1
|
Giacomini F, Rho HS, Eischen-Loges M, Tahmasebi Birgani Z, van Blitterswijk C, van Griensven M, Giselbrecht S, Habibović P, Truckenmüller R. Enthesitis on Chip - A Model for Studying Acute and Chronic Inflammation of the Enthesis and its Pharmacological Treatment. Adv Healthc Mater 2024:e2401815. [PMID: 39188199 DOI: 10.1002/adhm.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Enthesitis, the inflammation of the enthesis, which is the point of attachment of tendons and ligaments to bones, is a common musculoskeletal disease. The inflammation often originates from the fibrocartilage region of the enthesis as a consequence of mechanical overuse or -load and consequently tissue damage. During enthesitis, waves of inflammatory cytokines propagate in(to) the fibrocartilage, resulting in detrimental, heterotopic bone formation. Understanding of human enthesitis and its treatment options is limited, also because of lacking in vitro model systems that can closely mimic the pathophysiology of the enthesis and can be used to develop therapies. In this study, an enthes(it)is-on-chip model is developed. On opposite sides of a porous culture membrane separating the chip's two microfluidic compartments, human mesenchymal stromal cells are selectively differentiated into tenocytes and fibrochondrocytes. By introducing an inflammatory cytokine cocktail into the fibrochondrocyte compartment, key aspects of acute and chronic enthesitis, measured as increased expression of inflammatory markers, can be recapitulated. Upon inducing chronic inflammatory conditions, hydroxyapatite deposition, enhanced osteogenic marker expression and reduced secretion of tissue-related extracellular matrix components are observed. Adding the anti-inflammatory drug celecoxib to the fibrochondrocyte compartment mitigates the inflammatory state, demonstrating the potential of the enthesitis-on-chip model for drug testing.
Collapse
Affiliation(s)
- Francesca Giacomini
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Hoon Suk Rho
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Maria Eischen-Loges
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Clemens van Blitterswijk
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
2
|
Qun T, Zhou T, Hao J, Wang C, Zhang K, Xu J, Wang X, Zhou W. Antibacterial activities of anthraquinones: structure-activity relationships and action mechanisms. RSC Med Chem 2023; 14:1446-1471. [PMID: 37593578 PMCID: PMC10429894 DOI: 10.1039/d3md00116d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
With the increasing prevalence of untreatable infections caused by antibiotic-resistant bacteria, the discovery of new drugs from natural products has become a hot research topic. The antibacterial activity of anthraquinones widely distributed in traditional Chinese medicine has attracted much attention. Herein, the structure and activity relationships (SARs) of anthraquinones as bacteriostatic agents are reviewed and elucidated. The substituents of anthraquinone and its derivatives are closely related to their antibacterial activities. The stronger the polarity of anthraquinone substituents is, the more potent the antibacterial effects appear. The presence of hydroxyl groups is not necessary for the antibacterial activity of hydroxyanthraquinone derivatives. Substitution of di-isopentenyl groups can improve the antibacterial activity of anthraquinone derivatives. The rigid plane structure of anthraquinone lowers its water solubility and results in the reduced activity. Meanwhile, the antibacterial mechanisms of anthraquinone and its analogs are explored, mainly including biofilm formation inhibition, destruction of the cell wall, endotoxin inhibition, inhibition of nucleic acid and protein synthesis, and blockage of energy metabolism and other substances.
