1
|
Liu F, Tang J, Li T, Zhang Q. The microRNA miR482 regulates NBS-LRR genes in response to ALT1 infection in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112078. [PMID: 38556113 DOI: 10.1016/j.plantsci.2024.112078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Plants are frequently attacked by a variety of pathogens and thus have evolved a series of defense mechanisms, one important mechanism is resistance gene (R gene)-mediated disease resistance, but its expression is tightly regulated. NBS-LRR genes are the largest gene family of R genes. microRNAs (miRNAs) target to a number of NBS-LRR genes and trigger the production of phased small interfering RNAs (phasiRNAs) from these transcripts. phasiRNAs cis or trans regulate NBS-LRR genes, which can result in the repression of R gene expression. In this study, we screened for upregulated miR482 in the susceptible apple cultivar 'Golden Delicious' (GD) after inoculation with the fungal pathogen Alternaria alternata f. sp. mali (ALT1). Additionally, through combined degradome sequencing, we identified a gene targeted by miR482, named MdTNL1, a gene encoding a TIR-NBS-LRR (Toll/interleukin1 receptor-nucleotide binding site-leucine-rich repeat) protein. This gene exhibited a significant down-regulation post ALT1 inoculation, suggesting an impact on gene expression mediated by miRNA regulation. miR482 could cleave MdTNL1 and generate phasiRNAs at the cleavage site. We found that overexpression of miR482 inhibited the expression of MdTNL1 and thus reduced the disease resistance of GD, while silencing of miR482 increased the expression of MdTNL1 and thus improved the disease resistance of GD. This work elucidates key mechanisms underlying the immune response to Alternaria infection in apple. Identification of the resistance genes involved will enable molecular breeding for prevention and control of Alternaria leaf spot disease in this important fruit crop.
Collapse
Affiliation(s)
- Feiyu Liu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Jinqi Tang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China.
| |
Collapse
|
2
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|
3
|
Patra GK, Gupta D, Rout GR, Panda SK. Role of long non coding RNA in plants under abiotic and biotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:96-110. [PMID: 36399914 DOI: 10.1016/j.plaphy.2022.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Evolutionary processes have evolved plants to cope with several different natural stresses. Basic physiological activities of crop plants are significantly harmed by these stresses, reducing productivity and eventually leading to death. The recent advancements in high-throughput sequencing of transcriptome and expression profiling with NGS techniques lead to the innovation of various RNAs which do not code for proteins, more specifically long non-coding RNAs (lncRNAs), undergirding regulate growth, development, and the plant defence mechanism transcriptionally under stress situations. LncRNAs are a diverse set of RNAs that play key roles in various biological processes at the level of transcription, post-transcription, and epigenetics. These are thought to serve crucial functions in plant immunity and response to changes in the environment. In plants, however, just a few lncRNAs have been functionally identified. In this review, we will address recent advancements in comprehending lncRNA regulatory functions, focusing on the expanding involvement of lncRNAs in modulating environmental stress responsiveness in plants.
Collapse
Affiliation(s)
- Gyanendra K Patra
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, 751 003, Odisha, India
| | - Divya Gupta
- School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer, 305817, Rajasthan, India
| | - Gyana Ranjan Rout
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, 751 003, Odisha, India
| | - Sanjib Kumar Panda
- School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
4
|
Qing Y, Zheng Y, Mlotshwa S, Smith HN, Wang X, Zhai X, van der Knaap E, Wang Y, Fei Z. Dynamically expressed small RNAs, substantially driven by genomic structural variants, contribute to transcriptomic changes during tomato domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1536-1550. [PMID: 35514123 DOI: 10.1111/tpj.15798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Tomato has undergone extensive selections during domestication. Recent progress has shown that genomic structural variants (SVs) have contributed to gene expression dynamics during tomato domestication, resulting in changes of important traits. Here, we performed comprehensive analyses of small RNAs (sRNAs) from nine representative tomato accessions. We demonstrate that SVs substantially contribute to the dynamic expression of the three major classes of plant sRNAs: microRNAs (miRNAs), phased secondary short interfering RNAs (phasiRNAs), and 24-nucleotide heterochromatic siRNAs (hc-siRNAs). Changes in the abundance of phasiRNAs and 24-nucleotide hc-siRNAs likely contribute to the alteration of mRNA gene expression in cis during tomato domestication, particularly for genes associated with biotic and abiotic stress tolerance. We also observe that miRNA expression dynamics are associated with imprecise processing, alternative miRNA-miRNA* selections, and SVs. SVs mainly affect the expression of less-conserved miRNAs that do not have established regulatory functions or low abundant members in highly expressed miRNA families. Our data highlight different selection pressures on miRNAs compared to phasiRNAs and 24-nucleotide hc-siRNAs. Our findings provide insights into plant sRNA evolution as well as SV-based gene regulation during crop domestication. Furthermore, our dataset provides a rich resource for mining the sRNA regulatory network in tomato.
