1
|
Ma J, Yue S, Liu Y, Gong L, He P, Yang Y, Fu Z, Han D, Hu Q, Liao F, Xu L. Fucoxanthin ameliorates ulcerative colitis by maintaining the epithelial barrier via blocking JAK2/STAT3 signaling pathway. Toxicol Appl Pharmacol 2025; 495:117213. [PMID: 39719254 DOI: 10.1016/j.taap.2024.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND The clinical efficacies of Ulcerative colitis (UC) are far from satisfactory. Fucoxanthin (FUC) is a marine carotenoid that is abundant in seaweed and microalgae. It has been reported that FUC can possess anti-inflammatory and antioxidant. However, its mechanism and role in UC is yet to be clarified. This study aimed to investigate the protective effect and potential mechanism of FUC extracted from the diatom Phaeodactylum tricornutm on dextran sodium sulfate (DSS) -induced colitis. METHODS Animal UC model was induced by DSS and cellular model was established by TNF-α. Immunohistochemical staining, Western blot, RT-qPCR, and immunofluorescence were used to assess the inflammatory responses and epithelial barrier in vivo and in vitro models. RESULTS The results showed that FUC attenuates DSS-induced colitis by ameliorating the epithelial mucosal barrier. Moreover, FUC possessed antioxidant and anti-inflammatory effects on NCM460 cells. JAK/STAT activator RO8191 could reverse these changes. CONCLUSION FUC exerted anti-inflammatory and antioxidant effects via the JAK2/STAT3 signaling pathway, and served as a potential therapeutic agent for the treatment of UC.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Simei Yue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yinghui Liu
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lingjiao Gong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingjie Yang
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhengxin Fu
- Demeter Biotech (Zhuhai) Co. Ltd., Zhuhai, China
| | - Danxiang Han
- Demeter Biotech (Zhuhai) Co. Ltd., Zhuhai, China
| | - Qiang Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, China.
| | - Lin Xu
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Elmorsy EM, Al-Ghafari AB, Al Doghaither HA. Fucoxanthin alleviates the cytotoxic effects of cadmium and lead on a human osteoblast cell line. Toxicol Res (Camb) 2024; 13:tfae218. [PMID: 39712643 PMCID: PMC11655842 DOI: 10.1093/toxres/tfae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVE Cadmium (Cd) and lead (Pb) are non-biodegradable heavy metals (HMs) that persistently contaminate ecosystems and accumulate in bones, where they exert harmful effects. This study aimed to investigate the protective effect of fucoxanthin (FX) against the chemical toxicity induced by Cd and Pb in human bone osteoblasts in vitro, using various biochemical and molecular assays. METHODS The effect of metals and FX on osteoblasts viability was assayed by MTT, then the effect of Pb, Cd, and FX on the cells' mitochondrial parameters was studied via assays for ATP, mitochondrial membrane potential (MMP), mitochondrial complexes, and lactate production. Also, the effect of metals on oxidative stress was assessed by reactive oxygen species, lipid peroxidation and antioxidant enzymes assays. Also the effect of FX and metals on apoptosis caspases and related genes was assessed. RESULTS When Cd and Pb were added to human osteoblast cultures at concentrations ranging from 1-20 μM for 72 h, they significantly reduced osteoblast viability in a time and concentration-dependent manner. The cytotoxic effect of Cd on osteoblasts was greater than that of Pb, with estimated EC50 of 8 and 12 μM, respectively, after 72 h of exposure. FX (10 and 20 μM) alleviated the cytotoxicity of the metals. Bioenergetics assays, including ATP, MMP, and mitochondrial complexes I and III activities, revealed that HMs at 1 and 10 μM concentrations inhibited cellular bioenergetics after 72 h of exposure. Cd and Pb also increased lipid peroxidation and reactive oxygen species while reducing catalase and superoxide dismutase antioxidant activities and oxidative stress-related genes. This was accompanied by increased caspases -3, -8, and - 9 and Bax/bCl-2 ratio. Co-treatment with FX (10 and 20 μM) mitigated the disruption of bioenergetics, oxidative damage, and apoptosis induced by the metals, showing a concentration-dependent pattern to varying extents. CONCLUSION These findings strongly support the role of FX in managing toxicities induced by environmental pollutants in bones and in addressing bone diseases associated with molecular bases of oxidative stress, apoptosis, and bioenergetic disruption.
Collapse
Affiliation(s)
- Ekramy M Elmorsy
- Pathology Department, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia
| | - Ayat B Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Huda A Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Peng Y, Qi Z, Xu Y, Yang X, Cui Y, Sun Q. AMPK and metabolic disorders: The opposite roles of dietary bioactive components and food contaminants. Food Chem 2024; 437:137784. [PMID: 37897819 DOI: 10.1016/j.foodchem.2023.137784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
AMPK is a key player in a variety of metabolic and physiological processes, which might be considered one of the most promising targets for both prevention and treatment of metabolic syndrome and its associated diseases. Many dietary components and contaminants have been recently demonstrated to prevent or promote the development these diseases via AMPK-mediated pathways. AMPK can be activated by diverse phytochemical substances such as EGCG, chicoric acid, tomatidine, and others, all of which have been found to contribute to preventing or ameliorating chronic disorders. On the other hand, recent studies have found that metabolic disruptions induced by pesticides such as 1,3-Dichloro-2-propanol, imidacloprid, permethrin, are attributed to the inactivation of AMPK. This review may contribute to the development of functional foods for treatment of metabolic syndrome and associated diseases through modulating AMPK pathway.
Collapse
Affiliation(s)
- Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zexiu Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yuqing Xu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Xueyan Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yue Cui
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
4
|
Generalić Mekinić I, Šimat V, Rathod NB, Hamed I, Čagalj M. Algal Carotenoids: Chemistry, Sources, and Application. Foods 2023; 12:2768. [PMID: 37509860 PMCID: PMC10379930 DOI: 10.3390/foods12142768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, the isolation and identification of various biologically active secondary metabolites from algae have been of scientific interest, with particular attention paid to carotenoids, widely distributed in various photosynthetic organisms, including algal species. Carotenoids are among the most important natural pigments, with many health-promoting effects. Since the number of scientific studies on the presence and profile of carotenoids in algae has increased exponentially along with the interest in their potential commercial applications, this review aimed to provide an overview of the current knowledge (from 2015) on carotenoids detected in different algal species (12 microalgae, 21 green algae, 26 brown algae, and 43 red algae) to facilitate the comparison of the results of different studies. In addition to the presence, content, and identification of total and individual carotenoids in various algae, the method of their extraction and the main extraction parameters were also highlighted.
Collapse
Affiliation(s)
- Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Vida Šimat
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post Harvest Technology & Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli), District Raigad, Killa-Roha 402 116, Maharashtra State, India
| | - Imen Hamed
- Department of Biotechnology and Food Science, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| |
Collapse
|
5
|
Winarto J, Song DG, Pan CH. The Role of Fucoxanthin in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24098203. [PMID: 37175909 PMCID: PMC10179653 DOI: 10.3390/ijms24098203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic liver disease (CLD) has emerged as a leading cause of human deaths. It caused 1.32 million deaths in 2017, which affected men more than women by a two-to-one ratio. There are various causes of CLD, including obesity, excessive alcohol consumption, and viral infection. Among them, non-alcoholic fatty liver disease (NAFLD), one of obesity-induced liver diseases, is the major cause, representing the cause of more than 50% of cases. Fucoxanthin, a carotenoid mainly found in brown seaweed, exhibits various biological activities against NAFLD. Its role in NAFLD appears in several mechanisms, such as inducing thermogenesis in mitochondrial homeostasis, altering lipid metabolism, and promoting anti-inflammatory and anti-oxidant activities. The corresponding altered signaling pathways are the β3-adorenarine receptor (β3Ad), proliferator-activated receptor gamma coactivator (PGC-1), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor (PPAR), sterol regulatory element binding protein (SREBP), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), SMAD2/3, and P13K/Akt pathways. Fucoxanthin also exhibits anti-fibrogenic activity that prevents non-alcoholic steatohepatitis (NASH) development.
