1
|
Ng JY, Maduranayagam SG, Suthakar N, Li A, Lokker C, Iorio A, Haynes RB, Moher D. Attitudes and perceptions of medical researchers towards the use of artificial intelligence chatbots in the scientific process: an international cross-sectional survey. Lancet Digit Health 2025; 7:e94-e102. [PMID: 39550312 DOI: 10.1016/s2589-7500(24)00202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/16/2024] [Accepted: 09/12/2024] [Indexed: 11/18/2024]
Abstract
Chatbots are artificial intelligence (AI) programs designed to simulate conversations with humans that present opportunities and challenges in scientific research. Despite growing clarity from publishing organisations on the use of AI chatbots, researchers' perceptions remain less understood. In this international cross-sectional survey, we aimed to assess researchers' attitudes, familiarity, perceived benefits, and limitations related to AI chatbots. Our online survey was open from July 9 to Aug 11, 2023, with 61 560 corresponding authors identified from 122 323 articles indexed in PubMed. 2452 (4·0%) provided responses and 2165 (94·5%) of 2292 who met eligibility criteria completed the survey. 1161 (54·0%) of 2149 respondents were male and 959 (44·6%) were female. 1294 (60·5%) of 2138 respondents were familiar with AI chatbots, and 945 (44·5%) of 2125 had previously used AI chatbots in research. Only 244 (11·4%) of 2137 reported institutional training on AI tools, and 211 (9·9%) of 2131 noted institutional policies on AI chatbot use. Despite mixed opinions on the benefits, 1428 (69·7%) of 2048 expressed interest in further training. Although many valued AI chatbots for reducing administrative workload (1299 [66·9%] of 1941), there was insufficient understanding of the decision making process (1484 [77·2%] of 1923). Overall, this study highlights substantial interest in AI chatbots among researchers, but also points to the need for more formal training and clarity on their use.
Collapse
Affiliation(s)
- Jeremy Y Ng
- Centre for Journalology, Methods Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| | - Sharleen G Maduranayagam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Nirekah Suthakar
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Amy Li
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Cynthia Lokker
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Alfonso Iorio
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada; Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - R Brian Haynes
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - David Moher
- Centre for Journalology, Methods Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada; School of Epidemiology, Public Health, and Preventive Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Pesapane F, Hauglid MK, Fumagalli M, Petersson L, Parkar AP, Cassano E, Horgan D. The translation of in-house imaging AI research into a medical device ensuring ethical and regulatory integrity. Eur J Radiol 2025; 182:111852. [PMID: 39612599 DOI: 10.1016/j.ejrad.2024.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
This manuscript delineates the pathway from in-house research on Artificial Intelligence (AI) to the development of a medical device, addressing critical phases including conceptualization, development, validation, and regulatory compliance. Key stages in the transformation process involve identifying clinical needs, data management, model training, and rigorous validation to ensure AI models are both robust and clinically relevant. Continuous post-deployment surveillance is essential to maintain performance and adapt to changes in clinical practice. The regulatory landscape is complex, encompassing stringent certification processes under the EU Medical Device Regulation (MDR) and the upcoming EU AI Act, which imposes additional compliance requirements aimed at mitigating AI-specific risks. Ethical considerations such as, emphasizing transparency, patient privacy, and equitable access to AI technologies, are paramount. The manuscript underscores the importance of interdisciplinary collaboration, between healthcare institutions and industry partners, and navigation of commercialization and market entry of AI devices. This overview provides a strategic framework for radiologists and healthcare leaders to effectively integrate AI into clinical practice, while adhering to regulatory and ethical standards, ultimately enhancing patient care and operational efficiency.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | | | - Marzia Fumagalli
- Technology Transfer Office, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Lena Petersson
- School of Health and Welfare, Halmstad University, Sweden.
| | - Anagha P Parkar
- Department of Radiology, Haraldsplass Deaconess Hospital, Bergen Norway; Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.
| | - Enrico Cassano
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Denis Horgan
- European Alliance for Personalised Medicine, Brussels, Belgium.
| |
Collapse
|
3
|
Fassbender A, Donde S, Silva M, Friganovic A, Stievano A, Costa E, Winders T, van Vugt J. Adoption of Digital Therapeutics in Europe. Ther Clin Risk Manag 2024; 20:939-954. [PMID: 39741688 PMCID: PMC11687304 DOI: 10.2147/tcrm.s489873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Digital therapeutics (DTx) are an emerging medical therapy comprising evidence-based interventions that are regulatory approved for patient use, or are under development, for a variety of medical conditions, including hypertension, cancer, substance use disorders and mental disorders. DTx have significant potential to reduce the overall burden on healthcare systems and offer potential economic benefits. There is currently no specific legal regulation on DTx in the EU. Although European countries have similar approaches to digital health solutions, the adoption of DTx varies across the continent. The aim of this narrative review is to discuss the levels of adoption of DTx in Europe, and to explore possible strategies to improve adoption, with the goal of higher rates of adoption, and more consistent use of DTx across the continent. The article discusses the regulatory and reimbursement landscape across Europe; validation requirements for DTx, and the importance of co-design and an ecosystem-centric approach in the development of DTx. Also considered are drivers of adoption and prescription practices for DTx, as well as patient perspectives on these therapeutics. The article explores potential factors that may contribute to low rates of DTx adoption in Europe, including lack of harmonisation in regulatory requirements and reimbursement; sociodemographic factors; health status; ethical concerns; challenges surrounding the use and validation of AI; knowledge and awareness among healthcare professionals (HCPs) and patients, and data standards and interoperability. Efforts to improve rates of access to DTx and adoption of these therapeutics across Europe are described. Finally, a framework for improved uptake of DTx in Europe is proposed.
Collapse
Affiliation(s)
| | | | | | - Adriano Friganovic
- University Hospital Centre, Zagreb, Croatia
- University of Applied Health Sciences, Zagreb, Croatia
- Faculty of Health Studies, University of Rijeka, Rijeka, Croatia
| | - Alessandro Stievano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Elisio Costa
- Faculty of Pharmacy, CINTESIS@RISE, Competence Center on Active and Healthy Ageing (Porto4Ageing), University of Porto, Porto, Portugal
| | - Tonya Winders
- Board of Directors, Global Allergy & Airways Patient Platform, Vienna, Austria
| | - Joris van Vugt
- Medical Affairs, DM&JANZ, Viatris, Amstelveen, the Netherlands
| |
Collapse
|
4
|
Charles C, Tulloch C, McNaughton M, Hosein P, Hambleton IR. Data journey map: a process for co-creating data requirements for health care artificial intelligence. Rev Panam Salud Publica 2024; 48:e107. [PMID: 39687242 PMCID: PMC11648063 DOI: 10.26633/rpsp.2024.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 12/18/2024] Open
Abstract
The Caribbean small island developing states have limited resources for comprehensive health care provision and are facing an increasing burden of noncommunicable diseases which is driven by an aging regional population. Artificial intelligence (AI) and other digital technologies offer promise for contributing to health care efficiencies, but themselves are dependent on the availability and accessibility of accurate health care data. A regional shortfall in data professionals continues to hamper legislative recognition and promotion of increased data production in Caribbean countries. Tackling the data shortfall will take time and will require a sustainably wider pool of data producers. The data journey map is one approach that can contribute to overcoming such challenges. A data journey map is a process for organizing the collection of health data that focuses on interactions between patient and health care provider. It introduces the idea that data collection is an integral part of the patient journey and that interactions between patient and provider can be enhanced by building data collection into daily health care. A carefully developed and enacted data journey map highlights key points in the care pathway for data collection. These so-called data hotspots can be used to plan - then eventually implement - appropriate AI health care solutions. In this article we introduce the idea of journey mapping, offer an example using cervical cancer prevention and treatment, and discuss the benefits and challenges to implementing such an approach.
Collapse
Affiliation(s)
- Curtis Charles
- Five Islands CampusUniversity of the West IndiesAntigua and BarbudaFive Islands Campus, University of the West Indies, Antigua and Barbuda.
| | - Cherie Tulloch
- The Cervical Cancer Elimination ProgrammeMinistry of Health, Wellness, Social Transformation and the EnvironmentAntigua and BarbudaThe Cervical Cancer Elimination Programme, Ministry of Health, Wellness, Social Transformation and the Environment, Antigua and Barbuda.
| | - Maurice McNaughton
- Centre of Excellence and InnovationMona School of Business & ManagementUniversity of the West IndiesMona CampusJamaicaCentre of Excellence and Innovation, Mona School of Business & Management, University of the West Indies, Mona Campus, Jamaica.
| | - Patrick Hosein
- Department of Computing and Information TechnologyUniversity of the West IndiesSt AugustineTrinidadDepartment of Computing and Information Technology, University of the West Indies, St Augustine, Trinidad
| | - Ian R. Hambleton
- George Alleyne Chronic Disease Research CentreCaribbean Institute for Health ResearchUniversity of the West IndiesBridgetownBarbadosGeorge Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research, University of the West Indies, Bridgetown, Barbados.
| |
Collapse
|
5
|
Khan Rony MK, Akter K, Nesa L, Islam MT, Johra FT, Akter F, Uddin MJ, Begum J, Noor MA, Ahmad S, Tanha SM, Khatun MT, Bala SD, Parvin MR. Healthcare workers' knowledge and attitudes regarding artificial intelligence adoption in healthcare: A cross-sectional study. Heliyon 2024; 10:e40775. [PMID: 39691199 PMCID: PMC11650294 DOI: 10.1016/j.heliyon.2024.e40775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Background The convergence of healthcare and artificial intelligence (AI) introduces a transformative era in medical practice. However, the knowledge and attitudes of healthcare workers concerning the adoption of artificial intelligence in healthcare are currently unknown. Aims The primary objective was to investigate the knowledge and attitudes of healthcare professionals in Dhaka city, Bangladesh, regarding the adoption of AI in healthcare. Methods A cross-sectional research design was employed, incorporating a dual-method approach to select participants using randomness and convenience sampling techniques. Validity was ensured through a literature review, content validity, and reliability assessment (Cronbach's alpha = 0.85), and exploratory factor analysis identified robust underlying factors. Data analysis involved descriptive and inferential statistics, including Fisher's exact tests, multivariate logistic regression, and Pearson correlation analysis, conducted using STATA software, providing a comprehensive understanding of healthcare workers' AI adoption in healthcare. Results This study revealed that age was a significant factor, with individuals aged 18-25 and 26-35 having higher odds of good knowledge and positive attitudes (AOR 1.56, 95 % CI 1.12-2.43; AOR 1.42, 95 % CI 0.98-2.34). Physicians (AOR 1.08, 95 % CI 0.78-1.89), hospital workers (AOR 1.29, 95 % CI 0.92-2.09), and full-time employees (AOR 1.45, 95 % CI 1.12-2.34) exhibited higher odds. Attending AI conferences (AOR 1.27, 95 % CI 0.92-2.23) and learning through research articles/journals (AOR 1.31, 95 % CI 0.98-2.09) were positively associated with good knowledge and positive attitudes. This research also emphasized the strong correlations between knowledge and positive attitudes (r = 0.89, P < 0.001), as well as negative attitudes with poor knowledge (r = 0.65, P < 0.001). Conclusions The study highlights the critical need for targeted educational interventions to bridge the knowledge gaps among healthcare professionals regarding AI adoption. The findings reveal that younger healthcare workers, those in full-time employment, and individuals with exposure to AI through conferences or research are more likely to possess good knowledge and hold positive attitudes towards AI integration. These results suggest that policies and training programs must be tailored to address specific demographic differences, ensuring that all groups are equipped to engage with AI technologies. Moreover, the study emphasizes the importance of continuous professional development, which could foster a workforce capable of harnessing AI's potential to improve patient outcomes and healthcare efficiency.
Collapse
Affiliation(s)
| | - Khadiza Akter
- Master of Public Health, Daffodil International University, Dhaka, Bangladesh
| | - Latifun Nesa
- Master’s of Child Health Nursing, National Institute of Advanced Nursing Education and Research Mugda, Dhaka, Bangladesh
| | - Md Tawhidul Islam
- Lecturer, North East Nursing College, Sylhet, Bangladesh
- School of Medical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fateha Tuj Johra
- Masters in Disaster Management, University of Dhaka, Dhaka, Bangladesh
| | - Fazila Akter
- Dhaka Nursing College, Affiliated with the University of Dhaka, Bangladesh
- Department of Health and Functioning, Western Norway University of Applied Sciences, Norway
| | - Muhammad Join Uddin
- Master of Public Health, RTM Al-Kabir Technical University, Sylhet, Bangladesh
- School of Medical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jeni Begum
- Master of Public Health, Leading University, Sylhet, Bangladesh
- School of Medical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md. Abdun Noor
- School of Medical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sumon Ahmad
- Master of Public Health, Leading University, Sylhet, Bangladesh
- School of Medical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sabren Mukta Tanha
- Master of Public Health, Leading University, Sylhet, Bangladesh
- School of Medical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Most. Tahmina Khatun
- Master of Public Health, Daffodil International University, Dhaka, Bangladesh
- Rajshahi Medical College Hospital, Rajshahi, Bangladesh
| | - Shuvashish Das Bala
- Associate Professor, College of Nursing, International University of Business Agriculture and Technology, Dhaka, Bangladesh
| | - Mst. Rina Parvin
- School of Medical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Major at Bangladesh Army (AFNS Officer), Combined Military Hospital, Dhaka, Bangladesh
| |
Collapse
|
6
|
Dafni MF, Shih M, Manoel AZ, Yousif MYE, Spathi S, Harshal C, Bhatt G, Chodnekar SY, Chune NS, Rasool W, Umar TP, Moustakas DC, Achkar R, Kumar H, Naz S, Acuña-Chavez LM, Evgenikos K, Gulraiz S, Ali ESM, Elaagib A, Uggh IHP. Empowering cancer prevention with AI: unlocking new frontiers in prediction, diagnosis, and intervention. Cancer Causes Control 2024:10.1007/s10552-024-01942-9. [PMID: 39672997 DOI: 10.1007/s10552-024-01942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/18/2024] [Indexed: 12/15/2024]
Abstract
Artificial intelligence is rapidly changing our world at an exponential rate and its transformative power has extensively reached important sectors like healthcare. In the fight against cancer, AI proved to be a novel and powerful tool, offering new hope for prevention and early detection. In this review, we will comprehensively explore the medical applications of AI, including early cancer detection through pathological and imaging analysis, risk stratification, patient triage, and the development of personalized prevention approaches. However, despite the successful impact AI has contributed to, we will also discuss the myriad of challenges that we have faced so far toward optimal AI implementation. There are problems when it comes to the best way in which we can use AI systemically. Having the correct data that can be understood easily must remain one of the most significant concerns in all its uses including sharing information. Another challenge that exists is how to interpret AI models because they are too complicated for people to follow through examples used in their developments which may affect trust, especially among medical professionals. Other considerations like data privacy, algorithm bias, and equitable access to AI tools have also arisen. Finally, we will evaluate possible future directions for this promising field that highlight AI's capacity to transform preventative cancer care.