Collapse
Affiliation(s)
- You Qing
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Yi Zheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | | | - Heather N Smith
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39759, USA
| | - Xin Wang
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Xuyang Zhai
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Horticulture, University of Georgia, Athens, GA, 30602, USA
| | - Ying Wang
- Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39759, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
5
|
Jyothsna S, Alagu M. Role of phasiRNAs in plant-pathogen interactions: molecular perspectives and bioinformatics tools. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:947-961. [PMID: 35722509 PMCID: PMC9203634 DOI: 10.1007/s12298-022-01189-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/01/2022] [Accepted: 05/18/2022] [Indexed: 05/03/2023]
Abstract
The genome of an organism is regulated in concert with the organized action of various genetic regulators at different hierarchical levels. Small non-coding RNAs are one of these regulators, among which microRNAs (miRNAs), a distinguished sRNA group with decisive functions in the development, growth and stress-responsive activities of both plants as well as animals, are keenly explored over a good number of years. Recent studies in plants revealed that apart from the silencing activity exhibited by miRNAs on their targets, miRNAs of specific size and structural features can direct the phasing pattern of their target loci to form phased secondary small interfering RNAs (phasiRNAs). These trigger-miRNAs were identified to target both coding and long non-coding RNAs that act as potent phasiRNA precursors or PHAS loci. The phasiRNAs produced thereby exhibit a role in enhancing further downstream regulation either on their own precursors or on those transcripts that are distinct from their genetic source of origin. Hence, these tiny regulators can stimulate an elaborative cascade of interacting RNA networks via cis and trans-regulatory mechanisms. Our review focuses on the comprehensive understanding of phasiRNAs and their trigger miRNAs, by giving much emphasis on their role in the regulation of plant defense responses, together with a summary of the computational tools available for the prediction of the same.
Collapse
Affiliation(s)
- S. Jyothsna
- Department of Genomic Science, Central University of Kerala, Periye, Kasaragod, Kerala 671316 India
| | - Manickavelu Alagu
- Department of Genomic Science, Central University of Kerala, Periye, Kasaragod, Kerala 671316 India
| |
Collapse
|
6
|
Srivastava S, Suprasanna P. MicroRNAs: Tiny, powerful players of metal stress responses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:928-938. [PMID: 34246107 DOI: 10.1016/j.plaphy.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/14/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Metal contamination of the environment is a widespread problem threatening sustainable and safe crop production. Physio-biochemical and molecular mechanisms of plant responses to metal exposure have been studied to establish the best possible agronomical or biotechnological methods to tackle metal contamination. Metal stress tolerance is regulated by several molecular effectors among which microRNAs are one of the key master regulators of plant growth and stress responses in plants. MicroRNAs are known to coordinate multitude of plant responses to metal stress through antioxidant functions, root growth, hormonal signalling, transcription factors and metal transporters. The present review discusses integrative functions of microRNAs in the regulation of metal stress in plants, which will be useful for engineering stress tolerance traits for improved plant growth and productivity in metal stressed situations.
Collapse
Affiliation(s)
- Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, UP, India.
| | - Penna Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, Maharashtra, India
| |
Collapse
|
7
|
Qiao Y, Xia R, Zhai J, Hou Y, Feng L, Zhai Y, Ma W. Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:265-288. [PMID: 34077241 DOI: 10.1146/annurev-phyto-121520-023514] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host-pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host-pathogen interface are discussed.
Collapse
Affiliation(s)
- Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou 510640, China
| | - Jixian Zhai
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Li Feng
- School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zhai
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK;
| |
Collapse
|
8
|
Dziegielewski W, Ziolkowski PA. License to Regulate: Noncoding RNA Special Agents in Plant Meiosis and Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:662185. [PMID: 34489987 PMCID: PMC8418119 DOI: 10.3389/fpls.2021.662185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The complexity of the subcellular processes that take place during meiosis requires a significant remodeling of cellular metabolism and dynamic changes in the organization of chromosomes and the cytoskeleton. Recently, investigations of meiotic transcriptomes have revealed additional noncoding RNA factors (ncRNAs) that directly or indirectly influence the course of meiosis. Plant meiosis is the point at which almost all known noncoding RNA-dependent regulatory pathways meet to influence diverse processes related to cell functioning and division. ncRNAs have been shown to prevent transposon reactivation, create germline-specific DNA methylation patterns, and affect the expression of meiosis-specific genes. They can also influence chromosome-level processes, including the stimulation of chromosome condensation, the definition of centromeric chromatin, and perhaps even the regulation of meiotic recombination. In many cases, our understanding of the mechanisms underlying these processes remains limited. In this review, we will examine how the different functions of each type of ncRNA have been adopted in plants, devoting attention to both well-studied examples and other possible functions about which we can only speculate for now. We will also briefly discuss the most important challenges in the investigation of ncRNAs in plant meiosis.