Collapse
Affiliation(s)
- Tang Qun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Tiantian Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University 440113 Guangzhou China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Jing Xu
- Huanghua Agricultural and Rural Development Bureau Bohai New Area 061100 Hebei China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| |
Collapse
|
3
|
Shinohara I, Mifune Y, Inui A, Nishimoto H, Yamaura K, Mukohara S, Yoshikawa T, Kato T, Furukawa T, Hoshino Y, Matsushita T, Kuroda R. Biochemical Markers of Aging (Advanced Glycation End Products) and Degeneration Are Increased in Type 3 Rotator Cuff Tendon Stumps With Increased Signal Intensity Changes on MRI. Am J Sports Med 2022; 50:1960-1970. [PMID: 35486520 DOI: 10.1177/03635465221090649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are end products of protein glycation that bind to the receptor for AGEs (RAGE) and activate nicotinamide adenine dinucleotide phosphate oxidase (NOX), resulting in increased oxidative stress and rotator cuff fragility. Stump classification using the signal intensity ratio of the tendon rupture site to the deltoid muscle in the coronal view of T2-weighted fat-suppressed magnetic resonance imaging (MRI) scans is an indicator of clinical outcomes after rotator cuff repair surgery. Comparing the signal intensities of the deltoid (D) and rotator cuff tears (C), Ishitani et al. classified C/D <0.8 as type 1, 0.8 to 1.3 as type 2, and >1.3 as type 3. HYPOTHESIS/PURPOSE It was hypothesized that the oxidative stress and collagen degeneration that occur in the rotator cuff due to accumulation of AGEs can be assessed on MRI scans (stump classification). Therefore, this study aimed to compare AGE-related factors in the rotator cuff tear site tissues based on stump classification. STUDY DESIGN Descriptive laboratory study. METHODS The authors included 30 patients (11 with type 1, 9 with type 2, and 10 with type 3; mean age, 62.3 years) who underwent surgery for complete rotator cuff tears at our hospital. Tendon tissue was harvested from the torn rotator cuff site during surgery for tissue and cell evaluation. RESULTS There was no significant difference in the mean age according to stump classification. The number of patients with diabetes was significantly larger in type 3 than in the other types (P < .05). Tissue evaluation showed significantly higher expression of AGE and RAGE staining in type 3 than in the other types (~6.7-fold; P < .01). Cell evaluation showed that the expression rates of reactive oxygen species and apoptosis were significantly higher in type 3 than in the other types (~4.3-fold; P < .01). Gene expression by real-time polymerase chain reaction showed significantly higher RAGE (~5.1-fold), NOX (~5.3-fold), and IL (~3.0-fold) in type 3 than in the other types (P < .05). CONCLUSION Stump classification type 3 exhibited the highest accumulation of AGEs and the highest oxidative stress and apoptosis, suggesting a high degree of degeneration and inflammation. Imaging based on stump classification reflects the degeneration and fragility of the torn rotator cuff site. CLINICAL RELEVANCE This study provides evidence of a relationship between stump classification, which reflects rotator cuff fragility on MRI, and pathologies related to advanced glycation end products.
Collapse
Affiliation(s)
- Issei Shinohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tatsuo Kato
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takahiro Furukawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yuichi Hoshino
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
4
|
Shinohara I, Mifune Y, Inui A, Nishimoto H, Yamaura K, Mukohara S, Yoshikawa T, Kato T, Furukawa T, Hoshino Y, Matsushita T, Kuroda R. Advanced glycation end products are associated with limited range of motion of the shoulder joint in patients with rotator cuff tears associated with diabetes mellitus. BMC Musculoskelet Disord 2022; 23:271. [PMID: 35317765 PMCID: PMC8939191 DOI: 10.1186/s12891-022-05229-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Most degenerative rotator cuff tears (RCTs) are associated with a limited range of motion (ROM) of the shoulder joint. Additionally, patients with diabetes mellitus (DM) show a higher frequency of limited ROM. Recently, advanced glycation end products (AGEs) of proteins have been observed to cause tissue fibrosis, primarily through abnormal collagen cross-linking and oxidative stress. In this study, we investigated the effect of AGEs on ROM limitation in the shoulder capsule and its relationship with DM in the patients with RCTs. Methods Sixteen patients (eight in the DM and non-DM groups) who underwent arthroscopic surgery for RCT with limited shoulder ROM were included in this study. AGE-related pathologies in both groups were compared, and the relationship between AGE accumulation and shoulder joint ROM was evaluated. Shoulder capsule tissue was harvested and subjected to histological and in vitro evaluation. Results The DM group displayed high levels of AGEs and reactive oxygen species (ROS), and reduced cell viability. There was a significant positive correlation between ROS expression, apoptosis, and preoperative hemoglobin A1c. ROS expression, apoptosis, and ROM of the shoulder joint showed a negative correlation. The NADPH oxidase (NOX) expression and collagen III/I ratio were significantly higher in the DM group than in the non-DM group. Conclusions The DM group showed significant AGEs deposition in the shoulder capsule. Additionally, there was a significant association between AGEs and ROM limitation. Collectively, the findings suggest that the oxidative stress induced by AGEs deposition, which leads to fibrosis and local inflammation, might contribute to the limited ROM of the shoulder joint in patients with RCTs accompanied by DM.
