1
|
Okpala OE, Rondevaldova J, Osei-Owusu H, Kudera T, Kokoskova T, Kokoska L. Susceptibility of Staphylococcus aureus to Anti-Inflammatory Drugs with a Focus on the Combinatory Effect of Celecoxib with Oxacillin In Vitro. Molecules 2024; 29:3665. [PMID: 39125072 PMCID: PMC11314137 DOI: 10.3390/molecules29153665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Musculoskeletal infections (MIs) are among the most difficult-to-treat staphylococcal diseases due to antibiotic resistance. This has encouraged the development of innovative strategies, such as combination therapy, to combat MI. The aim of this study was to investigate the in vitro antistaphylococcal activity of anti-inflammatory drugs and the combined antimicrobial effect of celecoxib and oxacillin. The minimum inhibitory concentrations (MICs) of 17 anti-inflammatory drugs against standard strains and clinical isolates of S. aureus, including methicillin-resistant strains (MRSAs), were determined using the broth microdilution method. The fractional inhibitory concentration indices (FICIs) were evaluated using checkerboard assays. Celecoxib produced the most potent antistaphylococcal effect against all tested strains (MICs ranging from 32 to 64 mg/L), followed by that of diacerein against MRSA3 and MRSA ATCC 33592 (MIC 64 mg/L). Several synergistic effects were observed against the tested S. aureus strains, including MRSA (FICI ranging from 0.087 to 0.471). The strongest synergistic interaction (FICI 0.087) was against MRSA ATCC 33592 at a celecoxib concentration of 2 mg/L, with a 19-fold oxacillin MIC reduction (from 512 to 26.888 mg/L). This is the first report on the combined antistaphylococcal effect of celecoxib and oxacillin. These findings suggest celecoxib and its combination with oxacillin as perspective agents for research focused on the development of novel therapies for MI caused by S. aureus. This study further indicates that celecoxib could resensitize certain MRSA strains, in some cases, to be susceptible to β-lactams (e.g., oxacillin) that were not previously tested. It is essential to mention that the in vitro concentrations of anti-inflammatory drugs are higher than those typically obtained in patients. Therefore, an alternative option for its administration could be the use of a drug delivery system for the controlled slow release from an implant at the infection site.
Collapse
Affiliation(s)
- Onyedika Emmanuel Okpala
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (O.E.O.); (J.R.); (H.O.-O.)
| | - Johana Rondevaldova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (O.E.O.); (J.R.); (H.O.-O.)
| | - Hayford Osei-Owusu
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (O.E.O.); (J.R.); (H.O.-O.)
| | - Tomas Kudera
- Drift-Food Research Centre, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic;
| | - Tersia Kokoskova
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic;
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 165 00 Prague, Czech Republic; (O.E.O.); (J.R.); (H.O.-O.)
| |
Collapse
|
2
|
Mandalari G, Pennisi R, Gervasi T, Sciortino MT. Pistacia vera L. as natural source against antimicrobial and antiviral resistance. Front Microbiol 2024; 15:1396514. [PMID: 39011148 PMCID: PMC11246903 DOI: 10.3389/fmicb.2024.1396514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024] Open
Abstract
Increased global research is focused on the development of novel therapeutics to combat antimicrobial and antiviral resistance. Pistachio nuts represent a good source of protein, fiber, monounsaturated fatty acids, minerals, vitamins, and phytochemicals (carotenoids, phenolic acids, flavonoids and anthocyanins). The phytochemicals found in pistachios are structurally diverse compounds with antimicrobial and antiviral potential, demonstrated as individual compounds, extracts and complexed into nanoparticles. Synergistic effects have also been reported in combination with existing drugs. Here we report an overview of the antimicrobial and antiviral potential of pistachio nuts: studies show that Gram-positive bacterial strains, such as Staphylococcus aureus, are the most susceptible amongst bacteria, whereas antiviral effect has been reported against herpes simplex virus 1 (HSV-1). Amongst the known pistachio compounds, zeaxanthin has been shown to affect both HSV-1 attachment penetration of human cells and viral DNA synthesis. These data suggest that pistachio extracts and derivatives could be used for the topical treatment of S. aureus skin infections and ocular herpes infections.
Collapse
Affiliation(s)
- Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| | - Teresa Gervasi
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Al-Tawalbeh D, Alkhawaldeh Y, M. Sawan H, Al-Mamoori F, Al-Samydai A, Mayyas A. Assessment of carvacrol-antibiotic combinations' antimicrobial activity against methicillin-resistant Staphylococcus aureus. Front Microbiol 2024; 14:1349550. [PMID: 38260886 PMCID: PMC10800982 DOI: 10.3389/fmicb.2023.1349550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction This study aimed to assess the antimicrobial activity of carvacrol in combination with approved antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Carvacrol, a phenolic monoterpenoid component of essential oils, has demonstrated antimicrobial properties against gram positive and gram negative bacteria. The study evaluated the antimicrobial effects of carvacrol combined with sulfamethoxazole, linezolid, minocycline, and trimethoprim. Methods The MRSA strain (ATCC-33591) was used, and various assays, including MIC determination, checkerboard assay, and microdilution assay were conducted. Results The results showed that the combination of carvacrol with antibiotics yielded better outcomes compared to monotherapy, leading to reduced bacterial colonization. Carvacrol, sulfamethoxazole, and trimethoprim exhibited weak anti-staphylococcal effects, while linezolid and minocycline demonstrated stronger effects. This suggests that conventional antibiotic therapy may not be sufficient to effectively treat MRSA infections, potentially causing delays in healing or an exacerbation of the condition. Carvacrol combinations with two antibiotics displayed superior results compared to other pairs, indicating synergistic or additive effects of carvacrol with linezolid, minocycline, and sulfamethoxazole. Conclusion These findings propose a new approach for developing drug molecules for MRSA treatment which combine volatile oils with available regimens. Further studies are recommended to evaluate the efficacy and biosafety of these combinations using in vivo or ex vivo models, aiming to minimize side effects and facilitate human trials. This study provides valuable insights into the potential use of carvacrol-antibiotic combinations as a novel therapeutic approach against MRSA.
Collapse
Affiliation(s)
- Deniz Al-Tawalbeh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | | | - Hana M. Sawan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Farah Al-Mamoori
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Amal Mayyas
- Faculty of Health Sciences, American University of Madaba, Madaba, Jordan
| |
Collapse
|
4
|
Ran M, Sun R, Yan J, Pulliainen AT, Zhang Y, Zhang H. DNA Nanoflower Eye Drops with Antibiotic-Resistant Gene Regulation Ability for MRSA Keratitis Target Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304194. [PMID: 37490549 DOI: 10.1002/smll.202304194] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Indexed: 07/27/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) biofilm-associated bacterial keratitis is highly intractable, with strong resistance to β-lactam antibiotics. Inhibiting the MRSA resistance gene mecR1 to downregulate penicillin-binding protein PBP2a has been implicated in the sensitization of β-lactam antibiotics to MRSA. However, oligonucleotide gene regulators struggle to penetrate dense biofilms, let alone achieve efficient gene regulation inside bacteria cells. Herein, an eye-drop system capable of penetrating biofilms and targeting bacteria for chemo-gene therapy in MRSA-caused bacterial keratitis is developed. This system employed rolling circle amplification to prepare DNA nanoflowers (DNFs) encoding MRSA-specific aptamers and mecR1 deoxyribozymes (DNAzymes). Subsequently, β-lactam antibiotic ampicillin (Amp) and zinc oxide (ZnO) nanoparticles are sequentially loaded into the DNFs (ZnO/Amp@DNFs). Upon application, ZnO on the surface of the nanosystem disrupts the dense structure of biofilm and fully exposes free bacteria. Later, bearing encoded aptamer, the nanoflower system is intensively endocytosed by bacteria, and releases DNAzyme under acidic conditions to cleave the mecR1 gene for PBP2a down-regulation, and ampicillin for efficient MRSA elimination. In vivo tests showed that the system effectively cleared bacterial and biofilm in the cornea, suppressed proinflammatory cytokines interleukin 1β (IL-1β) and tumor neocrosis factor-alpha (TNF-α), and is safe for corneal epithelial cells. Overall, this design offers a promising approach for treating MRSA-induced keratitis.
