1
|
Alptekin İM, Çakıroğlu FP, Reçber T, Nemutlu E. Inulin may prevent the high-fat diet induced-obesity via suppressing endocannabinoid system in the prefrontal cortex in Wistar rats. Int J Food Sci Nutr 2024:1-12. [PMID: 39363521 DOI: 10.1080/09637486.2024.2408545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
High-fat diets contribute to various metabolic disorders. Inulin supplementation has been shown to reduce appetite, lower food intake, and promote weight loss. Although there is evidence that the endocannabinoid system has metabolic effects in the prefrontal cortex, studies investigating the effects of inulin on the endocannabinoid system are limited. This study investigated the impact of inulin on obesity through the endocannabinoid system in the prefrontal cortex. Twenty-four male Wistar rats were fed one of four diets over 12 weeks. Findings indicated that a high-fat diet led to obesity, whereas inulin reduced food intake and supported weight loss. Consequently, inulin supplementation both prevented obesity and significantly decreased the expressions of Adrb3 and Adcy1, and anandamide and 2-arachidonylglycerol levels in the prefrontal cortex. Additionally, inulin lowered leptin in circulation and stimulated Trpv1. Thus, inulin may mitigate obesity development, possibly by modulating gene expressions linked to obesity in the prefrontal cortex via endocannabinoids.
Collapse
Affiliation(s)
- İsmail Mücahit Alptekin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Türkiye
| | - Funda Pınar Çakıroğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Ankara, Türkiye
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
2
|
Zhu S, Yang J, Xia P, Li S, Wang Q, Li K, Li B, Li J. Effects of konjac glucomannan intake patterns on glucose and lipid metabolism of obese mice induced by a high fat diet. Food Funct 2024; 15:9116-9135. [PMID: 39219450 DOI: 10.1039/d4fo02442g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Konjac glucomannan (KGM) is a dietary fiber supplement that exhibits multiple biological activities, including weight control as well as regulation of glucose and lipid metabolism. Currently, KGM intake patterns in practical applications include KGM sol, thermal irreversible gel, and frozen thermal irreversible gel. In this study, four intake patterns of KGM, namely KGM sol (KS), deacetylated KGM (DK), KGM gel (KG), and frozen KGM gel (FKG), were used as materials to explore the effects of different KGM intake patterns on glucose and lipid metabolism and intestinal flora in obese mice induced by a high fat diet under the same dose. The results showed that any type of KGM intake could reduce body weight, fat mass, lipid levels, and insulin resistance in obese mice, and alleviate liver damage and inflammation caused by obesity. However, KS has the most significant effect on controlling blood glucose and blood lipid in obese mice. Additionally, it was found that KS, DK, KG and FKG can increase the α-diversity of intestinal microflora in high-fat mice and improve the microflora disorder in high-fat mice. Finally, KS may increase the levels of fasting appetite hormones GLP-1 and PYY in mice, up-regulate the expression of LDLR, GCK and G-6-pase mRNA, and increase the production of short-chain fatty acids (SCFAs) in the intestinal flora of mice, thus regulating glucose and lipid metabolism. This study systematically investigated the effects of different intake forms of KGM on metabolism and intestinal flora in obese mice, which is of great significance for further understanding the role of KGM in the prevention and treatment of obesity-related metabolic diseases and for developing targeted dietary interventions.
Collapse
Affiliation(s)
- Sijia Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Jiyu Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Qi Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, China
| |
Collapse
|
3
|
Yuan H, Wei W, Zhang Y, Li C, Zhao S, Chao Z, Xia C, Quan J, Gao C. Unveiling the Influence of Copy Number Variations on Genetic Diversity and Adaptive Evolution in China's Native Pig Breeds via Whole-Genome Resequencing. Int J Mol Sci 2024; 25:5843. [PMID: 38892031 PMCID: PMC11172908 DOI: 10.3390/ijms25115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Copy number variations (CNVs) critically influence individual genetic diversity and phenotypic traits. In this study, we employed whole-genome resequencing technology to conduct an in-depth analysis of 50 pigs from five local swine populations [Rongchang pig (RC), Wuzhishan pig (WZS), Tibetan pig (T), Yorkshire (YL) and Landrace (LR)], aiming to assess their genetic potential and explore their prospects in the field of animal model applications. We identified a total of 96,466 CNVs, which were subsequently integrated into 7112 non-redundant CNVRs, encompassing 1.3% of the swine genome. Functional enrichment analysis of the genes within these CNVRs revealed significant associations with sensory perception, energy metabolism, and neural-related pathways. Further selective scan analyses of the local pig breeds RC, T, WZS, along with YL and LR, uncovered that for the RC variety, the genes PLA2G10 and ABCA8 were found to be closely related to fat metabolism and cardiovascular health. In the T breed, the genes NCF2 and CSGALNACT1 were associated with immune response and connective tissue characteristics. As for the WZS breed, the genes PLIN4 and CPB2 were primarily linked to fat storage and anti-inflammatory responses. In summary, this research underscores the pivotal role of CNVs in fostering the diversity and adaptive evolution of pig breeds while also offering valuable insights for further exploration of the advantageous genetic traits inherent to China's local pig breeds. This facilitates the creation of experimental animal models tailored to the specific characteristics of these breeds, contributing to the advancement of livestock and biomedical research.
