (1208 U/mg), but exhibited no activity on other tested polysaccharides. CsXynBop hydrolyzed different xylans to yield mainly xylooligosaccharides (XOSs) with degree of polymerization (DP) 2-5. The application of CsXynBop (200 U/g malt) in malt mashing substantially decreased the filtration time and viscosity of malt by 42.3% and 8.6%, respectively. These excellent characteristics of CsXynBop may make it a good candidate in beer industry.
Collapse
Affiliation(s)
- Jing Yu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqiang Liu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Leying Guan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
13
|
Talens-Perales D, Sánchez-Torres P, Marín-Navarro J, Polaina J. In silico screening and experimental analysis of family GH11 xylanases for applications under conditions of alkaline pH and high temperature. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:198. [PMID: 33372612 PMCID: PMC7720462 DOI: 10.1186/s13068-020-01842-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Xylanases are one of the most extensively used enzymes for biomass digestion. However, in many instances, their use is limited by poor performance under the conditions of pH and temperature required by the industry. Therefore, the search for xylanases able to function efficiently at alkaline pH and high temperature is an important objective for different processes that use lignocellulosic substrates, such as the production of paper pulp and biofuels. RESULTS A comprehensive in silico analysis of family GH11 sequences from the CAZY database allowed their phylogenetic classification in a radial cladogram in which sequences of known or presumptive thermophilic and alkalophilic xylanases appeared in three clusters. Eight sequences from these clusters were selected for experimental analysis. The coding DNA was synthesized, cloned and the enzymes were produced in E. coli. Some of these showed high xylanolytic activity at pH values > 8.0 and temperature > 80 °C. The best enzymes corresponding to sequences from Dictyoglomus thermophilum (Xyn5) and Thermobifida fusca (Xyn8). The addition of a carbohydrate-binding module (CBM9) to Xyn5 increased 4 times its activity at 90 °C and pH > 9.0. The combination of Xyn5 and Xyn8 was proved to be efficient for the saccharification of alkali pretreated rice straw, yielding xylose and xylooligosaccharides. CONCLUSIONS This study provides a fruitful approach for the selection of enzymes with suitable properties from the information contained in extensive databases. We have characterized two xylanases able to hydrolyze xylan with high efficiency at pH > 8.0 and temperature > 80 °C.
Collapse
Affiliation(s)
- David Talens-Perales
- Department of Food Biotechnology. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Paloma Sánchez-Torres
- Department of Food Biotechnology. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Julia Marín-Navarro
- Department of Food Biotechnology. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Julio Polaina
- Department of Food Biotechnology. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
14
|
Zhang R, He L, Shen J, Miao Y, Tang X, Wu Q, Zhou J, Huang Z. Improving low-temperature activity and thermostability of exo-inulinase InuAGN25 on the basis of increasing rigidity of the terminus and flexibility of the catalytic domain. Bioengineered 2020; 11:1233-1244. [PMID: 33131413 PMCID: PMC8291790 DOI: 10.1080/21655979.2020.1837476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Enzymes displaying high activity at low temperatures and good thermostability are attracting attention in many studies. However, improving low-temperature activity along with the thermostability of enzymes remains challenging. In this study, the mutant Mut8S, including eight sites (N61E, K156R, P236E, T243K, D268E, T277D, Q390K, and R409D) mutated from the exo-inulinase InuAGN25, was designed on the basis of increasing the number of salt bridges through comparison between the low-temperature-active InuAGN25 and thermophilic exo-inulinases. The recombinant Mut8S, which was expressed in Escherichia coli, was digested by human rhinovirus 3 C protease to remove the amino acid fusion sequence at N-terminus, producing RfsMut8S. Compared with wild-type RfsMInuAGN25, the mutant RfsMut8S showed (1) lower root mean square deviation values, (2) lower root mean square fluctuation (RMSF) values of residues in six regions of the N and C termini but higher RMSF values in five regions of the catalytic pocket, (3) higher activity at 0-40°C, and (4) better thermostability at 50°C. This study proposes a way to increase low-temperature activity along with a thermostability improvement of exo-inulinase on the basis of increasing the rigidity of the terminus and the flexibility of the catalytic domain. These findings may prove useful in formulating rational designs for increasing the thermal performance of enzymes.