Collapse
Affiliation(s)
- Issei Shinohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan.
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Tatsuo Kato
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takahiro Furukawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Yuichi Hoshino
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe-shi, Hyogo, 650-0017, Japan
| |
Collapse
|
5
|
Qiu F, Li J, Legerlotz K. Does Additional Dietary Supplementation Improve Physiotherapeutic Treatment Outcome in Tendinopathy? A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:1666. [PMID: 35329992 PMCID: PMC8950117 DOI: 10.3390/jcm11061666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
A systematic review and meta-analysis of randomized controlled trials was performed to evaluate the effects of dietary supplements in addition to physiotherapeutic treatment on pain and functional outcomes. PubMed, The Cochrane Library, Web of Science, and Embase were searched from inception to November 2021 (Prospero registration: CRD42021291951). Studies were eligible if the interventions consisted of physiotherapeutic approaches that were combined with dietary supplementation and if they reported measures of pain and/or function. Six studies were included in the meta-analysis. Standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated and analysed using a Review Manager software. Subgroup analysis was performed to explore possible associations between the study characteristics and the effectiveness of the intervention. Additional dietary supplementation during physiotherapeutic treatment significantly improved the reduction in pain score (SMD = −0.74, 95% CI, −1.37 to −0.10; p < 0.05), while it had no effect on functional outcomes (SMD = 0.29, 95% CI, 0.00 to 0.58; p > 0.05). This systematic review and meta-analysis suggests that additional nutritional interventions may improve physiotherapeutic treatment outcomes in the management of tendinopathies.
Collapse
Affiliation(s)
- Fanji Qiu
- Institute of Sport Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany;
| | - Jinfeng Li
- Department of Kinesiology, Iowa State University, Ames, IA 50011, USA;
| | - Kirsten Legerlotz
- Institute of Sport Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany;
| |
Collapse
|
6
|
Hirschmüller A, Morath O. [Tendinopathies of the Achilles tendon]. Z Rheumatol 2021; 80:629-640. [PMID: 34287670 DOI: 10.1007/s00393-021-01006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 10/20/2022]
Abstract
Disorders of the Achilles tendon are among the most frequent musculoskeletal injuries in athletes as well as in the general population. It is very important to differentiate the different clinical pictures summarized under the general term achillodynia and to understand the pathogenesis in order to undertake the correct therapeutic measures. In the case of insertional tendinopathies in particular, a rheumatological origin should be clarified. Doppler ultrasound is the most important diagnostic tool. Evidence-based treatment methods include various training programs, shock wave treatment, diverse injection and surgical procedures, each of which are discussed in detail in this article.
Collapse
Affiliation(s)
- Anja Hirschmüller
- Altius Swiss Sportmed Center Ag, Habich-Dietschy-Str. 5a, 4310, Rheinfelden, Schweiz. .,Klinik für Orthopädie und Unfallchirurgie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Deutschland.