Collapse
Affiliation(s)
- Meixin Ran
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325015, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Rong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University Shenyang, Shenyang, 110016, China
| | - Jiaqi Yan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325015, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Arto T Pulliainen
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Kiinamyllynkatu 10, Turku, FI-20520, Finland
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University Shenyang, Shenyang, 110016, China
| | - Hongbo Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325015, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| |
Collapse
|
5
|
Farhat N, Khan AU. Therapeutic approaches to combat the global antibiotic resistance challenge. Future Microbiol 2022; 17:1515-1529. [DOI: 10.2217/fmb-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a major concern for healthcare workers due to the emergence of new variants of resistant markers, especially carbapenemases. Combinational antibiotic therapy is one of the best and easiest approaches to handle the current situation of AMR. Although some antibiotic combinations are already in clinical use, they remain to be studied in detail. This review focuses on therapeutic options for AMR mechanisms of resistance in bacteria that can be overcome by combinational therapy and testing methods for synergy. The integration of diverse approaches may provide information that is imperative in mitigating the threat of AMR.
Collapse
Affiliation(s)
- Nabeela Farhat
- Medical Microbiology & Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology & Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
Rafif Khairullah A, Rehman S, Agus Sudjarwo S, Helmi Effendi M, Chasyer Ramandinianto S, Aega Gololodo M, Widodo A, Hendriana Priscilia Riwu K, Ayu Kurniawati D. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000Res 2022; 11:722. [PMID: 36329792 PMCID: PMC9607882 DOI: 10.12688/f1000research.122225.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/01/2023] Open
Abstract
Background: Staphylococcus aureus is commonly found in dairy cows and is a source of contamination in milk. S. aureus that are resistant to beta-lactam antibiotics (especially cefoxitin) are referred to as methicillin-resistant Staphylococcus aureus (MRSA). The spread of MRSA cannot be separated from sanitation management during milking; it can originate from milk collected from the udder or from the hands of farmers during the milking process. The purpose of this study was to examine the level of MRSA contamination in dairy cow's milk and farmer's hand. Methods: A total of 109 samples of dairy cow's milk and 41 samples of farmer's hand swabs were collected at a dairy farm in Probolinggo, East Java, Indonesia. Samples were cultured and purified using mannitol salt agar (MSA). The profile of S. aureus resistance was established by disk diffusion test using a disk of beta-lactam antibiotics, namely oxacillin and cefoxitin. Results: The S. aureus isolates that were resistant to oxacillin and cefoxitin antibiotics were then tested for oxacillin resistance screening agar base (ORSAB) as a confirmation test for MRSA identity. S. aureus isolates suspected to be MRSA were then tested genotypically by polymerase chain reaction (PCR) method to detect the presence of the mecA gene. The results of the isolation and identification found 80 isolates (53.33%) of S. aureus. The results of the resistance test found that 42 isolates (15%) of S. aureus were resistant to oxacillin and 10 isolates (12.5%) were resistant to cefoxitin. The ORSAB test found as many as 20 isolates (47.62%) were positive for MRSA. In PCR testing to detect the presence of the mecA gene, three isolates (30%) were positive for the mecA gene. Conclusions: This study shows that several S. aureus isolates were MRSA and had the gene encoding mecA in dairy farms.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Saifur Rehman
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sancaka Chasyer Ramandinianto
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Maria Aega Gololodo
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Nusa Tenggara Timur, Indonesia
- Indonesia Research Center For Veterinary Science, Jl. RE Martadinata No. 30, Bogor 16114, West Java, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Dyah Ayu Kurniawati
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Lingkar Satwa Animal Care Clinic, Jl. Sumatera No. 31L, Gubeng, Surabaya 60281, East Java, Indonesia
| |
Collapse
|
7
|
Rafif Khairullah A, Rehman S, Agus Sudjarwo S, Helmi Effendi M, Chasyer Ramandinianto S, Aega Gololodo M, Widodo A, Hendriana Priscilia Riwu K, Ayu Kurniawati D. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000Res 2022; 11:722. [PMID: 36329792 PMCID: PMC9607882 DOI: 10.12688/f1000research.122225.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Staphylococcus aureus is commonly found in dairy cows and is a source of contamination in milk. S. aureus that are resistant to beta-lactam antibiotics (especially cefoxitin) are referred to as methicillin-resistant Staphylococcus aureus (MRSA). The spread of MRSA cannot be separated from sanitation management during milking; it can originate from milk collected from the udder or from the hands of farmers during the milking process. The purpose of this study was to examine the level of MRSA contamination in dairy cow's milk and farmer's hand. Methods: A total of 109 samples of dairy cow's milk and 41 samples of farmer's hand swabs were collected at a dairy farm in Probolinggo, East Java, Indonesia. Samples were cultured and purified using mannitol salt agar (MSA). The profile of S. aureus resistance was established by disk diffusion test using a disk of beta-lactam antibiotics, namely oxacillin and cefoxitin. Results: The S. aureus isolates that were resistant to oxacillin and cefoxitin antibiotics were then tested for oxacillin resistance screening agar base (ORSAB) as a confirmation test for MRSA identity. S. aureus isolates suspected to be MRSA were then tested genotypically by polymerase chain reaction (PCR) method to detect the presence of the mecA gene. The results of the isolation and identification found 80 isolates (53.33%) of S. aureus. The results of the resistance test found that 42 isolates (15%) of S. aureus were resistant to oxacillin and 10 isolates (12.5%) were resistant to cefoxitin. The ORSAB test found as many as 20 isolates (47.62%) were positive for MRSA. In PCR testing to detect the presence of the mecA gene, three isolates (30%) were positive for the mecA gene. Conclusions: This study shows that several S. aureus isolates were MRSA and had the gene encoding mecA in dairy farms.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Saifur Rehman
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sancaka Chasyer Ramandinianto
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Maria Aega Gololodo
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Nusa Tenggara Timur, Indonesia
- Indonesia Research Center For Veterinary Science, Jl. RE Martadinata No. 30, Bogor 16114, West Java, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Dyah Ayu Kurniawati
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Lingkar Satwa Animal Care Clinic, Jl. Sumatera No. 31L, Gubeng, Surabaya 60281, East Java, Indonesia
| |
Collapse
|
8
|
Rafif Khairullah A, Rehman S, Agus Sudjarwo S, Helmi Effendi M, Chasyer Ramandinianto S, Aega Gololodo M, Widodo A, Hendriana Priscilia Riwu K, Ayu Kurniawati D. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000Res 2022; 11:722. [PMID: 36329792 PMCID: PMC9607882 DOI: 10.12688/f1000research.122225.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/01/2023] Open
Abstract
Background: Staphylococcus aureus is commonly found in dairy cows and is a source of contamination in milk. S. aureus that are resistant to beta-lactam antibiotics are referred to as methicillin-resistant Staphylococcus aureus (MRSA). The spread of MRSA cannot be separated from sanitation management during milking; it can originate from milk collected from the udder or from the hands of farmers during the milking process. The purpose of this study was to examine the level of MRSA contamination in dairy cow's milk and farmer's hand swabs. Methods: A total of 109 samples of dairy cow's milk and 41 samples of farmers' hand swabs were collected at a dairy farm in Probolinggo, East Java, Indonesia. Samples were cultured and purified using mannitol salt agar (MSA). The profile of S. aureus resistance was established by disk diffusion test using a disk of beta-lactam antibiotics, namely oxacillin and cefoxitin. Results: The S. aureus isolates that were resistant to oxacillin and cefoxitin antibiotics were then tested for oxacillin resistance screening agar base (ORSAB) as a confirmation test for MRSA identity. S. aureus isolates suspected to be MRSA were then tested genotypically by polymerase chain reaction (PCR) method to detect the presence of the mecA gene. The results of the isolation and identification found 80 isolates (53.33%) of S. aureus. The results of the resistance test found that 42 isolates (15%) of S. aureus were resistant to oxacillin and 10 isolates (12.5%) were resistant to cefoxitin. The ORSAB test found as many as 20 isolates (47.62%) were positive for MRSA. In PCR testing to detect the presence of the mecA gene, three isolates (30%) were positive for the mecA gene. Conclusions: This study shows that several S. aureus isolates were MRSA and had the gene encoding mecA in dairy farms.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Saifur Rehman