Collapse
Affiliation(s)
- Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Limei He
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Jidong Shen
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Ying Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
15
|
Shi Z, Han C, Zhang X, Tian L, Wang L. Novel Synergistic Mechanism for Lignocellulose Degradation by a Thermophilic Filamentous Fungus and a Thermophilic Actinobacterium Based on Functional Proteomics. Front Microbiol 2020; 11:539438. [PMID: 33042052 PMCID: PMC7518101 DOI: 10.3389/fmicb.2020.539438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Effective artificial microbial consortia containing microorganisms with desired biological functions have the potential to optimize the lignocellulose-based bioindustry. Thermobifida fusca was a dominant actinobacterium in high-temperature corn stalk composts, but it was unable to grow alone in corn stalk solid medium. Interestingly, T. fusca showed good growth and secreted enzymes when cocultured with Thermomyces lanuginosus. T. lanuginosus grew firstly during the initial stage, whereas T. fusca dominated the system subsequently during cocultivation. The secretome indicated that T. lanuginosus mainly degraded xylan by expressing a GH11 xylanase (g4601.t1, GenBank AAB94633.1; with relative secretion of 4.95 ± 0.65%). T. fusca was induced by xylan mainly to secrete a xylanase from GH11 family (W8GGR4, GenBank AHK22788.1; with relative secretion of 8.71 ± 3.83%) which could rapidly degrade xylan to xylo-oligosaccharide (XOS) and xylose within 2 min, while high concentrations (>0.5%, w/v) of XOS or xylose suppressed the growth of T. fusca; which may be the reason why T. fusca unable to grow alone in corn stalk solid medium. However, T. lanuginosus could utilize the XOS and xylose produced by xylanases secreted by T. fusca. During the synergistic degradation of lignocellulose by T. lanuginosus and T. fusca, xylan was rapidly consumed by T. lanuginosus, the residual cellulose could specifically induced T. fusca to express a GH10 xylanase with a CBM2 domain (Q47KR6, GenBank AAZ56956.1; with relative secretion of 5.03 ± 1.33%) and 6 cellulases (2 exocellulases and 4 endocellulases). Moreover, T. lanuginosus increased the secretion of cellulases from T. fusca by 19-25%. The order of T. lanuginosus and T. fusca was consistent with the multilayered structures of lignocellulose and could be regulated by different concentrations of XOS and xylose. The novel synergism of T. lanuginosus and T. fusca gave a new sight for revealing more synergetic relationships in natural environments and exploring efficient microbial inoculants and enzyme cocktails for lignocellulose degradation.
Collapse
Affiliation(s)
- Zelu Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Chao Han
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiujun Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Li Tian
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
16
|
He L, Zhang R, Shen J, Miao Y, Tang X, Wu Q, Zhou J, Huang Z. Removal of N-terminal tail changes the thermostability of the low-temperature-active exo-inulinase InuAGN25. Bioengineered 2020; 11:921-931. [PMID: 32865156 PMCID: PMC8291819 DOI: 10.1080/21655979.2020.1809921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exo-inulinases are members of the glycoside hydrolase family 32 and function by hydrolyzing inulin into fructose with yields up to 90–95%. The N-terminal tail contributes to enzyme thermotolerance, which plays an important role in enzyme applications. However, the role of N-terminal amino acid residues in the thermal performance and structural properties of exo-inulinases remains to be elucidated. In this study, three and six residues of the N-terminus starting from Gln23 of the exo-inulinase InuAGN25 were deleted and expressed in Escherichia coli. After digestion with human rhinovirus 3 C protease to remove the N-terminal amino acid fusion sequence that may affect the thermolability of enzymes, wild-type RfsMInuAGN25 and its mutants RfsMutNGln23Δ3 and RfsMutNGln23Δ6 were produced. Compared with RfsMInuAGN25, thermostability of RfsMutNGln23Δ3 was enhanced while that of RfsMutNGln23Δ6 was slightly reduced. Compared with the N-terminal structures of RfsMInuAGN25 and RfsMutNGln23Δ6, RfsMutNGln23Δ3 had a higher content of (1) the helix structure, (2) salt bridges (three of which were organized in a network), (3) cation–π interactions (one of which anchored the N-terminal tail). These structural properties may account for the improved thermostability of RfsMutNGln23Δ3. The study provides a better understanding of the N-terminus–function relationships that are useful for rational design of thermostability of exo-inulinases.