| | - Oliver Morath
- Institut Bewegungs- und Arbeitsmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Deutschland
| |
Collapse
|
7
|
Vinhas A, Rodrigues MT, Gonçalves AI, Reis RL, Gomes ME. Magnetic responsive materials modulate the inflammatory profile of IL-1β conditioned tendon cells. Acta Biomater 2020; 117:235-245. [PMID: 32966921 DOI: 10.1016/j.actbio.2020.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Tendinopathies represent half of all musculoskeletal injuries worldwide. Inflammatory events contribute to both tendon healing and to tendinopathy conditions but the cellular triggers leading to one or the other are unknown. In previous studies, we showed that magnetic field actuation modulates human tendon cells (hTDCs) behavior in pro-inflammatory environments, and that magnetic responsive membranes could positively influence inflammation responses in a rat ectopic model. Herein, we propose to investigate the potential synergistic action of the magnetic responsive membranes, made of a polymer blend of starch with polycaprolactone incorporating magnetic nanoparticles (magSPCL), and the actuation of pulsed electromagnetic field (PEMF): 5 Hz, 4mT of intensity and 50% of duty cycle, in IL-1β-treated-hTDCs, and in the immunomodulatory response of macrophages. It was found that the expression of pro-inflammatory (TNFα, IL-6, IL-8, COX-2) and ECM remodeling (MMP-1,-2,-3) markers tend to decrease in cells cultured onto magSPCL membranes under PEMF, while the expression of TIMP-1 and anti-inflammatory genes (IL-4, IL-10) increases. Also, CD16++ and CD206+ macrophages were only found on magSPCL membranes with PEMF application. Magnetic responsive membranes show a modulatory effect on the inflammatory profile of hTDCs favoring anti-inflammatory cues which is also supported by the anti-inflammatory/repair markers expressed in macrophages. These results suggest that magnetic responsive magSPCL membranes can contribute for inflammation resolution acting on both resident cell populations and inflammatory cells, and thus significantly contribute to tendon regenerative strategies. Statement of significance Magnetically-assisted strategies have received great attention in recent years to remotely trigger and guide cell responses. Inflammation plays a key role in tendon healing but persistent pro-inflammatory molecules can contribute to tendon disorders, and therefore provide a therapeutic target for advanced treatments. We have previously reported that magnetic fields modulate the response of human tendon cells (hTDCs) conditioned to pro-inflammatory environments (IL-1β-treated-hTDCs), and that magnetic responsive membranes positively influence immune responses. In the present work, we combined pulsed electromagnetic field (PEMF) and magnetic responsive membranes to guide the inflammatory profile of IL-1β-treated-hTDCs and of macrophages. The results showed that the synergistic action of PEMF and magnetic membranes supports the applicability of magnetically actuated systems to regulate inflammatory events and stimulate tendon regeneration.
Collapse
Affiliation(s)
- A Vinhas
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - M T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - A I Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - R L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - M E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
8
|
Colombini A, Perucca Orfei C, Vincenzi F, De Luca P, Ragni E, Viganò M, Setti S, Varani K, de Girolamo L. A2A adenosine receptors are involved in the reparative response of tendon cells to pulsed electromagnetic fields. PLoS One 2020; 15:e0239807. [PMID: 32998161 PMCID: PMC7527253 DOI: 10.1371/journal.pone.0239807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/14/2020] [Indexed: 11/19/2022] Open
Abstract
Tendinopathy is a degenerative disease in which inflammatory mediators have been found to be sometimes present. The interaction between inflammation and matrix remodeling in human tendon cells (TCs) is supported by the secretion of cytokines such as IL-1β, IL-6 and IL-33. In this context, it has been demonstrated that pulsed electromagnetic fields (PEMFs) were able to reduce inflammation and promote tendon marker synthesis. The aim of this study was to evaluate the anabolic and anti-inflammatory PEMF-mediated response on TCs in an in vitro model of inflammation. Moreover, since PEMFs enhance the anti-inflammatory efficacy of adenosine through the adenosine receptors (ARs), the study also focused on the role of A2AARs. Human TCs were exposed to PEMFs for 48 hours. After stimulation, A2AAR saturation binding experiments were performed. Along with 48 hours PEMF stimulation, TCs were treated with IL-1β and A2AAR agonist CGS-21680. IL-1Ra, IL-6, IL-8, IL-10, IL-33, VEGF, TGF-β1, PGE2 release and SCX, COL1A1, COL3A1, ADORA2A expression were quantified. PEMFs exerted A2AAR modulation on TCs and promoted COL3A1 upregulation and IL-33 secretion. In presence of IL-1β, TCs showed an upregulation of ADORA2A, SCX and COL3A1 expression and an increase of IL-6, IL-8, PGE2 and VEGF secretion. After PEMF and IL-1β exposure, IL-33 was upregulated, whereas IL-6, PGE2 and ADORA2A were downregulated. These findings demonstrated that A2AARs have a role in the promotion of the TC anabolic/reparative response to PEMFs and to IL-1β.