Collapse
Affiliation(s)
- Jessica Winarto
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Dae-Geun Song
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Cheol-Ho Pan
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
- Microalgae Ask US Co., Ltd., Gangneung 25441, Republic of Korea
| |
Collapse
|
6
|
Kim YW, Bak SB, Lee WY, Bae SJ, Lee EH, Yang JH, Kim KY, Song CH, Kim SC, Yun UJ, Park KI. Systemic and molecular analysis dissect the red ginseng induction of apoptosis and autophagy in HCC as mediated with AMPK. J Ginseng Res 2023; 47:479-491. [DOI: 10.1016/j.jgr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/17/2023] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
|
7
|
Ahmed SA, Mendonca P, Elhag R, Soliman KFA. Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, Angiogenesis Inhibition, and Autophagy Modulation. Int J Mol Sci 2022; 23:16091. [PMID: 36555740 PMCID: PMC9785196 DOI: 10.3390/ijms232416091] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer accounts for one in seven deaths worldwide and is the second leading cause of death in the United States, after heart disease. One of the standard cancer treatments is chemotherapy which sometimes can lead to chemoresistance and treatment failure. Therefore, there is a great need for novel therapeutic approaches to treat these patients. Novel natural products have exhibited anticancer effects that may be beneficial in treating many kinds of cancer, having fewer side effects, low toxicity, and affordability. Numerous marine natural compounds have been found to inhibit molecular events and signaling pathways associated with various stages of cancer development. Fucoxanthin is a well-known marine carotenoid of the xanthophyll family with bioactive compounds. It is profusely found in brown seaweeds, providing more than 10% of the total creation of natural carotenoids. Fucoxanthin is found in edible brown seaweed macroalgae such as Undaria pinnatifida, Laminaria japonica, and Eisenia bicyclis. Many of fucoxanthin's pharmacological properties include antioxidant, anti-tumor, anti-inflammatory, antiobesity, anticancer, and antihypertensive effects. Fucoxanthin inhibits many cancer cell lines' proliferation, angiogenesis, migration, invasion, and metastasis. In addition, it modulates miRNA and induces cell cycle growth arrest, apoptosis, and autophagy. Moreover, the literature shows fucoxanthin's ability to inhibit cytokines and growth factors such as TNF-α and VEGF, which stimulates the activation of downstream signaling pathways such as PI3K/Akt autophagy, and pathways of apoptosis. This review highlights the different critical mechanisms by which fucoxanthin inhibits diverse cancer types, such as breast, prostate, gastric, lung, and bladder development and progression. Moreover, this article reviews the existing literature and provides critical supportive evidence for fucoxanthin's possible therapeutic use in cancer.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Rashid Elhag
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
8
|
Wang Y, Qi H. Natural Bioactive Compounds from Foods Inhibited Pigmentation Especially Potential Application of Fucoxanthin to Chloasma: a Mini-Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2148690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yida Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| |
Collapse
|
9
|
Guan B, Chen K, Tong Z, Chen L, Chen Q, Su J. Advances in Fucoxanthin Research for the Prevention and Treatment of Inflammation-Related Diseases. Nutrients 2022; 14:nu14224768. [PMID: 36432455 PMCID: PMC9694790 DOI: 10.3390/nu14224768] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Owing to its unique structure and properties, fucoxanthin (FX), a carotenoid, has attracted significant attention. There have been numerous studies that demonstrate FX's anti-inflammatory, antioxidant, antitumor, and anti-obesity properties against inflammation-related diseases. There is no consensus, however, regarding the molecular mechanisms underlying this phenomenon. In this review, we summarize the potential health benefits of FX in inflammatory-related diseases, from the perspective of animal and cellular experiments, to provide insights for future research on FX. Previous work in our lab has demonstrated that FX remarkably decreased LPS-induced inflammation and improved survival in septic mice. Further investigation of the activity of FX against a wide range of diseases will require new approaches to uncover its molecular mechanism. This review will provide an outline of the current state of knowledge regarding FX application in the clinical setting and suggest future directions to implement FX as a therapeutic ingredient in pharmaceutical sciences in order to develop it into a treatment strategy against inflammation-associated disorders.
Collapse
Affiliation(s)
- Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhiyong Tong
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Long Chen
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Correspondence: (Q.C.); (J.S.); Tel./Fax: +86-0591-22868190 (Q.C.); +86-0591-22868830 (J.S.)
| | - Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Correspondence: (Q.C.); (J.S.); Tel./Fax: +86-0591-22868190 (Q.C.); +86-0591-22868830 (J.S.)
| |
Collapse
|
10
|
Marine algae colorants: Antioxidant, anti-diabetic properties and applications in food industry. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Luan H, Yan L, Zhao Y, Ding X, Cao L. Fucoxanthin induces apoptosis and reverses epithelial-mesenchymal transition via inhibiting Wnt/β-catenin pathway in lung adenocarcinoma. Discov Oncol 2022; 13:98. [PMID: 36192568 PMCID: PMC9530106 DOI: 10.1007/s12672-022-00564-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Invasion and metastasis are hallmark characteristics of cancer and the main causes of death in cancer patients. Studies have shown that epithelial-mesenchymal transition (EMT) plays significant role in tumor invasion and metastasis. Fucoxanthin, a carotenoid found in seaweeds, has been proved to have anti-tumor effects. Our study aimed to research the role of fucoxanthin on proliferation, apoptosis, migration and EMT of two types of LUAD cells. METHODS Cell migration and invasion were examined by Wound-healing and Transwell assays. Western blot assay was used to detect the expression levels of apoptosis-related proteins, EMT-related proteins and β-catenin. Immunohistochemistry was used to detect the expression of β-catenin in human lung adenocarcinoma tissues and corresponding para-cancerous tissues. RESULTS Our results revealed that fucoxanthin depressed the proliferation and induced apoptosis in A549 and NCI-H1299 cells. Moreover, fucoxanthin reversed TGF-β1-induced EMT and cell motility. Meanwhile, we disclosed that fucoxanthin and XAV939 had similar effect on β-catenin, EMT protein and cell motility. What is more, immunohistochemical results revealed that the high expression rate and abnormal expression rate of β-catenin in cancer tissues was significantly higher than that in para-cancerous tissues. CONCLUSION Taken together, the findings of our research highlight a novel role for fucoxanthin in NSCLC cells, which might be a potentially effective anti-tumor agent for the treatment of LUAD patients.
Collapse
Affiliation(s)
- Heqi Luan
- Department of Respiratory Medicine, Τhe Second Hospital Affiliated to Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027 Liaoning People’s Republic of China
| | - Lina Yan
- Department of Respiratory Medicine, Τhe Second Hospital Affiliated to Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027 Liaoning People’s Republic of China
| | - Yuanyuan Zhao
- Department of Respiratory Medicine, Τhe Second Hospital Affiliated to Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027 Liaoning People’s Republic of China
| | - Xuejiao Ding
- Department of Respiratory Medicine, Τhe Second Hospital Affiliated to Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027 Liaoning People’s Republic of China
| | - Lihua Cao
- Department of Respiratory Medicine, Τhe Second Hospital Affiliated to Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116027 Liaoning People’s Republic of China
| |
Collapse
|
12
|
Zheng D, Chen L, Li G, Jin L, Wei Q, Liu Z, Yang G, Li Y, Xie X. Fucoxanthin ameliorated myocardial fibrosis in STZ-induced diabetic rats and cell hypertrophy in HG-induced H9c2 cells by alleviating oxidative stress and restoring mitophagy. Food Funct 2022; 13:9559-9575. [PMID: 35997158 DOI: 10.1039/d2fo01761j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetic cardiomyopathy (DCM) is one of the leading causes of death in diabetic patients, and is accompanied by increased oxidative stress and mitochondrial dysfunction. Fucoxanthin (FX), as a marine carotenoid, possesses strong antioxidant activity. The main purpose of our study was to explore whether FX could attenuate experimental cardiac hypertrophy by affecting mitophagy and oxidative stress. We found that FX improved lipid metabolism, myocardial damage, myocardial fibrosis and hypertrophy in the myocardial tissue of STZ-induced diabetic rats. Additionally, FX upregulated Nrf2 signaling to reduce the level of reactive oxygen species (ROS). FX also promoted Bnip3/Nix signaling to improve mitochondrial function and reduced the levels of mitochondrial and intracellular ROS, thereby reversing HG-induced H9c2 cell hypertrophy. However, treatment with the autophagy inhibitor CQ abolished the anti-hypertrophic effect of FX, accompanied by impaired mitochondrial function and increased ROS levels. In conclusion, we found that FX reduced the accumulation of TGF-β1, FN and α-SMA to relieve myocardial fibrosis in STZ-induced diabetic rats, and FX up-regulated Bnip3/Nix to promote mitophagy and enhanced Nrf2 signaling to alleviate oxidative stress, thereby inhibiting hypertrophy in HG-induced H9c2 cells. These results imply that FX may be developed as a functional food for DCM.