Collapse
Affiliation(s)
- Limei He
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Jidong Shen
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Ying Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, People's Republic of China.,College of Life Sciences, Yunnan Normal University , Kunming, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan, Kunming, People's Republic of China
| |
Collapse
|
17
|
Si D, Shang T, Liu X, Zheng Z, Hu Q, Hu C, Zhang R. Production and characterization of functional wheat bran hydrolysate rich in reducing sugars, xylooligosaccharides and phenolic acids. ACTA ACUST UNITED AC 2020; 27:e00511. [PMID: 32775234 PMCID: PMC7397401 DOI: 10.1016/j.btre.2020.e00511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/01/2022]
Abstract
The aim was to enhance production of functional hydrolysate from wheat bran (WB). WB was hydrolyzed with 3000 U/mL ɑ-amylase and 1200 U/mL alkaline protease to prepare WB insoluble dietary fibre (WBIDF). Functional hydrolysate production from the extract containing crude xylan of WBIDF by xylanase was optimized by Taguchi method. The optimal condition for xylan degradation and functional substances production was 78.50 U/mL xylanase, pH 10.0, 50 °C, and reaction time 6 h. The maximum yield of reducing sugars was 614.0 μg/mL, xylobiose increased from 12.9 μg/mL to 213.3 μg/mL, xylotriose increased from 34.9 μg/mL to 174.0 μg/mL, ferulic acid 13.1 μg/mL made up 57.5 % of the total identifiable phenolic pool in the hydrolysate. The total antioxidant activity of hydrolysate was 141.8 mg ascorbic acid equivalents g-1 crude xylan, and the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity reached 92.7 %. The hydrolysate exhibited great potential in agricultural and food industry application.
Collapse
Key Words
- AAE, ascorbic acid equivalents
- ANOVA, analysis of variance
- Antioxidant capacity
- DAD, diode array detector
- DNS, dinitrosalicylic acid
- DP, degree of polymerization
- DPPH, 1,1-diphenyl-2-picrylhydrazyl
- Hydrolysis optimization
- Phenolic acids
- Reducing sugars
- WB, wheat bran
- WBIDF, wheat bran insoluble dietary fibre
- Wheat bran
- X2, xylobiose
- X3, xylotriose
- X4, xylotetraose
- X5, xylopentose
- X6, xylohexose
- XOS, xylooligosaccharides
- Xylooligosaccharides
Collapse
Affiliation(s)
- Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Tingting Shang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China.,Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Key Laboratory for Feed Biotechnology, No. 12 Zhongguancun South Street, Beijing 100081, People's Republic of China
| | - Xuhui Liu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Zhaojun Zheng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Qingyong Hu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Cong Hu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
18
|
Genome analysis of cellulose and hemicellulose degrading Micromonospora sp. CP22. 3 Biotech 2020; 10:160. [PMID: 32206494 DOI: 10.1007/s13205-020-2148-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/16/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, a bacterial strain CP22 with ability to produce cellulase, xylanase and mannanase was isolated from the oil palm compost. Based on the 16S rRNA gene analysis, the strain was affiliated to genus Micromonospora. To further investigate genes that are related to cellulose and hemicellulose degradation, the genome of strain CP22 was sequenced, annotated and analyzed. The de novo assembled genome of strain CP22 featured a size of 5,856,203 bp with G + C content of 70.84%. Detailed genome analysis on lignocellulose degradation revealed a total of 60 genes consisting of 47 glycoside hydrolase domains and 16 carbohydrate esterase domains predicted to be involved in cellulolytic and hemicellulolytic deconstruction. Particularly, 20 genes encode for cellulases (8 endoglucanases, 3 exoglucanases and 9 β-glucosidases) and 40 genes encode for hemicellulases (15 endo-1,4-β-xylanase, 3 β-xylosidase, 3 α-arabinofuranosidase, 10 acetyl xylan esterase, 6 polysaccharide deacetylase, 1 β-mannanase, 1 β-mannosidase and 1 α-galactosidase). Thirty-two genes encoding carbohydrate-binding modules (CBM) from six different families (CBM2, CBM4, CBM6, CBM9, CBM13 and CBM22) were present in the genome of strain CP22. These CBMs were found in 27 cellulolytic and hemicellulolytic genes, indicating their potential role in enhancing the substrate-binding capability of the enzymes. CBM2 and CBM13 are the major CBMs present in cellulases and hemicellulases (xylanases and mannanases), respectively. Moreover, a GH10 xylanase was found to contain 3 CBMs (1 CBM9 and 2 CBM22) and these CBMs were reported to bind specifically to xylan. This genome-based analysis could facilitate the exploration of this strain for lignocellulosic biomass degradation.