Collapse
Affiliation(s)
- Haonan Yuan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Wenjing Wei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Yue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Changwen Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin 150069, China; (C.L.); (C.X.)
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Key Laboratory of Tropical Animal Breeding and Disease Research, Haikou 571100, China;
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin 150069, China; (C.L.); (C.X.)
| | - Jinqiang Quan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; (H.Y.); (W.W.); (Y.Z.); (S.Z.)
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin 150069, China; (C.L.); (C.X.)
| |
Collapse
|
4
|
Hidalgo-Lozada GM, Villarruel-López A, Nuño K, García-García A, Sánchez-Nuño YA, Ramos-García CO. Clinically Effective Molecules of Natural Origin for Obesity Prevention or Treatment. Int J Mol Sci 2024; 25:2671. [PMID: 38473918 DOI: 10.3390/ijms25052671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence and incidence of obesity and the comorbidities linked to it are increasing worldwide. Current therapies for obesity and associated pathologies have proven to cause a broad number of adverse effects, and often, they are overpriced or not affordable for all patients. Among the alternatives currently available, natural bioactive compounds stand out. These are frequently contained in pharmaceutical presentations, nutraceutical products, supplements, or functional foods. The clinical evidence for these molecules is increasingly solid, among which epigallocatechin-3-gallate, ellagic acid, resveratrol, berberine, anthocyanins, probiotics, carotenoids, curcumin, silymarin, hydroxy citric acid, and α-lipoic acid stand out. The molecular mechanisms and signaling pathways of these molecules have been shown to interact with the endocrine, nervous, and gastroenteric systems. They can regulate the expression of multiple genes and proteins involved in starvation-satiety processes, activate the brown adipose tissue, decrease lipogenesis and inflammation, increase lipolysis, and improve insulin sensitivity. This review provides a comprehensive view of nature-based therapeutic options to address the increasing prevalence of obesity. It offers a valuable perspective for future research and subsequent clinical practice, addressing everything from the molecular, genetic, and physiological bases to the clinical study of bioactive compounds.
Collapse
Affiliation(s)
| | - Angelica Villarruel-López
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | - Karla Nuño
- Department of Psychology, Education and Health, ITESO Jesuit University of Guadalajara, Guadalajara 45604, Mexico
| | - Abel García-García
- Institute of Science and Technology for Health Innovation, Guadalajara 44770, Mexico
- Department of Medical Clinic, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Yaír Adonaí Sánchez-Nuño
- Department of Pharmacobiology, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
5
|
Amini MR, Rasaei N, Jalalzadeh M, Akhgarjand C, Hashemian M, Jalali P, Hekmatdoost A. The effects of Garcinia cambogia (hydroxycitric acid) on lipid profile: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2024; 38:1028-1043. [PMID: 38151892 DOI: 10.1002/ptr.8102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Garcinia cambogia (GC) has antioxidant, anticancer, antihistamine, and antimicrobial properties. To determine the effect of GC on lipid profiles, a systematic review and meta-analysis was carried out. Up to February 9, 2023, six electronic databases (Web of Science, Cochrane Library, Embase, PubMed, Scopus, and Google Scholar) were searched at any time without limitations. Trials examining the impact of GC on serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol (HDL-C) in adults were included. The total effect was shown as a weighted mean difference (WMD) and 95% confidence interval (CI) in a random-effects meta-analysis approach. This systematic review and meta-analysis included 14 trials involving 623 subjects. Plasma levels of TC (WMD: -6.76 mg/dL; CI: -12.39 to -0.59, p-value = 0.032), and TG (WMD: -24.21 mg/dL; CI: -37.84 to -10.58, p < 0.001) were significantly reduced after GC use, and plasma HDL-C (WMD: 2.95 mg/dL; CI: 2.01 to 3.89, p < 0.001) levels increased. low-density lipoprotein cholesterol levels (WMD: -1.15 mg/dL; CI: -16.08 to 13.78, p-value = 0.880) were not significantly affected. The effects of lowering TC and TG were more pronounced for periods longer than 8 weeks. Consuming GC has a positive impact on TC, TG, and HDL-C concentrations. The limitations of this study include the short duration of analyzed interventions and significant heterogeneity. Nevertheless, it is imperative to conduct well-structured, and high-quality long-term trials to comprehensively evaluate the clinical effectiveness of GC on lipid profile, and validate these findings.