Collapse
Affiliation(s)
- Marianna-Foteini Dafni
- School of Medicine, Laboratory of Forensic Medicine and Toxicology, Aristotle Univerisity of Thessaloniki, Thessaloniki, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Mohamed Shih
- School of Medicine, Newgiza University, Giza, Egypt.
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece.
| | - Agnes Zanotto Manoel
- Faculty of Medicine, Federal University of Rio Grande, Rio Grande do Sul, Brazil
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Mohamed Yousif Elamin Yousif
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Stavroula Spathi
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Chorya Harshal
- Faculty of Medicine, Medical College Baroda, Vadodara, India
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Gaurang Bhatt
- All India Institute of Medical Sciences, Rishikesh, India
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Swarali Yatin Chodnekar
- Faculty of Medicine, Teaching University Geomedi LLC, Tbilisi, Georgia
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Nicholas Stam Chune
- Faculty of Medicine, University of Nairobi, Nairobi, Kenya
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Warda Rasool
- Faculty of Medicine, King Edward Medical University, Lahore, Pakistan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Tungki Pratama Umar
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Dimitrios C Moustakas
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Robert Achkar
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Harendra Kumar
- Dow University of Health Sciences, Karachi, Pakistan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Suhaila Naz
- Tbilisi State Medical University, Tbilisi, Georgia
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Luis M Acuña-Chavez
- Facultad de Medicina de la Universidad Nacional de Trujillo, Trujillo, Peru
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Konstantinos Evgenikos
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Shaina Gulraiz
- Royal Bournemouth Hospital (University Hospitals Dorset), Bournemouth, UK
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Eslam Salih Musa Ali
- University of Dongola Faculty of Medicine and Health Science, Dongola, Sudan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Amna Elaagib
- Faculty of Medicine AlMughtaribeen University, Khartoum, Sudan
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Innocent H Peter Uggh
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| |
Collapse
|
7
|
Swart R, Boersma L, Fijten R, van Elmpt W, Cremers P, Jacobs MJG. Implementation Strategy for Artificial Intelligence in Radiotherapy: Can Implementation Science Help? JCO Clin Cancer Inform 2024; 8:e2400101. [PMID: 39705640 DOI: 10.1200/cci.24.00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 11/07/2024] [Indexed: 12/22/2024] Open
Abstract
PURPOSE Artificial intelligence (AI) applications in radiotherapy (RT) are expected to save time and improve quality, but implementation remains limited. Therefore, we used implementation science to develop a format for designing an implementation strategy for AI. This study aimed to (1) apply this format to develop an AI implementation strategy for our center; (2) identify insights gained to enhance AI implementation using this format; and (3) assess the feasibility and acceptability of this format to design a center-specific implementation strategy for departments aiming to implement AI. METHODS We created an AI-implementation strategy for our own center using implementation science methods. This included a stakeholder analysis, literature review, and interviews to identify facilitators and barriers, and designed strategies to overcome the barriers. These methods were subsequently used in a workshop with teams from seven Dutch RT centers to develop their own AI-implementation plans. The applicability, appropriateness, and feasibility were evaluated by the workshop participants, and relevant insights for AI implementation were summarized. RESULTS The stakeholder analysis identified internal (physicians, physicists, RT technicians, information technology, and education) and external (patients and representatives) stakeholders. Barriers and facilitators included concerns about opacity, privacy, data quality, legal aspects, knowledge, trust, stakeholder involvement, ethics, and multidisciplinary collaboration, all integrated into our implementation strategy. The workshop evaluation showed high acceptability (18 participants [90%]), appropriateness (17 participants [85%]), and feasibility (15 participants [75%]) of the implementation strategy. Sixteen participants fully agreed with the format. CONCLUSION Our study highlights the need for a collaborative approach to implement AI in RT. We designed a strategy to overcome organizational challenges, improve AI integration, and enhance patient care. Workshop feedback indicates the proposed methods are useful for multiple RT centers. Insights gained by applying the methods highlight the importance of multidisciplinary collaboration in the development and implementation of AI.
Collapse
Affiliation(s)
- Rachelle Swart
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Liesbeth Boersma
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Rianne Fijten
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Paul Cremers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Maria J G Jacobs
- Tilburg School of Economics and Management, Tilburg University, Tilburg, the Netherlands
| |
Collapse
|
8
|
Dean TB, Seecheran R, Badgett RG, Zackula R, Symons J. Perceptions and attitudes toward artificial intelligence among frontline physicians and physicians' assistants in Kansas: a cross-sectional survey. JAMIA Open 2024; 7:ooae100. [PMID: 39386068 PMCID: PMC11458514 DOI: 10.1093/jamiaopen/ooae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/22/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Objective This survey aims to understand frontline healthcare professionals' perceptions of artificial intelligence (AI) in healthcare and assess how AI familiarity influences these perceptions. Materials and Methods We conducted a survey from February to March 2023 of physicians and physician assistants registered with the Kansas State Board of Healing Arts. Participants rated their perceptions toward AI-related domains and constructs on a 5-point Likert scale, with higher scores indicating stronger agreement. Two sub-groups were created for analysis to assess the impact of participants' familiarity and experience with AI on the survey results. Results From 532 respondents, key concerns were Perceived Communication Barriers (median = 4.0, IQR = 2.8-4.8), Unregulated Standards (median = 4.0, IQR = 3.6-4.8), and Liability Issues (median = 4.0, IQR = 3.5-4.8). Lower levels of agreement were noted for Trust in AI Mechanisms (median = 3.0, IQR = 2.2-3.4), Perceived Risks of AI (median = 3.2, IQR = 2.6-4.0), and Privacy Concerns (median = 3.3, IQR = 2.3-4.0). Positive correlations existed between Intention to use AI and Perceived Benefits (r = 0.825) and Trust in AI Mechanisms (r = 0.777). Perceived risk negatively correlated with Intention to Use AI (r = -0.718). There was no difference in perceptions between AI experienced and AI naïve subgroups. Discussion The findings suggest that perceptions of benefits, trust, risks, communication barriers, regulation, and liability issues influence healthcare professionals' intention to use AI, regardless of their AI familiarity. Conclusion The study highlights key factors affecting AI adoption in healthcare from the frontline healthcare professionals' perspective. These insights can guide strategies for successful AI implementation in healthcare.
Collapse
Affiliation(s)
- Tanner B Dean
- Department of Internal Medicine, Intermountain Health, Salt Lake City, UT 84120, United States
| | - Rajeev Seecheran
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, United States
| | - Robert G Badgett
- Department of Internal Medicine, University of Kansas School of Medicine—Wichita, Wichita, KS 67214, United States
| | - Rosey Zackula
- Center for Clinical Research—Wichita, University of Kansas School of Medicine—Wichita, Wichita, KS 67214, United States
| | - John Symons
- Center for Cyber Social Dynamics, University of Kansas, Lawrence, KS 66045, United States
| |
Collapse
|
9
|
Alsaedi AR, Alneami N, Almajnoni F, Alamri O, Aljohni K, Alrwaily MK, Eid M, Budayr A, Alrehaili MA, Alghamdi MM, Almutairi ED, Eid MH. Perceived Worries in the Adoption of Artificial Intelligence Among Healthcare Professionals in Saudi Arabia: A Cross-Sectional Survey Study. NURSING REPORTS 2024; 14:3706-3721. [PMID: 39728632 DOI: 10.3390/nursrep14040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024] Open
Abstract
The use of AI in the healthcare sector is facing some formidable concerns raised by the practitioners themselves. This study aimed to establish the concerns that surround the adoption of AI among Saudi Arabian healthcare professionals. Materials and methods: This was a cross-sectional study using stratified convenience sampling from September to November 2024 across health facilities. This study included all licensed healthcare professionals practicing for at least one year, whereas interns and administrative staff were excluded from the research. Data collection was conducted through a 33-item validated questionnaire that was provided in paper form and online. The questionnaire measured AI awareness with eight items, past experience with five items, and concerns in four domains represented by 20 items. Four hundred questionnaires were distributed, and the response rate was 78.5% (n = 314). The majority of the participants were females (52.5%), Saudis (89.2%), and employees of MOH (77.1%). The mean age for the participants was 35.6 ± 7.8 years. Quantitative analysis revealed high AI awareness scores with a mean of 3.96 ± 0.167, p < 0.001, and low previous experience scores with a mean of 2.65 ± 0.292. Data management-related worries came out as the top worry, with a mean of 3.78 ± 0.259, while the poor data entry impact topped with a mean of 4.15 ± 0.801; healthcare provider-related worries with a mean of 3.71 ± 0.182; and regulation/ethics-related worries with a mean of 3.67 ± 0.145. Health professionals' main concerns about AI adoption were related to data reliability and impacts on clinical decision-making, which significantly hindered successful AI integration in healthcare. These are the particular concerns that, if addressed through robust data management protocols and enhanced processes for clinical validation, will afford the best implementation of AI technology in an optimized way to bring better quality and safety to healthcare. Quantitative validation of AI outcomes and the development of standardized integration frameworks are subjects for future research.
Collapse
Affiliation(s)
- Abdulaziz R Alsaedi
- Medical Services, National Guard Health Affairs, Madinah 40740, Saudi Arabia
| | - Nada Alneami
- Medical Services, National Guard Health Affairs, Madinah 40740, Saudi Arabia
| | - Fahad Almajnoni
- Medical Services, National Guard Health Affairs, Madinah 40740, Saudi Arabia
| | - Ohoud Alamri
- King Fahad Specialist Hospital, Ministry of Health, Tabuk 71411, Saudi Arabia
| | - Khulud Aljohni
- King Fahad Specialist Hospital, Ministry of Health, Tabuk 71411, Saudi Arabia
| | - Maha K Alrwaily
- HR Department, Ministry of Health, Turaif 91411, Saudi Arabia
| | - Meshal Eid
- King Fahad Specialist Hospital, Ministry of Health, Tabuk 71411, Saudi Arabia
| | - Abdulaziz Budayr
- King Fahad Specialist Hospital, Ministry of Health, Tabuk 71411, Saudi Arabia
| | - Maram A Alrehaili
- Minister Assistant Office, Ministry of Health, Riyadh 11176, Saudi Arabia
| | - Marha M Alghamdi
- Sharourah General Hospital, Ministry of Health, Najran 55461, Saudi Arabia
| | - Eqab D Almutairi
- Operations, National Guard Health Affairs, Dammam 11426, Saudi Arabia
| | - Mohammed H Eid
- King Fahad Specialist Hospital, Ministry of Health, Tabuk 71411, Saudi Arabia
| |
Collapse
|
10
|
Preti LM, Ardito V, Compagni A, Petracca F, Cappellaro G. Implementation of Machine Learning Applications in Health Care Organizations: Systematic Review of Empirical Studies. J Med Internet Res 2024; 26:e55897. [PMID: 39586084 PMCID: PMC11629039 DOI: 10.2196/55897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/07/2024] [Accepted: 10/03/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND There is a growing enthusiasm for machine learning (ML) among academics and health care practitioners. Despite the transformative potential of ML-based applications for patient care, their uptake and implementation in health care organizations are sporadic. Numerous challenges currently impede or delay the widespread implementation of ML in clinical practice, and limited knowledge is available regarding how these challenges have been addressed. OBJECTIVE This work aimed to (1) examine the characteristics of ML-based applications and the implementation process in clinical practice, using the Consolidated Framework for Implementation Research (CFIR) for theoretical guidance and (2) synthesize the strategies adopted by health care organizations to foster successful implementation of ML. METHODS A systematic literature review was conducted based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The search was conducted in PubMed, Scopus, and Web of Science over a 10-year period (2013-2023). The search strategy was built around 4 blocks of keywords (artificial intelligence, implementation, health care, and study type). Only empirical studies documenting the implementation of ML applications in clinical settings were considered. The implementation process was investigated using a thematic analysis and coding procedure. RESULTS Thirty-four studies were selected for data synthesis. Selected papers were relatively recent, with only 9% (3/34) of records published before 2019. ML-based applications were implemented mostly within hospitals (29/34, 85%). In terms of clinical workflow, ML-based applications supported mostly prognosis (20/34, 59%) and diagnosis (10/34, 29%). The implementation efforts were analyzed using CFIR domains. As for the inner setting domain, access to knowledge and information (12/34, 35%), information technology infrastructure (11/34, 32%), and organizational culture (9/34, 26%) were among the most observed dimensions influencing the success of implementation. As for the ML innovation itself, factors deemed relevant were its design (15/34, 44%), the relative advantage with respect to existing clinical practice (14/34, 41%), and perceived complexity (14/34, 41%). As for the other domains (ie, processes, roles, and outer setting), stakeholder engagement (12/34, 35%), reflecting and evaluating practices (11/34, 32%), and the presence of implementation leaders (9/34, 26%) were the main factors identified as important. CONCLUSIONS This review sheds some light on the factors that are relevant and that should be accounted for in the implementation process of ML-based applications in health care. While the relevance of ML-specific dimensions, like trust, emerges clearly across several implementation domains, the evidence from this review highlighted that relevant implementation factors are not necessarily specific for ML but rather transversal for digital health technologies. More research is needed to further clarify the factors that are relevant to implementing ML-based applications at the organizational level and to support their uptake within health care organizations. TRIAL REGISTRATION PROSPERO 403873; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=403873. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR2-10.2196/47971.
Collapse
Affiliation(s)
- Luigi M Preti
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
| | - Vittoria Ardito
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
| | - Amelia Compagni
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
- Department of Social and Political Sciences, Bocconi University, Milan, Italy
| | - Francesco Petracca
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
| | - Giulia Cappellaro
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
- Department of Social and Political Sciences, Bocconi University, Milan, Italy
| |
Collapse
|
11
|
Sag OM, Li X, Åman B, Thor A, Brantnell A. Qualitative exploration of 3D printing in Swedish healthcare: perceived effects and barriers. BMC Health Serv Res 2024; 24:1455. [PMID: 39580425 PMCID: PMC11585134 DOI: 10.1186/s12913-024-11975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Three-dimensional (3D) printing produces objects by adding layers of material rather than mechanically reducing material. This production technology has several advantages and has been used in various medical fields to, for instance, improve the planning of complicated operations, customize medical devices, and enhance medical education. However, few existing studies focus on the adoption and the aspects that could influence or hinder the adoption of 3D printing. OBJECTIVE To describe the state of 3D printing in Sweden, explore the perceived effects of using 3D printing, and identify barriers to its adoption. METHODS A qualitative study with respondents from seven life science regions (i.e., healthcare regions with university hospitals) in Sweden. Semi-structured interviews were employed, involving 19 interviews, including one group interview. The respondents were key informants in terms of 3D printing adoption. Data collection occurred between April and May 2022 and then between February and May 2023. Thematic analysis was applied to identify patterns and themes. RESULTS All seven regions in Sweden used 3D printing, but none had an official adoption strategy. The most common applications were surgical planning and guides in clinical areas such as dentistry, orthopedics, and oral and maxillofacial surgery. Perceived effects of 3D printing included improved surgery, innovation, resource efficiency, and educational benefits. Barriers to adoption were categorized into organization, environment, and technology. Organizational barriers, such as high costs and lack of central decisions, were most prominent. Environmental barriers included a complex regulatory framework, uncertainty, and difficulty in interpreting regulations. Technological barriers were less frequent. CONCLUSIONS The study highlights the widespread use of 3D printing in Swedish healthcare, primarily in surgical planning. Perceived benefits included improved surgical precision, innovation, resource efficiency, and educational enhancements. Barriers, especially organizational and regulatory challenges, play a significant role in hindering widespread adoption. Policymakers need comprehensive guidance on 3D printing adoption, considering the expensive nature of technology investments. Future studies could explore adoption in specific clinical fields and investigate adoption in non-life science regions within and outside Sweden.