Collapse
|
19
|
Wang Z, Guo C, Liu L, Huang H. Effects of N-glycosylation on the biochemical properties of recombinant bEKL expressed in Pichia pastoris. Enzyme Microb Technol 2018; 114:40-47. [DOI: 10.1016/j.enzmictec.2018.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/10/2018] [Accepted: 03/16/2018] [Indexed: 12/30/2022]
|
20
|
Basit A, Liu J, Miao T, Zheng F, Rahim K, Lou H, Jiang W. Characterization of Two Endo-β-1, 4-Xylanases from Myceliophthora thermophila and Their Saccharification Efficiencies, Synergistic with Commercial Cellulase. Front Microbiol 2018; 9:233. [PMID: 29491860 PMCID: PMC5817056 DOI: 10.3389/fmicb.2018.00233] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/30/2018] [Indexed: 01/11/2023] Open
Abstract
The xylanases with high specific activity and resistance to harsh conditions are of high practical value for biomass utilization. In the present study, two new GH11 xylanase genes, MYCTH_56237 and MYCTH_49824, have been cloned from thermophilic fungus Myceliophthora thermophila and expressed in Pichia pastoris. The specific activities of purified xylanases reach approximately 1,533.7 and 1,412.5 U/mg, respectively. Based on multiple template-based homology modeling, the structures of their catalytic domains are predicted. Enzyme activity was more effective in 7.5 L fermentor, yielding 2,010.4 and 2,004.2 U/mL, respectively. Both enzymes exhibit optimal activity at 60°C with pH of 6.0 and 7.0, respectively. Their activities are not affected by EDTA and an array of metal ions. The kinetic constants have been determined for MYCTH_56237 (Km = 8.80 mg/mL, Vmax = 2,380 U/mg) and MYCTH_49824 (Km = 5.67 mg/mL, Vmax = 1,750 U/mg). More importantly, both xylanases significantly cooperate with the commercial cellulase Celluclast 1.5 L in terms of the saccharification efficiency. All these biochemical properties of the xylanases offer practical potential for future applications.