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Moharam Jalalzadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Hashemian
- Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Parisa Jalali
- Student Research Committee, Khalkhal University of Medical Sciences, Khalkhal, Iran
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Park J, Nurkolis F, Won H, Yang J, Oh D, Jo H, Choi J, Chung S, Kurniawan R, Kim B. Could Natural Products Help in the Control of Obesity? Current Insights and Future Perspectives. Molecules 2023; 28:6604. [PMID: 37764380 PMCID: PMC10534927 DOI: 10.3390/molecules28186604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity is a global issue faced by many individuals worldwide. However, no drug has a pronounced effect with few side effects. Green tea, a well-known natural product, shows preventive effects against obesity by decreasing lipogenesis and increasing fat oxidation and antioxidant capacity. In contrast, other natural products are known to contribute to obesity. Relevant articles published on the therapeutic effect of natural products on obesity were retrieved from PubMed, Web of Science, and Scopus. The search was conducted by entering keywords such as "obesity", "natural product", and "clinical trial". The natural products were classified as single compounds, foods, teas, fruits, herbal medicines-single extract, herbal medicines-decoction, and herbal medicines-external preparation. Then, the mechanisms of these medicines were organized into lipid metabolism, anti-inflammation, antioxidation, appetite loss, and thermogenesis. This review aimed to assess the efficacy and mechanisms of effective natural products in managing obesity. Several clinical studies reported that natural products showed antiobesity effects, including Coffea arabica (coffee), Camellia sinensis (green tea), Caulerpa racemosa (green algae), Allium sativum (garlic), combined Ephedra intermedia Schrenk, Thea sinensis L., and Atractylodes lancea DC extract (known as Gambisan), Ephedra sinica Stapf, Angelica Gigantis Radix, Atractylodis Rhizoma Alba, Coicis semen, Cinnamomi cortex, Paeoniae radix alba, and Glycyrrhiza uralensis (known as Euiiyin-tang formula). Further studies are expected to refine the pharmacological effects of natural products for clinical use.
Collapse
Affiliation(s)
- Jiwon Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia;
| | - Hyunji Won
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jiye Yang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dayeon Oh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyunkyung Jo
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Kyung Hee Myungbo Clinic of Korean Medicine, Hwaseong-si 18466, Republic of Korea
| | - Rudy Kurniawan
- Diabetes Connection Care, Eka Hospital Bumi Serpong Damai, Tangerang 15321, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Tutunchi H, Arefhosseini S, Nomi-Golzar S, Ebrahimi-Mameghani M. Effects of Hydroxycitric Acid Supplementation on Body Composition, Obesity Indices, Appetite, Leptin, and Adiponectin of Women with NAFLD on a Calorie-Restricted Diet. Int J Clin Pract 2023; 2023:6492478. [PMID: 37476001 PMCID: PMC10356186 DOI: 10.1155/2023/6492478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Background This trial assessed the effects of a calorie-restricted diet (CRD) with hydroxycitric acid (HCA) supplementation on appetite-regulating hormones, obesity indices, body composition, and appetite in women with nonalcoholic fatty liver disease (NAFLD). Methods This study was carried out on 44 overweight/obese women with NAFLD. The patients were randomly assigned into two groups, namely, "Intervention group" (receiving individual CRD plus HCA tablets per day) and "Control group" (receiving only CRD) for eight weeks. Obesity indices, body composition, appetite status, and serum levels of leptin and adiponectin were assessed before and after the intervention. Results Forty patients completed the trial. At the end of the trial, although significant reductions were found in most of the studied obesity indices in the intervention group, there was only a significant decrease in waist circumference and waist-to-height ratio in the control group. Fat mass and muscle mass significantly decreased in the intervention group (p=0.044 and p=0.024, respectively), and the reduction in visceral fat in the intervention group was significantly greater than that in the control group (-0.49 kg vs -0.37 kg, p=0.024). Intra- and intergroup differences in serum leptin and adiponectin levels and their ratios before and after the trial were not significant. We found a negative and marginally significant correlation between percent of changes in serum adiponectin level and percent of changes in visceral adipose tissue (VAT) (r = -0.429, p=0.067) and BMI (r = -0.440, p=0.059) as well as an inverse relationship between percent of changes in leptin/adiponectin with VAT (r = -0.724, p < 0.001) in the intervention group. Conclusion HCA plus weight loss diet could significantly reduce visceral adipose tissue without any significant changes in serum leptin and adiponectin levels.