Collapse
Affiliation(s)
- Olivya Marben Sag
- Department of Surgical Sciences, Plastic & Oral and Maxillofacial Surgery, Uppsala University, Uppsala, 751 85, Sweden
| | - Xiang Li
- Department of Civil and Industrial Engineering, Industrial Engineering and Management, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 752 37, Sweden
| | - Beatrice Åman
- Department of Civil and Industrial Engineering, Industrial Engineering and Management, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 752 37, Sweden
| | - Andreas Thor
- Department of Surgical Sciences, Plastic & Oral and Maxillofacial Surgery, Uppsala University, Uppsala, 751 85, Sweden
| | - Anders Brantnell
- Department of Civil and Industrial Engineering, Industrial Engineering and Management, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 752 37, Sweden.
- Department of Women's and Children's Health, Healthcare Sciences and E-Health, Uppsala University, MTC-Huset, Dag Hammarskjölds Väg 14B, 1 Tr, Uppsala, 752 37, Sweden.
| |
Collapse
|
12
|
Singh CK, Sodhi KK. Targeting bioinformatics tools to study the dissemination and spread of antibiotic resistant genes in the environment and clinical settings. Crit Rev Microbiol 2024:1-19. [PMID: 39552541 DOI: 10.1080/1040841x.2024.2429603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/01/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Antibiotic resistance has expanded as a result of the careless use of antibiotics in the medical field, the food industry, agriculture, and other industries. By means of genetic recombination between commensal and pathogenic bacteria, the microbes obtain antibiotic resistance genes (ARGs). In bacteria, horizontal gene transfer (HGT) is the main mechanism for acquiring ARGs. With the development of high-throughput sequencing, ARG sequence analysis is now feasible and widely available. Preventing the spread of AMR in the environment requires the implementation of ARGs mapping. The metagenomic technique, in particular, has helped in identifying antibiotic resistance within microbial communities. Due to the exponential growth of experimental and clinical data, significant investments in computer capacity, and advancements in algorithmic techniques, the application of machine learning (ML) algorithms to the problem of AMR has attracted increasing attention over the past five years. The review article sheds a light on the application of bioinformatics for the antibiotic resistance monitoring. The most advanced tool currently being employed to catalog the resistome of various habitats are metagenomics and metatranscriptomics. The future lies in the hands of artificial intelligence (AI) and machine learning (ML) methods, to predict and optimize the interaction of antibiotic-resistant compounds with target proteins.
Collapse
Affiliation(s)
| | - Kushneet Kaur Sodhi
- Department of Zoology, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi, India
| |
Collapse
|
13
|
Ma Y, Zeng Y, Liu T, Sun R, Xiao M, Wang J. Integrating large language models in mental health practice: a qualitative descriptive study based on expert interviews. Front Public Health 2024; 12:1475867. [PMID: 39559378 PMCID: PMC11571062 DOI: 10.3389/fpubh.2024.1475867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background Progress in developing artificial intelligence (AI) products represented by large language models (LLMs) such as OpenAI's ChatGPT has sparked enthusiasm for their potential use in mental health practice. However, the perspectives on the integration of LLMs within mental health practice remain an underreported topic. Therefore, this study aimed to explore how mental health and AI experts conceptualize LLMs and perceive the use of integrating LLMs into mental health practice. Method In February-April 2024, online semi-structured interviews were conducted with 21 experts (12 psychiatrists, 7 mental health nurses, 2 researchers in medical artificial intelligence) from four provinces in China, using snowballing and purposive selection sampling. Respondents' discussions about their perspectives and expectations of integrating LLMs in mental health were analyzed with conventional content analysis. Results Four themes and eleven sub-themes emerged from this study. Firstly, participants discussed the (1) practice and application reform brought by LLMs into mental health (fair access to mental health services, enhancement of patient participation, improvement in work efficiency and quality), and then analyzed the (2) technological-mental health gap (misleading information, lack of professional nuance and depth, user risk). Based on these points, they provided a range of (3) prerequisites for the integration of LLMs in mental health (training and competence, guidelines for use and management, patient engagement and transparency) and expressed their (4) expectations for future developments (reasonable allocation of workload, upgrades and revamps of LLMs). Conclusion These findings provide valuable insights into integrating LLMs within mental health practice, offering critical guidance for institutions to effectively implement, manage, and optimize these tools, thereby enhancing the quality and accessibility of mental health services.
Collapse
Affiliation(s)
| | | | | | | | - Mingzhao Xiao
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wang
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Ayorinde A, Mensah DO, Walsh J, Ghosh I, Ibrahim SA, Hogg J, Peek N, Griffiths F. Health Care Professionals' Experience of Using AI: Systematic Review With Narrative Synthesis. J Med Internet Res 2024; 26:e55766. [PMID: 39476382 PMCID: PMC11561443 DOI: 10.2196/55766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/10/2024] [Accepted: 07/25/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND There has been a substantial increase in the development of artificial intelligence (AI) tools for clinical decision support. Historically, these were mostly knowledge-based systems, but recent advances include non-knowledge-based systems using some form of machine learning. The ability of health care professionals to trust technology and understand how it benefits patients or improves care delivery is known to be important for their adoption of that technology. For non-knowledge-based AI tools for clinical decision support, these issues are poorly understood. OBJECTIVE The aim of this study is to qualitatively synthesize evidence on the experiences of health care professionals in routinely using non-knowledge-based AI tools to support their clinical decision-making. METHODS In June 2023, we searched 4 electronic databases, MEDLINE, Embase, CINAHL, and Web of Science, with no language or date limit. We also contacted relevant experts and searched reference lists of the included studies. We included studies of any design that reported the experiences of health care professionals using non-knowledge-based systems for clinical decision support in their work settings. We completed double independent quality assessment for all included studies using the Mixed Methods Appraisal Tool. We used a theoretically informed thematic approach to synthesize the findings. RESULTS After screening 7552 titles and 182 full-text articles, we included 25 studies conducted in 9 different countries. Most of the included studies were qualitative (n=13), and the remaining were quantitative (n=9) and mixed methods (n=3). Overall, we identified 7 themes: health care professionals' understanding of AI applications, level of trust and confidence in AI tools, judging the value added by AI, data availability and limitations of AI, time and competing priorities, concern about governance, and collaboration to facilitate the implementation and use of AI. The most frequently occurring are the first 3 themes. For example, many studies reported that health care professionals were concerned about not understanding the AI outputs or the rationale behind them. There were issues with confidence in the accuracy of the AI applications and their recommendations. Some health care professionals believed that AI provided added value and improved decision-making, and some reported that it only served as a confirmation of their clinical judgment, while others did not find it useful at all. CONCLUSIONS Our review identified several important issues documented in various studies on health care professionals' use of AI tools in real-world health care settings. Opinions of health care professionals regarding the added value of AI tools for supporting clinical decision-making varied widely, and many professionals had concerns about their understanding of and trust in this technology. The findings of this review emphasize the need for concerted efforts to optimize the integration of AI tools in real-world health care settings. TRIAL REGISTRATION PROSPERO CRD42022336359; https://tinyurl.com/2yunvkmb.
Collapse
Affiliation(s)
- Abimbola Ayorinde
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Daniel Opoku Mensah
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Julia Walsh
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Iman Ghosh
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Siti Aishah Ibrahim
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jeffry Hogg
- AI Digital Health Research and Policy Group, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Niels Peek
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- The Healthcare Improvement Studies Institute, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Frances Griffiths
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
15
|
Hassan M, Borycki EM, Kushniruk AW. Artificial intelligence governance framework for healthcare. Healthc Manage Forum 2024:8404704241291226. [PMID: 39470044 DOI: 10.1177/08404704241291226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Recent advancements in the field of Artificial Intelligence (AI) provide promising applications of this technology with the aim of solving complex healthcare challenges. These include optimizing operational efficiencies, supporting clinical administrative functions, and improving care outcomes. Numerous AI models are validated in research settings but few make their way into useful applications due to challenges associated with implementation and adoption. In this article, we describe some of these challenges, along with the need for a facilitating entity to safely translate AI systems into practical use. The authors propose a new AI governance framework to enable healthcare organizations with a mechanism to implement and adopt AI systems.
Collapse
Affiliation(s)
- Masooma Hassan
- University of Victoria, Victoria, British Columbia, Canada
| | | | | |
Collapse
|
16
|
Botha NN, Segbedzi CE, Dumahasi VK, Maneen S, Kodom RV, Tsedze IS, Akoto LA, Atsu FS, Lasim OU, Ansah EW. Artificial intelligence in healthcare: a scoping review of perceived threats to patient rights and safety. Arch Public Health 2024; 82:188. [PMID: 39444019 PMCID: PMC11515716 DOI: 10.1186/s13690-024-01414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The global health system remains determined to leverage on every workable opportunity, including artificial intelligence (AI) to provide care that is consistent with patients' needs. Unfortunately, while AI models generally return high accuracy within the trials in which they are trained, their ability to predict and recommend the best course of care for prospective patients is left to chance. PURPOSE This review maps evidence between January 1, 2010 to December 31, 2023, on the perceived threats posed by the usage of AI tools in healthcare on patients' rights and safety. METHODS We deployed the guidelines of Tricco et al. to conduct a comprehensive search of current literature from Nature, PubMed, Scopus, ScienceDirect, Dimensions AI, Web of Science, Ebsco Host, ProQuest, JStore, Semantic Scholar, Taylor & Francis, Emeralds, World Health Organisation, and Google Scholar. In all, 80 peer reviewed articles qualified and were included in this study. RESULTS We report that there is a real chance of unpredictable errors, inadequate policy and regulatory regime in the use of AI technologies in healthcare. Moreover, medical paternalism, increased healthcare cost and disparities in insurance coverage, data security and privacy concerns, and bias and discriminatory services are imminent in the use of AI tools in healthcare. CONCLUSIONS Our findings have some critical implications for achieving the Sustainable Development Goals (SDGs) 3.8, 11.7, and 16. We recommend that national governments should lead in the roll-out of AI tools in their healthcare systems. Also, other key actors in the healthcare industry should contribute to developing policies on the use of AI in healthcare systems.
Collapse
Affiliation(s)
- Nkosi Nkosi Botha
- Department of Health, Physical Education and Recreation, University of Cape Coast, Cape Coast, Ghana.
- Air Force Medical Centre, Armed Forces Medical Services, Air Force Base, Takoradi, Ghana.
| | - Cynthia E Segbedzi
- Department of Health, Physical Education and Recreation, University of Cape Coast, Cape Coast, Ghana
| | - Victor K Dumahasi
- Institute of Environmental and Sanitation Studies, Environmental Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Samuel Maneen
- Department of Health, Physical Education and Recreation, University of Cape Coast, Cape Coast, Ghana
| | - Ruby V Kodom
- Department of Health Services Management/Distance Education, University of Ghana, Legon, Ghana
| | - Ivy S Tsedze
- Department of Adult Health, School of Nursing and Midwifery, University of Cape Coast, Cape Coast, Ghana
| | - Lucy A Akoto
- Air Force Medical Centre, Armed Forces Medical Services, Air Force Base, Takoradi, Ghana
| | | | - Obed U Lasim
- Department of Health Information Management, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Edward W Ansah
- Department of Health, Physical Education and Recreation, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
17
|
Yousif M, Asghar S, Akbar J, Masood I, Arshad MR, Naeem J, Azam A, Iqbal Z. Exploring the perspectives of healthcare professionals regarding artificial intelligence; acceptance and challenges. BMC Health Serv Res 2024; 24:1200. [PMID: 39379939 PMCID: PMC11459946 DOI: 10.1186/s12913-024-11667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVES The main objective of the study was to explore the perspectives of healthcare professionals (HCPs) regarding artificial intelligence (AI) and to identify challenges in its incorporation in the healthcare sector of Pakistan. METHODS A qualitative exploratory study design was adopted. The study was conducted from January 15th to February 29th, 2024, and HCPs (doctors, pharmacists and nurses) from two tertiary care teaching hospitals in southern Punjab, Pakistan were taken as the study population. The interviews were conducted with the help of a semi structured interview schema. A thematic approach was adopted to analyse the data. RESULTS Out of 40 HCPs approached, 25 participated in the study with a response rate of 62%. The participants included in the study were doctors (14), pharmacists (6) and nurses (5). The participants had limited knowledge regarding AI and its basics. However, they showed positive perceptions about its incorporation. They believed that many of the problems faced by the healthcare sector of Pakistan can be minimized by AI incorporation. They believed that AI can boost up the efficiency of healthcare providers, reduce their workload, save time and minimize medical errors. Four main themes with multiple subthemes were identified: (1) Cognizance of AI, (2) Acceptability of AI among HCPs and training requirements for effective incorporation, (3) Merits and Demerits of AI, and (4) Challenges in incorporation of AI with proposed solutions. CONCLUSION HCPs showed a willingness to embrace AI incorporation and believed that it may bring numerous benefits to the health system. Policymakers should take necessary steps to ensure AI incorporation in our healthcare sector.