Collapse
Affiliation(s)
- Abdul Basit
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junquan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ting Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengzhen Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kashif Rahim
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Biotechnology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Huiqiang Lou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Production of xylanase from a novel engineered Pichia pastoris and application to enzymatic hydrolysis process for biorefinery. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Juturu V, Wu JC. Heterologous Protein Expression in Pichia pastoris
: Latest Research Progress and Applications. Chembiochem 2017; 19:7-21. [DOI: 10.1002/cbic.201700460] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Veeresh Juturu
- Institute of Chemical and Engineering Sciences; Agency for Science; Technology and Research (A*STAR); 1 Pesek Road Jurong Island Singapore 627833 Singapore
| | - Jin Chuan Wu
- Institute of Chemical and Engineering Sciences; Agency for Science; Technology and Research (A*STAR); 1 Pesek Road Jurong Island Singapore 627833 Singapore
| |
Collapse
|
23
|
Li XQ, Wu Q, Hu D, Wang R, Liu Y, Wu MC, Li JF. Improving the temperature characteristics and catalytic efficiency of a mesophilic xylanase from Aspergillus oryzae, AoXyn11A, by iterative mutagenesis based on in silico design. AMB Express 2017; 7:97. [PMID: 28508385 PMCID: PMC5432455 DOI: 10.1186/s13568-017-0399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022] Open
Abstract
To improve the temperature characteristics and catalytic efficiency of a glycoside hydrolase family (GHF) 11 xylanase from Aspergillus oryzae (AoXyn11A), its variants were predicted based on in silico design. Firstly, Gly21 with the maximum B-factor value, which was confirmed by molecular dynamics (MD) simulation on the three-dimensional structure of AoXyn11A, was subjected to site-saturation mutagenesis. Thus, one variant with the highest thermostability, AoXyn11AG21I, was selected from the mutagenesis library, E. coli/Aoxyn11AG21X (X: any one of 20 amino acids). Secondly, based on the primary structure multiple alignment of AoXyn11A with seven thermophilic GHF11 xylanases, AoXyn11AY13F or AoXyn11AG21I–Y13F, was designed by replacing Tyr13 in AoXyn11A or AoXyn11AG21I with Phe. Finally, three variant-encoding genes, Aoxyn11AG21I, Aoxyn11AY13F and Aoxyn11AG21I–Y13F, were constructed by two-stage whole-plasmid PCR method, and expressed in Pichia pastoris GS115, respectively. The temperature optimum (Topt) of recombinant (re) AoXyn11AG21I–Y13F was 60 °C, being 5 °C higher than that of reAoXyn11AG21I or reAoXyn11AY13F, and 10 °C higher than that of reAoXyn11A. The thermal inactivation half-life (t1/2) of reAoXyn11AG21I–Y13F at 50 °C was 240 min, being 40-, 3.4- and 2.5-fold longer than those of reAoXyn11A, reAoXyn11AG21I and reAoXyn11AY13F. The melting temperature (Tm) values of reAoXyn11A, reAoXyn11AG21I, reAoXyn11AY13F and reAoXyn11AG21I–Y13F were 52.3, 56.5, 58.6 and 61.3 °C, respectively. These findings indicated that the iterative mutagenesis of both Gly21Ile and Tyr13Phe improved the temperature characteristics of AoXyn11A in a synergistic mode. Besides those, the catalytic efficiency (kcat/Km) of reAoXyn11AG21I–Y13F was 473.1 mL mg−1 s−1, which was 1.65-fold higher than that of reAoXyn11A.
Collapse
|
24
|
Yu Y, Liu Z, Yang M, Chen M, Wei Z, Shi L, Li L, Mou H. Characterization of Full-Length and Truncated Recombinant κ-Carrageenase Expressed in Pichia pastoris. Front Microbiol 2017; 8:1544. [PMID: 28861059 PMCID: PMC5561669 DOI: 10.3389/fmicb.2017.01544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
κ-Carrageenase belongs to glycoside hydrolase family 16 and cleaves the β-(1→4) linkages of κ-carrageenan. In this study, genes encoding the full-length (cgkZ), Por secretion tail-truncated (cgkZΔPst) and carbohydrate binding domain-truncated (cgkZΔCBM) κ-carrageenase proteins were expressed in Pichia pastoris. The copy numbers of gene cgkZ, cgkZΔPst and cgkZΔCBM were 7, 7 and 6, respectively. The enzymatic activities of recombinant enzymes cgkZ, cgkZΔPst and cgkZΔCBM reached 4.68, 5.70, and 3.02 U/mL, respectively, after 120 h of shake flask fermentation at 22°C and pH 6 in the presence of 1 % (v/v) methanol. The molecular weights of recombinant cgkZ, cgkZΔPst, and cgkZΔCBM were approximately 65, 45, and 40 kDa; their Km values were 2.07, 1.85, and 1.04 mg/mL; and they exhibited optimal activity at 45-50°C and pH 6-7. All the recombinant enzymes were stimulated by Na+, Mg2+, Ca2+, and dithiothreitol. The end-products of enzymatic hydrolysis were mainly composed of κ-carrageenan tetrasaccharide and hexasaccharide. The removal of the Por secretion tail of κ-carrageenase promoted the transcription of κ-carrageenase gene, enhancing the specific activity of κ-carrageenase without significantly changing its catalytic properties. Although the transcription level of κ-carrageenase gene after the removal of the carbohydrate binding domain was relatively high, the specific activity of the recombinant enzyme significantly decreased. The comprehensive application of the P. pastoris expression system combined with the rational modification of genes may provide a novel approach for the heterologous expression of various marine enzymes with high activities.