Collapse
Affiliation(s)
- Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Arefhosseini
- Student Research Committee, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Nomi-Golzar
- Student Research Committee, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Roh YJ, Lee SJ, Kim JE, Jin YJ, Seol A, Song HJ, Park J, Park SH, Douangdeuane B, Souliya O, Choi SI, Hwang DY. Dipterocarpus tuberculatus as a promising anti-obesity treatment in Lep knockout mice. Front Endocrinol (Lausanne) 2023; 14:1167285. [PMID: 37334306 PMCID: PMC10273273 DOI: 10.3389/fendo.2023.1167285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction The therapeutic effects and mechanisms of Dipterocarpus tuberculatus (D. tuberculatus) extracts have been examined concerning inflammation, photoaging, and gastritis; however, their effect on obesity is still being investigated. Methods We administered a methanol extract of D. tuberculatus (MED) orally to Lep knockout (KO) mice for 4 weeks to investigate the therapeutic effects on obesity, weight gain, fat accumulation, lipid metabolism, inflammatory response, and β-oxidation. Results In Lep KO mice, MED significantly reduced weight gains, food intake, and total cholesterol and glyceride levels. Similar reductions in fat weights and adipocyte sizes were also observed. Furthermore, MED treatment reduced liver weight, lipid droplet numbers, the expressions of adipogenesis and lipogenesis-related genes, and the expressions of lipolysis regulators in liver tissues. Moreover, the iNOS-mediated COX-2 induction pathway, the inflammasome pathway, and inflammatory cytokine levels were reduced, but β-oxidation was increased, in the livers of MED-treated Lep KO mice. Conclusion The results of this study suggest that MED ameliorates obesity and has considerable potential as an anti-obesity treatment.
Collapse
Affiliation(s)
- Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Jumin Park
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan, Republic of Korea
| | - So Hae Park
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | | | - Onevilay Souliya
- Institute of Traditional Medicine, Ministry of Health, Vientiane, Laos
| | - Sun Il Choi
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
- Longevity Wellbeing Research Center/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| |
Collapse
|
9
|
Panwar D, Shubhashini A, Kapoor M. Complex alpha and beta mannan foraging by the human gut bacteria. Biotechnol Adv 2023; 66:108166. [PMID: 37121556 DOI: 10.1016/j.biotechadv.2023.108166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The human gut microbiota (HGM), a community of trillions of microbes, underscores its contribution by impacting many facets of host health and disease. In the HGM, Bacteroidota and Bacillota represent dominant bacterial phyla, which mainly rely on the glycans recalcitrant to host digestion to meet their energy requirements. Accordingly, the impact of dietary and host-derived glycans in the assembly and operation of these dominant microbial communities continues to be an area of active research. Among various glycans, mannans represent an integral component of the human diet. Apart from their health effects, the diverse and complex mannan structures bears molecular signatures that alter the expression of specific gene clusters in selected Bacteroidota and Bacillota species. Both the phyla possess variable and sophisticated loci of mannan recognition proteins, hydrolytic enzymes, transporters, and other metabolic proteins to sense, capture and utilize mannans as an energy source. The current review summarizes mannan structural diversity, and strategies adopted by select species of the HGM bacteria to forage mannans by focusing primarily on glycoside hydrolases and their effects on host health and metabolism.
Collapse
Affiliation(s)
- Deepesh Panwar
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India
| | - A Shubhashini
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Mukesh Kapoor
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India.
| |
Collapse
|
10
|
Xie X, Huang C, Huang Y, Zou X, Zhou R, Ai H, Huang L, Ma J. Genetic architecture for skeletal muscle glycolytic potential in Chinese Erhualian pigs revealed by a genome-wide association study using 1.4M SNP array. Front Genet 2023; 14:1141411. [PMID: 37007966 PMCID: PMC10064215 DOI: 10.3389/fgene.2023.1141411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/16/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: Muscle glycolytic potential (GP) is a key factor affecting multiple meat quality traits. It is calculated based on the contents of residual glycogen and glucose (RG), glucose-6-phosphate (G6P), and lactate (LAT) contents in muscle. However, the genetic mechanism of glycolytic metabolism in skeletal muscle of pigs remains poorly understood. With a history of more than 400 years and some unique characteristics, the Erhualian pig is called the “giant panda” (very precious) in the world’s pig species by Chinese animal husbandry.Methods: Here, we performed a genome-wide association study (GWAS) using 1.4M single nucleotide polymorphisms (SNPs) chips for longissimus RG, G6P, LAT, and GP levels in 301 purebred Erhualian pigs.Results: We found that the average GP value of Erhualian was unusually low (68.09 μmol/g), but the variation was large (10.4–112.7 μmol/g). The SNP-based heritability estimates for the four traits ranged from 0.16–0.32. In total, our GWAS revealed 31 quantitative trait loci (QTLs), including eight for RG, nine for G6P, nine for LAT, five for GP. Of these loci, eight were genome-wide significant (p < 3.8 × 10−7), and six loci were common to two or three traits. Multiple promising candidate genes such as FTO, MINPP1, RIPOR2, SCL8A3, LIFR and SRGAP1 were identified. The genotype combinations of the five GP-associated SNPs also showed significant effect on other meat quality traits.Discussion: These results not only provide insights into the genetic architecture of GP related traits in Erhualian, but also are useful for pig breeding programs involving this breed.