Collapse
Affiliation(s)
- Muhammad Yousif
- Department of Pharmacy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Saima Asghar
- Department of Pharmacy Practice, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Jamshaid Akbar
- Department of Pharmacy Practice, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Imran Masood
- Department of Pharmacy Practice, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Muhammad Rizwan Arshad
- Department of Pharmacy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | - Javaria Naeem
- Department of Pharmacy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Abdullah Azam
- Department of Pharmacy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Zakia Iqbal
- Department of Pharmacy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
18
|
Chen D, Huang RS, Jomy J, Wong P, Yan M, Croke J, Tong D, Hope A, Eng L, Raman S. Performance of Multimodal Artificial Intelligence Chatbots Evaluated on Clinical Oncology Cases. JAMA Netw Open 2024; 7:e2437711. [PMID: 39441598 PMCID: PMC11581577 DOI: 10.1001/jamanetworkopen.2024.37711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Importance Multimodal artificial intelligence (AI) chatbots can process complex medical image and text-based information that may improve their accuracy as a clinical diagnostic and management tool compared with unimodal, text-only AI chatbots. However, the difference in medical accuracy of multimodal and text-only chatbots in addressing questions about clinical oncology cases remains to be tested. Objective To evaluate the utility of prompt engineering (zero-shot chain-of-thought) and compare the competency of multimodal and unimodal AI chatbots to generate medically accurate responses to questions about clinical oncology cases. Design, Setting, and Participants This cross-sectional study benchmarked the medical accuracy of multiple-choice and free-text responses generated by AI chatbots in response to 79 questions about clinical oncology cases with images. Exposures A unique set of 79 clinical oncology cases from JAMA Network Learning accessed on April 2, 2024, was posed to 10 AI chatbots. Main Outcomes and Measures The primary outcome was medical accuracy evaluated by the number of correct responses by each AI chatbot. Multiple-choice responses were marked as correct based on the ground-truth, correct answer. Free-text responses were rated by a team of oncology specialists in duplicate and marked as correct based on consensus or resolved by a review of a third oncology specialist. Results This study evaluated 10 chatbots, including 3 multimodal and 7 unimodal chatbots. On the multiple-choice evaluation, the top-performing chatbot was chatbot 10 (57 of 79 [72.15%]), followed by the multimodal chatbot 2 (56 of 79 [70.89%]) and chatbot 5 (54 of 79 [68.35%]). On the free-text evaluation, the top-performing chatbots were chatbot 5, chatbot 7, and the multimodal chatbot 2 (30 of 79 [37.97%]), followed by chatbot 10 (29 of 79 [36.71%]) and chatbot 8 and the multimodal chatbot 3 (25 of 79 [31.65%]). The accuracy of multimodal chatbots decreased when tested on cases with multiple images compared with questions with single images. Nine out of 10 chatbots, including all 3 multimodal chatbots, demonstrated decreased accuracy of their free-text responses compared with multiple-choice responses to questions about cancer cases. Conclusions and Relevance In this cross-sectional study of chatbot accuracy tested on clinical oncology cases, multimodal chatbots were not consistently more accurate than unimodal chatbots. These results suggest that further research is required to optimize multimodal chatbots to make more use of information from images to improve oncology-specific medical accuracy and reliability.
Collapse
Affiliation(s)
- David Chen
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ryan S. Huang
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jane Jomy
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Philip Wong
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Yan
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Croke
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Tong
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Hope
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Lawson Eng
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre/University Health Network Toronto, Toronto, Ontario, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Srinivas Raman
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre/University Health Network Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Tyskbo D, Nygren J. Reconfiguration of uncertainty: Introducing AI for prediction of mortality at the emergency department. Soc Sci Med 2024; 359:117298. [PMID: 39260029 DOI: 10.1016/j.socscimed.2024.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
The promise behind many advanced digital technologies in healthcare is to provide novel and accurate information, aiding medical experts to navigate and, ultimately, decrease uncertainty in their clinical work. However, sociological studies have started to show that these technologies are not producing straightforward objective knowledge, but instead often become associated with new uncertainties arising in unanticipated places and situations. This study contributes to the body of work by presenting a qualitative study of an Artificial Intelligence (AI) algorithm designed to predict the risk of mortality in patients discharged to home from the emergency department (ED). Through in-depth interviews with physicians working at the ED of a Swedish hospital, we demonstrate that while the AI algorithm can reduce targeted uncertainty, it simultaneously introduces three new forms of uncertainty into clinical practice: epistemic uncertainty, actionable uncertainty and ethical uncertainty. These new uncertainties require deliberate management and control, marking a shift from the physicians' accustomed comfort with uncertainty in mortality prediction. Our study advances the understanding of the recursive nature and temporal dynamics of uncertainty in medical work, showing how new uncertainties emerge from attempts to manage existing ones. It also reveals that physicians' attitudes towards, and management of, uncertainty vary depending on its form and underscores the intertwined role of digital technology in this process. By examining AI in emergency care, we provide valuable insights into how this epistemic technology reconfigures clinical uncertainty, offering significant theoretical and practical implications for the integration of AI in healthcare.
Collapse
Affiliation(s)
- Daniel Tyskbo
- School of Health and Welfare, Halmstad University, Box 823, SE-301 18, Halmstad, Sweden.
| | - Jens Nygren
- School of Health and Welfare, Halmstad University, Box 823, SE-301 18, Halmstad, Sweden.
| |
Collapse
|
20
|
Shams A. Leveraging State-of-the-Art AI Algorithms in Personalized Oncology: From Transcriptomics to Treatment. Diagnostics (Basel) 2024; 14:2174. [PMID: 39410578 PMCID: PMC11476216 DOI: 10.3390/diagnostics14192174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Continuous breakthroughs in computational algorithms have positioned AI-based models as some of the most sophisticated technologies in the healthcare system. AI shows dynamic contributions in advancing various medical fields involving data interpretation and monitoring, imaging screening and diagnosis, and treatment response and survival prediction. Despite advances in clinical oncology, more effort must be employed to tailor therapeutic plans based on each patient's unique transcriptomic profile within the precision/personalized oncology frame. Furthermore, the standard analysis method is not compatible with the comprehensive deciphering of significant data streams, thus precluding the prediction of accurate treatment options. METHODOLOGY We proposed a novel approach that includes obtaining different tumour tissues and preparing RNA samples for comprehensive transcriptomic interpretation using specifically trained, programmed, and optimized AI-based models for extracting large data volumes, refining, and analyzing them. Next, the transcriptomic results will be scanned against an expansive drug library to predict the response of each target to the tested drugs. The obtained target-drug combination/s will be then validated using in vitro and in vivo experimental models. Finally, the best treatment combination option/s will be introduced to the patient. We also provided a comprehensive review discussing AI models' recent innovations and implementations to aid in molecular diagnosis and treatment planning. RESULTS The expected transcriptomic analysis generated by the AI-based algorithms will provide an inclusive genomic profile for each patient, containing statistical and bioinformatics analyses, identification of the dysregulated pathways, detection of the targeted genes, and recognition of molecular biomarkers. Subjecting these results to the prediction and pairing AI-based processes will result in statistical graphs presenting each target's likely response rate to various treatment options. Different in vitro and in vivo investigations will further validate the selection of the target drug/s pairs. CONCLUSIONS Leveraging AI models will provide more rigorous manipulation of large-scale datasets on specific cancer care paths. Such a strategy would shape treatment according to each patient's demand, thus fortifying the avenue of personalized/precision medicine. Undoubtedly, this will assist in improving the oncology domain and alleviate the burden of clinicians in the coming decade.
Collapse
Affiliation(s)
- Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; or ; Tel.: +00966-548638099
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif 26432, Saudi Arabia
- High Altitude Research Center, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
21
|
Alnasser AH, Hassanain MA, Alnasser MA, Alnasser AH. Critical factors challenging the integration of AI technologies in healthcare workplaces: a stakeholder assessment. J Health Organ Manag 2024; ahead-of-print. [PMID: 39300711 DOI: 10.1108/jhom-04-2024-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
PURPOSE This study aims to identify and assess the factors challenging the integration of artificial intelligence (AI) technologies in healthcare workplaces. DESIGN/METHODOLOGY/APPROACH The study utilized a mixed approach, that starts with a literature review, then developing and testing a questionnaire survey of the factors challenging the integration of AI technologies in healthcare workplaces. In total, 46 factors were identified and classified under 6 groups. These factors were assessed by four different stakeholder categories: facilities managers, medical staff, operational staff and patients/visitors. The evaluations gathered were examined to determine the relative importance index (RII), importance rating (IR) and ranking of each factor. FINDINGS All 46 factors were assessed as "Very Important" through the overall assessment by the four stakeholder categories. The results indicated that the most important factors, across all groups, are "AI ability to learn from patient data", "insufficient data privacy measures for patients", "availability of technical support and maintenance services", "physicians' acceptance of AI in healthcare", "reliability and uptime of AI systems" and "ability to reduce medical errors". PRACTICAL IMPLICATIONS Determining the importance ratings of the factors can lead to better resource allocation and the development of strategies to facilitate the adoption and implementation of these technologies, thus promoting the development of innovative solutions to improve healthcare practices. ORIGINALITY/VALUE This study contributes to the body of knowledge in the domain of technology adoption and implementation in the medical workplace, through improving stakeholders' comprehension of the factors challenging the integration of AI technologies.
Collapse
Affiliation(s)
- Abdullah H Alnasser
- Architectural Engineering and Construction Management Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Mohammad A Hassanain
- Architectural Engineering and Construction Management Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | | | - Ali H Alnasser
- Primary Healthcare Units, Al Ahsa Health Cluster, Al Ahsa, Saudi Arabia
| |
Collapse
|
22
|
Finkelstein J, Gabriel A, Schmer S, Truong TT, Dunn A. Identifying Facilitators and Barriers to Implementation of AI-Assisted Clinical Decision Support in an Electronic Health Record System. J Med Syst 2024; 48:89. [PMID: 39292314 PMCID: PMC11410896 DOI: 10.1007/s10916-024-02104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
Recent advancements in computing have led to the development of artificial intelligence (AI) enabled healthcare technologies. AI-assisted clinical decision support (CDS) integrated into electronic health records (EHR) was demonstrated to have a significant potential to improve clinical care. With the rapid proliferation of AI-assisted CDS, came the realization that a lack of careful consideration of socio-technical issues surrounding the implementation and maintenance of these tools can result in unanticipated consequences, missed opportunities, and suboptimal uptake of these potentially useful technologies. The 48-h Discharge Prediction Tool (48DPT) is a new AI-assisted EHR CDS to facilitate discharge planning. This study aimed to methodologically assess the implementation of 48DPT and identify the barriers and facilitators of adoption and maintenance using the validated implementation science frameworks. The major dimensions of RE-AIM (Reach, Effectiveness, Adoption, Implementation, Maintenance) and the constructs of the Consolidated Framework for Implementation Research (CFIR) frameworks have been used to analyze interviews of 24 key stakeholders using 48DPT. The systematic assessment of the 48DPT implementation allowed us to describe facilitators and barriers to implementation such as lack of awareness, lack of accuracy and trust, limited accessibility, and transparency. Based on our evaluation, the factors that are crucial for the successful implementation of AI-assisted EHR CDS were identified. Future implementation efforts of AI-assisted EHR CDS should engage the key clinical stakeholders in the AI tool development from the very inception of the project, support transparency and explainability of the AI models, provide ongoing education and onboarding of the clinical users, and obtain continuous input from clinical staff on the CDS performance.
Collapse
Affiliation(s)
- Joseph Finkelstein
- Department of Biomedical Informatics, University of Utah, 421 Wakara Way, Rm. 2028, Salt Lake City, UT, 84108, USA.
| | - Aileen Gabriel
- Department of Biomedical Informatics, University of Utah, 421 Wakara Way, Rm. 2028, Salt Lake City, UT, 84108, USA
| | - Susanna Schmer
- Department of Case Management, Mount Sinai Health System, New York, NY, USA
| | - Tuyet-Trinh Truong
- Division of Hospital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Dunn
- Division of Hospital Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Al-Khalifa KS, Ahmed WM, Azhari AA, Qaw M, Alsheikh R, Alqudaihi F, Alfaraj A. The Use of Artificial Intelligence in Caries Detection: A Review. Bioengineering (Basel) 2024; 11:936. [PMID: 39329679 PMCID: PMC11428802 DOI: 10.3390/bioengineering11090936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Advancements in artificial intelligence (AI) have significantly impacted the field of dentistry, particularly in diagnostic imaging for caries detection. This review critically examines the current state of AI applications in caries detection, focusing on the performance and accuracy of various AI techniques. We evaluated 40 studies from the past 23 years, carefully selected for their relevance and quality. Our analysis highlights the potential of AI, especially convolutional neural networks (CNNs), to improve diagnostic accuracy and efficiency in detecting dental caries. The findings underscore the transformative potential of AI in clinical dental practice.
Collapse
Affiliation(s)
- Khalifa S. Al-Khalifa
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Walaa Magdy Ahmed
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.M.A.); (A.A.A.)
| | - Amr Ahmed Azhari
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.M.A.); (A.A.A.)
| | - Masoumah Qaw
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.Q.); (R.A.)
| | - Rasha Alsheikh
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.Q.); (R.A.)
| | - Fatema Alqudaihi
- Department of Restorative Dentistry, Khobar Dental Complex, Eastern Health Cluster, Dammam 32253, Saudi Arabia;
| | - Amal Alfaraj
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
24
|
Zhang D, Sheng Y, Wang C, Chen W, Shi X. Global traumatic brain injury intracranial pressure: from monitoring to surgical decision. Front Neurol 2024; 15:1423329. [PMID: 39355091 PMCID: PMC11442239 DOI: 10.3389/fneur.2024.1423329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant global public health issue, heavily impacting human health, especially in low-and middle-income areas. Despite numerous guidelines and consensus statements, TBI fatality rates remain high. The pathogenesis of severe TBI is closely linked to rising intracranial pressure (ICP). Elevated intracranial pressure can lead to cerebral herniation, resulting in respiratory and circulatory collapse, and ultimately, death. Managing intracranial pressure (ICP) is crucial in neuro-intensive care. Timely diagnosis and precise treatment of elevated ICP are essential. ICP monitoring provides real-time insights into a patient's condition, offering invaluable guidance for comprehensive management. ICP monitoring and standardization can effectively reduce secondary nerve damage, lowering morbidity and mortality rates. Accurately assessing and using true ICP values to manage TBI patients still depends on doctors' clinical experience. This review discusses: (a) Epidemiological disparities of traumatic brain injuries across countries with different income levels worldwide; (b) The significance and function of ICP monitoring; (c) Current status and challenges of ICP monitoring; (d) The impact of decompressive craniectomy on reducing intracranial pressure; and (e) Management of TBI in diverse income countries. We suggest a thorough evaluation of ICP monitoring, head CT findings, and GCS scores before deciding on decompressive craniectomy. Personalized treatment should be emphasized to assess the need for surgical decompression in TBI patients, offering crucial insights for clinical decision-making.
Collapse
Affiliation(s)
- Dan Zhang
- Longgang Central Hospital of Shenzhen, Guangdong, China
| | - Yanzhi Sheng
- Shenzhen College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Chengbin Wang
- Shenzhen College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Wei Chen
- Longgang Central Hospital of Shenzhen, Guangdong, China
| | - Xiaofeng Shi
- Longgang Central Hospital of Shenzhen, Guangdong, China
| |
Collapse
|
25
|
Seth I, Lim B, Phan R, Xie Y, Kenney PS, Bukret WE, Thomsen JB, Cuomo R, Ross RJ, Ng SKH, Rozen WM. Perforator Selection with Computed Tomography Angiography for Unilateral Breast Reconstruction: A Clinical Multicentre Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1500. [PMID: 39336540 PMCID: PMC11433981 DOI: 10.3390/medicina60091500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Despite CTAs being critical for preoperative planning in autologous breast reconstruction, experienced plastic surgeons may have differing preferences for which side of the abdomen to use for unilateral breast reconstruction. Large language models (LLMs) have the potential to assist medical imaging interpretation. This study compares the perforator selection preferences of experienced plastic surgeons with four popular LLMs based on CTA images for breast reconstruction. Materials and Methods: Six experienced plastic surgeons from Australia, the US, Italy, Denmark, and Argentina reviewed ten CTA images, indicated their preferred side of the abdomen for unilateral breast reconstruction and recommended the type of autologous reconstruction. The LLMs were prompted to do the same. The average decisions were calculated, recorded in suitable tables, and compared. Results: The six consultants predominantly recommend the DIEP procedure (83%). This suggests experienced surgeons feel more comfortable raising DIEP than TRAM flaps, which they recommended only 3% of the time. They also favoured MS TRAM and SIEA less frequently (11% and 2%, respectively). Three LLMs-ChatGPT-4o, ChatGPT-4, and Bing CoPilot-exclusively recommended DIEP (100%), while Claude suggested DIEP 90% and MS TRAM 10%. Despite minor variations in side recommendations, consultants and AI models clearly preferred DIEP. Conclusions: Consultants and LLMs consistently preferred DIEP procedures, indicating strong confidence among experienced surgeons, though LLMs occasionally deviated in recommendations, highlighting limitations in their image interpretation capabilities. This emphasises the need for ongoing refinement of AI-assisted decision support systems to ensure they align more closely with expert clinical judgment and enhance their reliability in clinical practice.