Collapse
Affiliation(s)
- Dongxiao Zheng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Linlin Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Guoping Li
- Department of Urology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Lin Jin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Qihui Wei
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zilue Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Guanyu Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yuanyuan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Review Marine Pharmacology in 2018: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action. Pharmacol Res 2022; 183:106391. [DOI: 10.1016/j.phrs.2022.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
|
14
|
Mohibbullah M, Haque MN, Sohag AAM, Hossain MT, Zahan MS, Uddin MJ, Hannan MA, Moon IS, Choi JS. A Systematic Review on Marine Algae-Derived Fucoxanthin: An Update of Pharmacological Insights. Mar Drugs 2022; 20:279. [PMID: 35621930 PMCID: PMC9146768 DOI: 10.3390/md20050279] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Fucoxanthin, belonging to the xanthophyll class of carotenoids, is a natural antioxidant pigment of marine algae, including brown macroalgae and diatoms. It represents 10% of the total carotenoids in nature. The plethora of scientific evidence supports the potential benefits of nutraceutical and pharmaceutical uses of fucoxanthin for boosting human health and disease management. Due to its unique chemical structure and action as a single compound with multi-targets of health effects, it has attracted mounting attention from the scientific community, resulting in an escalated number of scientific publications from January 2017 to February 2022. Fucoxanthin has remained the most popular option for anti-cancer and anti-tumor activity, followed by protection against inflammatory, oxidative stress-related, nervous system, obesity, hepatic, diabetic, kidney, cardiac, skin, respiratory and microbial diseases, in a variety of model systems. Despite much pharmacological evidence from in vitro and in vivo findings, fucoxanthin in clinical research is still not satisfactory, because only one clinical study on obesity management was reported in the last five years. Additionally, pharmacokinetics, safety, toxicity, functional stability, and clinical perspective of fucoxanthin are substantially addressed. Nevertheless, fucoxanthin and its derivatives are shown to be safe, non-toxic, and readily available upon administration. This review will provide pharmacological insights into fucoxanthin, underlying the diverse molecular mechanisms of health benefits. However, it requires more activity-oriented translational research in humans before it can be used as a multi-target drug.
Collapse
Affiliation(s)
- Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
- Seafood Research Center, Silla University, #605, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| | - Md. Nazmul Haque
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Korea; (M.N.H.); (I.S.M.)
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Md. Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Md. Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.S.Z.); (M.J.U.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.S.Z.); (M.J.U.)
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.A.H.)
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Korea; (M.N.H.); (I.S.M.)
| | - Jae-Suk Choi
- Seafood Research Center, Silla University, #605, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| |
Collapse
|
15
|
Song YR, Jang B, Lee SM, Bae SJ, Bak SB, Kim YW. Angelica gigas NAKAI and Its Active Compound, Decursin, Inhibit Cellular Injury as an Antioxidant by the Regulation of AMP-Activated Protein Kinase and YAP Signaling. Molecules 2022; 27:molecules27061858. [PMID: 35335221 PMCID: PMC8954541 DOI: 10.3390/molecules27061858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Natural products and medicinal herbs have been used to treat various human diseases by regulating cellular functions and metabolic pathways. Angelica gigas NAKAI (AG) helps regulate pathological processes in some medical fields, including gastroenterology, gynecology, and neuropsychiatry. Although some papers have reported its diverse indications, the effects of AG against arachidonic acid (AA)+ iron and carbon tetrachloride (CCl4) have not been reported. In HepG2 cells, AA+ iron induced cellular apoptosis and mitochondrial damage, as assessed by mitochondrial membrane permeability (MMP) and the expression of apoptosis-related proteins. On the other hand, AG markedly inhibited these detrimental phenomena and reactive oxygen species (ROS) production induced by AA+ iron. AG activated the liver kinase B1 (LKB1)-dependent AMP-activated protein kinase (AMPK), which affected oxidative stress in the cells. Moreover, AG also regulated the expression of yes-associated protein (YAP) signaling as mediated by the AMPK pathways. In mice, an oral treatment of AG protected against liver toxicity induced by CCl4, as indicated by the plasma and histochemical parameters. Among the compounds in AG, decursin had antioxidant activity and affected the AMPK pathway. In conclusion, AG has antioxidant effects in vivo and in vitro, indicating that natural products such as AG could be potential candidate for the nutraceuticals to treat various disorders by regulating mitochondrial dysfunction and cellular metabolic pathways.
Collapse
|
16
|
Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, Carpena M, Pereira A, Garcia-Oliveira P, Prieto M, Simal-Gandara J. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Chen SJ, Lin TB, Peng HY, Lin CH, Lee AS, Liu HJ, Li CC, Tseng KW. Protective Effects of Fucoxanthin Dampen Pathogen-Associated Molecular Pattern (PAMP) Lipopolysaccharide-Induced Inflammatory Action and Elevated Intraocular Pressure by Activating Nrf2 Signaling and Generating Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:1092. [PMID: 34356327 PMCID: PMC8301160 DOI: 10.3390/antiox10071092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammation and oxidative stress are closely related processes in the pathogenesis of various ocular diseases. Uveitis is a disorder of the uvea and ocular tissues that causes extreme pain, decreases visual acuity, and can eventually lead to blindness. The pharmacological functions of fucoxanthin, isolated from brown algae, induce a variety of therapeutic effects such as oxidative stress reduction and repression of inflammation reactions. However, the specific anti-inflammatory effects of fucoxanthin on pathogen-associated molecular pattern (PAMP) lipopolysaccharide-induced uveitis have yet to be extensively described. Therefore, the aim of present study was to investigate the anti-inflammatory effects of fucoxanthin on uveitis in rats. The results showed that fucoxanthin effectively enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in ocular tissues. Furthermore, fucoxanthin significantly increased the ocular activities of superoxide dismutase and decreased the levels of malondialdehyde stimulated by PAMP-induced uveitis. Ocular hypertension and the levels of inflammatory cells and proinflammatory cytokine tumor necrosis factor-alpha in the aqueous humor were alleviated with fucoxanthin treatment. Consequently, compared to the observed effects in lipopolysaccharide groups, fucoxanthin treatment significantly preserved iris sphincter innervation and pupillary function. Additionally, PAMP-induced corneal endothelial disruption was significantly inhibited by fucoxanthin treatment. Overall, these findings suggest that fucoxanthin may protect against inflammation from PAMP-induced uveitis by promoting the Nrf2 pathway and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Shiu-Jau Chen
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan; (H.-Y.P.); (C.-H.L.); (A.-S.L.); (C.-C.L.)
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11049, Taiwan;
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan; (H.-Y.P.); (C.-H.L.); (A.-S.L.); (C.-C.L.)
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan; (H.-Y.P.); (C.-H.L.); (A.-S.L.); (C.-C.L.)