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Sancaka Chasyer Ramandinianto
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Maria Aega Gololodo
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Nusa Tenggara Timur, Indonesia
- Indonesia Research Center For Veterinary Science, Jl. RE Martadinata No. 30, Bogor 16114, West Java, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
| | - Dyah Ayu Kurniawati
- Master Program in Veterinary Disease and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60115, Indonesia
- Lingkar Satwa Animal Care Clinic, Jl. Sumatera No. 31L, Gubeng, Surabaya 60281, East Java, Indonesia
| |
Collapse
|
9
|
Suganya T, Packiavathy IASV, Aseervatham GSB, Carmona A, Rashmi V, Mariappan S, Devi NR, Ananth DA. Tackling Multiple-Drug-Resistant Bacteria With Conventional and Complex Phytochemicals. Front Cell Infect Microbiol 2022; 12:883839. [PMID: 35846771 PMCID: PMC9280687 DOI: 10.3389/fcimb.2022.883839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Emerging antibiotic resistance in bacteria endorses the failure of existing drugs with chronic illness, complicated treatment, and ever-increasing expenditures. Bacteria acquire the nature to adapt to starving conditions, abiotic stress, antibiotics, and our immune defense mechanism due to its swift evolution. The intense and inappropriate use of antibiotics has led to the development of multidrug-resistant (MDR) strains of bacteria. Phytochemicals can be used as an alternative for complementing antibiotics due to their variation in metabolic, genetic, and physiological fronts as well as the rapid evolution of resistant microbes and lack of tactile management. Several phytochemicals from diverse groups, including alkaloids, phenols, coumarins, and terpenes, have effectively proved their inhibitory potential against MDR pathogens through their counter-action towards bacterial membrane proteins, efflux pumps, biofilms, and bacterial cell-to-cell communications, which are important factors in promoting the emergence of drug resistance. Plant extracts consist of a complex assortment of phytochemical elements, against which the development of bacterial resistance is quite deliberate. This review emphasizes the antibiotic resistance mechanisms of bacteria, the reversal mechanism of antibiotic resistance by phytochemicals, the bioactive potential of phytochemicals against MDR, and the scientific evidence on molecular, biochemical, and clinical aspects to treat bacterial pathogenesis in humans. Moreover, clinical efficacy, trial, safety, toxicity, and affordability investigations, current status and developments, related demands, and future prospects are also highlighted.
Collapse
Affiliation(s)
- Thangaiyan Suganya
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, India
| | | | - G. Smilin Bell Aseervatham
- Post Graduate Research Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, India
| | - Areanna Carmona
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Science Center of El Paso, Texas, TX, United States
| | - Vijayaragavan Rashmi
- National Repository for Microalgae and Cyanobacteria (NRMC)- Marine, National Facility for Marine Cyanobacteria, (Sponsored by Department of Biotechnology (DBT), Government of India), Bharathidasan University, Tiruchirappalli, India
| | | | | | - Devanesan Arul Ananth
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| |
Collapse
|
10
|
Liang M, Ge X, Xua H, Ma K, Zhang W, Zan Y, Efferth T, Xue Z, Hua X. Phytochemicals with activity against methicillin-resistant Staphylococcus aureus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154073. [PMID: 35397285 DOI: 10.1016/j.phymed.2022.154073] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The evolution of resistance to antimicrobials is a ubiquitous phenomenon. The evolution of antibiotic resistance in Staphylococcus aureus suggests that there is no remedy with sustaining effectiveness against this pathogen. The limited number of antibacterial drug classes and the common occurrence of cross-resistant bacteria reinforce the urgent need to discover new compounds targeting novel cellular functions. Natural products are a potential source of novel antibacterial agents. Anti-MRSA (methicillin-resistant S. aureus) bioactive compounds from Streptomyces and the anti-MRSA activity of a series of plant extracts have been reviewed respectively. However, there has been no detailed review of the precise bioactive components from plants. PURPOSE The present review aimed to summarize the phytochemicals that have been reported with anti-MRSA activities, analyze their structure-activity relationship and novel anti-MRSA mechanisms. METHODS Data contained in this review article are compiled from the authoritative databases PubMed, Web of Science, Google Scholar, and so on. RESULTS This review summarizes 100 phytochemicals (27 flavonoids, 23 alkaloids, 17 terpenes and 33 others) that have been tested for their anti-MRSA activity. Among these phytochemicals, 39 compounds showed remarkable anti-MRSA activity with MIC values less than 10 μg/ml, 14 compounds with MIC ranges including values < 10 μg/ml, 5 compounds with MIC values less than 5 μM; 11 phytochemicals show synergism anti-MRSA effects in combination with antibiotics. Phytochemicals exerted anti-MRSA activities mainly by destroying the membrane structure and inhibiting the efflux pump. CONCLUSIONS The 58 compounds with excellent anti-MRSA activity the 11 compounds with synergistic anti-MRSA effect, especially cannabinoids, xanthones and fatty acids should be further studied in vitro. Novel targets, such as cell membrane and efflux pump could be promising alternatives to develop antibacterial drugs in the future in order to prevent drug resistance.
Collapse
Affiliation(s)
- Miaomiao Liang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala SE-75124, Sweden
| | - Hui Xua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Kaifeng Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Wei Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Yibo Zan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| |
Collapse
|
11
|
Neuropharmacological and Antidiarrheal Potentials of Duabanga grandiflora (DC.) Walp. Stem Bark and Prospective Ligand–Receptor Interactions of Its Bioactive Lead Molecules. Curr Issues Mol Biol 2022; 44:2335-2349. [PMID: 35678688 PMCID: PMC9164075 DOI: 10.3390/cimb44050159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
Duabanga grandiflora (DC.) Walp. is an ethnomedicinally significant plant used to treat various illnesses, but there is little scientific evidence to support its use. This study explored the pharmacological activities of methanol extract of D. grandiflora stem barks (MEDG) through in vivo approaches in Swiss albino mice and a computer-aided molecular approach. The forced swimming test (FST), tail suspension test (TST), elevated plus maze (EPM), and hole board test (HBT) were used to determine anti-depressant and anxiolytic activity in experimental mice. In addition, anti-diarrheal studies were performed using castor oil-induced diarrhea, castor oil-induced enter pooling, and the charcoal-induced gastrointestinal motility test. MEDG showed substantial depletions in the immobility times in both FST and TST after treatment with the MEDG extract, whereas moderate anxiolytic activity was manifested at a higher dose (400 mg/kg) compared with the control. Correspondingly, MEDG extract revealed a significant reduction in wet feces and decreased the small intestinal transit of charcoal meal in castor oil-induced diarrhea and charcoal-induced gastrointestinal motility test. In the computer-aided molecular approaches, vanillin displayed a promising binding score for both anxiolytic and anti-diarrheal activities, while duabanganal C showed a promising score for the anti-depressant activity. The present experimental findings along with a computer-aided model conclude that MEDG could be a possible Phyto therapeutic agent with potential anti-depressant, anxiolytic and anti-diarrheal activity.