Collapse
Affiliation(s)
- Alessandra Colombini
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- * E-mail:
| | | | - Fabrizio Vincenzi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paola De Luca
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Enrico Ragni
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Marco Viganò
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | | - Katia Varani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Laura de Girolamo
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
9
|
Popowski E, Kohl B, Schneider T, Jankowski J, Schulze-Tanzil G. Uremic Toxins and Ciprofloxacin Affect Human Tenocytes In Vitro. Int J Mol Sci 2020; 21:ijms21124241. [PMID: 32545914 PMCID: PMC7353042 DOI: 10.3390/ijms21124241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Tendinopathy is a rare but serious complication of quinolone therapy. Risk factors associated with quinolone-induced tendon disorders include chronic kidney disease accompanied by the accumulation of uremic toxins. Hence, the present study explored the effects of the representative uremic toxins phenylacetic acid (PAA) and quinolinic acid (QA), both alone and in combination with ciprofloxacin (CPX), on human tenocytes in vitro. Tenocytes incubated with uremic toxins +/- CPX were investigated for metabolic activity, vitality, expression of the dominant extracellular tendon matrix (ECM) protein type I collagen, cell-matrix receptor β1-integrin, proinflammatory interleukin (IL)-1β, and the ECM-degrading enzyme matrix metalloproteinase (MMP)-1. CPX, when administered at high concentrations (100 mM), suppressed tenocyte metabolism after 8 h exposure and at therapeutic concentrations after 72 h exposure. PAA reduced tenocyte metabolism only after 72 h exposure to very high doses and when combined with CPX. QA, when administered alone, led to scarcely any cytotoxic effect. Combinations of CPX with PAA or QA did not cause greater cytotoxicity than incubation with CPX alone. Gene expression of the pro-inflammatory cytokine IL-1β was reduced by CPX but up-regulated by PAA and QA. Protein levels of type I collagen decreased in response to high CPX doses, whereas PAA and QA did not affect its synthesis significantly. MMP-1 mRNA levels were increased by CPX. This effect became more pronounced in the form of a synergism following exposure to a combination of CPX and PAA. CPX was more tenotoxic than the uremic toxins PAA and QA, which showed only distinct suppressive effects.
Collapse
Affiliation(s)
- Erman Popowski
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.P.); (B.K.); (T.S.)
| | - Benjamin Kohl
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.P.); (B.K.); (T.S.)
| | - Tobias Schneider
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Hindenburgdamm 30, 12203 Berlin, Germany; (E.P.); (B.K.); (T.S.)