Collapse
Affiliation(s)
| | - Piotr A. Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
9
|
Regmi R, Newman TE, Kamphuis LG, Derbyshire MC. fIdentification of B. napus small RNAs responsive to infection by a necrotrophic pathogen. BMC PLANT BIOLOGY 2021; 21:366. [PMID: 34380425 PMCID: PMC8356391 DOI: 10.1186/s12870-021-03148-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/27/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Small RNAs are short non-coding RNAs that are key gene regulators controlling various biological processes in eukaryotes. Plants may regulate discrete sets of sRNAs in response to pathogen attack. Sclerotinia sclerotiorum is an economically important pathogen affecting hundreds of plant species, including the economically important oilseed B. napus. However, there are limited studies on how regulation of sRNAs occurs in the S. sclerotiorum and B. napus pathosystem. RESULTS We identified different classes of sRNAs from B. napus using high throughput sequencing of replicated mock and infected samples at 24 h post-inoculation (HPI). Overall, 3999 sRNA loci were highly expressed, of which 730 were significantly upregulated during infection. These 730 up-regulated sRNAs targeted 64 genes, including disease resistance proteins and transcriptional regulators. A total of 73 conserved miRNA families were identified in our dataset. Degradome sequencing identified 2124 cleaved mRNA products from these miRNAs from combined mock and infected samples. Among these, 50 genes were specific to infection. Altogether, 20 conserved miRNAs were differentially expressed and 8 transcripts were cleaved by the differentially expressed miRNAs miR159, miR5139, and miR390, suggesting they may have a role in the S. sclerotiorum response. A miR1885-triggered disease resistance gene-derived secondary sRNA locus was also identified and verified with degradome sequencing. We also found further evidence for silencing of a plant immunity related ethylene response factor gene by a novel sRNA using 5'-RACE and RT-qPCR. CONCLUSIONS The findings in this study expand the framework for understanding the molecular mechanisms of the S. sclerotiorum and B. napus pathosystem at the sRNA level.
Collapse
Affiliation(s)
- Roshan Regmi
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia.
| | - Toby E Newman
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Floreat, WA, 6014, Australia
| | - Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
10
|
Yadava P, Tamim S, Zhang H, Teng C, Zhou X, Meyers BC, Walbot V. Transgenerational conditioned male fertility of HD-ZIP IV transcription factor mutant ocl4: impact on 21-nt phasiRNA accumulation in pre-meiotic maize anthers. PLANT REPRODUCTION 2021; 34:117-129. [PMID: 33689028 DOI: 10.1007/s00497-021-00406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Maize Outer cell layer 4 (ocl4) encodes an HD-ZIP IV transcription factor required for robust male fertility and 21-nt phasiRNA biogenesis. ocl4 fertility is favored in warm conditions, and phasiRNAs are partially restored. Environment-sensitive male-sterile plants have been described before and can result from different molecular mechanisms and biological processes, but putative environment-conditioned, transgenerational rescue of their male fertility is a rather new mystery. Here, we report a derivative line of the male-sterile outer cell layer 4 (ocl4) mutant of maize, in which fertility was restored and perpetuated over several generations. Conditioned fertile ocl4 anthers exhibit the anatomical abnormality of a partially duplicated endothecial layer, just like their sterile counterparts. We profiled the dynamics of phased, small interfering RNAs (phasiRNAs) during pre-meiotic development in fully sterile and various grades of semi-fertile ocl4 anthers. The conditioned fertile anthers accumulated significantly higher 21-nt phasiRNAs compared to ocl4 sterile samples, suggesting a partial restoration of phasiRNAs in conditioned fertility. We found that the biogenesis of 21-nt phasiRNAs is largely dependent on Ocl4 at three key steps: (1) production of PHAS precursor transcripts, (2) expression of miR2118 that modulates precursor processing, and (3) accumulation of 21-nt phasiRNAs.
Collapse
Affiliation(s)
- Pranjal Yadava
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Indian Council of Agricultural Research-, Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Saleh Tamim
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| | - Han Zhang
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Chong Teng
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St. Louis, MO, 63132, USA
| | - Xue Zhou
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St. Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri, 52 Agriculture Building, Columbia, MO, 65201, USA
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Degradome sequencing-based identification of phasiRNAs biogenesis pathways in Oryza sativa. BMC Genomics 2021; 22:93. [PMID: 33516199 PMCID: PMC7847607 DOI: 10.1186/s12864-021-07406-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The microRNAs(miRNA)-derived secondary phased small interfering RNAs (phasiRNAs) participate in post-transcriptional gene silencing and play important roles in various bio-processes in plants. In rice, two miRNAs, miR2118 and miR2275, were mainly responsible for triggering of 21-nt and 24-nt phasiRNAs biogenesis, respectively. However, relative fewer phasiRNA biogenesis pathways have been discovered in rice compared to other plant species, which limits the comprehensive understanding of phasiRNA biogenesis and the miRNA-derived regulatory network. RESULTS In this study, we performed a systematical searching for phasiRNA biogenesis pathways in rice. As a result, five novel 21-nt phasiRNA biogenesis pathways and five novel 24-nt phasiRNA biogenesis pathways were identified. Further investigation of their regulatory function revealed that eleven novel phasiRNAs in 21-nt length recognized forty-one target genes. Most of these genes were involved in the growth and development of rice. In addition, five novel 24-nt phasiRNAs targeted to the promoter of an OsCKI1 gene and thereafter resulted in higher level of methylation in panicle, which implied their regulatory function in transcription of OsCKI1,which acted as a regulator of rice development. CONCLUSIONS These results substantially extended the information of phasiRNA biogenesis pathways and their regulatory function in rice.