Collapse
Affiliation(s)
- Yuan Yu
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Min Yang
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Meng Chen
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Zhihan Wei
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Lixia Shi
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Li Li
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| |
Collapse
|
25
|
Shang T, Si D, Zhang D, Liu X, Zhao L, Hu C, Fu Y, Zhang R. Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed-batch strategy in high cell-density fermentation. BMC Biotechnol 2017. [PMID: 28633643 PMCID: PMC5479016 DOI: 10.1186/s12896-017-0361-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xylanase degrades xylan into monomers of various sizes by catalyzing the endohydrolysis of the 1,4-β-D-xylosidic linkage randomly, possessing potential in wide industrial applications. Most of xylanases are susceptible to be inactive when suffering high temperature and high alkaline process. Therefore, it is necessary to develop a high amount of effective thermoalkaliphilic xylanases. This study aims to enhance thermoalkaliphilic xylanase production in Pichia pastoris through fermentation parameters optimization and novel efficient fed-batch strategy in high cell-density fermentation. RESULTS Recombinant xylanase activity increased 12.2%, 7.4%, 12.0% and 9.9% by supplementing the Pichia pastoris culture with 20 g/L wheat bran, 5 mg/L L-histidine, 10 mg/L L-tryptophan and 10 mg/L L-methionine in shake flasks, respectively. Investigation of nutritional fermentation parameters, non-nutritional fermentation parameters and feeding strategies in 1 L bioreactor and 1 L shake flask revealed that glycerol and methanol feeding strategies were the critical factors for high cell density and xylanase activity. In 50 L bioreactor, a novel glycerol feeding strategy and a four-stage methanol feeding strategy with a stepwise increase in feeding rate were developed to enhance recombinant xylanase production. In the initial 72 h of methanol induction, the linear dependence of xylanase activity on methanol intake was observed (R2 = 0.9726). The maximum xylanase activity was predicted to be 591.2 U/mL, while the actual maximum xylanase activity was 560.7 U/mL, which was 7.05 times of that in shake flask. Recombinant xylanase retained 82.5% of its initial activity after pre-incubation at 80 °C for 50 min (pH 8.0), and it exhibited excellent stability in the broad temperature (60-80 °C) and pH (pH 8.0-11.0) ranges. CONCLUSIONS Efficient glycerol and methanol fed-batch strategies resulting in desired cell density and xylanase activity should be applied in other P. pastoris fermentation for other recombinant proteins production. Recombinant xylanases with high pH- and thermal-stability showed potential in various industrial applications.