Collapse
|
12
|
Dorcheh FA, Balmeh N, Sanjari S. In-silico investigation of antibacterial herbal compounds in order to find new antibiotic against Staphylococcus aureus and its resistant subtypes. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2021.100843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
13
|
Afonso AC, Sousa M, Simões LC, Simões M. Phytochemicals Against Drug-Resistant Bacterial Biofilms and Use of Green Extraction Solvents to Increase Their Bioactivity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022. [DOI: 10.1007/5584_2022_723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Ferreira-Santos P, Badim H, Salvador ÂC, Silvestre AJD, Santos SAO, Rocha SM, Sousa AM, Pereira MO, Wilson CP, Rocha CMR, Teixeira JA, Botelho CM. Chemical Characterization of Sambucus nigra L. Flowers Aqueous Extract and Its Biological Implications. Biomolecules 2021; 11:biom11081222. [PMID: 34439888 PMCID: PMC8391949 DOI: 10.3390/biom11081222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
The main goal of this study was to chemically characterize an aqueous S. nigra flower extract and validate it as a bioactive agent. The elderflower aqueous extraction was performed at different temperatures (50, 70 and 90 °C). The extract obtained at 90 °C exhibited the highest phenolic content and antiradical activity. Therefore, this extract was analyzed by GC-MS and HPLC-MS, which allowed the identification of 46 compounds, being quercetin and chlorogenic acid derivatives representative of 86% of the total of phenolic compounds identified in hydrophilic fraction of the aqueous extract. Naringenin (27.2%) was the major compound present in the lipophilic fraction. The antiproliferative effects of the S. nigra extract were evaluated using the colon cancer cell lines RKO, HCT-116, Caco-2 and the extract’s antigenotoxic potential was evaluated by the Comet assay in RKO cells. The RKO cells were the most susceptible to S. nigra flower extract (IC50 = 1250 µg mL−1). Moreover, the extract showed antimicrobial activity against Gram-positive bacteria, particularly Staphylococcus aureus and S. epidermidis. These results show that S. nigra-based extracts can be an important dietary source of bioactive phenolic compounds that contribute to health-span improving life quality, demonstrating their potential as nutraceutical, functional foods and/or cosmetic components for therapeutic purposes.
Collapse
Affiliation(s)
- Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
- Correspondence: (P.F.-S.); (C.M.B.)
| | - Helder Badim
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Ângelo C. Salvador
- CICECO—Aveiro Institute of Materials, Chemistry Department, Campus de Santiago, University of Aveiro, 3810-1930 Aveiro, Portugal; (Â.C.S.); (A.J.D.S.); (S.A.O.S.)
| | - Armando J. D. Silvestre
- CICECO—Aveiro Institute of Materials, Chemistry Department, Campus de Santiago, University of Aveiro, 3810-1930 Aveiro, Portugal; (Â.C.S.); (A.J.D.S.); (S.A.O.S.)
| | - Sónia A. O. Santos
- CICECO—Aveiro Institute of Materials, Chemistry Department, Campus de Santiago, University of Aveiro, 3810-1930 Aveiro, Portugal; (Â.C.S.); (A.J.D.S.); (S.A.O.S.)
| | - Sílvia M. Rocha
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana M. Sousa
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Maria Olívia Pereira
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Cristina Pereira Wilson
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
- Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristina M. R. Rocha
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - José António Teixeira
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Cláudia M. Botelho
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
- Correspondence: (P.F.-S.); (C.M.B.)
| |
Collapse
|
15
|
RAHAL ANU, KUMAR AMIT. Strategies to combat antimicrobial resistance in Indian scenario. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i2.113812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antimicrobial resistance (AMR) is one of the major public health crisis recognised globally. Microbial infections cause significant productivity losses in animals and humans. In livestock, these microbial infections reduce the growth rates and fertility, diminish production of meat and milk, and occasionally lead to mortality, and are therefore, a major concern for animal welfare. In the dearth of alternative prophylactic measures, antibiotics remain the principal tool for their management. Once an antibiotic is used rampantly, resistance against it is inevidently seen in the microbe population and the hunt for a new drug grows. Discovery and development of a new antimicrobial drug is a time taking and expensive procedure with limited assurance of success. As a result, the past few decades have witnessed only a very few new classes of antibiotics. If the AMR can be restricted or reverted, the success rate of antimicrobial therapy can be boosted and many public health issues be avoided. All these ask for a comprehensive plan to prevent or reduce the antimicrobial resistance and economic losses to the animal husbandry sector. The present review provides an overview of AMR in India, mechanism of its occurrence and the possible roadmap to combat the emerging threat of AMR in Indian scenario.
Collapse
|
16
|
Adeeyo AO, Edokpayi JN, Alabi MA, Msagati TAM, Odiyo JO. Plant active products and emerging interventions in water potabilisation: disinfection and multi-drug resistant pathogen treatment. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00258-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
This review aims at establishing the emerging applications of phytobiotics in water treatment and disinfection.
Results
Statistical analysis of data obtained revealed that the use of plant product in water treatment needs more research attention. A major observation is that plants possess multifaceted components and can be sustainably developed into products for water treatment. The seed (24.53%), flower (20.75), leaf (16.98%) and fruit (11.32%) biomasses are preferred against bulb (3.77%), resin (1.89%), bark (1.89%) and tuber (1.89%). The observation suggests that novel applications of plant in water treatment need further exploration since vast and broader antimicrobial activities (63.63%) is reported than water treatment application (36.37%).
Conclusions
This review has revealed the existing knowledge gaps in exploration of plant resources for water treatment and product development. Chemical complexity of some plant extracts, lack of standardisation, slow working rate, poor water solubility, extraction and purification complexities are limitations that need to be overcome for industrial adoption of phytochemicals in water treatment. The field of phytobiotics should engage modern methodologies such as proteomics, genomics, and metabolomics to minimise challenges confronting phytobiotic standardisation. The knowledge disseminated awaits novel application for plant product development in water treatment.
Collapse
|
17
|
de Lima LB, Viturino da Silva WA, Silva SL, Felipe Dos Santos EC, Barbosa Machado JC, Procópio TF, de Moura MC, Napoleão TH, Assunção Ferreira MR, Soares LAL. Chemical and antibacterial analysis of Cinnamomum verum leaves extract and fractions against multidrug resistant bacteria. Nat Prod Res 2021; 36:2559-2564. [PMID: 33749459 DOI: 10.1080/14786419.2021.1902323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The chemical composition, the antioxidant and antimicrobial potential of crude extract from leaves Cinnamomum verum and their enriched fractions was studied. Phytochemical analyses were performed by TLC and HPLC, and the antioxidant capacity was verified by DPPH• and ABTS•+. The Minimal Inhibitory/Bactericidal Concentration was conducted against twenty-two bacteria to select five strains susceptible to extracts/fractions and resistant to the antibiotics tested. Interference of Ethyl Acetate Fraction (EAF) in resistance to synthetic antibiotic was assayed by modulatory and checkerboard model. The chromatographic data showed phenolic compounds in crude extract, as well the flavonoid enrichment in the EAF. The combination of EAF and synthetic antibiotics (ampicillin, azithromycin, ciprofloxacin, or gentamicin) provides a synergistic effect against multidrug resistant strains). The results are useful to obtain multi-targeting in a single therapy solution, which on antioxidants molecules plant-derivatives can act synergistically in antimicrobial combinations, a valuable aid as bacterial resistance modifying compounds.
Collapse
Affiliation(s)
- Liliane Bezerra de Lima
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | | | - Sarah Luanne Silva
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Ewelyn Cintya Felipe Dos Santos
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Janaína Carla Barbosa Machado
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | - Magda Rhayanny Assunção Ferreira
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Luiz Alberto Lira Soares
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
18
|
Buommino E, Vollaro A, Nocera FP, Lembo F, DellaGreca M, De Martino L, Catania MR. Synergistic Effect of Abietic Acid with Oxacillin against Methicillin-Resistant Staphylococcus pseudintermedius. Antibiotics (Basel) 2021; 10:antibiotics10010080. [PMID: 33467635 PMCID: PMC7830589 DOI: 10.3390/antibiotics10010080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Resin acids are valued in traditional medicine for their antiseptic properties. Among these, abietic acid has been reported to be active against methicillin-resistant Staphylococcus aureus (MRSA) strains. In veterinary healthcare, the methicillin-resistant Staphylococcus pseudintermedius (MRSP) strain is an important reservoir of antibiotic resistance genes including mecA. The incidence of MRSP has been increasing, and treatment options in veterinary medicine are partial. Here, we investigated the antimicrobial and antibiofilm properties of abietic acid against three MRSP and two methicillin-susceptible Staphylococcus pseudintermedius (MSSP) strains, isolated from diseased pet animals and human wound samples. Abietic acid showed a significant minimal inhibitory concentration (MIC) value ranging from 32 to 64 μg/mL (MRSPs) and 8 μg/mL (MSSP). By checkerboard method we demonstrated that abietic acid increased oxacillin susceptibility of MRSP strains, thus showing a synergistic interaction with oxacillin. Abietic acid was also able to contrast the vitality of treated MSSP and MRSP1 biofilms at 20 μg/mL and 40 μg/mL, respectively. Finally, the compound moderately reduced mecA, mecR1 and mec1 gene expression. In conclusion, the results here reported demonstrate the antimicrobial activity of abietic acid against MRSP and support the use of this compound as a potential therapeutic agent to be used in combinatorial antibiotic therapy.