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan; (H.-Y.P.); (C.-H.L.); (A.-S.L.); (C.-C.L.)
| | - Hsiang-Jui Liu
- Department of Optometry, MacKay Junior College of Medicine, Nursing, and Management, New Taipei 11260, Taiwan;
| | - Chun-Chieh Li
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan; (H.-Y.P.); (C.-H.L.); (A.-S.L.); (C.-C.L.)
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan; (H.-Y.P.); (C.-H.L.); (A.-S.L.); (C.-C.L.)
| |
Collapse
|
18
|
Martens N, Schepers M, Zhan N, Leijten F, Voortman G, Tiane A, Rombaut B, Poisquet J, Sande NVD, Kerksiek A, Kuipers F, Jonker JW, Liu H, Lütjohann D, Vanmierlo T, Mulder MT. 24(S)-Saringosterol Prevents Cognitive Decline in a Mouse Model for Alzheimer's Disease. Mar Drugs 2021; 19:190. [PMID: 33801706 PMCID: PMC8065937 DOI: 10.3390/md19040190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
We recently found that dietary supplementation with the seaweed Sargassum fusiforme, containing the preferential LXRβ-agonist 24(S)-saringosterol, prevented memory decline and reduced amyloid-β (Aβ) deposition in an Alzheimer's disease (AD) mouse model without inducing hepatic steatosis. Here, we examined the effects of 24(S)-saringosterol as a food additive on cognition and neuropathology in AD mice. Six-month-old male APPswePS1ΔE9 mice and wildtype C57BL/6J littermates received 24(S)-saringosterol (0.5 mg/25 g body weight/day) (APPswePS1ΔE9 n = 20; C57BL/6J n = 19) or vehicle (APPswePS1ΔE9 n = 17; C57BL/6J n = 19) for 10 weeks. Cognition was assessed using object recognition and object location tasks. Sterols were analyzed by gas chromatography/mass spectrometry, Aβ and inflammatory markers by immunohistochemistry, and gene expression by quantitative real-time PCR. Hepatic lipids were quantified after Oil-Red-O staining. Administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice without affecting the Aβ plaque load. Moreover, 24(S)-saringosterol prevented the increase in the inflammatory marker Iba1 in the cortex of APPswePS1ΔE9 mice (p < 0.001). Furthermore, 24(S)-saringosterol did not affect the expression of lipid metabolism-related LXR-response genes in the hippocampus nor the hepatic neutral lipid content. Thus, administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice independent of effects on Aβ load and without adverse effects on liver fat content. The anti-inflammatory effects of 24(S)-saringosterol may contribute to the prevention of cognitive decline.
Collapse
Affiliation(s)
- Nikita Martens
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, BE 3590 Hasselt, Belgium
| | - Melissa Schepers
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, BE 3590 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
| | - Na Zhan
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Frank Leijten
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Gardi Voortman
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| | - Assia Tiane
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, BE 3590 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
| | - Ben Rombaut
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, BE 3590 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
| | - Janne Poisquet
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, BE 3590 Hasselt, Belgium
| | - Nienke van de Sande
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53105 Bonn, Germany
| | - Folkert Kuipers
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Johan W Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Hongbing Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53105 Bonn, Germany
| | - Tim Vanmierlo
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, BE 3590 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 Maastricht, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Section Pharmacology and Vascular Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
| |
Collapse
|
19
|
Li H, Gu Y, Wu X, Rayamajhi S, Bian S, Zhang Q, Meng G, Liu L, Wu H, Zhang S, Wang Y, Zhang T, Wang X, Thapa A, Sun S, Wang X, Jia Q, Song K, Niu K. Association between consumption of edible seaweeds and newly diagnosed non-alcohol fatty liver disease: The TCLSIH Cohort Study. Liver Int 2021; 41:311-320. [PMID: 32885579 DOI: 10.1111/liv.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Seaweeds are rich sources of anti-oxidants and anti-inflammatory properties, which are beneficial to non-alcoholic fatty liver disease (NAFLD). However, whether seaweed consumption is associated with NAFLD is unknown. We investigated the association of seaweed consumption with newly diagnosed NAFLD in a large-scale adult population. METHODS This cross-sectional study involved 24 572 participants aged over 18 years. NAFLD was diagnosed by results of liver ultrasonography and alcohol intake. Dietary information was assessed using a validated and standardized 100-item food frequency questionnaire. Multivariate logistic analysis was used to evaluate the association between seaweed consumption and NAFLD. RESULTS The prevalence of newly diagnosed NAFLD was 20.1%. After adjustment for sociodemographic characteristics, lifestyle factors, and other dietary intakes, the multivariable adjusted odds ratios (95% confidence intervals) of newly diagnosed NAFLD across seaweed consumption were 1.00 (reference) for almost never, 1.03 (0.93, 1.15) for <1 time/wk, 1.01 (0.90, 1.13) for 1 time/wk, and 0.84 (0.73, 0.96) for >1 times/wk (P for trend < .001). Stratified analyses suggested a potential effect modification by obesity status; the odds ratios (95% confidence intervals) across extreme quartiles was 0.77 (0.66, 0.91) in non-obese participants and 1.02 (0.79, 1.33) in obese participants (P for interaction < .001). CONCLUSION Seaweed consumption is negatively associated with NAFLD, especially in non-obese participants.
Collapse
Affiliation(s)
- Huiping Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaohui Wu
- College of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Sabina Rayamajhi
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shanshan Bian
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shunming Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yawen Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Tingjing Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xuena Wang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Amrish Thapa
- Department of Medicine, Tianjin First Central Hospital, Tianjin Medical University, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
20
|
Iyappan P, Bala M, Sureshkumar M, Veeraraghavan VP, Palanisamy A. Fucoxanthin induced apoptotic cell death in oral squamous carcinoma (KB) cells. Bioinformation 2021; 17:181-191. [PMID: 34393435 PMCID: PMC8340688 DOI: 10.6026/97320630017181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Fucoxanthin (Fx) is an active compound commonly found in the many types of seaweed with numerous biological activities. The main goal of this investigation is to explore the effect of Fx against the cell proliferation, apoptotic induction and oxidative stress in the oral squamous (KB) cell line. Cytotoxicity of Fx was determined by MTT assay. The intracellular ROS production, mitochondrial membrane potential (MMP) and apoptosis induction in KB cells were examined through DCFH-DA, Rhodamine-123 and DAPI, and dual staining techniques. Effect of Fx on the antioxidant enzymes and lipid peroxidation in the KB cells was studied through the standard procedures. Fx treated KB cells showed morphological changes and reduced cell survival, which is exhibited by the cytotoxic activity of 50 µM/ml (IC50) Fx against the KB cells. The Fx treatment considerably induced the apoptotosis cells (EB/AO) and decreased the MMP (Rh-123) in KB cells. Further, it was pointed out that there was an increased lipid peroxidation (LPO) with decreased antioxidants (CAT, SOD and GSH). These results concluded that Fx has the cytotoxic effect against KB cells and has the potential to induce the apoptosis via increased oxidative stress. Hence, the Fx can be a promising agent for the treatment of oral cancer and it may lead to the development of cancer therapeutics.