Collapse
Affiliation(s)
- Xinke Xie
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Cong Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Yizhong Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoxiao Zou
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Runxin Zhou
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Huashui Ai
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
- Correspondence: Lusheng Huang, ; Junwu Ma,
| | - Junwu Ma
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, China
- Correspondence: Lusheng Huang, ; Junwu Ma,
| |
Collapse
|
11
|
Fernandes ACS, Muxfeldt L, Motta NG, Skonieski C, Fagundes KR, Sandri G, de Chaves DB, Suthovski G, Gallina AL, Araujo SM, Benvegnú DM. Gummies candy enriched with Konjac glucomannan reduces hunger intensity and waist circumference of overweight individuals. Int J Biol Macromol 2023; 226:72-76. [PMID: 36435474 DOI: 10.1016/j.ijbiomac.2022.11.232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Konjac glucomannan (KGM) is a herbal medicine with benefits in appetite control, body weight and biochemical parameters in overweight individuals. The objective of our work was to evaluate the effect of the consumption of gummy candy enriched with KGM on appetite, to evaluate anthropometric data, biochemical and oxidative stress markers in overweight individuals. Forty-two participants aged 18 to 45 years completed our randomized, double-blind, placebo-controlled clinical trial. Participants were randomly assigned to consume for fourteen days, 2 candies per day, containing 250 mg of KGM or identical-looking placebo candy with 250 mg of flaxseed meal, shortly after breakfast and dinner. As a result, we observed that there was a reduction in waist circumference and in the intensity of hunger/satisfaction of the participants who consumed KGM for fourteen days, and we believe that a longer consumption time as well as an increase dose of KGM contribute to even more satisfactory body results.
Collapse
Affiliation(s)
| | - Luana Muxfeldt
- Laboratório de Bioquímica - Universidade Federal da Fronteira Sul - UFFS, Campus Realeza, Realeza, PR, Brazil
| | - Neli Gehlen Motta
- Laboratório de Bioquímica - Universidade Federal da Fronteira Sul - UFFS, Campus Realeza, Realeza, PR, Brazil
| | - Calinca Skonieski
- Laboratório de Bioquímica - Universidade Federal da Fronteira Sul - UFFS, Campus Realeza, Realeza, PR, Brazil
| | - Karina Raquel Fagundes
- Laboratório de Bioquímica - Universidade Federal da Fronteira Sul - UFFS, Campus Realeza, Realeza, PR, Brazil
| | - Gabriela Sandri
- Laboratório de Bioquímica - Universidade Federal da Fronteira Sul - UFFS, Campus Realeza, Realeza, PR, Brazil
| | - Daniel Barbosa de Chaves
- Laboratório de Bioquímica - Universidade Federal da Fronteira Sul - UFFS, Campus Realeza, Realeza, PR, Brazil
| | - Gabriela Suthovski
- Laboratório de Bioquímica - Universidade Federal da Fronteira Sul - UFFS, Campus Realeza, Realeza, PR, Brazil
| | - André Lazarin Gallina
- Laboratório de Bioquímica - Universidade Federal da Fronteira Sul - UFFS, Campus Realeza, Realeza, PR, Brazil
| | - Stífani Machado Araujo
- Laboratório de Bioquímica - Universidade Federal da Fronteira Sul - UFFS, Campus Realeza, Realeza, PR, Brazil
| | - Dalila Moter Benvegnú
- Laboratório de Bioquímica - Universidade Federal da Fronteira Sul - UFFS, Campus Realeza, Realeza, PR, Brazil.
| |
Collapse
|
12
|
A Comprehensive Review on the Use of Herbal Dietary Supplements in the USA, Reasons for Their Use, and Review of Potential Hepatotoxicity. LIVERS 2022. [DOI: 10.3390/livers2030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Herbal and dietary supplement (HDS) use has grown exponentially in the United States. Unfortunately, the incidence of HDS-related liver injury has proportionally increased. Despite the potential for certain HDSs to cause clinically significant liver injury, they are not regulated by the Food and Drug Administration. Recent efforts have been made to regulate HDSs but are far removed from the scrutiny of prescription medications. Scant literature exists on HDSs and their risks of causing liver injury. In this comprehensive review, we examine trends of HDS use in the United States and the pathophysiologic mechanisms of drug-induced liver injury (DILI) of certain HDSs. Finally, we review usage rates; benefits, if any; purported pathophysiology of DILI; and propensity for progression to fulminant hepatic failure of nine HDSs linked to clinically significant DILI.