Collapse
Affiliation(s)
- Ishith Seth
- Department of Plastic and Reconstructive Surgery, Peninsula Health, Melbourne 3199, Australia
| | - Bryan Lim
- Department of Plastic and Reconstructive Surgery, Peninsula Health, Melbourne 3199, Australia
| | - Robert Phan
- Department of Plastic and Reconstructive Surgery, Peninsula Health, Melbourne 3199, Australia
| | - Yi Xie
- Department of Plastic and Reconstructive Surgery, Peninsula Health, Melbourne 3199, Australia
| | - Peter Sinkjær Kenney
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - William E. Bukret
- Department of Plastic and Reconstructive Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Jørn Bo Thomsen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Roberto Cuomo
- Plastic Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Richard J. Ross
- Department of Plastic and Reconstructive Surgery, Peninsula Health, Melbourne 3199, Australia
| | - Sally Kiu-Huen Ng
- Department of Plastic and Reconstructive Surgery, The Austin Health, Melbourne 3084, Australia
| | - Warren M. Rozen
- Department of Plastic and Reconstructive Surgery, Peninsula Health, Melbourne 3199, Australia
| |
Collapse
|
26
|
Janssen SM, Bouzembrak Y, Tekinerdogan B. Artificial Intelligence in Malnutrition: A Systematic Literature Review. Adv Nutr 2024; 15:100264. [PMID: 38971229 PMCID: PMC11403436 DOI: 10.1016/j.advnut.2024.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Malnutrition among the population of the world is a frequent yet underdiagnosed problem in both children and adults. Development of malnutrition screening and diagnostic tools for early detection of malnutrition is necessary to prevent long-term complications to patients' health and well-being. Most of these tools are based on predefined questionnaires and consensus guidelines. The use of artificial intelligence (AI) allows for automated tools to detect malnutrition in an earlier stage to prevent long-term consequences. In this study, a systematic literature review was carried out with the goal of providing detailed information on what patient groups, screening tools, machine learning algorithms, data types, and variables are being used, as well as the current limitations and implementation stage of these AI-based tools. The results showed that a staggering majority exceeding 90% of all AI models go unused in day-to-day clinical practice. Furthermore, supervised learning models seemed to be the most popular type of learning. Alongside this, disease-related malnutrition was the most common category of malnutrition found in the analysis of all primary studies. This research provides a resource for researchers to identify directions for their research on the use of AI in malnutrition.
Collapse
Affiliation(s)
- Sander Mw Janssen
- Information Technology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yamine Bouzembrak
- Information Technology Group, Wageningen University and Research, Wageningen, The Netherlands.
| | - Bedir Tekinerdogan
- Information Technology Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
27
|
Ong W, Lee A, Tan WC, Fong KTD, Lai DD, Tan YL, Low XZ, Ge S, Makmur A, Ong SJ, Ting YH, Tan JH, Kumar N, Hallinan JTPD. Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging-A Systematic Review. Cancers (Basel) 2024; 16:2988. [PMID: 39272846 PMCID: PMC11394591 DOI: 10.3390/cancers16172988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
In spinal oncology, integrating deep learning with computed tomography (CT) imaging has shown promise in enhancing diagnostic accuracy, treatment planning, and patient outcomes. This systematic review synthesizes evidence on artificial intelligence (AI) applications in CT imaging for spinal tumors. A PRISMA-guided search identified 33 studies: 12 (36.4%) focused on detecting spinal malignancies, 11 (33.3%) on classification, 6 (18.2%) on prognostication, 3 (9.1%) on treatment planning, and 1 (3.0%) on both detection and classification. Of the classification studies, 7 (21.2%) used machine learning to distinguish between benign and malignant lesions, 3 (9.1%) evaluated tumor stage or grade, and 2 (6.1%) employed radiomics for biomarker classification. Prognostic studies included three (9.1%) that predicted complications such as pathological fractures and three (9.1%) that predicted treatment outcomes. AI's potential for improving workflow efficiency, aiding decision-making, and reducing complications is discussed, along with its limitations in generalizability, interpretability, and clinical integration. Future directions for AI in spinal oncology are also explored. In conclusion, while AI technologies in CT imaging are promising, further research is necessary to validate their clinical effectiveness and optimize their integration into routine practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Aric Lee
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Wei Chuan Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Kuan Ting Dominic Fong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Daoyong David Lai
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Yi Liang Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shuliang Ge
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Shao Jin Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Yong Han Ting
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Jiong Hao Tan
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- National University Spine Institute, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
28
|
Nair M, Svedberg P, Larsson I, Nygren JM. A comprehensive overview of barriers and strategies for AI implementation in healthcare: Mixed-method design. PLoS One 2024; 19:e0305949. [PMID: 39121051 PMCID: PMC11315296 DOI: 10.1371/journal.pone.0305949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/07/2024] [Indexed: 08/11/2024] Open
Abstract
Implementation of artificial intelligence systems for healthcare is challenging. Understanding the barriers and implementation strategies can impact their adoption and allows for better anticipation and planning. This study's objective was to create a detailed inventory of barriers to and strategies for AI implementation in healthcare to support advancements in methods and implementation processes in healthcare. A sequential explanatory mixed method design was used. Firstly, scoping reviews and systematic literature reviews were identified using PubMed. Selected studies included empirical cases of AI implementation and use in clinical practice. As the reviews were deemed insufficient to fulfil the aim of the study, data collection shifted to the primary studies included in those reviews. The primary studies were screened by title and abstract, and thereafter read in full text. Then, data on barriers to and strategies for AI implementation were extracted from the included articles, thematically coded by inductive analysis, and summarized. Subsequently, a direct qualitative content analysis of 69 interviews with healthcare leaders and healthcare professionals confirmed and added results from the literature review. Thirty-eight empirical cases from the six identified scoping and literature reviews met the inclusion and exclusion criteria. Barriers to and strategies for AI implementation were grouped under three phases of implementation (planning, implementing, and sustaining the use) and were categorized into eleven concepts; Leadership, Buy-in, Change management, Engagement, Workflow, Finance and human resources, Legal, Training, Data, Evaluation and monitoring, Maintenance. Ethics emerged as a twelfth concept through qualitative analysis of the interviews. This study illustrates the inherent challenges and useful strategies in implementing AI in healthcare practice. Future research should explore various aspects of leadership, collaboration and contracts among key stakeholders, legal strategies surrounding clinicians' liability, solutions to ethical dilemmas, infrastructure for efficient integration of AI in workflows, and define decision points in the implementation process.
Collapse
Affiliation(s)
- Monika Nair
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Petra Svedberg
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Ingrid Larsson
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Jens M. Nygren
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| |
Collapse
|
29
|
Siira E, Tyskbo D, Nygren J. Healthcare leaders' experiences of implementing artificial intelligence for medical history-taking and triage in Swedish primary care: an interview study. BMC PRIMARY CARE 2024; 25:268. [PMID: 39048973 PMCID: PMC11267767 DOI: 10.1186/s12875-024-02516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Artificial intelligence (AI) holds significant promise for enhancing the efficiency and safety of medical history-taking and triage within primary care. However, there remains a dearth of knowledge concerning the practical implementation of AI systems for these purposes, particularly in the context of healthcare leadership. This study explores the experiences of healthcare leaders regarding the barriers to implementing an AI application for automating medical history-taking and triage in Swedish primary care, as well as the actions they took to overcome these barriers. Furthermore, the study seeks to provide insights that can inform the development of AI implementation strategies for healthcare. METHODS We adopted an inductive qualitative approach, conducting semi-structured interviews with 13 healthcare leaders representing seven primary care units across three regions in Sweden. The collected data were subsequently analysed utilizing thematic analysis. Our study adhered to the Consolidated Criteria for Reporting Qualitative Research to ensure transparent and comprehensive reporting. RESULTS The study identified implementation barriers encountered by healthcare leaders across three domains: (1) healthcare professionals, (2) organization, and (3) technology. The first domain involved professional scepticism and resistance, the second involved adapting traditional units for digital care, and the third inadequacies in AI application functionality and system integration. To navigate around these barriers, the leaders took steps to (1) address inexperience and fear and reduce professional scepticism, (2) align implementation with digital maturity and guide patients towards digital care, and (3) refine and improve the AI application and adapt to the current state of AI application development. CONCLUSION The study provides valuable empirical insights into the implementation of AI for automating medical history-taking and triage in primary care as experienced by healthcare leaders. It identifies the barriers to this implementation and how healthcare leaders aligned their actions to overcome them. While progress was evident in overcoming professional-related and organizational-related barriers, unresolved technical complexities highlight the importance of AI implementation strategies that consider how leaders handle AI implementation in situ based on practical wisdom and tacit understanding. This underscores the necessity of a holistic approach for the successful implementation of AI in healthcare.
Collapse
Affiliation(s)
- Elin Siira
- School of Health and Welfare, Halmstad University, Box 823, Halmstad, 301 18, Sweden
| | - Daniel Tyskbo
- School of Health and Welfare, Halmstad University, Box 823, Halmstad, 301 18, Sweden
| | - Jens Nygren
- School of Health and Welfare, Halmstad University, Box 823, Halmstad, 301 18, Sweden.
| |
Collapse
|
30
|
Chance EA, Florence D, Sardi Abdoul I. The effectiveness of checklists and error reporting systems in enhancing patient safety and reducing medical errors in hospital settings: A narrative review. Int J Nurs Sci 2024; 11:387-398. [PMID: 39156684 PMCID: PMC11329062 DOI: 10.1016/j.ijnss.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 08/20/2024] Open
Abstract
Objectives This narrative review aimed to explore the impact of checklists and error reporting systems on hospital patient safety and medical errors. Methods A systematic search of academic databases from 2013 to 2023 was conducted, and peer-reviewed studies meeting inclusion criteria were assessed for methodological rigor. The review highlights evidence supporting the efficacy of checklists in reducing medication errors, surgical complications, and other adverse events. Error reporting systems foster transparency, encouraging professionals to report incidents and identify systemic vulnerabilities. Results Checklists and error reporting systems are interconnected. Interprofessional collaboration is emphasized in checklist implementation. In this review, limitations arise due to the different methodologies used in the articles and potential publication bias. In addition, language restrictions may exclude valuable non-English research. While positive impacts are evident, success depends on organizational culture and resources. Conclusions This review contributes to patient safety knowledge by examining the relevant literature, emphasizing the importance of interventions, and calling for further research into their effectiveness across diverse healthcare and cultural settings. Understanding these dynamics is crucial for healthcare providers to optimize patient safety outcomes.
Collapse
|
31
|
Khan M, Banerjee S, Muskawad S, Maity R, Chowdhury SR, Ejaz R, Kuuzie E, Satnarine T. The Impact of Artificial Intelligence on Allergy Diagnosis and Treatment. Curr Allergy Asthma Rep 2024; 24:361-372. [PMID: 38954325 DOI: 10.1007/s11882-024-01152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Artificial intelligence (AI), be it neuronal networks, machine learning or deep learning, has numerous beneficial effects on healthcare systems; however, its potential applications and diagnostic capabilities for immunologic diseases have yet to be explored. Understanding AI systems can help healthcare workers better assimilate artificial intelligence into their practice and unravel its potential in diagnostics, clinical research, and disease management. RECENT FINDINGS We reviewed recent advancements in AI systems and their integration in healthcare systems, along with their potential benefits in the diagnosis and management of diseases. We explored machine learning as employed in allergy diagnosis and its learning patterns from patient datasets, as well as the possible advantages of using AI in the field of research related to allergic reactions and even remote monitoring. Considering the ethical challenges and privacy concerns raised by clinicians and patients with regard to integrating AI in healthcare, we explored the new guidelines adapted by regulatory bodies. Despite these challenges, AI appears to have been successfully incorporated into various healthcare systems and is providing patient-centered solutions while simultaneously assisting healthcare workers. Artificial intelligence offers new hope in the field of immunologic disease diagnosis, monitoring, and management and thus has the potential to revolutionize healthcare systems.
Collapse
Affiliation(s)
- Maham Khan
- Fatima Jinnah Medical University, Lahore, Pakistan.
| | | | | | - Rick Maity
- Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | | | - Rida Ejaz
- Shifa College of Medicine, Islamabad, Pakistan
| | | | | |
Collapse
|
32
|
Alami H, Lehoux P, Papoutsi C, Shaw SE, Fleet R, Fortin JP. Understanding the integration of artificial intelligence in healthcare organisations and systems through the NASSS framework: a qualitative study in a leading Canadian academic centre. BMC Health Serv Res 2024; 24:701. [PMID: 38831298 PMCID: PMC11149257 DOI: 10.1186/s12913-024-11112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) technologies are expected to "revolutionise" healthcare. However, despite their promises, their integration within healthcare organisations and systems remains limited. The objective of this study is to explore and understand the systemic challenges and implications of their integration in a leading Canadian academic hospital. METHODS Semi-structured interviews were conducted with 29 stakeholders concerned by the integration of a large set of AI technologies within the organisation (e.g., managers, clinicians, researchers, patients, technology providers). Data were collected and analysed using the Non-Adoption, Abandonment, Scale-up, Spread, Sustainability (NASSS) framework. RESULTS Among enabling factors and conditions, our findings highlight: a supportive organisational culture and leadership leading to a coherent organisational innovation narrative; mutual trust and transparent communication between senior management and frontline teams; the presence of champions, translators, and boundary spanners for AI able to build bridges and trust; and the capacity to attract technical and clinical talents and expertise. Constraints and barriers include: contrasting definitions of the value of AI technologies and ways to measure such value; lack of real-life and context-based evidence; varying patients' digital and health literacy capacities; misalignments between organisational dynamics, clinical and administrative processes, infrastructures, and AI technologies; lack of funding mechanisms covering the implementation, adaptation, and expertise required; challenges arising from practice change, new expertise development, and professional identities; lack of official professional, reimbursement, and insurance guidelines; lack of pre- and post-market approval legal and governance frameworks; diversity of the business and financing models for AI technologies; and misalignments between investors' priorities and the needs and expectations of healthcare organisations and systems. CONCLUSION Thanks to the multidimensional NASSS framework, this study provides original insights and a detailed learning base for analysing AI technologies in healthcare from a thorough socio-technical perspective. Our findings highlight the importance of considering the complexity characterising healthcare organisations and systems in current efforts to introduce AI technologies within clinical routines. This study adds to the existing literature and can inform decision-making towards a judicious, responsible, and sustainable integration of these technologies in healthcare organisations and systems.