Collapse
Affiliation(s)
- Elisabetta Buommino
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-678510
| | - Adriana Vollaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.V.); (M.R.C.)
| | - Francesca P. Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.P.N.); (L.D.M.)
| | - Francesca Lembo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.P.N.); (L.D.M.)
| | - Maria R. Catania
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.V.); (M.R.C.)
| |
Collapse
|
19
|
Santana Neto MC, Costa MLVDA, Fialho PHDS, Lopes GLN, Figueiredo KA, Pinheiro IM, de Lima SG, Nunes RDS, Quelemes PV, Carvalho ALM. Development of Chlorhexidine Digluconate and Lippia sidoides Essential Oil Loaded in Microemulsion for Disinfection of Dental Root Canals: Substantivity Profile and Antimicrobial Activity. AAPS PharmSciTech 2020; 21:302. [PMID: 33146782 DOI: 10.1208/s12249-020-01842-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022] Open
Abstract
The dental intracanal disinfection is crucial to achieve the success of endodontic treatment, avoiding the maintenance of endodontic infections. Chlorhexidine digluconate can act as an irrigating agent for it. However, it can cause tissue irritation in high concentrations. Therefore, combinations with other antimicrobial agents and more efficient therapeutic alternatives are studied, which make it possible to administer drugs more safely and with minimal adverse effects. Thus, the objective of this study was the development of a microemulsion containing chlorhexidine digluconate and essential oil of Lippia sidoides to be used for disinfection of dental root canals and to evaluate its profile of substantivity and antimicrobial activity. The microemulsions were obtained through phase diagrams, using the spontaneous formation method. We completed a physical-chemical characterization and evaluate the stability of the microemulsions, in addition to the substantivity profile in a bovine root dentin model, and in vitro antibacterial effect on Enterococcus faecalis. A method for quantifying chlorhexidine was developed using UV-Vis spectroscopy. The microemulsions showed acid pH, conductivity above 1.3 μScm-1, and dispersion index similar to water. The microemulsions showed antimicrobial inhibition halos similar to the commercial gel conventionally used, but with four times more substantivity to dentinal tissues. Microemulsions were obtained as a therapeutic alternative to formulations available on the market, presenting themselves as a system with great potential for the administration of drugs for disinfection of root canals.
Collapse
|
20
|
Álvarez-Martínez FJ, Barrajón-Catalán E, Micol V. Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines 2020; 8:E405. [PMID: 33050619 PMCID: PMC7601869 DOI: 10.3390/biomedicines8100405] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Drug-resistant bacteria pose a serious threat to human health worldwide. Current antibiotics are losing efficacy and new antimicrobial agents are urgently needed. Living organisms are an invaluable source of antimicrobial compounds. The antimicrobial activity of the most representative natural products of animal, bacterial, fungal and plant origin are reviewed in this paper. Their activity against drug-resistant bacteria, their mechanisms of action, the possible development of resistance against them, their role in current medicine and their future perspectives are discussed. Electronic databases such as PubMed, Scopus and ScienceDirect were used to search scientific contributions until September 2020, using relevant keywords. Natural compounds of heterogeneous origins have been shown to possess antimicrobial capabilities, including against antibiotic-resistant bacteria. The most commonly found mechanisms of antimicrobial action are related to protein biosynthesis and alteration of cell walls and membranes. Various natural compounds, especially phytochemicals, have shown synergistic capacity with antibiotics. There is little literature on the development of specific resistance mechanisms against natural antimicrobial compounds. New technologies such as -omics, network pharmacology and informatics have the potential to identify and characterize new natural antimicrobial compounds in the future. This knowledge may be useful for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Francisco Javier Álvarez-Martínez
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain
| | - Enrique Barrajón-Catalán
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), 28220 Madrid, Spain
| |
Collapse
|
21
|
Chiu KC, Shih YH, Wang TH, Lan WC, Li PJ, Jhuang HS, Hsia SM, Shen YW, Yuan-Chien Chen M, Shieh TM. In vitro antimicrobial and antipro-inflammation potential of honokiol and magnolol against oral pathogens and macrophages. J Formos Med Assoc 2020; 120:827-837. [PMID: 32978046 DOI: 10.1016/j.jfma.2020.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/PURPOSE Honokiol and magnolol are natural components isolated from Magnolia bark that is used in traditional Chinese and Japanese herbal medicine. These two isomers are used as a component of dietary supplements and cosmetic products. In this study, we investigated the antimicrobial effect of honokiol and magnolol on pathogens causing oral diseases, their mechanism of action in biofilm formation and drug resistance of oral pathogens, and inflammatory regulation in mammalian cells. METHODS We determined the minimum inhibitory concentration and minimum bactericidal concentration of honokiol and magnolol, and their stability at different temperatures and pH. We also evaluated their effect on biofilm formation, antibiotic-resistance gene expression in MRSA, and pro-inflammatory gene expression in mammalian cells. RESULTS Honokiol showed better antimicrobial activity than magnolol. Both honokiol and magnolol showed stable bacterial inhibitory activity over a wide range of temperature and pH, reduced biofilm formation, and antibiotic resistance in oral pathogens. The biofilm formation- and antibiotic resistance-related gene expression was consistent with the respective phenotypes. Furthermore, these two isomers repressed the expression of pro-inflammatory genes in RAW264.7 cells. CONCLUSION Our study provides evidence of the potential application of honokiol and magnolol in dental medicine to cure or prevent oral diseases.
Collapse
Affiliation(s)
- Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Linko, Taiwan
| | - Wan-Chen Lan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Po-Jung Li
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Hong-Syu Jhuang
- Department of Dental Hygiene, China Medical University, Taichung, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Yen-Wen Shen
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Michael Yuan-Chien Chen
- School of Dentistry, China Medical University, Taichung, Taiwan; Department of Oral & Maxillofacial Surgery, China Medical University Hospital, Taichung, Taiwan.
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung, Taiwan; Department of Dental Hygiene, China Medical University, Taichung, Taiwan.
| |
Collapse
|
22
|
Álvarez-Martínez FJ, Barrajón-Catalán E, Encinar JA, Rodríguez-Díaz JC, Micol V. Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Curr Med Chem 2020; 27:2576-2606. [PMID: 30295182 DOI: 10.2174/0929867325666181008115650] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multi-drug-resistant bacteria such as Methicillin-Resistant Staphylococcus aureus (MRSA) disseminate rapidly amongst patients in healthcare facilities and suppose an increasingly important cause of community-associated infections and associated mortality. The development of effective therapeutic options against resistant bacteria is a public health priority. Plant polyphenols are structurally diverse compounds that have been used for centuries for medicinal purposes, including infections treatment and possess, not only antimicrobial activity, but also antioxidant, anti-inflammatory and anticancer activities among others. Based on the existing evidence on the polyphenols' antibacterial capacity, polyphenols may be postulated as an alternative or complementary therapy for infectious diseases. OBJECTIVE To review the antimicrobial activity of plant polyphenols against Gram-positive bacteria, especially against S. aureus and its resistant strains. Determine the main bacterial molecular targets of polyphenols and their potential mechanism of action. METHODOLOGY The most relevant reports on plant polyphenols' antibacterial activity and their putative molecular targets were studied. We also performed virtual screening of thousand different polyphenols against proteins involved in the peptidoglycan biosynthesis to find potential valuable bioactive compounds. The bibliographic information used in this review was obtained from MEDLINE via PubMed. RESULTS Several polyphenols: phenolic acids, flavonoids (especially flavonols), tannins, lignans, stilbenes and combinations of these in botanical mixtures, have exhibited significant antibacterial activity against resistant and non-resistant Gram-positive bacteria at low μg/mL range MIC values. Their mechanism of action is quite diverse, targeting cell wall, lipid membrane, membrane receptors and ion channels, bacteria metabolites and biofilm formation. Synergic effects were also demonstrated for some combinations of polyphenols and antibiotics. CONCLUSION Plant polyphenols mean a promising source of antibacterial agents, either alone or in combination with existing antibiotics, for the development of new antibiotic therapies.