- Institute of Anatomy, Paracelsus Private Medical University, Nuremberg and Salzburg, Nuremberg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Gundula Schulze-Tanzil
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands
- Correspondence: ; Tel.: +49-(0)911-398-6772
| |
Collapse
|
10
|
Yu X, Jiang DS, Wang J, Wang R, Chen T, Wang K, Cao S, Wei X. Fluoroquinolone Use and the Risk of Collagen-Associated Adverse Events: A Systematic Review and Meta-Analysis. Drug Saf 2020; 42:1025-1033. [PMID: 31077091 DOI: 10.1007/s40264-019-00828-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION It has been suggested that fluoroquinolone antibiotics increase the risk of developing collagen-associated adverse events such as aortic dissection and aortic aneurysm. These are life-threatening emergencies that need to be prevented. OBJECTIVES We performed this systematic review to clarify the association between fluoroquinolones and three collagen-associated adverse events: aortic aneurysm or aortic dissection, retinal detachment, and tendon disorders. METHODS We searched PubMed, Embase, and Scopus for observational studies up to January 2019. Cohort and case-control studies were included if they reported data on the risk of collagen-related adverse events associated with fluoroquinolone exposure versus no exposure. We assessed the quality of the included studies using the Newcastle-Ottawa Scale. Effect statistics were pooled using random-effects models. Sensitivity and subgroup analyses were performed to identify any source of heterogeneity. RESULTS After screening 2729 citations, we included 22 observational studies (12 cohort studies and ten case-control studies) with 19,207,552 participants. Current use of fluoroquinolones was significantly associated with aortic aneurysm and aortic dissection (odds ratio [OR] 2.20; 95% confidence interval [CI] 1.92-2.52), tendon disorders (OR 1.89; 95% CI 1.53-2.33), and retinal detachment (sensitivity analysis, OR 1.25; 95% CI 1.01-1.53). Past fluoroquinolone use (> 30 and ≤ 365 days) was associated with retinal detachment (OR 1.27; 95% CI 1.09-1.47). CONCLUSIONS Fluoroquinolone use incurs a risk of developing three collagen-associated diseases (aortic aneurysm or aortic dissection, retinal detachment, and tendon disorders). Patients at an increased risk of collagen-associated diseases should not use fluoroquinolones unless no other options are available.
Collapse
Affiliation(s)
- Xinyu Yu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jing Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Taiqiang Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kan Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiyi Cao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China. .,NHC Key Laboratory of Organ Transplantation, Wuhan, China. .,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
11
|
Kim JH, Kwon TR, Lee SE, Jang YN, Han HS, Mun SK, Kim BJ. Comparative Evaluation of the Effectiveness of Novel Hyaluronic Acid-Polynucleotide Complex Dermal Filler. Sci Rep 2020; 10:5127. [PMID: 32198443 PMCID: PMC7083941 DOI: 10.1038/s41598-020-61952-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/18/2020] [Indexed: 11/08/2022] Open
Abstract
HA (Hyaluronic acid) filler, the most commonly used dermal filler, causes several side effects. HA-PN (Hyaluronic acid-Polynucleotide), a new composite filler, has excellent biocompatibility and induces tissue regeneration. In this study, we compare the efficacies and safety profiles of these fillers. The characteristics of HA and HA-PN fillers were compared using scanning electron microscopy and rheometry. No morphological difference was noted between the fillers. However, the latter had higher viscosity and elasticity values. The HA-PN filler induced higher cell migration than the HA filler in a wound healing assay. It was also found to stimulate better collagen synthesis in human and mouse fibroblasts. The HA and HA-PN fillers were injected into SKH1 hairless mice to determine changes in their volume for up to 24 weeks. Increased cell migration and collagen synthesis were observed in mice injected with the HA-PN complex filler. Although the safety and durability of the HA and HA-PN fillers were similar, the latter induced a lower transient receptor potential vanilloid 4 expression and caused less stimulation upon injection. In conclusion, HA-PN complex fillers can stimulate fibroblast growth and facilitate volume growth and skin regeneration.
Collapse
Affiliation(s)
- Jong Hwan Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Tae-Rin Kwon
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sung Eun Lee
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Yoo Na Jang
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Hye Sung Han
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Seog Kyun Mun
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea.