Collapse
Affiliation(s)
- Hassane Alami
- Department of Health Management, Evaluation and Policy, School of Public Health, University of Montreal, P.O. Box 6128, Branch Centre-Ville, Montreal, QC, H3C 3J7, Canada.
- Center for Public Health Research of the University of Montreal, Montreal, QC, Canada.
- Institute for Data Valorization (IVADO), Montreal, QC, Canada.
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.
| | - Pascale Lehoux
- Department of Health Management, Evaluation and Policy, School of Public Health, University of Montreal, P.O. Box 6128, Branch Centre-Ville, Montreal, QC, H3C 3J7, Canada
- Center for Public Health Research of the University of Montreal, Montreal, QC, Canada
| | - Chrysanthi Papoutsi
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Sara E Shaw
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Richard Fleet
- Faculty of Medicine, Laval University, Quebec, QC, Canada
- VITAM Research Centre on Sustainable Health, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Jean-Paul Fortin
- Faculty of Medicine, Laval University, Quebec, QC, Canada
- VITAM Research Centre on Sustainable Health, Faculty of Medicine, Laval University, Quebec, QC, Canada
| |
Collapse
|
33
|
Harishbhai Tilala M, Kumar Chenchala P, Choppadandi A, Kaur J, Naguri S, Saoji R, Devaguptapu B. Ethical Considerations in the Use of Artificial Intelligence and Machine Learning in Health Care: A Comprehensive Review. Cureus 2024; 16:e62443. [PMID: 39011215 PMCID: PMC11249277 DOI: 10.7759/cureus.62443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/15/2024] [Indexed: 07/17/2024] Open
Abstract
Artificial intelligence (AI) and machine learning (ML) technologies are revolutionizing health care by offering unprecedented opportunities to enhance patient care, optimize clinical workflows, and advance medical research. However, the integration of AI and ML into healthcare systems raises significant ethical considerations that must be carefully addressed to ensure responsible and equitable deployment. This comprehensive review explored the multifaceted ethical considerations surrounding the use of AI and ML in health care, including privacy and data security, algorithmic bias, transparency, clinical validation, and professional responsibility. By critically examining these ethical dimensions, stakeholders can navigate the ethical complexities of AI and ML integration in health care, while safeguarding patient welfare and upholding ethical principles. By embracing ethical best practices and fostering collaboration across interdisciplinary teams, the healthcare community can harness the full potential of AI and ML technologies to usher in a new era of personalized data-driven health care that prioritizes patient well-being and equity.
Collapse
Affiliation(s)
| | | | | | - Jagbir Kaur
- Program Management, Independent Researcher, West Orange, USA
| | | | - Rahul Saoji
- Data Analytics, Independent Researcher, Dallas, USA
| | | |
Collapse
|
34
|
Al-Naser Y. How medical radiation technologists can foster equity, diversity, and inclusion through artificial intelligence in radiology. J Med Imaging Radiat Sci 2024:101436. [PMID: 38825546 DOI: 10.1016/j.jmir.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024]
Affiliation(s)
- Yousif Al-Naser
- Medical Radiation Sciences, McMaster University, Hamilton, ON, Canada; Department of Diagnostic Imaging, Trillium Health Partners, Mississauga, ON, Canada.
| |
Collapse
|
35
|
Kommuru S, Adekunle F, Niño S, Arefin S, Thalvayapati SP, Kuriakose D, Ahmadi Y, Vinyak S, Nazir Z. Role of Artificial Intelligence in the Diagnosis of Gastroesophageal Reflux Disease. Cureus 2024; 16:e62206. [PMID: 39006681 PMCID: PMC11240074 DOI: 10.7759/cureus.62206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/16/2024] Open
Abstract
Gastroesophageal reflux disease (GERD) is a disorder that usually presents with heartburn. GERD is diagnosed clinically, but most patients are misdiagnosed due to atypical presentations. The increased use of artificial intelligence (AI) in healthcare has provided multiple ways of diagnosing and treating patients accurately. In this review, multiple studies in which AI models were used to diagnose GERD are discussed. According to the studies, using AI models helped to diagnose GERD in patients accurately. AI, although considered one of the most potent emerging aspects of medicine with its accuracy in patient diagnosis, presents limitations of its own, which explains why healthcare providers may hesitate to use AI in patient care. The challenges and limitations should be addressed before AI is fully incorporated into the healthcare system.
Collapse
Affiliation(s)
- Sravani Kommuru
- Medical School, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences & Research Foundation, Vijayawada, IND
| | - Faith Adekunle
- Medical School, American University of the Carribbean, Cupecoy, SXM
| | - Santiago Niño
- Surgery, Colegio Mayor de Nuestra Señora del Rosario, Bogota, COL
| | - Shamsul Arefin
- Internal Medicine, Nottingham University Hospitals NHS Trust, Nottingham, GBR
| | | | - Dona Kuriakose
- Internal Medicine, Petre Shotadze Tbilisi Medical Academy, Tbilisi, GEO
| | - Yasmin Ahmadi
- Medical School, Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, BHR
| | - Suprada Vinyak
- Internal Medicine, Wellmont Health System/Norton Community Hospital, Norton, USA
| | - Zahra Nazir
- Internal Medicine, Combined Military Hospital, Quetta, PAK
| |
Collapse
|
36
|
Alhuwaydi AM. Exploring the Role of Artificial Intelligence in Mental Healthcare: Current Trends and Future Directions - A Narrative Review for a Comprehensive Insight. Risk Manag Healthc Policy 2024; 17:1339-1348. [PMID: 38799612 PMCID: PMC11127648 DOI: 10.2147/rmhp.s461562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Mental health is an essential component of the health and well-being of a person and community, and it is critical for the individual, society, and socio-economic development of any country. Mental healthcare is currently in the health sector transformation era, with emerging technologies such as artificial intelligence (AI) reshaping the screening, diagnosis, and treatment modalities of psychiatric illnesses. The present narrative review is aimed at discussing the current landscape and the role of AI in mental healthcare, including screening, diagnosis, and treatment. Furthermore, this review attempted to highlight the key challenges, limitations, and prospects of AI in providing mental healthcare based on existing works of literature. The literature search for this narrative review was obtained from PubMed, Saudi Digital Library (SDL), Google Scholar, Web of Science, and IEEE Xplore, and we included only English-language articles published in the last five years. Keywords used in combination with Boolean operators ("AND" and "OR") were the following: "Artificial intelligence", "Machine learning", Deep learning", "Early diagnosis", "Treatment", "interventions", "ethical consideration", and "mental Healthcare". Our literature review revealed that, equipped with predictive analytics capabilities, AI can improve treatment planning by predicting an individual's response to various interventions. Predictive analytics, which uses historical data to formulate preventative interventions, aligns with the move toward individualized and preventive mental healthcare. In the screening and diagnostic domains, a subset of AI, such as machine learning and deep learning, has been proven to analyze various mental health data sets and predict the patterns associated with various mental health problems. However, limited studies have evaluated the collaboration between healthcare professionals and AI in delivering mental healthcare, as these sensitive problems require empathy, human connections, and holistic, personalized, and multidisciplinary approaches. Ethical issues, cybersecurity, a lack of data analytics diversity, cultural sensitivity, and language barriers remain concerns for implementing this futuristic approach in mental healthcare. Considering these sensitive problems require empathy, human connections, and holistic, personalized, and multidisciplinary approaches, it is imperative to explore these aspects. Therefore, future comparative trials with larger sample sizes and data sets are warranted to evaluate different AI models used in mental healthcare across regions to fill the existing knowledge gaps.
Collapse
Affiliation(s)
- Ahmed M Alhuwaydi
- Department of Internal Medicine, Division of Psychiatry, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
37
|
Aljabali AAA, Obeid MA, El-Tanani M, Mishra V, Mishra Y, Tambuwala MM. Precision epidemiology at the nexus of mathematics and nanotechnology: Unraveling the dance of viral dynamics. Gene 2024; 905:148174. [PMID: 38242374 DOI: 10.1016/j.gene.2024.148174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The intersection of mathematical modeling, nanotechnology, and epidemiology marks a paradigm shift in our battle against infectious diseases, aligning with the focus of the journal on the regulation, expression, function, and evolution of genes in diverse biological contexts. This exploration navigates the intricate dance of viral transmission dynamics, highlighting mathematical models as dual tools of insight and precision instruments, a theme relevant to the diverse sections of Gene. In the context of virology, ethical considerations loom large, necessitating robust frameworks to protect individual rights, an aspect essential in infectious disease research. Global collaboration emerges as a critical pillar in our response to emerging infectious diseases, fortified by the predictive prowess of mathematical models enriched by nanotechnology. The synergy of interdisciplinary collaboration, training the next generation to bridge mathematical rigor, biology, and epidemiology, promises accelerated discoveries and robust models that account for real-world complexities, fostering innovation and exploration in the field. In this intricate review, mathematical modeling in viral transmission dynamics and epidemiology serves as a guiding beacon, illuminating the path toward precision interventions, global preparedness, and the collective endeavor to safeguard human health, resonating with the aim of advancing knowledge in gene regulation and expression.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan.
| | - Mohammad A Obeid
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, United Kingdom.
| |
Collapse
|
38
|
Khan SD, Hoodbhoy Z, Raja MHR, Kim JY, Hogg HDJ, Manji AAA, Gulamali F, Hasan A, Shaikh A, Tajuddin S, Khan NS, Patel MR, Balu S, Samad Z, Sendak MP. Frameworks for procurement, integration, monitoring, and evaluation of artificial intelligence tools in clinical settings: A systematic review. PLOS DIGITAL HEALTH 2024; 3:e0000514. [PMID: 38809946 PMCID: PMC11135672 DOI: 10.1371/journal.pdig.0000514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Research on the applications of artificial intelligence (AI) tools in medicine has increased exponentially over the last few years but its implementation in clinical practice has not seen a commensurate increase with a lack of consensus on implementing and maintaining such tools. This systematic review aims to summarize frameworks focusing on procuring, implementing, monitoring, and evaluating AI tools in clinical practice. A comprehensive literature search, following PRSIMA guidelines was performed on MEDLINE, Wiley Cochrane, Scopus, and EBSCO databases, to identify and include articles recommending practices, frameworks or guidelines for AI procurement, integration, monitoring, and evaluation. From the included articles, data regarding study aim, use of a framework, rationale of the framework, details regarding AI implementation involving procurement, integration, monitoring, and evaluation were extracted. The extracted details were then mapped on to the Donabedian Plan, Do, Study, Act cycle domains. The search yielded 17,537 unique articles, out of which 47 were evaluated for inclusion based on their full texts and 25 articles were included in the review. Common themes extracted included transparency, feasibility of operation within existing workflows, integrating into existing workflows, validation of the tool using predefined performance indicators and improving the algorithm and/or adjusting the tool to improve performance. Among the four domains (Plan, Do, Study, Act) the most common domain was Plan (84%, n = 21), followed by Study (60%, n = 15), Do (52%, n = 13), & Act (24%, n = 6). Among 172 authors, only 1 (0.6%) was from a low-income country (LIC) and 2 (1.2%) were from lower-middle-income countries (LMICs). Healthcare professionals cite the implementation of AI tools within clinical settings as challenging owing to low levels of evidence focusing on integration in the Do and Act domains. The current healthcare AI landscape calls for increased data sharing and knowledge translation to facilitate common goals and reap maximum clinical benefit.
Collapse
Affiliation(s)
- Sarim Dawar Khan
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Zahra Hoodbhoy
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Jee Young Kim
- Duke Institute for Health Innovation, Duke University School of Medicine, Durham, North Carolina, United States
| | - Henry David Jeffry Hogg
- Population Health Science Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Afshan Anwar Ali Manji
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Freya Gulamali
- Duke Institute for Health Innovation, Duke University School of Medicine, Durham, North Carolina, United States
| | - Alifia Hasan
- Duke Institute for Health Innovation, Duke University School of Medicine, Durham, North Carolina, United States
| | - Asim Shaikh
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Salma Tajuddin
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Nida Saddaf Khan
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Manesh R. Patel
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, United States
- Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Suresh Balu
- Duke Institute for Health Innovation, Duke University School of Medicine, Durham, North Carolina, United States
| | - Zainab Samad
- CITRIC Health Data Science Centre, Department of Medicine, Aga Khan University, Karachi, Pakistan
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Mark P. Sendak
- Duke Institute for Health Innovation, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
39
|
Miles TJ, Ghanta RK. Machine learning in cardiac surgery: a narrative review. J Thorac Dis 2024; 16:2644-2653. [PMID: 38738250 PMCID: PMC11087616 DOI: 10.21037/jtd-23-1659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/15/2024] [Indexed: 05/14/2024]
Abstract
Background and Objective Machine learning (ML) is increasingly being utilized to provide data driven solutions to challenges in medicine. Within the field of cardiac surgery, ML methods have been employed as risk stratification tools to predict a variety of operative outcomes. However, the clinical utility of ML in this domain is unclear. The aim of this review is to provide an overview of ML in cardiac surgery, particularly with regards to its utility in predictive analytics and implications for use in clinical decision support. Methods We performed a narrative review of relevant articles indexed in PubMed since 2000 using the MeSH terms "Machine Learning", "Supervised Machine Learning", "Deep Learning", or "Artificial Intelligence" and "Cardiovascular Surgery" or "Thoracic Surgery". Key Content and Findings ML methods have been widely used to generate pre-operative risk profiles, consistently resulting in the accurate prediction of clinical outcomes in cardiac surgery. However, improvement in predictive performance over traditional risk metrics has proven modest and current applications in the clinical setting remain limited. Conclusions Studies utilizing high volume, multidimensional data such as that derived from electronic health record (EHR) data appear to best demonstrate the advantages of ML methods. Models trained on post cardiac surgery intensive care unit data demonstrate excellent predictive performance and may provide greater clinical utility if incorporated as clinical decision support tools. Further development of ML models and their integration into EHR's may result in dynamic clinical decision support strategies capable of informing clinical care and improving outcomes in cardiac surgery.
Collapse
Affiliation(s)
- Travis J. Miles
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Applied Statistics and Machine Learning for the Advancement of Surgery, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Ravi K. Ghanta
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Applied Statistics and Machine Learning for the Advancement of Surgery, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
40
|
Moy S, Irannejad M, Manning SJ, Farahani M, Ahmed Y, Gao E, Prabhune R, Lorenz S, Mirza R, Klinger C. Patient Perspectives on the Use of Artificial Intelligence in Health Care: A Scoping Review. J Patient Cent Res Rev 2024; 11:51-62. [PMID: 38596349 PMCID: PMC11000703 DOI: 10.17294/2330-0698.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Purpose Artificial intelligence (AI) technology is being rapidly adopted into many different branches of medicine. Although research has started to highlight the impact of AI on health care, the focus on patient perspectives of AI is scarce. This scoping review aimed to explore the literature on adult patients' perspectives on the use of an array of AI technologies in the health care setting for design and deployment. Methods This scoping review followed Arksey and O'Malley's framework and Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Scoping Reviews (PRISMA-ScR). To evaluate patient perspectives, we conducted a comprehensive literature search using eight interdisciplinary electronic databases, including grey literature. Articles published from 2015 to 2022 that focused on patient views regarding AI technology in health care were included. Thematic analysis was performed on the extracted articles. Results Of the 10,571 imported studies, 37 articles were included and extracted. From the 33 peer-reviewed and 4 grey literature articles, the following themes on AI emerged: (i) Patient attitudes, (ii) Influences on patient attitudes, (iii) Considerations for design, and (iv) Considerations for use. Conclusions Patients are key stakeholders essential to the uptake of AI in health care. The findings indicate that patients' needs and expectations are not fully considered in the application of AI in health care. Therefore, there is a need for patient voices in the development of AI in health care.