Collapse
Affiliation(s)
- Francisco Javier Álvarez-Martínez
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain
| | - Enrique Barrajón-Catalán
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain
| | - José Antonio Encinar
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain
| | - Juan Carlos Rodríguez-Díaz
- Microbiology Section, University General Hospital of Alicante, Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), Alicante 03010, Spain
| | - Vicente Micol
- Instituto de Biologia Molecular y Celular (IBMC) and Instituto de Investigacion, Desarrollo e Innovacion en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernandez; 03202 Elche, Spain.,CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Spain
| |
Collapse
|
23
|
Viktorová J, Kumar R, Řehořová K, Hoang L, Ruml T, Figueroa CR, Valdenegro M, Fuentes L. Antimicrobial Activity of Extracts of Two Native Fruits of Chile: Arrayan ( Luma apiculata) and Peumo ( Cryptocarya alba). Antibiotics (Basel) 2020; 9:antibiotics9080444. [PMID: 32722434 PMCID: PMC7459669 DOI: 10.3390/antibiotics9080444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 11/28/2022] Open
Abstract
Arrayan and peumo fruits are commonly used in the traditional medicine of Chile. In this study, the concentration of the extracts halving the bacterial viability and biofilms formation and disruption of the drug-sensitive and drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa was determined. The chemical composition of extracts was analyzed by high-resolution liquid chromatography coupled with mass spectrometry (U-HPLC/MS). The arrayan extract (Inhibitory concentration IC50 0.35 ± 0.01 mg/mL) was more effective than peumo extract (IC50 0.53 ± 0.02 mg/mL) in the inhibition of S. aureus planktonic cells. Similarly, the arrayan extract was more effective in inhibiting the adhesion (S. aureus IC50 0.23 ± 0.02 mg/mL, P. aeruginosa IC50 0.29 ± 0.02 mg/mL) than peumo extracts (S. aureus IC50 0.47 ± 0.03 mg/mL, P. aeruginosa IC50 0.35 ± 0.01 mg/mL). Both extracts inhibited quorum sensing in a concentration-dependent manner, and the most significant was the autoinducer-2 type communication inhibition by arrayan extract. Both extracts also disrupted preformed biofilm of P. aeruginosa (arrayan IC50 0.56 ± 0.04 mg/mL, peumo IC50 0.59 ± 0.04 mg/mL). However, neither arrayan nor peumo extracts disrupted S. aureus mature biofilm. U-HPLC/MS showed that both fruit extracts mainly possessed quercetin compounds; the peumo fruit extract also contained phenolic acids and phenylpropanoids. Our results suggested that both extracts could be used as natural antimicrobials for some skin and nosocomial infections.
Collapse
Affiliation(s)
- Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.V.); (R.K.); (K.Ř.); (L.H.); (T.R.)
| | - Rohitesh Kumar
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.V.); (R.K.); (K.Ř.); (L.H.); (T.R.)
| | - Kateřina Řehořová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.V.); (R.K.); (K.Ř.); (L.H.); (T.R.)
| | - Lan Hoang
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.V.); (R.K.); (K.Ř.); (L.H.); (T.R.)
| | - Tomas Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.V.); (R.K.); (K.Ř.); (L.H.); (T.R.)
| | - Carlos R. Figueroa
- Institute of Biological Sciences, Campus Talca, Universidad de Talca, Talca 3465548, Chile;
| | - Monika Valdenegro
- Agronomy School, Faculty of Agronomic and Food Sciences, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile;
| | - Lida Fuentes
- Regional Center for Studies in Healthy Food (CREAS), CONICYT-Regional GORE Valparaíso Project R17A10001, Avenida Universidad, Valparaíso 2340000, Chile
- Correspondence:
| |
Collapse
|
24
|
Sateriale D, Facchiano S, Colicchio R, Pagliuca C, Varricchio E, Paolucci M, Volpe MG, Salvatore P, Pagliarulo C. In vitro Synergy of Polyphenolic Extracts From Honey, Myrtle and Pomegranate Against Oral Pathogens, S. mutans and R. dentocariosa. Front Microbiol 2020; 11:1465. [PMID: 32849317 PMCID: PMC7396681 DOI: 10.3389/fmicb.2020.01465] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/04/2020] [Indexed: 01/23/2023] Open
Abstract
The increasing incidence rate of oral diseases, the wide spread of antimicrobial resistance, and the adverse effects of conventional antibiotics mean alternative prevention and treatment options are needed to counteract oral pathogens. In this regard, our study aims to evaluate the antibacterial activity of polyphenolic extracts prepared from acacia honey, myrtle leaves, and pomegranate peel against cariogenic bacteria, such as Streptococcus mutans and Rothia dentocariosa. The chemical-physical parameters of acacia honey and the RP-HPLC polyphenolic profile of pomegranate peel extract have been previously described in our studies, while the characterization of myrtle extract, performed by HPLC analysis, is reported here. All the extracts were used singly and in binary combinations to highlight any synergistic effects. Moreover, the extracts were tested in association with amoxicillin to evaluate their ability to reduce the effective dose of this drug in vitro. The values of minimal inhibitory concentrations and minimal bactericidal concentrations have been used to quantitatively measure the antibacterial activity of the single extracts, while the fractional inhibitory concentration index has been considered as predictor of in vitro anticariogenic synergistic effects. Finally, a time-kill curve method allowed for the evaluation of the bactericidal efficacy of the combined extracts. The microbiological tests suggest that acacia honey, myrtle, and pomegranate extracts are able to inhibit the cariogenic bacteria, also with synergistic effects. This study provides useful and encouraging results for the use of natural extract combinations alone or in association with antibiotics (adjuvant therapy) as a valid alternative for the prevention and treatment of oral infectious diseases.
Collapse
Affiliation(s)
- Daniela Sateriale
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Serena Facchiano
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Ettore Varricchio
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Marina Paolucci
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE, Advanced Biotechnologies s.c.ar.l., Naples, Italy
| | - Caterina Pagliarulo
- Department of Science and Technology, University of Sannio, Benevento, Italy
| |
Collapse
|
25
|
ODABAŞ KÖSE E, KOYUNCU ÖZYURT Ö. Metisilin Dirençli Staphylococcus aureus Suşlarına karşı Karvakrol ve Oksasilinin Kombinasyon Aktivitesinin İn Vitro Değerlendirilmesi. DÜZCE ÜNIVERSITESI SAĞLIK BILIMLERI ENSTITÜSÜ DERGISI 2020. [DOI: 10.33631/duzcesbed.633259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Liu C, Huang H, Zhou Q, Liu B, Wang Y, Li P, Liao K, Su W. Pithecellobium clypearia extract enriched in gallic acid and luteolin has antibacterial activity against MRSA and reduces resistance to erythromycin, ceftriaxone sodium and levofloxacin. J Appl Microbiol 2020; 129:848-859. [PMID: 32301544 DOI: 10.1111/jam.14668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/06/2020] [Accepted: 04/12/2020] [Indexed: 12/17/2022]
Abstract
AIMS Antibiotic adjuvants can give a second life to the antibiotics to which bacteria are highly resistant. We evaluated the antimicrobial effects of extracts from Pithecellobium clypearia against methicillin-resistant Staphylococcus aureus (MRSA) and also the potential for synergy with several antibiotics. METHODS AND RESULTS For this study, four extracts from P. clypearia were tested on MRSA using the broth microdilution method for activity assessment. The ethyl acetate fraction (S20b) had the strongest antibacterial activity against MRSA among the fractions tested. In all, 14 compounds such as gallic acid and luteolin in S20b were analysed by UFLC-Q-TOF-MS/MS. S20b combined with erythromycin showed synergy effects against MRSA and combined with ceftriaxone sodium and levofloxacin showed additive effects against MRSA. Electron microscopy showed that extract S20b damaged the MRSA cell wall and K+ efflux measurements indicated that extract S20b increased cell membrane permeability. Moreover, S20b suppression of PBP2a expression was assessed by Western blot. Furthermore, an in vivo study was used to investigate the therapeutic potential of S20b based on a mouse pneumonia model. CONCLUSIONS The in vitro study results have shown that S20b not only inhibits MRSA growth directly but also reduces the resistance of MRSA to the evaluated antibacterial agents. Based on the in vivo study, it can be concluded that S20b can treat pneumonia in the mouse model. SIGNIFICANCE AND IMPACT OF THE STUDY This study is the first research to demonstrate that S20b can inhibit MRSA growth and reduce drug resistance of clinical isolates to antibiotics. S20b has the potential to be used as a therapeutic agent against MRSA and treatment for MRSA pneumonia.