Collapse
|
13
|
Li X, Zheng L, Zhang B, Deng ZY, Luo T. The Structure Basis of Phytochemicals as Metabolic Signals for Combating Obesity. Front Nutr 2022; 9:913883. [PMID: 35769384 PMCID: PMC9234462 DOI: 10.3389/fnut.2022.913883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
The consumption of phytochemicals, bioactive compounds in fruits and vegetables, has been demonstrated to ameliorate obesity and related metabolic symptoms by regulating specific metabolic pathways. This review summarizes the progress made in our understanding of the potential of phytochemicals as metabolic signals: we discuss herein selected molecular mechanisms which are involved in the occurrence of obesity that may be regulated by phytochemicals. The focus of our review highlights the regulation of transcription factors toll like receptor 4 (TLR4), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), the peroxisome proliferator-activated receptors (PPARs), fat mass and obesity-associated protein (FTO) and regulation of microRNAs (miRNA). In this review, the effect of phytochemicals on signaling pathways involved in obesity were discussed on the basis of their chemical structure, suggesting molecular mechanisms for how phytochemicals may impact these signaling pathways. For example, compounds with an isothiocyanate group or an α, β-unsaturated carbonyl group may interact with the TLR4 signaling pathway. Regarding Nrf2, we examine compounds possessing an α, β-unsaturated carbonyl group which binds covalently with the cysteine thiols of Keap1. Additionally, phytochemical activation of PPARs, FTO and miRNAs were summarized. This information may be of value to better understand how specific phytochemicals interact with specific signaling pathways and help guide the development of new drugs to combat obesity and related metabolic diseases.
Collapse
|
14
|
Cavalheiro EKFF, Costa AB, Salla DH, da Silva MR, Mendes TF, da Silva LE, Turatti CDR, de Bitencourt RM, Rezin GT. Cannabis sativa as a Treatment for Obesity: From Anti-Inflammatory Indirect Support to a Promising Metabolic Re-Establishment Target. Cannabis Cannabinoid Res 2022; 7:135-151. [PMID: 34242511 PMCID: PMC9070748 DOI: 10.1089/can.2021.0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction: Obesity is defined as an excess of accumulation of fat that can be harmful to health. Storage of excess fat in the adipose tissue triggers an inflammatory process, which makes obesity a low-grade chronic inflammatory disease. Obesity is considered a complex and multifactorial disease; hence, no intervention strategy appears to be an ideal treatment for all individuals. Therefore, new therapeutic alternatives are often studied for the treatment of this disease. Currently, herbal medicines are gaining ground in the treatment of obesity and its comorbidities. In this context, much attention is being paid to Cannabis sativa derivatives, and their therapeutic functions are being widely studied, including in treating obesity. Objective: Highlight the pharmacological properties of Δ9-tetrahydrocannabivarin (THCV), Δ9-tetrahydrocannabidinol (THC), and cannabidiol (CBD), the predominant isolated components of Cannabis sativa, as well as its therapeutic potential in the treatment of obesity. Methods: This is a narrative review that shows the existing scientific evidence on the clinical application of Cannabis sativa as a possible treatment for obesity. Data collection was performed in the PubMed electronic database. The following word combinations were used: Cannabis and obesity, Cannabis sativa and obesity, THCV and obesity, THC and obesity, CBD and obesity, and Cannabis sativa and inflammation. Results: Evidence shows that Cannabis sativa derivatives have therapeutic potential due to their anti-inflammatory properties. In addition, people who use cannabis have a lower body mass index than those who do not, making the plant an option to reduce and reverse inflammation and comorbidities in obesity. Conclusion: It is concluded that phytocannabinoids derived from Cannabis sativa have therapeutic potential due to its anti-inflammatory, antioxidant, and neuroprotective properties, making the plant a study option to reduce and reverse inflammation and comorbidities associated with obesity.
Collapse
Affiliation(s)
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Daniéle Hendler Salla
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Talita Farias Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Cristini da Rosa Turatti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Rafael Mariano de Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
- Laboratory of Behavioral Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Brazil
| |
Collapse
|
15
|
Rocha Menezes RC, Schumacher JC, Cristofoli Bertoletti AC, Slongo Faccioli L, Boeira Freitas J, Rosa da Mata I, Kruger Peres K, Fabiana Saul C, Joana Kuyven C, Morelo Dal Bosco S. Garcinia cambogia and diabetes mellitus: a lack of evidence? INTERNATIONAL PHYSICAL MEDICINE & REHABILITATION JOURNAL 2021; 6:67-68. [DOI: 10.15406/ipmrj.2021.06.00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2024]
|
16
|
Effects of hydroxy citric acid on body weight and serum hepcidin level in women with non-alcoholic fatty liver disease a randomized clinical trial. ADVANCES IN INTEGRATIVE MEDICINE 2021. [DOI: 10.1016/j.aimed.2020.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Maia-Landim A, Lancho C, Poblador MS, Lancho JL, Ramírez JM. Garcinia cambogia and Glucomannan reduce weight, change body composition and ameliorate lipid and glucose blood profiles in overweight/obese patients. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Andueza N, Giner RM, Portillo MP. Risks Associated with the Use of Garcinia as a Nutritional Complement to Lose Weight. Nutrients 2021; 13:450. [PMID: 33572973 PMCID: PMC7911601 DOI: 10.3390/nu13020450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, obesity is one of the great nutritional problems facing public health. The prevalence of this pathology has increased in a worrying way over recent years, currently reaching epidemic proportions. In this context, nutritional supplements are presented as a therapeutic alternative to which more and more people are turning to. Nutritional supplements to lose weight based on the Garcinia plant, specifically on Garcinia cambogia, are commonly used. The active principle of this plant to which these properties have been attributed, is hydroxycitric acid (HCA). The aim of the present review is to gather reported data concerning the effectiveness of nutritional supplements based on Garcinia extracts on weight loss and their possible negative effects. Contradictory results have been observed regarding the effectiveness of the supplements. While statistically significant weight loss was observed in some studies, no changes were found in others. Regarding safety, although Garcinia supplements have been revealed as safe in the vast majority of the studies carried out in animal models and humans, some cases of hepatotoxicity, serotonin toxicity and mania have been reported. In conclusion, the results suggest that Garcinia-based supplements could be effective in short-term weight loss, although the data are not conclusive. In addition, the safety of the complement should be further studied.