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea.
| |
Collapse
|
12
|
Vinhas A, Rodrigues MT, Gonçalves AI, Reis RL, Gomes ME. Pulsed Electromagnetic Field Modulates Tendon Cells Response in IL-1β-Conditioned Environment. J Orthop Res 2020; 38:160-172. [PMID: 31769535 DOI: 10.1002/jor.24538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/19/2019] [Indexed: 02/04/2023]
Abstract
Strategies aiming at controlling and modulating inflammatory cues may offer therapeutic solutions for improving tendon regeneration. This study aims to investigate the modulatory effect of pulsed electromagnetic field (PEMF) on the inflammatory profile of human tendon-derived cells (hTDCs) after supplementation with interleukin-1β (IL-1β). IL-1β was used to artificially induce inflammatory cues associated with injured tendon environments. The PEMF effect was investigated varying the frequency (5 or 17 Hz), intensity (1.5, 4, or 5 mT), and duty-cycle (10% or 50%) parameters to which IL-1β-treated hTDCs were exposed to. A PEMF actuation with 4 mT, 5 Hz and a 50% duty cycle decreased the production of IL-6 and tumor necrosis factor-α (TNF-α), as well as the expression of TNFα, IL-6, IL-8, COX-2, MMP-1, MMP-2, and MMP-3, while IL-4, IL-10, and TIMP-1 expression increased. These results suggest that PEMF stimulation can modulate hTDCs response in an inflammatory environment holding therapeutic potential for tendon regenerative strategies. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:160-172, 2020.
Collapse
Affiliation(s)
- Adriana Vinhas
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães, 4805-017, Portugal
| | - Ana I Gonçalves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães, 4805-017, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães, 4805-017, Portugal
| |
Collapse
|
13
|
Zhao X, Yang X. Retinoic Acid Promotes Retinoic Acid Signaling by Suppression of Pitx1 In Tendon Cells: A Possible Mechanism of a Clubfoot-Like Phenotype Induced by Retinoic Acid. Med Sci Monit 2019; 25:6980-6989. [PMID: 31527569 PMCID: PMC6761847 DOI: 10.12659/msm.917740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The pathogenesis of idiopathic congenital clubfoot (CCF) is unknown. Although some familial patients have Pitx1 mutations, and the Pitx1+/− genotype causes a clubfoot-like phenotype in mice, the mechanism of Pitx1-induced CCF is unknown. Material/Methods We used tibialis anterior tendon samples to detect the expression of Pitx1 in idiopathic and neurogenic clubfoot patients. After obtaining Sprague-Dawley (SD) rat Achilles tendon cells, the expression of Pitx1 was knocked down by SiRNA. After 48 h of culture, mass spectrometry was used to quantitatively analyze proteins. Then, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to assess the downstream pathway of PITX1. The relationship between Pitx1 and the promoter region of deacetylase 1 (Sirtuin-1 and Sirt1) was examined by luciferase and ChIP assays. Results We found that Pitx1 expression in the tendon samples of idiopathic CCF patients was downregulated. Mass spectrometry analysis revealed that the inhibition of Pitx1 induced the downregulation of Sirt1 expression in tendon cells. Luciferase and ChIP assays confirmed that Pitx1 binds to the promoter region of SIRT1 and promotes Sirt1 gene transcription. Further results showed that, after the inhibition of Pitx1 in tendon cells, CRABP2 acetylation increased, the nuclear import of CRABP2 was enhanced, and the expression of RARβ2 increased. After the inhibition of Pitx1, RARβ2 expression was further increased by RA treatment in tendon cells. In the presence of retinoic acid, the expression of Pitx1 was inhibited in tendon cells. Conclusions Pitx1 binds to the promoter region of SIRT1 and promotes the transcription of SIRT1. Positive feedback occurs between RA signaling and Pitx1.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Xuan Yang
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (mainland)
| |
Collapse
|
14
|
Tang XM, Dai J, Sun HL. Thermal pretreatment promotes the protective effect of HSP70 against tendon adhesion in tendon healing by increasing HSP70 expression. Mol Med Rep 2019; 20:205-215. [PMID: 31115522 PMCID: PMC6579999 DOI: 10.3892/mmr.2019.10240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 04/02/2019] [Indexed: 12/14/2022] Open
Abstract