Collapse
|
12
|
Sanan-Mishra N, Abdul Kader Jailani A, Mandal B, Mukherjee SK. Secondary siRNAs in Plants: Biosynthesis, Various Functions, and Applications in Virology. FRONTIERS IN PLANT SCIENCE 2021; 12:610283. [PMID: 33737942 PMCID: PMC7960677 DOI: 10.3389/fpls.2021.610283] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/18/2021] [Indexed: 05/13/2023]
Abstract
The major components of RNA silencing include both transitive and systemic small RNAs, which are technically called secondary sRNAs. Double-stranded RNAs trigger systemic silencing pathways to negatively regulate gene expression. The secondary siRNAs generated as a result of transitive silencing also play a substantial role in gene silencing especially in antiviral defense. In this review, we first describe the discovery and pathways of transitivity with emphasis on RNA-dependent RNA polymerases followed by description on the short range and systemic spread of silencing. We also provide an in-depth view on the various size classes of secondary siRNAs and their different roles in RNA silencing including their categorization based on their biogenesis. The other regulatory roles of secondary siRNAs in transgene silencing, virus-induced gene silencing, transitivity, and trans-species transfer have also been detailed. The possible implications and applications of systemic silencing and the different gene silencing tools developed are also described. The details on mobility and roles of secondary siRNAs derived from viral genome in plant defense against the respective viruses are presented. This entails the description of other compatible plant-virus interactions and the corresponding small RNAs that determine recovery from disease symptoms, exclusion of viruses from shoot meristems, and natural resistance. The last section presents an overview on the usefulness of RNA silencing for management of viral infections in crop plants.
Collapse
Affiliation(s)
- Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - A. Abdul Kader Jailani
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Sunil K. Mukherjee
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Sunil K. Mukherjee,
| |
Collapse
|
13
|
Vivek AT, Kumar S. Computational methods for annotation of plant regulatory non-coding RNAs using RNA-seq. Brief Bioinform 2020; 22:6041165. [PMID: 33333550 DOI: 10.1093/bib/bbaa322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Plant transcriptome encompasses numerous endogenous, regulatory non-coding RNAs (ncRNAs) that play a major biological role in regulating key physiological mechanisms. While studies have shown that ncRNAs are extremely diverse and ubiquitous, the functions of the vast majority of ncRNAs are still unknown. With ever-increasing ncRNAs under study, it is essential to identify, categorize and annotate these ncRNAs on a genome-wide scale. The use of high-throughput RNA sequencing (RNA-seq) technologies provides a broader picture of the non-coding component of transcriptome, enabling the comprehensive identification and annotation of all major ncRNAs across samples. However, the detection of known and emerging class of ncRNAs from RNA-seq data demands complex computational methods owing to their unique as well as similar characteristics. Here, we discuss major plant endogenous, regulatory ncRNAs in an RNA sample followed by computational strategies applied to discover each class of ncRNAs using RNA-seq. We also provide a collection of relevant software packages and databases to present a comprehensive bioinformatics toolbox for plant ncRNA researchers. We assume that the discussions in this review will provide a rationale for the discovery of all major categories of plant ncRNAs.
Collapse
Affiliation(s)
- A T Vivek
- National Institute of Plant Genome Research in New Delhi, India
| | - Shailesh Kumar
- National Institute of Plant Genome Research in New Delhi
| |
Collapse
|
14
|
Müller SY, Matthews NE, Valli AA, Baulcombe DC. The small RNA locus map for Chlamydomonas reinhardtii. PLoS One 2020; 15:e0242516. [PMID: 33211749 PMCID: PMC7676726 DOI: 10.1371/journal.pone.0242516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022] Open
Abstract
Small (s)RNAs play crucial roles in the regulation of gene expression and genome stability across eukaryotes where they direct epigenetic modifications, post-transcriptional gene silencing, and defense against both endogenous and exogenous viruses. It is known that Chlamydomonas reinhardtii, a well-studied unicellular green algae species, possesses sRNA-based mechanisms that are distinct from those of land plants. However, definition of sRNA loci and further systematic classification is not yet available for this or any other algae. Here, using data-driven machine learning approaches including Multiple Correspondence Analysis (MCA) and clustering, we have generated a comprehensively annotated and classified sRNA locus map for C. reinhardtii. This map shows some common characteristics with higher plants and animals, but it also reveals distinct features. These results are consistent with the idea that there was diversification in sRNA mechanisms after the evolutionary divergence of algae from higher plant lineages.