Collapse
Affiliation(s)
- Petchi Iyappan
- Senior Lecturer, Faculty of Medicine, Bioscience and Nursing, School of Bioscience, Mahsa University, Saujana Putra Campus, Jalan SP2, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - M.Devi Bala
- Research Scholar, Muthayammal College of Arts & Science (A Unit of VANETRA Group), Rasipuram, 637408, Namakkal, Tamilnadu, India
| | - M Sureshkumar
- Department of Zoology & Biotechnology, Muthayammal College of Arts & Science (A Unit of VANETRA Group), Rasipuram, 637408, Namakkal, Tamilnadu, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077
| | - Arulselvan Palanisamy
- Adjunct Associate Professor,Muthayammal Centre for Advanced Research (MCAR), Muthayammal College of Arts & Science (A Unit of VANETRA Group),Rasipuram, 637408, Namakkal, Tamilnadu, India
| |
Collapse
|
21
|
Corrigendum: Edible seaweed-derived constituents: an undisclosed source of neuroprotective compounds. Neural Regen Res 2021; 16:2564-2568. [PMID: 33907050 PMCID: PMC8374581 DOI: 10.4103/1673-5374.313070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
22
|
Xiao H, Zhao J, Fang C, Cao Q, Xing M, Li X, Hou J, Ji A, Song S. Advances in Studies on the Pharmacological Activities of Fucoxanthin. Mar Drugs 2020; 18:E634. [PMID: 33322296 PMCID: PMC7763821 DOI: 10.3390/md18120634] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoxanthin is a natural carotenoid derived mostly from many species of marine brown algae. It is characterized by small molecular weight, is chemically active, can be easily oxidized, and has diverse biological activities, thus protecting cell components from ROS. Fucoxanthin inhibits the proliferation of a variety of cancer cells, promotes weight loss, acts as an antioxidant and anti-inflammatory agent, interacts with the intestinal flora to protect intestinal health, prevents organ fibrosis, and exerts a multitude of other beneficial effects. Thus, fucoxanthin has a wide range of applications and broad prospects. This review focuses primarily on the latest progress in research on its pharmacological activity and underlying mechanisms.
Collapse
Affiliation(s)
- Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Chang Fang
- Test Center for Agri‐Products Quality of Jinan, Jinan 250316, China;
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Xia Li
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Junfeng Hou
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (H.X.); (J.Z.); (Q.C.); (M.X.); (X.L.); (J.H.)
| |
Collapse
|
23
|
Potential Anti-Aging Substances Derived from Seaweeds. Mar Drugs 2020; 18:md18110564. [PMID: 33218066 PMCID: PMC7698806 DOI: 10.3390/md18110564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Aging is a major risk factor for many chronic diseases, such as cancer, cardiovascular disease, and diabetes. The exact mechanisms underlying the aging process are not fully elucidated. However, a growing body of evidence suggests that several pathways, such as sirtuin, AMP-activated protein kinase, insulin-like growth factor, autophagy, and nuclear factor erythroid 2-related factor 2 play critical roles in regulating aging. Furthermore, genetic or dietary interventions of these pathways can extend lifespan by delaying the aging process. Seaweeds are a food source rich in many nutrients, including fibers, polyunsaturated fatty acids, vitamins, minerals, and other bioactive compounds. The health benefits of seaweeds include, but are not limited to, antioxidant, anti-inflammatory, and anti-obese activities. Interestingly, a body of studies shows that some seaweed-derived extracts or isolated compounds, can modulate these aging-regulating pathways or even extend lifespans of various animal models. However, few such studies have been conducted on higher animals or even humans. In this review, we focused on potential anti-aging bioactive substances in seaweeds that have been studied in cells and animals mainly based on their anti-aging cellular and molecular mechanisms.
Collapse
|
24
|
A carotenoid-enriched extract from pumpkin delays cell proliferation in a human chronic lymphocytic leukemia cell line through the modulation of autophagic flux. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Protein kinases as targets for developing anticancer agents from marine organisms. Biochim Biophys Acta Gen Subj 2020; 1865:129759. [PMID: 33038451 DOI: 10.1016/j.bbagen.2020.129759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 10/03/2020] [Indexed: 01/11/2023]
Abstract
Protein kinases play a fundamental role in the intracellular transduction because of their ability to phosphorylate plethora of proteins. Over the past three decades, numerous protein kinase inhibitors have been identified and are being used clinically successfully. The biodiversity of marine organisms provides a rich source for the discovery and development of novel anticancer agents in the treatment of human malignancies and a lot of bioactive ingredients from marine organisms display anticancer effects by affecting the protein kinases-mediated pathways. In the present mini-review, anticancer compounds from marine source were reviewed and discussed in context of their targeted pathways associated with protein kinases and the progress of these compounds as anticancer agents in recent five years were emphasized. The molecular entities and their modes of actions were presented. We focused on protein kinases-mediated signaling pathways including PI3K/Akt/mTOR, p38 MAPK, and EGFR. The marine compounds targeting special pathways of protein kinases were highlighted. We have also discussed the existing challenges and prospects related to design and development of novel protein kinase inhibitors from marine sources.
Collapse
|
26
|
Pruteanu LL, Kopanitsa L, Módos D, Kletnieks E, Samarova E, Bender A, Gomez LD, Bailey DS. Transcriptomics predicts compound synergy in drug and natural product treated glioblastoma cells. PLoS One 2020; 15:e0239551. [PMID: 32946518 PMCID: PMC7500592 DOI: 10.1371/journal.pone.0239551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Pathway analysis is an informative method for comparing and contrasting drug-induced gene expression in cellular systems. Here, we define the effects of the marine natural product fucoxanthin, separately and in combination with the prototypic phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002, on gene expression in a well-established human glioblastoma cell system, U87MG. Under conditions which inhibit cell proliferation, LY-294002 and fucoxanthin modulate many pathways in common, including the retinoblastoma, DNA damage, DNA replication and cell cycle pathways. In sharp contrast, we see profound differences in the expression of genes characteristic of pathways such as apoptosis and lipid metabolism, contributing to the development of a differentiated and distinctive drug-induced gene expression signature for each compound. Furthermore, in combination, fucoxanthin synergizes with LY-294002 in inhibiting the growth of U87MG cells, suggesting complementarity in their molecular modes of action and pointing to further treatment combinations. The synergy we observe between the dietary nutraceutical fucoxanthin and the synthetic chemical LY-294002 in producing growth arrest in glioblastoma, illustrates the potential of nutri-pharmaceutical combinations in targeting this challenging disease.
Collapse
Affiliation(s)
- Lavinia-Lorena Pruteanu
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
- * E-mail: (LLP); (DSB)
| | - Liliya Kopanitsa
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
| | - Dezső Módos
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Edgars Kletnieks
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Elena Samarova
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
| | - Andreas Bender
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Leonardo Dario Gomez
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, United Kingdom
| | - David Stanley Bailey
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
- * E-mail: (LLP); (DSB)
| |
Collapse
|
27
|
Miyashita K, Beppu F, Hosokawa M, Liu X, Wang S. Bioactive significance of fucoxanthin and its effective extraction. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101639] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Lee KS, Cho E, Weon JB, Park D, Fréchet M, Chajra H, Jung E. Inhibition of UVB-Induced Inflammation by Laminaria japonica Extract via Regulation of nc886-PKR Pathway. Nutrients 2020; 12:E1958. [PMID: 32630038 PMCID: PMC7400497 DOI: 10.3390/nu12071958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/21/2022] Open
Abstract
Continuous exposure to ultraviolet B (UVB) can cause photodamage of the skin. This photodamage can be inhibited by the overexpression of the non-coding RNA, nc886, via the protein kinase RNA-activated (PKR) pathway. The study aims to identify how UVB inhibits nc886 expression, and it also seeks to determine whether substances that can control nc886 expression can influence UV-induced inflammation, and the mechanisms involved. The results suggest that UVB irradiation accelerates the methylation of the nc886 gene, therefore, reducing its expression. This induces the activation of the PKR, which accelerates the expression of metalloproteinase-9 (MMP-9) and cyclooxygenase (COX-2), and the production of MMP-9, prostaglandin-endoperoxide synthase (PGE2), and certain pro-inflammatory cytokines, specifically interleukin-8 (IL-8), and tumor necrosis factor- (TNF-). Conversely, in a model of nc886 overexpression, the expression and production of those inflammatory factors are inhibited. In addition, Laminaria japonica extract (LJE) protect the levels of nc886 against UVB irradiation then subsequently inhibit the production of UV-induced inflammatory factors through the PKR pathway.