Collapse
Affiliation(s)
- Sally Moy
- Translational Research Program, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Mona Irannejad
- Translational Research Program, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | - Mehrdad Farahani
- Translational Research Program, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Yomna Ahmed
- Translational Research Program, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ellis Gao
- Translational Research Program, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Radhika Prabhune
- Translational Research Program, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Suzan Lorenz
- Translational Research Program, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Raza Mirza
- Translational Research Program, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Christopher Klinger
- Translational Research Program, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- National Initiative for the Care of the Elderly, Toronto, Canada
| |
Collapse
|
41
|
Wimbarti S, Kairupan BHR, Tallei TE. Critical review of self-diagnosis of mental health conditions using artificial intelligence. Int J Ment Health Nurs 2024; 33:344-358. [PMID: 38345132 DOI: 10.1111/inm.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
The advent of artificial intelligence (AI) has revolutionised various aspects of our lives, including mental health nursing. AI-driven tools and applications have provided a convenient and accessible means for individuals to assess their mental well-being within the confines of their homes. Nonetheless, the widespread trend of self-diagnosing mental health conditions through AI poses considerable risks. This review article examines the perils associated with relying on AI for self-diagnosis in mental health, highlighting the constraints and possible adverse outcomes that can arise from such practices. It delves into the ethical, psychological, and social implications, underscoring the vital role of mental health professionals, including psychologists, psychiatrists, and nursing specialists, in providing professional assistance and guidance. This article aims to highlight the importance of seeking professional assistance and guidance in addressing mental health concerns, especially in the era of AI-driven self-diagnosis.
Collapse
Affiliation(s)
- Supra Wimbarti
- Faculty of Psychology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - B H Ralph Kairupan
- Department of Psychiatry, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
- Department of Biology, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| |
Collapse
|
42
|
Stogiannos N, O'Regan T, Scurr E, Litosseliti L, Pogose M, Harvey H, Kumar A, Malik R, Barnes A, McEntee MF, Malamateniou C. AI implementation in the UK landscape: Knowledge of AI governance, perceived challenges and opportunities, and ways forward for radiographers. Radiography (Lond) 2024; 30:612-621. [PMID: 38325103 DOI: 10.1016/j.radi.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
INTRODUCTION Despite the rapid increase of AI-enabled applications deployed in clinical practice, many challenges exist around AI implementation, including the clarity of governance frameworks, usability of validation of AI models, and customisation of training for radiographers. This study aimed to explore the perceptions of diagnostic and therapeutic radiographers, with existing theoretical and/or practical knowledge of AI, on issues of relevance to the field, such as AI implementation, including knowledge of AI governance and procurement, perceptions about enablers and challenges and future priorities for AI adoption. METHODS An online survey was designed and distributed to UK-based qualified radiographers who work in medical imaging and/or radiotherapy and have some previous theoretical and/or practical knowledge of working with AI. Participants were recruited through the researchers' professional networks on social media with support from the AI advisory group of the Society and College of Radiographers. Survey questions related to AI training/education, knowledge of AI governance frameworks, data privacy procedures, AI implementation considerations, and priorities for AI adoption. Descriptive statistics were employed to analyse the data, and chi-square tests were used to explore significant relationships between variables. RESULTS In total, 88 valid responses were received. Most radiographers (56.6 %) had not received any AI-related training. Also, although approximately 63 % of them used an evaluation framework to assess AI models' performance before implementation, many (36.9 %) were still unsure about suitable evaluation methods. Radiographers requested clearer guidance on AI governance, ample time to implement AI in their practice safely, adequate funding, effective leadership, and targeted support from AI champions. AI training, robust governance frameworks, and patient and public involvement were seen as priorities for the successful implementation of AI by radiographers. CONCLUSION AI implementation is progressing within radiography, but without customised training, clearer governance, key stakeholder engagement and suitable new roles created, it will be hard to harness its benefits and minimise related risks. IMPLICATIONS FOR PRACTICE The results of this study highlight some of the priorities and challenges for radiographers in relation to AI adoption, namely the need for developing robust AI governance frameworks and providing optimal AI training.
Collapse
Affiliation(s)
- N Stogiannos
- Division of Midwifery & Radiography, City, University of London, UK; Medical Imaging Department, Corfu General Hospital, Greece.
| | - T O'Regan
- The Society and College of Radiographers, London, UK.
| | - E Scurr
- The Royal Marsden NHS Foundation Trust, UK.
| | - L Litosseliti
- School of Health & Psychological Sciences, City, University of London, UK.
| | - M Pogose
- Quality Assurance and Regulatory Affairs, Hardian Health, UK.
| | | | - A Kumar
- Frimley Health NHS Foundation Trust, UK.
| | - R Malik
- Bolton NHS Foundation Trust, UK.
| | - A Barnes
- King's Technology Evaluation Centre (KiTEC), School of Biomedical Engineering & Imaging Science, King's College London, UK.
| | - M F McEntee
- Discipline of Medical Imaging and Radiation Therapy, University College Cork, Ireland.
| | - C Malamateniou
- Division of Midwifery & Radiography, City, University of London, UK; Society and College of Radiographers AI Advisory Group, London, UK; European Society of Medical Imaging Informatics, Vienna, Austria; European Federation of Radiographer Societies, Cumieira, Portugal.
| |
Collapse
|
43
|
Rony MKK, Kayesh I, Bala SD, Akter F, Parvin MR. Artificial intelligence in future nursing care: Exploring perspectives of nursing professionals - A descriptive qualitative study. Heliyon 2024; 10:e25718. [PMID: 38370178 PMCID: PMC10869862 DOI: 10.1016/j.heliyon.2024.e25718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Background The healthcare landscape is rapidly evolving, with artificial intelligence (AI) emerging as a transformative force. In this context, understanding the viewpoints of nursing professionals regarding the integration of AI in future nursing care is crucial. Aims This study aimed to provide insights into the perceptions of nursing professionals regarding the role of AI in shaping the future of healthcare. Methods A cohort of 23 nursing professionals was recruited between April 7, 2023, and May 4, 2023, for this study. Employing a thematic analysis approach, qualitative data from interviews with nursing professionals were analyzed. Verbatim transcripts underwent rigorous coding, and these codes were organized into themes through constant comparative analysis. The themes were refined and developed through the grouping of related codes, ensuring an authentic representation of participants' viewpoints. Results After careful data analysis, ten key themes emerged including: (I) Perceptions of AI readiness; (II) Benefits and concerns; (III) Enhanced patient outcomes; (IV) Collaboration and workflow; (V) Human-tech balance: (VI) Training and skill development; (VII) Ethical and legal considerations; (VIII) AI implementation barriers; (IX) Patient-nurse relationships; (X) Future vision and adaptation. Conclusion This study provides valuable insights into nursing professionals' perspectives on the integration of AI in future nursing care. It highlights their enthusiasm for AI's potential benefits while emphasizing the importance of ethical and compassionate nursing practice. The findings underscore the need for comprehensive training programs to equip nursing professionals with the skills necessary for successful AI integration. Ultimately, this research contributes to the ongoing discourse on the role of AI in nursing, paving the way for a future where innovative technologies complement and enhance the delivery of patient-centered care.
Collapse
Affiliation(s)
- Moustaq Karim Khan Rony
- Master of Public Health, Bangladesh Open University, Gazipur, Bangladesh
- Institute of Social Welfare and Research, University of Dhaka, Dhaka, Bangladesh
| | - Ibne Kayesh
- Institute of Social Welfare and Research, University of Dhaka, Dhaka, Bangladesh
| | - Shuvashish Das Bala
- Associate Professor, International University of Business Agriculture and Technology, Dhaka, Bangladesh
| | - Fazila Akter
- Dhaka Nursing College, affiliated with the University of Dhaka, Bangladesh
| | - Mst Rina Parvin
- Afns Major at Bangladesh Army, Combined Military Hospital, Dhaka, Bangladesh
- School of Medical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
44
|
Marques L, Costa B, Pereira M, Silva A, Santos J, Saldanha L, Silva I, Magalhães P, Schmidt S, Vale N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024; 16:332. [PMID: 38543226 PMCID: PMC10975777 DOI: 10.3390/pharmaceutics16030332] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 11/12/2024] Open
Abstract
The landscape of medical treatments is undergoing a transformative shift. Precision medicine has ushered in a revolutionary era in healthcare by individualizing diagnostics and treatments according to each patient's uniquely evolving health status. This groundbreaking method of tailoring disease prevention and treatment considers individual variations in genes, environments, and lifestyles. The goal of precision medicine is to target the "five rights": the right patient, the right drug, the right time, the right dose, and the right route. In this pursuit, in silico techniques have emerged as an anchor, driving precision medicine forward and making this a realistic and promising avenue for personalized therapies. With the advancements in high-throughput DNA sequencing technologies, genomic data, including genetic variants and their interactions with each other and the environment, can be incorporated into clinical decision-making. Pharmacometrics, gathering pharmacokinetic (PK) and pharmacodynamic (PD) data, and mathematical models further contribute to drug optimization, drug behavior prediction, and drug-drug interaction identification. Digital health, wearables, and computational tools offer continuous monitoring and real-time data collection, enabling treatment adjustments. Furthermore, the incorporation of extensive datasets in computational tools, such as electronic health records (EHRs) and omics data, is also another pathway to acquire meaningful information in this field. Although they are fairly new, machine learning (ML) algorithms and artificial intelligence (AI) techniques are also resources researchers use to analyze big data and develop predictive models. This review explores the interplay of these multiple in silico approaches in advancing precision medicine and fostering individual healthcare. Despite intrinsic challenges, such as ethical considerations, data protection, and the need for more comprehensive research, this marks a new era of patient-centered healthcare. Innovative in silico techniques hold the potential to reshape the future of medicine for generations to come.
Collapse
Affiliation(s)
- Lara Marques
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Mariana Pereira
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Abigail Silva
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Joana Santos
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Leonor Saldanha
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Isabel Silva
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Paulo Magalhães
- Coimbra Institute for Biomedical Imaging and Translational Research, Edifício do ICNAS, Polo 3 Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Office 465, Orlando, FL 328227-7400, USA;
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (L.M.); (B.C.); (M.P.); (A.S.); (J.S.); (L.S.); (I.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
45
|
Carrera A, Manetti S, Lettieri E. Rewiring care delivery through Digital Therapeutics (DTx): a machine learning-enhanced assessment and development (M-LEAD) framework. BMC Health Serv Res 2024; 24:237. [PMID: 38395905 PMCID: PMC10885456 DOI: 10.1186/s12913-024-10702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Digital transformation has sparked profound change in the healthcare sector through the development of innovative digital technologies. Digital Therapeutics offer an innovative approach to disease management and treatment. Care delivery is increasingly patient-centered, data-driven, and based on real-time information. These technological innovations can lead to better patient outcomes and support for healthcare professionals, also considering resource scarcity. As these digital technologies continue to evolve, the healthcare field must be ready to integrate them into processes to take advantage of their benefits. This study aims to develop a framework for the development and assessment of Digital Therapeutics. METHODS The study was conducted relying on a mixed methodology. 338 studies about Digital Therapeutics resulting from a systematic literature review were analyzed using descriptive statistics through RStudio. Machine learning algorithms were applied to analyze variables and find patterns in the data. The results of these analytical analyses were summarized in a framework qualitatively tested and validated through expert opinion elicitation. RESULTS The research provides M-LEAD, a Machine Learning-Enhanced Assessment and Development framework that recommends best practices for developing and assessing Digital Therapeutics. The framework takes as input Digital Therapeutics characteristics, regulatory aspects, study purpose, and assessment domains. The framework produces as outputs recommendations to design the Digital Therapeutics study characteristics. CONCLUSIONS The framework constitutes the first step toward standardized guidelines for the development and assessment of Digital Therapeutics. The results may support manufacturers and inform decision-makers of the relevant results of the Digital Therapeutics assessment.
Collapse
|
46
|
Lam C, Wong YL, Tang Z, Hu X, Nguyen TX, Yang D, Zhang S, Ding J, Szeto SKH, Ran AR, Cheung CY. Performance of Artificial Intelligence in Detecting Diabetic Macular Edema From Fundus Photography and Optical Coherence Tomography Images: A Systematic Review and Meta-analysis. Diabetes Care 2024; 47:304-319. [PMID: 38241500 DOI: 10.2337/dc23-0993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/01/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Diabetic macular edema (DME) is the leading cause of vision loss in people with diabetes. Application of artificial intelligence (AI) in interpreting fundus photography (FP) and optical coherence tomography (OCT) images allows prompt detection and intervention. PURPOSE To evaluate the performance of AI in detecting DME from FP or OCT images and identify potential factors affecting model performances. DATA SOURCES We searched seven electronic libraries up to 12 February 2023. STUDY SELECTION We included studies using AI to detect DME from FP or OCT images. DATA EXTRACTION We extracted study characteristics and performance parameters. DATA SYNTHESIS Fifty-three studies were included in the meta-analysis. FP-based algorithms of 25 studies yielded pooled area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity of 0.964, 92.6%, and 91.1%, respectively. OCT-based algorithms of 28 studies yielded pooled AUROC, sensitivity, and specificity of 0.985, 95.9%, and 97.9%, respectively. Potential factors improving model performance included deep learning techniques, larger size, and more diversity in training data sets. Models demonstrated better performance when validated internally than externally, and those trained with multiple data sets showed better results upon external validation. LIMITATIONS Analyses were limited by unstandardized algorithm outcomes and insufficient data in patient demographics, OCT volumetric scans, and external validation. CONCLUSIONS This meta-analysis demonstrates satisfactory performance of AI in detecting DME from FP or OCT images. External validation is warranted for future studies to evaluate model generalizability. Further investigations may estimate optimal sample size, effect of class balance, patient demographics, and additional benefits of OCT volumetric scans.