Collapse
Affiliation(s)
- Sebastian Y. Müller
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas E. Matthews
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrian A. Valli
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David C. Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Liu Y, Teng C, Xia R, Meyers BC. PhasiRNAs in Plants: Their Biogenesis, Genic Sources, and Roles in Stress Responses, Development, and Reproduction. THE PLANT CELL 2020; 32:3059-3080. [PMID: 32817252 PMCID: PMC7534485 DOI: 10.1105/tpc.20.00335] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 05/08/2023]
Abstract
Phased secondary small interfering RNAs (phasiRNAs) constitute a major category of small RNAs in plants, but most of their functions are still poorly defined. Some phasiRNAs, known as trans-acting siRNAs, are known to target complementary mRNAs for degradation and to function in development. However, the targets or biological roles of other phasiRNAs remain speculative. New insights into phasiRNA biogenesis, their conservation, and their variation across the flowering plants continue to emerge due to the increased availability of plant genomic sequences, deeper and more sophisticated sequencing approaches, and improvements in computational biology and biochemical/molecular/genetic analyses. In this review, we survey recent progress in phasiRNA biology, with a particular focus on two classes associated with male reproduction: 21-nucleotide (accumulate early in anther ontogeny) and 24-nucloetide (produced in somatic cells during meiosis) phasiRNAs. We describe phasiRNA biogenesis, function, and evolution and define the unanswered questions that represent topics for future research.
Collapse
Affiliation(s)
- Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Chong Teng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510640, China
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, Missouri 65211
| |
Collapse
|
16
|
Zhao T, Tao X, Li M, Gao M, Chen J, Zhou N, Mei G, Fang L, Ding L, Zhou B, Zhang T, Guan X. Role of phasiRNAs from two distinct phasing frames of GhMYB2 loci in cis- gene regulation in the cotton genome. BMC PLANT BIOLOGY 2020; 20:219. [PMID: 32414380 PMCID: PMC7227086 DOI: 10.1186/s12870-020-02430-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/05/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Phased small interfering RNA (phasiRNA) is primarily derived from the 22-nt miRNA targeting loci. GhMYB2, a gene with potential roles in cotton fiber cell fate determination, is a target gene of miR828 and miR858 in the generation of phasiRNAs. RESULTS In the presented work, through the evaluation of phasing scores and phasiRNA distribution pattern, we found that phasiRNAs from GhMYB2 were derived from the 3' cleavage fragments of 22-nt miR828 and 21-nt miR858 respectively. These two miRNA targeting sites initiated two phasing frames on transcripts of one locus. By means of RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE), we further demonstrated that phasiRNAs derived from the two phasing frames played a role in cis-regulation of GhMYB2. The phasiRNAs derived from GhMYB2 were expressed in the somatic tissues, especially in anther and hypocotyl. We further employed our previous small RNA sequencing data as well as the degradome data of cotton fiber bearing ovules, anthers, hypocotyls and embryogenic calli tissues published in public databases, to validate the expression, phasing pattern and functions of phasiRNAs. CONCLUSIONS The presenting research provide insights of the molecular mechanism of phasiRNAs in regulation of GhMYB2 loci.
Collapse
Affiliation(s)
- Ting Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Xiaoyuan Tao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Menglin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Mengtao Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Jiedan Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Na Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Gaofu Mei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Lei Fang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Linyun Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Tianzhen Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Xueying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu China
| |
Collapse
|
17
|
Lunardon A, Johnson NR, Hagerott E, Phifer T, Polydore S, Coruh C, Axtell MJ. Integrated annotations and analyses of small RNA-producing loci from 47 diverse plants. Genome Res 2020; 30:497-513. [PMID: 32179590 PMCID: PMC7111516 DOI: 10.1101/gr.256750.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/27/2020] [Indexed: 01/25/2023]
Abstract
Plant endogenous small RNAs (sRNAs) are important regulators of gene expression. There are two broad categories of plant sRNAs: microRNAs (miRNAs) and endogenous short interfering RNAs (siRNAs). MicroRNA loci are relatively well-annotated but compose only a small minority of the total sRNA pool; siRNA locus annotations have lagged far behind. Here, we used a large data set of published and newly generated sRNA sequencing data (1333 sRNA-seq libraries containing more than 20 billion reads) and a uniform bioinformatic pipeline to produce comprehensive sRNA locus annotations of 47 diverse plants, yielding more than 2.7 million sRNA loci. The two most numerous classes of siRNA loci produced mainly 24- and 21-nucleotide (nt) siRNAs, respectively. Most often, 24-nt-dominated siRNA loci occurred in intergenic regions, especially at the 5′-flanking regions of protein-coding genes. In contrast, 21-nt-dominated siRNA loci were most often derived from double-stranded RNA precursors copied from spliced mRNAs. Genic 21-nt-dominated loci were especially common from disease resistance genes, including from a large number of monocots. Individual siRNA sequences of all types showed very little conservation across species, whereas mature miRNAs were more likely to be conserved. We developed a web server where our data and several search and analysis tools are freely accessible.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nathan R Johnson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Emily Hagerott