Collapse
Affiliation(s)
- Kwang-Soo Lee
- Life Science Institute, BioSpectrum, Yongin 16827, Gyeonggi, Korea; (K.-S.L.); (E.C.); (J.B.W.); (D.P.)
| | - Eunae Cho
- Life Science Institute, BioSpectrum, Yongin 16827, Gyeonggi, Korea; (K.-S.L.); (E.C.); (J.B.W.); (D.P.)
| | - Jin Bae Weon
- Life Science Institute, BioSpectrum, Yongin 16827, Gyeonggi, Korea; (K.-S.L.); (E.C.); (J.B.W.); (D.P.)
| | - Deokhoon Park
- Life Science Institute, BioSpectrum, Yongin 16827, Gyeonggi, Korea; (K.-S.L.); (E.C.); (J.B.W.); (D.P.)
| | - Mathilde Fréchet
- Clariant Active Ingredients, d’espagne, 31000 Toulouse, France; (M.F.); (H.C.)
| | - Hanane Chajra
- Clariant Active Ingredients, d’espagne, 31000 Toulouse, France; (M.F.); (H.C.)
| | - Eunsun Jung
- Life Science Institute, BioSpectrum, Yongin 16827, Gyeonggi, Korea; (K.-S.L.); (E.C.); (J.B.W.); (D.P.)
| |
Collapse
|
29
|
Liu M, Li W, Chen Y, Wan X, Wang J. Fucoxanthin: A promising compound for human inflammation-related diseases. Life Sci 2020; 255:117850. [PMID: 32470447 DOI: 10.1016/j.lfs.2020.117850] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023]
Abstract
Fucoxanthin, a natural product of carotenoids, is a potential drug source obtained from marine algae. The special chemical structure of fucoxanthin has equipped it with a variety of biological activities. Several studies have indicated that fucoxanthin has a potential protective effect on a variety of inflammation-related diseases. This mechanism may be related to fucoxanthin's strong antioxidant capacity and gut microbiota regulation. The key molecules that require consideration include nuclear factor erythroid 2-related factor 2, Akt serine/threonine kinase/phosphatidylinositol-3-kinase, extracellular signal-regulated kinase, adenosine monophosphate (AMP)-dependent protein kinase, cAMP response element binding protein, and peroxisome proliferator-activated receptorγcoactivator-1α. The study summarizes the recent progress in the research based on the protective effect of fucoxanthin and its related molecular mechanism, in addition to the potential use of fucoxanthin as a promising compound for human inflammation-related diseases.
Collapse
Affiliation(s)
- Mingjun Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Wenwen Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Ying Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| | - Jia Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| |
Collapse
|
30
|
A Review of ULK1-Mediated Autophagy in Drug Resistance of Cancer. Cancers (Basel) 2020; 12:cancers12020352. [PMID: 32033142 PMCID: PMC7073181 DOI: 10.3390/cancers12020352] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
The difficulty of early diagnosis and the development of drug resistance are two major barriers to the successful treatment of cancer. Autophagy plays a crucial role in several cellular functions, and its dysregulation is associated with both tumorigenesis and drug resistance. Unc-51-like kinase 1 (ULK1) is a serine/threonine kinase that participates in the initiation of autophagy. Many studies have indicated that compounds that directly or indirectly target ULK1 could be used for tumor therapy. However, reports of the therapeutic effects of these compounds have come to conflicting conclusions. In this work, we reviewed recent studies related to the effects of ULK1 on the regulation of autophagy and the development of drug resistance in cancers, with the aim of clarifying the mechanistic underpinnings of this therapeutic target.
Collapse
|
31
|
Bae M, Kim MB, Park YK, Lee JY. Health benefits of fucoxanthin in the prevention of chronic diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158618. [PMID: 31931174 DOI: 10.1016/j.bbalip.2020.158618] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 01/22/2023]
Abstract
Fucoxanthin is a xanthophyll carotenoid abundant in macroalgae, such as brown seaweeds. When fucoxanthin is consumed, it can be esterified or hydrolyzed to fucoxanthinol in the gastrointestinal tract and further converted into amarouciaxanthin A in the liver. It has a unique chemical structure that confers its biological effects. Fucoxanthin has a strong antioxidant capacity by scavenging singlet molecular oxygen and free radicals. Also, it exerts an anti-inflammatory effect. Studies have demonstrated potential health benefits of fucoxanthin for the prevention of chronic diseases, such as cancer, obesity, diabetes mellitus, and liver disease. Animal studies have shown that fucoxanthin supplementation has no adverse effects. However, investigation of the safety of fucoxanthin consumption in humans is lacking. Clinical trials are required to assess the safety of fucoxanthin in conjunction with the study of mechanisms by which fucoxanthin exhibits its health benefits. This review focuses on current knowledge of metabolism and functions of fucoxanthin with its potential health benefits. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
32
|
Schepers M, Martens N, Tiane A, Vanbrabant K, Liu HB, Lütjohann D, Mulder M, Vanmierlo T. Edible seaweed-derived constituents: an undisclosed source of neuroprotective compounds. Neural Regen Res 2020; 15:790-795. [PMID: 31719238 PMCID: PMC6990778 DOI: 10.4103/1673-5374.268894] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Edible marine algae, or seaweeds, are a rich source of several bioactive compounds including phytosterols, carotenoids, and polysaccharides. Over the last decades, seaweed-derived constituents turned out to not only reside in the systemic circulation, but are able to cross the blood-brain barrier to exert neuro-active functions both in homeostatic and pathological conditions. Therefore, seaweed-derived constituents have gained increasing interest for their neuro-immunomodulatory and neuroprotective properties, rendering them interesting candidates for the management of several neurodegenerative disorders. In particular seaweed-derived phytosterols gained interest for the treatment of neurodegenerative disorders as they potentiate neuroplasticity, enhance phagocytic clearance of neurotoxic peptides and have anti-inflammatory properties. Though, the anti-inflammatory and anti-oxidative properties of other constituents including carotenoids, phenols and polysaccharides have recently gained more interest. In this review, we provide an overview of a selection of the described neuro-active properties of seaweed-derived constituents with a focus on phytosterols.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, European Graduate School of Neuroscience (EURON), Hasselt, Belgium; Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Nikita Martens
- Department of Internal Medicine, Laboratory of Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Assia Tiane
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, European Graduate School of Neuroscience (EURON), Hasselt, Belgium; Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| | - Kenneth Vanbrabant
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, European Graduate School of Neuroscience (EURON), Hasselt, Belgium; Institue for Clinical Chemistry and Clinical Pharmacology, Bonn, Germany
| | - Hong-Bing Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong Province, China
| | - Dieter Lütjohann
- Institue for Clinical Chemistry and Clinical Pharmacology, Bonn, Germany
| | - Monique Mulder
- Department of Internal Medicine, Laboratory of Vascular Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Tim Vanmierlo
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, European Graduate School of Neuroscience (EURON), Hasselt, Belgium; Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, European Graduate School of Neuroscience (EURON), Maastricht, The Netherlands
| |
Collapse
|
33
|
Li S, Ren X, Wang Y, Hu J, Wu H, Song S, Yan C. Fucoxanthin alleviates palmitate-induced inflammation in RAW 264.7 cells through improving lipid metabolism and attenuating mitochondrial dysfunction. Food Funct 2020; 11:3361-3370. [DOI: 10.1039/d0fo00442a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fucoxanthin mitigated palmitate-induced inflammation in macrophages through promoting fatty acid oxidation and ameliorating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Siyu Li
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Collaborative Innovation Center of Seafood Deep Processing
- Dalian Polytechnic University
- Dalian
| | - Xiaomeng Ren
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Collaborative Innovation Center of Seafood Deep Processing
- Dalian Polytechnic University
- Dalian
| | - Yuandong Wang
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Collaborative Innovation Center of Seafood Deep Processing
- Dalian Polytechnic University
- Dalian
| | - Jiangning Hu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Collaborative Innovation Center of Seafood Deep Processing
- Dalian Polytechnic University
- Dalian
| | - Haitao Wu
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Collaborative Innovation Center of Seafood Deep Processing
- Dalian Polytechnic University
- Dalian
| | - Shuang Song
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Collaborative Innovation Center of Seafood Deep Processing
- Dalian Polytechnic University
- Dalian
| | - Chunhong Yan
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Collaborative Innovation Center of Seafood Deep Processing
- Dalian Polytechnic University
- Dalian
| |
Collapse
|
34
|
Rifampicin activates AMPK and alleviates oxidative stress in the liver as mediated with Nrf2 signaling. Chem Biol Interact 2019; 315:108889. [PMID: 31678598 DOI: 10.1016/j.cbi.2019.108889] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
Although rifampicin could have a hepatic toxic effect, it has also been shown that this chemical acts as a cellular protectant against oxidative stress. Therefore, we wondered whether rifampicin has a beneficial effect such as an anti-oxidant in the liver, because the efficacy of some drugs sometimes relates with their toxicity as well as protective effects. The present study aimed to investigate the antioxidant effect of rifampicin against arachidonic acid (AA) plus iron (AA + iron) cotreatment and against acetaminophen (APAP, 500 mg/kg)-induced oxidative stress, in vitro and in vivo, respectively. In vivo, oral administration of rifampicin (100 or 200 mg/kg) attenuated elevation of serum alanine aminotransferase (ALT) and aspartate transaminase (AST), serum liver injury markers, against APAP treatment and, histologically, ameliorated tissue damage. Under in vitro examination, MTT assays were used to assess the cell death inhibitory effect of rifampicin against AA + iron-induced oxidative stress. In addition, DCFH-DA and Rh 123 staining showed that rifampicin treatment reduced reactive oxygen species (ROS) production and mitochondrial membrane damage, which had been induced by AA + iron treatment. Further, we explored whether rifampicin treatment enhanced phosphorylation of AMP-activated protein kinase (AMPK) by activation of liver kinase B1 (LKB1), the upstream kinase of AMPKα. Activated AMPKα induced activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), which are proteins functioning in redox balance. Moreover, we confirmed a reversed cell protective effect of rifampicin under compound C (an AMPK inhibitor) treatment. Overall, our data demonstrate that rifampicin effectively protects the liver against cellular oxidative stress through AMPKα and Nrf2 pathway.