Collapse
Affiliation(s)
- Naroa Andueza
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Lucio Lascaray Research Institute, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain;
| | - Rosa M. Giner
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain;
- Spanish Agency of Food Safety and Nutrition (AESAN), 28014 Madrid, Spain
| | - Maria P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Science, Lucio Lascaray Research Institute, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain;
- Spanish Agency of Food Safety and Nutrition (AESAN), 28014 Madrid, Spain
- Bioaraba Health Research Institute, 01009 Vitoria, Spain
- CIBEROBN Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, 01006 Vitoria, Spain
| |
Collapse
|
19
|
A pilot study to assess the effect of a fibre and mineral formulation on satiety and satiation when taken as part of a calorie restriction diet in overweight and obese women. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
do Espirito Santo BLS, Santana LF, Kato Junior WH, de Araújo FDO, Bogo D, Freitas KDC, Guimarães RDCA, Hiane PA, Pott A, Filiú WFDO, Arakaki Asato M, Figueiredo PDO, Bastos PRHDO. Medicinal Potential of Garcinia Species and Their Compounds. Molecules 2020; 25:molecules25194513. [PMID: 33019745 PMCID: PMC7582350 DOI: 10.3390/molecules25194513] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Garcinia is a genus of Clusiaceae, distributed throughout tropical Asia, Africa, New Caledonia, Polynesia, and Brazil. Garcinia plants contain a broad range of biologically active metabolites which, in the last few decades, have received considerable attention due to the chemical compositions of their extracts, with compounds which have been shown to have beneficial effects in several diseases. Our work had the objective of reviewing the benefits of five Garcinia species (G. brasiliensis, G. gardneriana, G. pedunculata, G. cambogia, and G. mangstana). These species provide a rich natural source of bioactive compounds with relevant therapeutic properties and anti-inflammatory effects, such as for the treatment of skin disorders, wounds, pain, and infections, having demonstrated antinociceptive, antioxidant, antitumoral, antifungal, anticancer, antihistaminic, antiulcerogenic, antimicrobial, antiviral, vasodilator, hypolipidemic, hepatoprotective, nephroprotective, and cardioprotective properties. This demonstrates the relevance of the genus as a rich source of compounds with valuable therapeutic properties, with potential use in the prevention and treatment of nontransmissible chronic diseases.
Collapse
Affiliation(s)
- Bruna Larissa Spontoni do Espirito Santo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
| | - Lidiani Figueiredo Santana
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
| | - Wilson Hino Kato Junior
- Graduate of Pharmaceutical Sciences, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil;
| | - Felipe de Oliveira de Araújo
- Graduate of Electrical Engineering, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil;
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
- Correspondence: ; Tel.: +55-67-3345-7416
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
| | - Arnildo Pott
- Laboratory of Botany, Institute of Biosciences, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil;
| | - Wander Fernando de Oliveira Filiú
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil;
| | - Marcel Arakaki Asato
- Medical School, Federal University of Mato Grosso do Sul, 79070-900 Campo Grande, Brazil;
| | - Patrícia de Oliveira Figueiredo
- Laboratory PRONABio (Bioactive Natural Products)-Chemistry Institute, Federal University of Mato Grosso do Sul-UFMS, 79074-460 Campo Grande, Brazil;
| | - Paulo Roberto Haidamus de Oliveira Bastos
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, 79070-900 Campo Grande, Brazil; (B.L.S.d.E.S.); (L.F.S.); (D.B.); (R.d.C.A.G.); (P.A.H.); (P.R.H.d.O.B.)