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Tamia Phifer
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Seth Polydore
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ceyda Coruh
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael J Axtell
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
18
|
Lei X, Liu B. Tapetum-Dependent Male Meiosis Progression in Plants: Increasing Evidence Emerges. FRONTIERS IN PLANT SCIENCE 2020; 10:1667. [PMID: 32010157 PMCID: PMC6979054 DOI: 10.3389/fpls.2019.01667] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/27/2019] [Indexed: 05/28/2023]
Abstract
In higher plants, male meiosis is a key process during microsporogenesis and is crucial for male fertility and seed set. Meiosis involves a highly dynamic organization of chromosomes and cytoskeleton and specifically takes place within sexual cells. However, studies in multiple plant species have suggested that the normal development of tapetum, the somatic cell layer surrounding the developing male meiocytes, is indispensable for the completion of the male meiotic cell cycle. Disrupted tapetum development causes alterations in the expression of a large range of genes involved in male reproduction. Moreover, recent experiments suggest that small RNAs (sRNAs) present in the anthers, including microRNAs (miRNAs) and phased, secondary, small interfering RNAs (phasiRNAs), play a potential but important role in controlling male meiosis, either by influencing the expression of meiotic genes in the meiocytes or through other unclear mechanisms, supporting the hypothesis that male meiosis is non-cell autonomously regulated. In this mini review, we summarize the recorded meiotic defects that occur in plants with defective tapetum development in both Arabidopsis and crops. Thereafter, we outline the latest understanding on the molecular mechanisms that potentially underpin the tapetum-dependent regulation of male meiosis, and we especially discuss the regulatory role of sRNAs. At the end, we propose several outstanding questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Xiaoning Lei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Bing Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
- Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
19
|
Yu L, Guo R, Jiang Y, Ye X, Yang Z, Meng Y, Shao C. Identification of novel phasiRNAs loci on long non-coding RNAs in Arabidopsis thaliana. Genomics 2019; 111:1668-1675. [PMID: 30458274 DOI: 10.1016/j.ygeno.2018.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 01/28/2023]
Abstract
Long non-coding RNAs (lncRNAs) are the "dark matters"involved in gene regulation with complex mechanisms. However, the functions of most lncRNAs remain to be determined. Our previous work revealed a massive number of degradome-supported cleavage signatures on Arabidopsis lncRNAs. Some of them have been confirmed associated with miRNAs-like sRNAs production, while others without long stem structure remain unexplored. A systematical search for phasiRNAs generating ability of these lncRNAs was conducted. Eight novel small RNA triggered lncRNA-phasiRNA pathways were discovered and three of them were found to be conserved in Arabidopsis, Oryza sativa, Glycine max and Gossypium hirsutum. Besides, Five novel ta-siRNAs derived from these lncRNAs were further identified to be involved in the regulation of plant development, stress responses and aromatic amino acids synthesis. These results substantially expanded the gene regulation mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Lan Yu
- College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Rongkai Guo
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yeqin Jiang
- College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Xinghuo Ye
- College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Zhihong Yang
- College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.
| | - Chaogang Shao
- College of Life Sciences, Huzhou University, Huzhou 313000, PR China.
| |
Collapse
|
20
|
Genome-Wide Analysis of Cotton miRNAs During Whitefly Infestation Offers New Insights into Plant-Herbivore Interaction. Int J Mol Sci 2019; 20:ijms20215357. [PMID: 31661835 PMCID: PMC6861988 DOI: 10.3390/ijms20215357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 01/10/2023] Open
Abstract
Although the regulatory function of miRNAs and their targets have been characterized in model plants, a possible underlying role in the cotton response to herbivore infestation has not been determined. To investigate this, we performed small RNA and degradome sequencing between resistant and susceptible cotton cultivar following infestation with the generalist herbivore whitefly. In total, the 260 miRNA families and 241 targets were identified. Quantitative-PCR analysis revealed that several miRNAs and their corresponding targets exhibited dynamic spatio-temporal expression patterns. Moreover, 17 miRNA precursors were generated from 29 long intergenic non-coding RNA (lincRNA) transcripts. The genome-wide analysis also led to the identification of 85 phased small interfering RNA (phasiRNA) loci. Among these, nine PHAS genes were triggered by miR167, miR390, miR482a, and two novel miRNAs, including those encoding a leucine-rich repeat (LRR) disease resistance protein, an auxin response factor (ARF) and MYB transcription factors. Through combined modeling and experimental data, we explored and expanded the miR390-tasiARF cascade during the cotton response to whitefly. Virus-induced gene silencing (VIGS) of ARF8 from miR390 target in whitefly-resistant cotton plants increased auxin and jasmonic acid (JA) accumulation, resulting in increased tolerance to whitefly infestation. These results highlight the provides a useful transcriptomic resource for plant-herbivore interaction.