Tendon adhesion is a substantial challenge for tendon repair. Thermal pretreatment (TP) may decrease inflammation by upregulating heat shock proteins (HSPs). The present study intends to identify the function that TP serves when combined with HSP70 overexpression in tendon healing and adhesion in rats. Sprague‑Dawley male rats were used to establish a surgically ablative tendon postoperative suture model, and the positive expression of the HSP70 protein was measured using immunohistochemistry. Changes to the blood vessels and collagenous fiber, in addition to the maximum tensile strength and the tendon sliding distance, were detected under a microscope. Finally, HSP70, tumor growth factor β (TGF‑β), and insulin‑like growth factor 1 (IGF‑1) mRNA and protein levels were all determined by employing reverse transcription‑quantitative polymerase chain reaction and western blot analysis methods. The positive expression of the HSP70 protein increased following TP. Furthermore, TP reduced the infiltration of inflammatory cells and improved the collagenous arrangement, accompanied by an increased maximum tensile force and tendon gliding distance following surgery. In addition, TP increased the mRNA and protein expression levels of HSP70, TGF‑β and IGF‑1. Altogether, TP increases HSP70 expression, thereby reducing postoperative traumatic inflammation and establishing tendon adhesion and promoting tendon healing. Thus, TP may be a potential strategy for the treatment of tendon adhesion.
Collapse
Affiliation(s)
- Xiao-Ming Tang
- Department of Orthopedics, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jian Dai
- Department of Orthopedics, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hai-Lang Sun
- Department of Orthopedics, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
15
|
Exploring Stem Cells and Inflammation in Tendon Repair and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1089:37-46. [PMID: 30088259 DOI: 10.1007/5584_2018_258] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tendon injuries are frequent and are responsible for substantial morbidity both in sports and in the workplace. Despite the endogenous mechanisms of tendon repair and regeneration, tendon healing upon injury is slow and often insufficient to restore complete biomechanics functionality.Inflammation has a pivotal role in tendon healing and failed healing responses contribute to the progression of tendinopathies. However, the molecular and cellular mechanisms involved are poorly understood requiring further insights.During inflammation, bioactive molecules such as cytokines secreted locally at the injury site, influence resident stem cells that contribute as modulatory agents over the niche towards homeostasis, holding great promise as therapeutic agents for tendon pathological conditions associated to unresolved inflammation and failed healing.This review overviews the role of cytokines and resident cells, focusing on the participation of tendon stem cell population in inflammation and tendon healing upon injury and their potential action in resolution of pathological conditions.
Collapse
|
16
|
Chen Y, Huang J, Tang C, Chen X, Yin Z, Heng BC, Chen W, Shen W. Small molecule therapeutics for inflammation-associated chronic musculoskeletal degenerative diseases: Past, present and future. Exp Cell Res 2017; 359:1-9. [PMID: 28739444 DOI: 10.1016/j.yexcr.2017.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
Inflammation-associated chronic musculoskeletal degenerative diseases (ICMDDs) like osteoarthritis and tendinopathy often results in morbidity and disability, with consequent heavy socio-economic burden. Current available therapies such as NSAIDs and glucocorticoid are palliative rather than disease-modifying. Insufficient systematic research data on disease molecular mechanism also makes it difficult to exploit valid therapeutic targets. Small molecules are designed to act on specific signaling pathways and/or mechanisms of cellular physiology and function, and have gradually shown potential for treating ICMDDs. In this review, we would examine and analyze recent developments in small molecule drugs for ICMDDs, suggest possible feasible improvements in treatment modalities, and discuss future research directions.
Collapse
Affiliation(s)
- Yangwu Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Orthopaedics Research Institute of Zhejiang Univerisity, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Orthopaedics Research Institute of Zhejiang Univerisity, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Orthopaedics Research Institute of Zhejiang Univerisity, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Boon Chin Heng
- Faculty of Dentistry, Department of Endodontology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Orthopaedics Research Institute of Zhejiang Univerisity, China.
| | - Weiliang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Orthopaedics Research Institute of Zhejiang Univerisity, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| |
Collapse
|
17
|
|