| |
Collapse
|
21
|
Watanabe M, Risi R, Masi D, Caputi A, Balena A, Rossini G, Tuccinardi D, Mariani S, Basciani S, Manfrini S, Gnessi L, Lubrano C. Current Evidence to Propose Different Food Supplements for Weight Loss: A Comprehensive Review. Nutrients 2020; 12:E2873. [PMID: 32962190 PMCID: PMC7551574 DOI: 10.3390/nu12092873] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The use of food supplements for weight loss purposes has rapidly gained popularity as the prevalence of obesity increases. Navigating through the vast, often low quality, literature available is challenging, as is providing informed advice to those asking for it. Herein, we provide a comprehensive literature revision focusing on most currently marketed dietary supplements claimed to favor weight loss, classifying them by their purported mechanism of action. We conclude by proposing a combination of supplements most supported by current evidence, that leverages all mechanisms of action possibly leading to a synergistic effect and greater weight loss in the foreseen absence of adverse events. Further studies will be needed to confirm the weight loss and metabolic improvement that may be obtained through the use of the proposed combination.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Renata Risi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Davide Masi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Alessandra Caputi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Angela Balena
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Giovanni Rossini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| |
Collapse
|
22
|
Zeinali Khosroshahi M, Asbaghi O, Moradi S, Rezaei kelishadi M, Kaviani M, Mardani M, Jalili C. The effects of supplementation with L-arginine on anthropometric indices and body composition in overweight or obese subjects: A systematic review and meta-analysis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
23
|
Beta-3-adrenergic Receptor rs4994 Polymorphism Is a Potential Biomarker for the Development of Nonalcoholic Fatty Liver Disease in Overweight/Obese Individuals. DISEASE MARKERS 2019; 2019:4065327. [PMID: 31929840 PMCID: PMC6942826 DOI: 10.1155/2019/4065327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases. Obesity is the most common and well-established risk factor for NAFLD, but there are large interindividual differences in the relationship between weight status and the development of NAFLD. Beta-3-adrenergic receptor (ADRB3) plays a key role in the development of visceral obesity and insulin resistance; however, the effect of ADRB3 polymorphisms on the risk of NAFLD remains unclear. We investigated whether or not a common rs4994 polymorphism (T190C) in the ADRB3 gene is associated with the risk of NAFLD through an increase in the body mass index (BMI) among the general population. We performed cross-sectional and longitudinal analyses in a total of 591 Japanese health screening program participants. Among the overweight or obese subjects, but not normal-weight subjects, individuals with the C/C genotype had a higher risk of developing NAFLD in comparison to those with other genotypes in the cross-sectional analysis (odds ratio: 4.40, 95% confidence interval (CI): 1.08–17.93). Meanwhile, the receiver operating characteristic curve indicated that the association between an increase in the BMI and the presence of NAFLD in subjects with the C/C genotype (area under the curve: 0.91, 95% CI: 0.78–1.00) was more pronounced in comparison to subjects with other genotypes. These above-described findings were verified by the analyses using a replicated data set consisting of 5,000 random samples from original data sets. Furthermore, among the 291 subjects for whom longitudinal medical information could be collected and who did not have NAFLD at baseline, the Cox proportional hazard model also confirmed that overweight or obese status and the C/C genotype were concertedly related to the increased risk of NAFLD development. These results suggest that genotyping the ADRB3 rs4994 polymorphism may provide useful information supporting the development of personalized BMI-based preventive measures against NAFLD.
Collapse
|
24
|
The Exploration of Natural Compounds for Anti-Diabetes from Distinctive Species Garcinia linii with Comprehensive Review of the Garcinia Family. Biomolecules 2019; 9:biom9110641. [PMID: 31652794 PMCID: PMC6920772 DOI: 10.3390/biom9110641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
Approximately 400 Garcinia species are distributed around the world. Previous studies have reported the extracts from bark, seed, fruits, peels, leaves, and stems of Garcinia mangostana, G. xanthochymus, and G. cambogia that were used to treat adipogenesis, inflammation, obesity, cancer, cardiovascular diseases, and diabetes. Moreover, the hypoglycemic effects and underlined actions of different species such as G. kola, G. pedunculata, and G. prainiana have been elucidated. However, the anti-hyperglycemia of G. linii remains to be verified in this aspect. In this article, the published literature was collected and reviewed based on the medicinal characteristics of the species Garcinia, particularly in diabetic care to deliberate the known constituents from Garcinia and further focus on and isolate new compounds of G. linii (Taiwan distinctive species) on various hypoglycemic targets including α-amylase, α-glucosidase, 5'-adenosine monophosphate-activated protein kinase (AMPK), insulin receptor kinase, peroxisome proliferator-activated receptor gamma (PPARγ), and dipeptidyl peptidase-4 (DPP-4) via the molecular docking approach with Gold program to explore the potential candidates for anti-diabetic treatments. Accordingly, benzopyrans and triterpenes are postulated to be the active components in G. linii for mediating blood glucose. To further validate the potency of those active components, in vitro enzymatic and cellular function assays with in vivo animal efficacy experiments need to be performed in the near future.
Collapse
|