Collapse
Affiliation(s)
- C Liu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - H Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Q Zhou
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - B Liu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Y Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - P Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - K Liao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - W Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Huang RY, Pei L, Liu Q, Chen S, Dou H, Shu G, Yuan ZX, Lin J, Peng G, Zhang W, Fu H. Isobologram Analysis: A Comprehensive Review of Methodology and Current Research. Front Pharmacol 2019; 10:1222. [PMID: 31736746 PMCID: PMC6830115 DOI: 10.3389/fphar.2019.01222] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/23/2019] [Indexed: 01/12/2023] Open
Abstract
Drug combination is a common method for clinical disease treatment. Whether the combination of drugs is reasonable often affects the result of the disease treatment. Many methods have been used to evaluate interaction between drugs to date. Isobologram analysis has been mathematically proven and widely used to evaluate drug interactions. In this paper, the principle of isobologram analysis and its application in drug interaction evaluation are summarized. The applications of the similar cotoxicity coefficient and fractional inhibitory concentration index in the evaluation of drug interaction are also reviewed. This work is expected to evaluate the effect of formulations scientifically and provide scientific judgment standards for the development of formulations and clinical drug compatibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| |
Collapse
|
28
|
Fahimirad S, Ajalloueian F. Naturally-derived electrospun wound dressings for target delivery of bio-active agents. Int J Pharm 2019; 566:307-328. [PMID: 31125714 DOI: 10.1016/j.ijpharm.2019.05.053] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Abstract
Electrospun nanofibers are known as the advanced means for wound dressing. They have represented remarkable potency to encapsulate and deliver biomolecules promoting the wound healing process. Compared to synthetic polymers, naturally derived polymers (NDP) are more qualified candidates for fabrication of biomedical electrospun scaffolds. Not only nanofibers of NDP illustrate higher biocompatibility and biodegradability rates, but also they mimic the native extracellular matrix more closely, which leads to the wound closure acceleration by enhancing tissue regeneration. Aside, incorporation of bioactive molecules and therapeutic agents into the nanofibers can generate innovative bioactive wound dressings with significantly improved healing potentials. This paper starts with a brief discussion on the steps and factors influencing the wound healing process. Then, the recent applications of electrospun nanofibers as wound dressing with healing accelerating properties are reviewed. Further, the various healing agents and alternative strategies for modification and functionalization of bioactive naturally-derived electrospun nanofibers are discussed.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran.
| | - Fatemeh Ajalloueian
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads 345C, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
29
|
Dweba CC, Zishiri OT, El Zowalaty ME. Methicillin-resistant Staphylococcus aureus: livestock-associated, antimicrobial, and heavy metal resistance. Infect Drug Resist 2018; 11:2497-2509. [PMID: 30555249 PMCID: PMC6278885 DOI: 10.2147/idr.s175967] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen of human and other mammals that is of increasing clinical and veterinary importance due to its ability to rapidly develop antimicrobial resistance. The injudicious use of antibiotics has given rise to the emergence of antibiotic resistant S. aureus strains, most importantly methicillin-resistant Staphylococcus aureus (MRSA). The emergence of livestock-associated MRSA (LA-MRSA) has highlighted the importance of directed research toward its prevention, as well as the need for the discovery and development of more efficient treatment than is currently available. Furthermore, the treatment of MRSA is complicated by the co-selection of heavy metal and antibiotic resistance genes by microorganisms. Livestock and livestock production systems are large reservoirs of heavy metals due to their use in feed as well as environmental contaminant, which has allowed for the selection of LA-MRSA isolates with heavy metal resistance. The World Health Organization reported that Africa has the largest gaps in data on the prevalence of antimicrobial resistance, with no reports on rates for LA-MRSA harboring heavy metal resistance in South Africa. This review aimed to report the emergence of LA-MRSA in South Africa, specifically the most frequent sequence type ST398, globally. Furthermore, we aimed to highlight the importance of LA-MRSA in clinical and food security, as well as this research gap in South Africa. This review sheds light on the prevalence of heavy metals in livestock farms and abattoirs, and focuses on the phenomenon of the co-selection of heavy metal and antibiotic resistance genes in MRSA, emphasizing the importance of a focused direction for research in humans, animals as well as environment using one-health approach.
Collapse
Affiliation(s)
- Cwengile C Dweba
- Discipline of Genetics, School of Life Sciences, College of Agriculture Engineering and Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Oliver T Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture Engineering and Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohamed E El Zowalaty
- Microbiology and Virology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,
| |
Collapse
|
30
|
Geethalakshmi R, Sarada VD. In vitro and in silico antimicrobial activity of sterol and flavonoid isolated from Trianthema decandra L. Microb Pathog 2018; 121:77-86. [DOI: 10.1016/j.micpath.2018.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
|
31
|
Li S, Mou Q, Xu X, Qi S, Leung PHM. Synergistic antibacterial activity between penicillenols and antibiotics against methicillin-resistant Staphylococcus aureus. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172466. [PMID: 29892433 PMCID: PMC5990757 DOI: 10.1098/rsos.172466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Penicillenol A2 (isolated from deep-sea fungus Penicillium biourgeianum DFFSCS023) has good antibacterial activity against methicillin-sensitive Staphylococcus aureus and in combination with beta-lactam antibiotics it could significantly decrease methicillin-resistant Staphylococcus aureus (MRSA) survival, which provides a novel treatment consideration for MRSA-caused infections.
Collapse
Affiliation(s)
- Shuihong Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Medical College, University of South China, Hengyang 421001, People's Republic of China
| | - Qianqian Mou
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China
| | - Xinya Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Shuhua Qi
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Polly H. M. Leung
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong 999077, People's Republic of China
| |
Collapse
|
32
|
The Effect of Cu-BPDCA-Ty on Antibacterial Activity and The Expression of mecA Gene in Clinical and Standard Strains of Methicillin-Resistant Staphylococcus aureus. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.60680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
33
|
Cheesman MJ, Ilanko A, Blonk B, Cock IE. Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution? Pharmacogn Rev 2017; 11:57-72. [PMID: 28989242 PMCID: PMC5628525 DOI: 10.4103/phrev.phrev_21_17] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The discovery of penicillin nearly 90 years ago revolutionized the treatment of bacterial disease. Since that time, numerous other antibiotics have been discovered from bacteria and fungi, or developed by chemical synthesis and have become effective chemotherapeutic options. However, the misuse of antibiotics has lessened the efficacy of many commonly used antibiotics. The emergence of resistant strains of bacteria has seriously limited our ability to treat bacterial illness, and new antibiotics are desperately needed. Since the discovery of penicillin, most antibiotic development has focused on the discovery of new antibiotics derived from microbial sources, or on the synthesis of new compounds using existing antibiotic scaffolds to the detriment of other lines of discovery. Both of these methods have been fruitful. However, for a number of reasons discussed in this review, these strategies are unlikely to provide the same wealth of new antibiotics in the future. Indeed, the number of newly developed antibiotics has decreased dramatically in recent years. Instead, a reexamination of traditional medicines has become more common and has already provided several new antibiotics. Traditional medicine plants are likely to provide further new antibiotics in the future. However, the use of plant extracts or pure natural compounds in combination with conventional antibiotics may hold greater promise for rapidly providing affordable treatment options. Indeed, some combinational antibiotic therapies are already clinically available. This study reviews the recent literature on combinational antibiotic therapies to highlight their potential and to guide future research in this field.