Collapse
|
35
|
Jeong JW, Ji SY, Lee H, Hong SH, Kim GY, Park C, Lee BJ, Park EK, Hyun JW, Jeon YJ, Choi YH. Fermented Sea Tangle ( Laminaria japonica Aresch) Suppresses RANKL-Induced Osteoclastogenesis by Scavenging ROS in RAW 264.7 Cells. Foods 2019; 8:foods8080290. [PMID: 31357503 PMCID: PMC6723172 DOI: 10.3390/foods8080290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023] Open
Abstract
Sea tangle (Laminaria japonica Aresch), a brown alga, has been used for many years as a functional food ingredient in the Asia-Pacific region. In the present study, we investigated the effects of fermented sea tangle extract (FST) on receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-stimulated osteoclast differentiation, using RAW 264.7 mouse macrophage cells. FST was found to inhibit the RANKL-stimulated activation of tartrate-resistance acid phosphatase (TRAP) and F-actin ring structure formation. FST also down-regulated the expression of osteoclast marker genes like TRAP, matrix metalloproteinase-9, cathepsin K and osteoclast-associated receptor by blocking RANKL-induced activation of NF-κB and expression of nuclear factor of activated T cells c1 (NFATc1), a master transcription factor. In addition, FST significantly abolished RANKL-induced generation of reactive oxygen species (ROS) by activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and its transcriptional targets. Hence, it seems likely that FST may have anti-osteoclastogenic potential as a result of its ability to inactivate the NF-κB-mediated NFATc1 signaling pathway and by reducing ROS production through activation of the Nrf2 pathway. Although further studies are needed to inquire its efficacy in vivo, FST appears to have potential use as an adjunctive or as a prophylactic treatment for osteoclastic bone disease.
Collapse
Affiliation(s)
- Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea
| | - Seon Yeong Ji
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| | - Hyesook Lee
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Korea
| | - Bae-Jin Lee
- Marine Bioprocess Co. Ltd., Busan 46048, Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Jin Won Hyun
- Department of Biochemistry, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea.
| |
Collapse
|
36
|
Hazal Özyur V, Erdoğan A, Zeliha Demirel Z, Conk Dalay M, Ötleş S. OPTIMIZATION OF EXTRACTION PARAMETERS FOR FUCOXANTHIN, GALLIC ACID AND RUTIN FROM NITZSCHIA THERMALIS. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.15673/fst.v13i1.1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, microalgae have become important in their health, and cosmetic applications since they are viewed as new sources of carotenoids. Fucoxanthin is also a type of carotenoid. The anti-diabetic, anti-obesity, anti-cancer, and antioxidant properties of fucoxanthin have been widely reported. Since these valuable properties, they also represent a valuable resource of nutraceuticals for functional food applications. This study aims to determine the amount of fucoxanthin, gallic acid, and rutin in Nitzschia thermalis obtained from the Ege University Microalgae Culture Collection. The extraction parameters have been optimized using response surface methodology. The extraction temperature (25, 35, and 45°C), the extraction time (10, 20, and 30 min) and the biomass/solvent ratio (0.005, 0.001, and 0.015 g ml-1) have been assessed as response variables in the Box – Behnken design. The amount of fucoxanthin was determined by the C30 column at 450 nm, while both the amount of gallic acid and rutin were separated in the C18 column at 275 nm by HPLC-DAD. In the present study, the optimum extraction conditions providing the maximum amount of fucoxantin, gallic acid, and rutin were selected by applying the “desirability” function approach in response surface methodology. Finally, the temperature has been determined to be 27.30°C, the extraction time 10 minutes, and the biomass ratio 0.05 g ml-1. Under these conditions, the optimum fucoxanthin level has been determined as 5.8702 mg g-1, the gallic acid level as 0.0140 mg g-1, and the rutin level as 0.0496 mg g-1. The findings are in good agreement with international published values for fucoxanthin content. In addition, response surface methodology was shown to be an effective technique for optimising extraction conditions for maximum fucoxanthin yield. In conclusion, these findings may be applied in the development of extraction methodologies for value added microalgea products as well as can serve as a reference for the extraction of fucoxanthin having high gallic acid and rutin from other brown microalgae, and therefore it could potentially be applied in both pharmaceutical and food industries.