Collapse
Affiliation(s)
- Ching Lam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yiu Lun Wong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ziqi Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaoyan Hu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Truong X Nguyen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dawei Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuyi Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Simon K H Szeto
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - An Ran Ran
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
47
|
Royapuram Parthasarathy P, Patil SR, Dawasaz AA, Hamid Baig FA, Karobari MI. Unlocking the Potential: Investigating Dental Practitioners' Willingness to Embrace Artificial Intelligence in Dental Practice. Cureus 2024; 16:e55107. [PMID: 38558604 PMCID: PMC10979078 DOI: 10.7759/cureus.55107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) holds significant promise for transforming healthcare delivery, including dentistry. However, the successful integration of AI into dental practice necessitates an understanding of dental professionals' perspectives, attitudes, and readiness to adopt AI technology. This study aimed to explore dental professionals' perceptions, attitudes, and practices regarding AI adoption in dentistry. METHODS This cross-sectional study was conducted among 256 dental professionals using an online questionnaire. Participants were assessed for familiarity with AI technology, perceived barriers to adoption, attitudes towards AI, current usage patterns, and factors influencing adoption decisions. Data are analysed using descriptive statistics, including frequencies, percentages, means, and standard deviations. Inferential statistics, such as chi-square tests and regression analysis, were employed to examine associations between variables and identify predictors of AI adoption in dentistry. RESULTS The study surveyed 256 dental professionals from various regions across India, primarily aged 30 to 50 years (mean age: 42.6), with a nearly equal gender split (male: 48.4%, female: 51.6%) and high educational attainment (67.8% with master's or doctoral degrees). Private practices were predominant (56.3%). The diagnostic algorithms and treatment planning software were well known (77.3% and 70.3% familiarity, respectively). Technical concerns (average score: 3.82 ± 0.68) were the main barriers to AI adoption, followed by financial considerations (average score: 3.45 ± 0.72), ethical and legal issues (average score: 3.21 ± 0.65), and organizational factors (average score: 3.67 ± 0.71). Despite these concerns, most participants had positive attitudes towards AI (70.3% agreed). Current usage varied, with diagnostic support and administrative tasks being the most common (44.5% and 82.8% usage, respectively). Perceived utility (average score: 4.12 ± 0.75) and ease of use (average score: 3.98 ± 0.69) significantly influenced adoption, as identified by regression analysis (perceived utility: β = 0.342, p < 0.001; ease of use: β = 0.267, p = 0.005). CONCLUSION This study provides valuable insights into AI adoption in dentistry, highlighting the multifaceted nature of barriers and facilitators that influence dental professionals' adoption decisions. Strategies to promote AI adoption should address practical considerations, ethical concerns, and educational needs to facilitate the integration of AI technology into dental practices.
Collapse
Affiliation(s)
- Parameswari Royapuram Parthasarathy
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Santosh R Patil
- Department of Oral Medicine and Radiology, Chhattisgarh Dental College and Research Institute, Rajnandgaon, IND
| | - Ali Azhar Dawasaz
- Department of Diagnostic Dental Sciences, College of Dentistry, King Khalid University, Abha, SAU
| | - Fawaz Abdul Hamid Baig
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha, SAU
| | - Mohmed Isaqali Karobari
- Dental Research Unit, Centre for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
48
|
Tripathi S, Tabari A, Mansur A, Dabbara H, Bridge CP, Daye D. From Machine Learning to Patient Outcomes: A Comprehensive Review of AI in Pancreatic Cancer. Diagnostics (Basel) 2024; 14:174. [PMID: 38248051 PMCID: PMC10814554 DOI: 10.3390/diagnostics14020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Pancreatic cancer is a highly aggressive and difficult-to-detect cancer with a poor prognosis. Late diagnosis is common due to a lack of early symptoms, specific markers, and the challenging location of the pancreas. Imaging technologies have improved diagnosis, but there is still room for improvement in standardizing guidelines. Biopsies and histopathological analysis are challenging due to tumor heterogeneity. Artificial Intelligence (AI) revolutionizes healthcare by improving diagnosis, treatment, and patient care. AI algorithms can analyze medical images with precision, aiding in early disease detection. AI also plays a role in personalized medicine by analyzing patient data to tailor treatment plans. It streamlines administrative tasks, such as medical coding and documentation, and provides patient assistance through AI chatbots. However, challenges include data privacy, security, and ethical considerations. This review article focuses on the potential of AI in transforming pancreatic cancer care, offering improved diagnostics, personalized treatments, and operational efficiency, leading to better patient outcomes.
Collapse
Affiliation(s)
- Satvik Tripathi
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Arian Mansur
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Harika Dabbara
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Christopher P. Bridge
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
49
|
Chae A, Yao MS, Sagreiya H, Goldberg AD, Chatterjee N, MacLean MT, Duda J, Elahi A, Borthakur A, Ritchie MD, Rader D, Kahn CE, Witschey WR, Gee JC. Strategies for Implementing Machine Learning Algorithms in the Clinical Practice of Radiology. Radiology 2024; 310:e223170. [PMID: 38259208 PMCID: PMC10831483 DOI: 10.1148/radiol.223170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 01/24/2024]
Abstract
Despite recent advancements in machine learning (ML) applications in health care, there have been few benefits and improvements to clinical medicine in the hospital setting. To facilitate clinical adaptation of methods in ML, this review proposes a standardized framework for the step-by-step implementation of artificial intelligence into the clinical practice of radiology that focuses on three key components: problem identification, stakeholder alignment, and pipeline integration. A review of the recent literature and empirical evidence in radiologic imaging applications justifies this approach and offers a discussion on structuring implementation efforts to help other hospital practices leverage ML to improve patient care. Clinical trial registration no. 04242667 © RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
| | | | - Hersh Sagreiya
- From the Departments of Bioengineering (M.S.Y.), Radiology (H.S.,
N.C., M.T.M., J.D., A.B., C.E.K., W.R.W., J.C.G.), Genetics (M.D.R.), and
Medicine (D.R.), Perelman School of Medicine (A.C., M.S.Y., H.S., A.B., C.E.K.,
W.R.W., J.C.G.), University of Pennsylvania, 3400 Civic Center Blvd,
Philadelphia, PA 19104; Department of Radiology, Loyola University Medical
Center, Maywood, Ill (A.D.G.); Department of Information Services, University of
Pennsylvania, Philadelphia, Pa (A.E.); and Leonard Davis Institute of Health
Economics, University of Pennsylvania, Philadelphia, Pa (A.B.)
| | - Ari D. Goldberg
- From the Departments of Bioengineering (M.S.Y.), Radiology (H.S.,
N.C., M.T.M., J.D., A.B., C.E.K., W.R.W., J.C.G.), Genetics (M.D.R.), and
Medicine (D.R.), Perelman School of Medicine (A.C., M.S.Y., H.S., A.B., C.E.K.,
W.R.W., J.C.G.), University of Pennsylvania, 3400 Civic Center Blvd,
Philadelphia, PA 19104; Department of Radiology, Loyola University Medical
Center, Maywood, Ill (A.D.G.); Department of Information Services, University of
Pennsylvania, Philadelphia, Pa (A.E.); and Leonard Davis Institute of Health
Economics, University of Pennsylvania, Philadelphia, Pa (A.B.)
| | - Neil Chatterjee
- From the Departments of Bioengineering (M.S.Y.), Radiology (H.S.,
N.C., M.T.M., J.D., A.B., C.E.K., W.R.W., J.C.G.), Genetics (M.D.R.), and
Medicine (D.R.), Perelman School of Medicine (A.C., M.S.Y., H.S., A.B., C.E.K.,
W.R.W., J.C.G.), University of Pennsylvania, 3400 Civic Center Blvd,
Philadelphia, PA 19104; Department of Radiology, Loyola University Medical
Center, Maywood, Ill (A.D.G.); Department of Information Services, University of
Pennsylvania, Philadelphia, Pa (A.E.); and Leonard Davis Institute of Health
Economics, University of Pennsylvania, Philadelphia, Pa (A.B.)
| | - Matthew T. MacLean
- From the Departments of Bioengineering (M.S.Y.), Radiology (H.S.,
N.C., M.T.M., J.D., A.B., C.E.K., W.R.W., J.C.G.), Genetics (M.D.R.), and
Medicine (D.R.), Perelman School of Medicine (A.C., M.S.Y., H.S., A.B., C.E.K.,
W.R.W., J.C.G.), University of Pennsylvania, 3400 Civic Center Blvd,
Philadelphia, PA 19104; Department of Radiology, Loyola University Medical
Center, Maywood, Ill (A.D.G.); Department of Information Services, University of
Pennsylvania, Philadelphia, Pa (A.E.); and Leonard Davis Institute of Health
Economics, University of Pennsylvania, Philadelphia, Pa (A.B.)
| | - Jeffrey Duda
- From the Departments of Bioengineering (M.S.Y.), Radiology (H.S.,
N.C., M.T.M., J.D., A.B., C.E.K., W.R.W., J.C.G.), Genetics (M.D.R.), and
Medicine (D.R.), Perelman School of Medicine (A.C., M.S.Y., H.S., A.B., C.E.K.,
W.R.W., J.C.G.), University of Pennsylvania, 3400 Civic Center Blvd,
Philadelphia, PA 19104; Department of Radiology, Loyola University Medical
Center, Maywood, Ill (A.D.G.); Department of Information Services, University of
Pennsylvania, Philadelphia, Pa (A.E.); and Leonard Davis Institute of Health
Economics, University of Pennsylvania, Philadelphia, Pa (A.B.)
| | - Ameena Elahi
- From the Departments of Bioengineering (M.S.Y.), Radiology (H.S.,
N.C., M.T.M., J.D., A.B., C.E.K., W.R.W., J.C.G.), Genetics (M.D.R.), and
Medicine (D.R.), Perelman School of Medicine (A.C., M.S.Y., H.S., A.B., C.E.K.,
W.R.W., J.C.G.), University of Pennsylvania, 3400 Civic Center Blvd,
Philadelphia, PA 19104; Department of Radiology, Loyola University Medical
Center, Maywood, Ill (A.D.G.); Department of Information Services, University of
Pennsylvania, Philadelphia, Pa (A.E.); and Leonard Davis Institute of Health
Economics, University of Pennsylvania, Philadelphia, Pa (A.B.)
| | - Arijitt Borthakur
- From the Departments of Bioengineering (M.S.Y.), Radiology (H.S.,
N.C., M.T.M., J.D., A.B., C.E.K., W.R.W., J.C.G.), Genetics (M.D.R.), and
Medicine (D.R.), Perelman School of Medicine (A.C., M.S.Y., H.S., A.B., C.E.K.,
W.R.W., J.C.G.), University of Pennsylvania, 3400 Civic Center Blvd,
Philadelphia, PA 19104; Department of Radiology, Loyola University Medical
Center, Maywood, Ill (A.D.G.); Department of Information Services, University of
Pennsylvania, Philadelphia, Pa (A.E.); and Leonard Davis Institute of Health
Economics, University of Pennsylvania, Philadelphia, Pa (A.B.)
| | - Marylyn D. Ritchie
- From the Departments of Bioengineering (M.S.Y.), Radiology (H.S.,
N.C., M.T.M., J.D., A.B., C.E.K., W.R.W., J.C.G.), Genetics (M.D.R.), and
Medicine (D.R.), Perelman School of Medicine (A.C., M.S.Y., H.S., A.B., C.E.K.,
W.R.W., J.C.G.), University of Pennsylvania, 3400 Civic Center Blvd,
Philadelphia, PA 19104; Department of Radiology, Loyola University Medical
Center, Maywood, Ill (A.D.G.); Department of Information Services, University of
Pennsylvania, Philadelphia, Pa (A.E.); and Leonard Davis Institute of Health
Economics, University of Pennsylvania, Philadelphia, Pa (A.B.)
| | - Daniel Rader
- From the Departments of Bioengineering (M.S.Y.), Radiology (H.S.,
N.C., M.T.M., J.D., A.B., C.E.K., W.R.W., J.C.G.), Genetics (M.D.R.), and
Medicine (D.R.), Perelman School of Medicine (A.C., M.S.Y., H.S., A.B., C.E.K.,
W.R.W., J.C.G.), University of Pennsylvania, 3400 Civic Center Blvd,
Philadelphia, PA 19104; Department of Radiology, Loyola University Medical
Center, Maywood, Ill (A.D.G.); Department of Information Services, University of
Pennsylvania, Philadelphia, Pa (A.E.); and Leonard Davis Institute of Health
Economics, University of Pennsylvania, Philadelphia, Pa (A.B.)
| | - Charles E. Kahn
- From the Departments of Bioengineering (M.S.Y.), Radiology (H.S.,
N.C., M.T.M., J.D., A.B., C.E.K., W.R.W., J.C.G.), Genetics (M.D.R.), and
Medicine (D.R.), Perelman School of Medicine (A.C., M.S.Y., H.S., A.B., C.E.K.,
W.R.W., J.C.G.), University of Pennsylvania, 3400 Civic Center Blvd,
Philadelphia, PA 19104; Department of Radiology, Loyola University Medical
Center, Maywood, Ill (A.D.G.); Department of Information Services, University of
Pennsylvania, Philadelphia, Pa (A.E.); and Leonard Davis Institute of Health
Economics, University of Pennsylvania, Philadelphia, Pa (A.B.)
| | | | | |
Collapse
|
50
|
Rahim A, Khatoon R, Khan TA, Syed K, Khan I, Khalid T, Khalid B. Artificial intelligence-powered dentistry: Probing the potential, challenges, and ethicality of artificial intelligence in dentistry. Digit Health 2024; 10:20552076241291345. [PMID: 39539720 PMCID: PMC11558748 DOI: 10.1177/20552076241291345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Healthcare amelioration is exponential to technological advancement. In the recent era of automation, the consolidation of artificial intelligence (AI) in dentistry has rendered transformation in oral healthcare from a hardware-centric approach to a software-centric approach, leading to enhanced efficiency and improved educational and clinical outcomes. Objectives The aim of this narrative overview is to extend the succinct of the major events and innovations that led to the creation of modern-day AI and dentistry and the applicability of the former in dentistry. This article also prompts oral healthcare workers to endeavor a liable and optimal approach for effective incorporation of AI technology into their practice to promote oral health by exploring the potentials, constraints, and ethical considerations of AI in dentistry. Methods A comprehensive approach for searching the white and grey literature was carried out to collect and assess the data on AI, its use in dentistry, and the associated challenges and ethical concerns. Results AI in dentistry is still in its evolving phase with paramount applicabilities relevant to risk prediction, diagnosis, decision-making, prognosis, tailored treatment plans, patient management, and academia as well as the associated challenges and ethical concerns in its implementation. Conclusion The upsurging advancements in AI have resulted in transformations and promising outcomes across all domains of dentistry. In futurity, AI may be capable of executing a multitude of tasks in the domain of oral healthcare, at the level of or surpassing the ability of mankind. However, AI could be of significant benefit to oral health only if it is utilized under responsibility, ethicality and universality.
Collapse
Affiliation(s)
- Abid Rahim
- Sardar Begum Dental College, Gandhara University, Peshawar, Pakistan
| | - Rabia Khatoon
- Sardar Begum Dental College, Gandhara University, Peshawar, Pakistan
| | - Tahir Ali Khan
- Sardar Begum Dental College, Gandhara University, Peshawar, Pakistan
| | - Kawish Syed
- Sardar Begum Dental College, Gandhara University, Peshawar, Pakistan
| | - Ibrahim Khan
- Sardar Begum Dental College, Gandhara University, Peshawar, Pakistan
| | - Tamsal Khalid
- Sardar Begum Dental College, Gandhara University, Peshawar, Pakistan
| | - Balaj Khalid
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|