Collapse
|
21
|
Hunt M, Banerjee S, Surana P, Liu M, Fuerst G, Mathioni S, Meyers BC, Nettleton D, Wise RP. Small RNA discovery in the interaction between barley and the powdery mildew pathogen. BMC Genomics 2019; 20:610. [PMID: 31345162 PMCID: PMC6657096 DOI: 10.1186/s12864-019-5947-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background Plants encounter pathogenic and non-pathogenic microorganisms on a nearly constant basis. Small RNAs such as siRNAs and miRNAs/milRNAs influence pathogen virulence and host defense responses. We exploited the biotrophic interaction between the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh), and its diploid host plant, barley (Hordeum vulgare) to explore fungal and plant sRNAs expressed during Bgh infection of barley leaf epidermal cells. Results RNA was isolated from four fast-neutron immune-signaling mutants and their progenitor over a time course representing key stages of Bgh infection, including appressorium formation, penetration of epidermal cells, and development of haustorial feeding structures. The Cereal Introduction (CI) 16151 progenitor carries the resistance allele Mla6, while Bgh isolate 5874 harbors the AVRa6 avirulence effector, resulting in an incompatible interaction. Parallel Analysis of RNA Ends (PARE) was used to verify sRNAs with likely transcript targets in both barley and Bgh. Bgh sRNAs are predicted to regulate effectors, metabolic genes, and translation-related genes. Barley sRNAs are predicted to influence the accumulation of transcripts that encode auxin response factors, NAC transcription factors, homeodomain transcription factors, and several splicing factors. We also identified phasing small interfering RNAs (phasiRNAs) in barley that overlap transcripts that encode receptor-like kinases (RLKs) and nucleotide-binding, leucine-rich domain proteins (NLRs). Conclusions These data suggest that Bgh sRNAs regulate gene expression in metabolism, translation-related, and pathogen effectors. PARE-validated targets of predicted Bgh milRNAs include both EKA (effectors homologous to AVRk1 and AVRa10) and CSEP (candidate secreted effector protein) families. We also identified barley phasiRNAs and miRNAs in response to Bgh infection. These include phasiRNA loci that overlap with a significant proportion of receptor-like kinases, suggesting an additional sRNA control mechanism may be active in barley leaves as opposed to predominant R-gene phasiRNA overlap in many eudicots. In addition, we identified conserved miRNAs, novel miRNA candidates, and barley genome mapped sRNAs that have PARE validated transcript targets in barley. The miRNA target transcripts are enriched in transcription factors, signaling-related proteins, and photosynthesis-related proteins. Together these results suggest both barley and Bgh control metabolism and infection-related responses via the specific accumulation and targeting of genes via sRNAs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5947-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matt Hunt
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, Iowa, 50011, USA.,Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Sagnik Banerjee
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA.,Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Priyanka Surana
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA.,Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Meiling Liu
- Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA.,Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA
| | - Greg Fuerst
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Iowa State University, Ames, Iowa, 50011, USA
| | - Sandra Mathioni
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.,Division of Plant Sciences, University of Missouri - Columbia, 52 Agriculture Lab, Columbia, MO, 65211, USA
| | - Dan Nettleton
- Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA.,Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA
| | - Roger P Wise
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, Iowa, 50011, USA. .,Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA. .,Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA. .,Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Iowa State University, Ames, Iowa, 50011, USA.
| |
Collapse
|
22
|
Abla M, Sun H, Li Z, Wei C, Gao F, Zhou Y, Feng J. Identification of miRNAs and Their Response to Cold Stress in Astragalus Membranaceus. Biomolecules 2019; 9:biom9050182. [PMID: 31083391 PMCID: PMC6572118 DOI: 10.3390/biom9050182] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Astragalus membranaceus is an important medicinal plant widely cultivated in East Asia. MicroRNAs (miRNAs) are endogenous regulatory molecules that play essential roles in plant growth, development, and the response to environmental stresses. Cold is one of the key environmental factors affecting the yield and quality of A. membranaceus, and miRNAs may mediate the gene regulation network under cold stress in A. membranaceus. To identify miRNAs and reveal their functions in cold stress response in A. membranaceus, small RNA sequencing was conducted followed by bioinformatics analysis, and quantitative real time PCR (qRT-PCR) analysis was performed to profile the expression of miRNAs under cold stress. A total of 168 conserved miRNAs belonging to 34 families and 14 putative non-conserved miRNAs were identified. Many miRNA targets were predicted and these targets were involved in diversified regulatory and metabolic pathways. By using qRT-PCR, 27 miRNAs were found to be responsive to cold stress, including 4 cold stress-induced and 17 cold-repressed conserved miRNAs, and 6 cold-induced non-conserved miRNAs. These cold-responsive miRNAs probably mediate the response to cold stress by regulating development, hormone signaling, defense, redox homeostasis, and secondary metabolism in A. membranaceus. These cold-corresponsive miRNAs may be used as the candidate genes in further molecular breeding for improving cold tolerance of A. membranaceus.