Collapse
Affiliation(s)
- Matthew J. Cheesman
- School of Parmacy and Pharmacology, Gold Coast Campus, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia
- Menzies Health Institute Queensland, Quality Use of Medicines Network, Queensland 4222, Australia
| | - Aishwarya Ilanko
- School of Natural Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
| | - Baxter Blonk
- School of Natural Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
| | - Ian E. Cock
- School of Natural Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
- Environmental Futures Research Institute, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
34
|
He Y, Hu Z, Sun W, Li Q, Li XN, Zhu H, Huang J, Liu J, Wang J, Xue Y, Zhang Y. Spiroaspertrione A, a Bridged Spirocyclic Meroterpenoid, as a Potent Potentiator of Oxacillin against Methicillin-Resistant Staphylococcus aureus from Aspergillus sp. TJ23. J Org Chem 2017; 82:3125-3131. [DOI: 10.1021/acs.joc.7b00056] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yan He
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengxi Hu
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiguang Sun
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Li
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Nian Li
- State
Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hucheng Zhu
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinfeng Huang
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junjun Liu
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianping Wang
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongbo Xue
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei
Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation,
School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
35
|
Kuok CF, Hoi SO, Hoi CF, Chan CH, Fong IH, Ngok CK, Meng LR, Fong P. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Exp Biol Med (Maywood) 2017; 242:731-743. [PMID: 28118725 DOI: 10.1177/1535370216689828] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Antibiotic resistance has become a serious global concern, and the discovery of antimicrobial herbal constituents may provide valuable solutions to overcome the problem. In this study, the effects of therapies combining antibiotics and four medicinal herbs on methicillin-resistant Staphylococcus aureus (MRSA) were investigated. Specifically, the synergistic effects of Magnolia officinalis, Verbena officinalis, Momordica charantia, and Daphne genkwa in combination with oxacillin or gentamicin against methicillin-resistant (ATCC43300) and methicillin-susceptible (ATCC25923) S. aureus were examined. In vitro susceptibility and synergistic testing were performed to measure the minimum inhibitory concentration and fractional inhibitory concentration (FIC) index of the antibiotics and medicinal herbs against MRSA and methicillin-susceptible S. aureus. To identify the active constituents in producing these synergistic effects, in silico molecular docking was used to investigate the binding affinities of 139 constituents of the four herbs to the two common MRSA inhibitory targets, penicillin binding proteins 2a (PBP2a) and 4 (PBP4). The physicochemical and absorption, distribution, metabolism, and excretion properties and drug safety profiles of these compounds were also analyzed. D. genkwa extract potentiated the antibacterial effects of oxacillin against MRSA, as indicated by an FIC index value of 0.375. M. officinalis and V. officinalis produced partial synergistic effects when combined with oxacillin, whereas M. charantia was found to have no beneficial effects in inhibiting MRSA. Overall, tiliroside, pinoresinol, magnatriol B, and momorcharaside B were predicted to be PBP2a or PBP4 inhibitors with good drug-like properties. This study identifies compounds that deserve further investigation with the aim of developing therapeutic agents to modulate the effect of antibiotics on MRSA. Impact statement Antibiotic resistant is a well-known threat to global health and methicillin-resistant Staphylococcus aureus is one of the most significant ones. These resistant bacteria kill thousands of people every year and therefore a new effective antimicrobial treatment is necessary. This study identified the herbs and their associated bioactive ingredients that can potential the effects of current antibiotics. These herbs have long history of human usage in China and have well-defined monograph in the Chinese Pharmacopeia. These indicate their relatively high clinical safety and may have a quicker drug development process than that of a new novel antibiotic. Based on the results of this study, the authors will perform further in vitro and animal studies, aiming to accumulate significant data for the application of clinical trial.
Collapse
Affiliation(s)
- Chiu-Fai Kuok
- School of Health Sciences, Macao Polytechnic Institute, Macao 999078, China
| | - Sai-On Hoi
- School of Health Sciences, Macao Polytechnic Institute, Macao 999078, China
| | - Chi-Fai Hoi
- School of Health Sciences, Macao Polytechnic Institute, Macao 999078, China
| | - Chi-Hong Chan
- School of Health Sciences, Macao Polytechnic Institute, Macao 999078, China
| | - Io-Hong Fong
- School of Health Sciences, Macao Polytechnic Institute, Macao 999078, China
| | - Cheong-Kei Ngok
- School of Health Sciences, Macao Polytechnic Institute, Macao 999078, China
| | - Li-Rong Meng
- School of Health Sciences, Macao Polytechnic Institute, Macao 999078, China
| | - Pedro Fong
- School of Health Sciences, Macao Polytechnic Institute, Macao 999078, China
| |
Collapse
|
36
|
Malik FZA, Allaudin ZN, Loh HS, Nee TK, Hani H, Abdullah R. Antiviral and virucidal activities of Duabanga grandiflora leaf extract against Pseudorabies virus in vitro. Altern Ther Health Med 2016; 16:139. [PMID: 27216794 PMCID: PMC4877979 DOI: 10.1186/s12906-016-1120-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/13/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Duabanga grandiflora or known in Malaysia as Berembang Bukit, Megawasih, or Pedada Bukit, is a native plant of the Southeast Asian countries. In this study, the anti-viral properties of D. grandiflora were investigated. METHODS The D. grandiflora leaf extracts were obtained with ethyl acetate, hexane, and ethanol as solvents and labelled 37 leaf ethyl acetate (37 L EA), 37 leaf hexane (37 L H), 37 leaf ethanol (37 L ET), respectively. The cytotoxicity of the extracts on Vero cells were determined by the 3-(4,5-Diamethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. RESULTS Among extracts, 37 L EA was most cytotoxic to Vero cells, followed by 37 L H and 37 L ET, with CC50 of 218, 833, and >1000 μg/mL, respectively. The cytopathic effect (CPE) and plaque reduction, inhibition, and virucidal assays and the selective index (SI) were employed to determine the effect of the extracts on infectivity and replication of pseudorabies virus (PrV) in Vero cells. The D. grandiflora leaf extracts showed dose-dependent antiviral activities, with higher activities at high doses. The 37 L ET and 37 L EA showed anti-viral effects through plaque formation and viral replication inhibitions, and virucidal property. The SI of the 37 L ET and 37 L EA by the viral replication inhibition assay was 8.3 and 1.9, respectively, and by the CPE reduction assay, 6.7 and 2.9, respectively. CONCLUSION Ethanol is the best solvent for the preparation of D. grandiflora leaf extract as an antiviral agent.
Collapse
|
37
|
Inhibitory effect of Duabanga grandiflora on MRSA biofilm formation via prevention of cell-surface attachment and PBP2a production. Molecules 2015; 20:4473-82. [PMID: 25764489 PMCID: PMC6272415 DOI: 10.3390/molecules20034473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/10/2014] [Accepted: 02/12/2015] [Indexed: 11/17/2022] Open
Abstract
Formation of biofilms is a major factor for nosocomial infections associated with methicillin-resistance Staphylococcus aureus (MRSA). This study was carried out to determine the ability of a fraction, F-10, derived from the plant Duabanga grandiflora to inhibit MRSA biofilm formation. Inhibition of biofilm production and microtiter attachment assays were employed to study the anti-biofilm activity of F-10, while latex agglutination test was performed to study the influence of F-10 on penicillin-binding protein 2a (PBP2a) level in MRSA biofilm. PBP2a is a protein that confers resistance to beta-lactam antibiotics. The results showed that, F-10 at minimum inhibitory concentration (MIC, 0.75 mg/mL) inhibited biofilm production by 66.10%; inhibited cell-surface attachment by more than 95%; and a reduced PBP2a level in the MRSA biofilm was observed. Although ampicilin was more effective in inhibiting biofilm production (MIC of 0.05 mg/mL, 84.49%) compared to F-10, the antibiotic was less effective in preventing cell-surface attachment. A higher level of PBP2a was detected in ampicillin-treated MRSA showing the development of further resistance in these colonies. This study has shown that F-10 possesses anti-biofilm activity, which can be attributed to its ability to reduce cell-surface attachment and attenuate the level of PBP2a that we postulated to play a crucial role in mediating biofilm formation.
Collapse
|