Collapse
Affiliation(s)
- Tingting Shang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Dongyan Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xuhui Liu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Longmei Zhao
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Cong Hu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yu Fu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
26
|
Gamerith C, Vastano M, Ghorbanpour SM, Zitzenbacher S, Ribitsch D, Zumstein MT, Sander M, Herrero Acero E, Pellis A, Guebitz GM. Enzymatic Degradation of Aromatic and Aliphatic Polyesters by P. pastoris Expressed Cutinase 1 from Thermobifida cellulosilytica. Front Microbiol 2017; 8:938. [PMID: 28596765 PMCID: PMC5443175 DOI: 10.3389/fmicb.2017.00938] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/09/2017] [Indexed: 11/13/2022] Open
Abstract
To study hydrolysis of aromatic and aliphatic polyesters cutinase 1 from Thermobifida cellulosilytica (Thc_Cut1) was expressed in P. pastoris. No significant differences between the expression of native Thc_Cut1 and of two glycosylation site knock out mutants (Thc_Cut1_koAsn and Thc_Cut1_koST) concerning the total extracellular protein concentration and volumetric activity were observed. Hydrolysis of poly(ethylene terephthalate) (PET) was shown for all three enzymes based on quantification of released products by HPLC and similar concentrations of released terephthalic acid (TPA) and mono(2-hydroxyethyl) terephthalate (MHET) were detected for all enzymes. Both tested aliphatic polyesters poly(butylene succinate) (PBS) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were hydrolyzed by Thc_Cut1 and Thc_Cut1_koST, although PBS was hydrolyzed to significantly higher extent than PHBV. These findings were also confirmed via quartz crystal microbalance (QCM) analysis; for PHBV only a small mass change was observed while the mass of PBS thin films decreased by 93% upon enzymatic hydrolysis with Thc_Cut1. Although both enzymes led to similar concentrations of released products upon hydrolysis of PET and PHBV, Thc_Cut1_koST was found to be significantly more active on PBS than the native Thc_Cut1. Hydrolysis of PBS films by Thc_Cut1 and Thc_Cut1_koST was followed by weight loss and scanning electron microscopy (SEM). Within 96 h of hydrolysis up to 92 and 41% of weight loss were detected with Thc_Cut1_koST and Thc_Cut1, respectively. Furthermore, SEM characterization of PBS films clearly showed that enzyme tretment resulted in morphological changes of the film surface.
Collapse
Affiliation(s)
| | - Marco Vastano
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences ViennaTulln, Austria.,Dipartimento di Scienze Chimiche, Universita degli Studi di Napoli Federico IINaples, Italy
| | - Sahar M Ghorbanpour
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences ViennaTulln, Austria
| | | | - Doris Ribitsch
- Austrian Centre of Industrial BiotechnologyTulln, Austria.,Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences ViennaTulln, Austria
| | - Michael T Zumstein
- Institute of Biogeochemistry and Pollutant Dynamics, ETH ZurichZurich, Switzerland
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH ZurichZurich, Switzerland
| | | | - Alessandro Pellis
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences ViennaTulln, Austria
| | - Georg M Guebitz
- Austrian Centre of Industrial BiotechnologyTulln, Austria.,Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences ViennaTulln, Austria
| |
Collapse
|
27
|
Yin YR, Hu QW, Xian WD, Zhang F, Zhou EM, Ming H, Xiao M, Zhi XY, Li WJ. Characterization of a neutral recombinant xylanase from Thermoactinospora rubra YIM 77501T. Antonie van Leeuwenhoek 2016; 110:429-436. [DOI: 10.1007/s10482-016-0798-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
28
|
Production and Partial Characterization of an Alkaline Xylanase from a Novel Fungus Cladosporium oxysporum. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4575024. [PMID: 27213150 PMCID: PMC4861788 DOI: 10.1155/2016/4575024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 11/17/2022]
Abstract
A new fungus Cladosporium oxysporum GQ-3 producing extracellular xylanase was isolated from decaying agricultural waste and identified based on the morphology and comparison of internal transcribed spacer (ITS) rDNA gene sequence. C. oxysporum produced maximum xylanase activity of 55.92 U/mL with wheat bran as a substrate and NH4Cl as a nitrogen source. Mg2+ improved C. oxysporum xylanase production. Partially purified xylanase exhibited maximum activity at 50°C and pH 8.0, respectively, and showed the stable activity after 2-h treatment in pH 7.0–8.5 or below 55°C. Mg2+ enhanced the xylanase activity by 2% while Cu2+ had the highest inhibition ratio of 57.9%. Furthermore, C. oxysporum xylanase was resistant to most of tested neutral and alkaline proteases. Our findings indicated that Cladosporium oxysporum GQ-3 was a novel xylanase producer, which could be used in the textile processes or paper/feed industries.
Collapse
|