Collapse
|
37
|
Ou HC, Chou WC, Chu PM, Hsieh PL, Hung CH, Tsai KL. Fucoxanthin Protects against oxLDL-Induced Endothelial Damage via Activating the AMPK-Akt-CREB-PGC1α Pathway. Mol Nutr Food Res 2019; 63:e1801353. [PMID: 30892786 DOI: 10.1002/mnfr.201801353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/13/2019] [Indexed: 02/06/2023]
Abstract
SCOPE Atherosclerotic cardiovascular disease is the most prevalent cause of mortality and morbidity. Fucoxanthin (FX) possesses anti-hypertensive and anti-obesity properties. However, the molecular mechanisms underlying the inhibitory effects of FX on oxidized low-density lipoprotein (oxLDL)-induced oxidative injuries in human endothelial cells are still largely unknown. This study aims to test the hypothesis that FX protects against oxLDL-induced oxidative stress by upregulating AMP-activated protein kinase (AMPK) and to explore the roles of cAMP response element binding protein (CREB) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). METHODS AND RESULTS Human umbilical vein endothelial cells are treated with oxLDL in the presence or absence of FX. FX significantly increases AMPK phosphorylation. In addition, FX diminishes oxLDL-mediated nicotinamide adenine dinucleotide phosphate oxidase activation by inhibiting protein kinase C and subsequently inducing reactive oxygen species generation and impairing the activity of the endogenous antioxidant enzyme superoxidase dismutase. Furthermore, FX restores oxLDL-mediated dephosphorylation of phosphoinositide-3-kinase/Akt and decreases CREB and PGC-1α expression to nearly normal levels. Moreover, FX ameliorates the oxLDL-mediated suppression of mitochondrial function and apoptosis. CONCLUSION These findings provide new insights into the possible molecular mechanisms by which FX mitigates oxLDL-induced endothelial oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hsiu-Chung Ou
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Wan-Ching Chou
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, 701
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, 701.,Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, 701
| |
Collapse
|
38
|
Wu HL, Fu XY, Cao WQ, Xiang WZ, Hou YJ, Ma JK, Wang Y, Fan CD. Induction of Apoptosis in Human Glioma Cells by Fucoxanthin via Triggering of ROS-Mediated Oxidative Damage and Regulation of MAPKs and PI3K-AKT Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2212-2219. [PMID: 30688446 DOI: 10.1021/acs.jafc.8b07126] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fucoxanthin, a natural carotenoid derived from algae, exhibits novel anticancer potential. However, fucoxanthin with high purity is hard to prepare, and the anticancer mechanism remains elusive. In the present study, fucoxanthin with high purity was prepared and purified from the marine microalgae Nitzschia sp. by silica-gel column chromatography (SGCC), and the underlying mechanism against human glioma cells was evaluated. The results showed that fucoxanthin time- and dose-dependently inhibited U251-human-glioma-cell growth by induction of apoptosis (64.4 ± 4.8, P < 0.01) accompanied by PARP cleavage and caspase activation (244 ± 14.2, P < 0.01). Mechanically, fucoxanthin time-dependently triggered reactive-oxygen-species (ROS)-mediated DNA damage (100 ± 7.38, P < 0.01), as evidenced by the phosphorylation activation of Ser1981-ATM, Ser428-ATR, Ser15-p53, and Ser139-histone. Moreover, fucoxanthin treatment also time-dependently caused dysfunction of MAPKs and PI3K-AKT pathways, as demonstrated by the phosphorylation activation of Thr183-JNK, Thr180-p38, and Thr202-ERK and the phosphorylation inactivation of Ser473-AKT. The addition of kinase inhibitors further confirmed the importance of MAPKs and PI3K-AKT pathways in fucoxanthin-induced cell-growth inhibition (32.5 ± 3.6, P < 0.01). However, ROS inhibition by the antioxidant glutathione (GSH) effectively inhibited fucoxanthin-induced DNA damage, attenuated the dysfunction of MAPKs and PI3K-AKT pathways, and eventually blocked fucoxanthin-induced cytotoxicity (54.3 ± 5.6, P < 0.05) and cell apoptosis (32.7 ± 2.5, P < 0.05), indicating that ROS production, an early apoptotic event, is involved in the fucoxanthin-mediated anticancer mechanism. Taken together, these results suggested that fucoxanthin induced U251-human-glioma-cell apoptosis by triggering ROS-mediated oxidative damage and dysfunction of MAPKs and PI3K-AKT pathways, which validated that fucoxanthin may be a candidate for potential applications in cancer chemotherapy and chemoprevention.
Collapse
Affiliation(s)
- Hua-Lian Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB-CAS), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou , Guangdong 510301 , China
| | - Xiao-Yan Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong , Taishan Medical University , Taian , Shandong 271000 , China
| | - Wen-Qiang Cao
- Zhuhai Hopegenes Medical & Phamaceutical Institute , Hengqin New Area, Zhuhai , Guangdong 519000 , China
| | - Wen-Zhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB-CAS), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou , Guangdong 510301 , China
| | - Ya-Jun Hou
- Key Lab of Cerebral Microcirculation in Universities of Shandong , Taishan Medical University , Taian , Shandong 271000 , China
| | - Jin-Kui Ma
- School of Food & Pharmaceutical Engineering , Zhaoqing University , Zhaoqing , Guangdong 526061 , China
| | - Ying Wang
- Key Lab of Cerebral Microcirculation in Universities of Shandong , Taishan Medical University , Taian , Shandong 271000 , China
| | - Cun-Dong Fan
- Key Lab of Cerebral Microcirculation in Universities of Shandong , Taishan Medical University , Taian , Shandong 271000 , China
| |
Collapse
|
39
|
Rodríguez-Luna A, Ávila-Román J, González-Rodríguez ML, Cózar MJ, Rabasco AM, Motilva V, Talero E. Fucoxanthin-Containing Cream Prevents Epidermal Hyperplasia and UVB-Induced Skin Erythema in Mice. Mar Drugs 2018; 16:E378. [PMID: 30308980 PMCID: PMC6212948 DOI: 10.3390/md16100378] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022] Open
Abstract
Microalgae represent a source of bio-active compounds such as carotenoids with potent anti-inflammatory and antioxidant properties. We aimed to investigate the effects of fucoxanthin (FX) in both in vitro and in vivo skin models. Firstly, its anti-inflammatory activity was evaluated in LPS-stimulated THP-1 macrophages and TNF-α-stimulated HaCaT keratinocytes, and its antioxidant activity in UVB-irradiated HaCaT cells. Next, in vitro and ex vivo permeation studies were developed to determine the most suitable formulation for in vivo FX topical application. Then, we evaluated the effects of a FX-containing cream on TPA-induced epidermal hyperplasia in mice, as well as on UVB-induced acute erythema in hairless mice. Our results confirmed the in vitro reduction of TNF-α, IL-6, ROS and LDH production. Since the permeation results showed that cream was the most favourable vehicle, FX-cream was elaborated. This formulation effectively ameliorated TPA-induced hyperplasia, by reducing skin edema, epidermal thickness, MPO activity and COX-2 expression. Moreover, FX-cream reduced UVB-induced erythema through down-regulation of COX-2 and iNOS as well as up-regulation of HO-1 protein via Nrf-2 pathway. In conclusion, FX, administered in a topical formulation, could be a novel natural adjuvant for preventing exacerbations associated with skin inflammatory pathologies as well as protecting skin against UV radiation.
Collapse
Affiliation(s)
- Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | | | - María José Cózar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Antonio M Rabasco
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
40
|
Wang Y, Wei Y, Cheng X, Sun X, Ma L, Song Y, Zhou J, Wei F, Liu H. [2-deoxyglucose inhibits angiogenesis of rheumatoid arthritis via activating AMPK pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:962-968. [PMID: 30187877 DOI: 10.3969/j.issn.1673-4254.2018.08.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To observe the effects of 2-deoxyglucose inhibiting synovial pannus of adjuvant arthritis rats and to explore its potential mechanism of inhibiting angiogenesis by investigating proliferation, migration and matrigel tube formation assay in vitro. METHODS The effect of 2-DG on synovial pannus was evaluated by histopathology of HE staining; HUVEC proliferation was determined by CCK-8 method; migration of FLS were determined by transwell; In vitro matrigel tube formation assay was made for assessing tube number of HUVEC; p-AMPK and Bcl-2 were detected by Western blot assay; AMPK signaling pathway in HUVEC was inhibited by compound C, which is an inhibitor of AMPK activation. RESULTS 2-DG (200 mg/kg) obviously decreased appearance of synovial pannus (P < 0.01); in vitro, 2-DG (0.5 mmol/L and/or 5 mmol/L) obviously inhibited proliferation, migration and tube number of HUVEC (P < 0.01 or P < 0.001), and its effects on HUVEC were reversed by using AMPK antagonist (Compound C); Western blot showed that 2-DG (5 mmol/L) increased expression of p-AMPK and decreased expression of Bcl-2 (P < 0.05). CONCLUSIONS Activating AMPK pathway and decreasing expression of Bcl-2 may the potential mechanism by which 2-DG contributes to anti-angiogenesis and effects of inhibiting proliferation, migration and tube number of HUVEC.
Collapse
Affiliation(s)
- Ying Wang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Yingmei Wei
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Xiu Cheng
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Xiaojin Sun
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Linyan Ma
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Yining Song
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Jing Zhou
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Fang Wei
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| | - Hao Liu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|