Collapse
Affiliation(s)
- Merhaba Abla
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Huigai Sun
- School of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Zhuyun Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Chunxiang Wei
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Fei Gao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
23
|
Huang J, Wang R, Dai X, Feng J, Zhang H, Zhao PX. A microRNA biogenesis-like pathway for producing phased small interfering RNA from a long non-coding RNA in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1767-1774. [PMID: 30775774 DOI: 10.1093/jxb/erz056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Phased small interfering RNAs (phasiRNAs) are a class of non-coding RNAs that perform essential functions in plants. Unlike microRNA biogenesis from a hairpin structure, the production of phasiRNAs usually requires a phase initiator and an RNA-dependent RNA polymerase (RDR) to form double-strand RNAs. By using full-length rice cDNA (KL-cDNA) to identify phasiRNA loci, we found that a putative non-coding sequence with a long hairpin structure generates the phasiRNAs, which we name Long Hairpin-structure containing non-coding RNA (LHR). The biogenesis of LHR-derived phasiRNAs was dependent on rice DCL4, but not on RDR2/6, DCL1, or DCL3. Since all of the LHR-phasiRNAs (-5p from the forward strand and -3p from the reverse strand of the dsRNAs) are mapped to the forward strand of LHR, LHR-phasiRNAs should be derived from its hairpin structure, similar to a microRNA precursor. A degradome-based validation suggested that several thylakoid-related genes were targeted by LHR-phasiRNAs. In addition, the production of LHR-phasiRNAs was completely abolished in the lhr mutant, which also exhibited decreased plant height, leaf size, and grain weight, probably through the regulation of photosynthesis. Based on our results, we propose a microRNA biogenesis-like pathway for producing phased siRNAs that expands our understanding of the current model of phased siRNA biogenesis in plants.
Collapse
Affiliation(s)
- Ji Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ruqin Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xinbin Dai
- Noble Research Institute, Ardmore, OK, USA
| | - Jiejie Feng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | |
Collapse
|
24
|
Seo E, Kim T, Park JH, Yeom SI, Kim S, Seo MK, Shin C, Choi D. Genome-wide comparative analysis in Solanaceous species reveals evolution of microRNAs targeting defense genes in Capsicum spp. DNA Res 2019; 25:561-575. [PMID: 30060137 PMCID: PMC6289781 DOI: 10.1093/dnares/dsy025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/12/2018] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) play roles in various biological processes in plants including growth, development, and disease resistance. Previous studies revealed that some plant miRNAs produce secondary small interfering RNAs (siRNAs) such as phased, secondary siRNAs (phasiRNAs), and they regulate a cascade of gene expression. We performed a genome-wide comparative analysis of miRNAs in Solanaceous species (pepper, tomato, and potato), from an evolutionary perspective. Microsynteny of miRNAs was analysed based on the genomic loci and their flanking genes and most of the well-conserved miRNA genes maintained microsynteny in Solanaceae. We identified target genes of the miRNAs via degradome analysis and found that several miRNAs target many genes encoding nucleotide-binding leucine-rich repeat (NLR) or receptor-like proteins (RLPs), which are known to be major players in defense responses. In addition, disease-resistance-associated miRNAs trigger phasiRNA production in pepper, indicating amplification of the regulation of disease-resistance gene families. Among these, miR-n033a-3p, whose target NLRs have been duplicated in pepper, targets more NLRs belonging to specific subgroup in pepper than those in potato. miRNAs targeting resistance genes might have evolved to regulate numerous targets in Solanaceae, following expansion of target resistance genes. This study provides an insight into evolutionary relationship between miRNAs and their target defense genes in plants.
Collapse
Affiliation(s)
- Eunyoung Seo
- Department of Plant Science, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Taewook Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Seon-In Yeom
- Division of Applied Life Science (BK21 Plus Program), Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seungill Kim
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Min-Ki Seo
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Chanseok Shin
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Polydore S, Lunardon A, Axtell MJ. Several phased siRNA annotation methods can frequently misidentify 24 nucleotide siRNA-dominated PHAS loci. PLANT DIRECT 2018; 2:e00101. [PMID: 31245701 PMCID: PMC6508839 DOI: 10.1002/pld3.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 05/04/2023]
Abstract
Small RNAs regulate key physiological functions in land plants. Small RNAs can be divided into two categories: microRNAs (miRNAs) and short interfering RNAs (siRNAs); siRNAs are further subdivided into transposon/repetitive region-localized heterochromatic siRNAs and phased siRNAs (phasiRNAs). PhasiRNAs are produced from the miRNA-mediated cleavage of a Pol II RNA transcript; the miRNA cleavage site provides a defined starting point from which phasiRNAs are produced in a distinctly phased pattern. 21-22 nucleotide (nt)-dominated phasiRNA-producing loci (PHAS) are well represented in all land plants to date. In contrast, 24 nt-dominated PHAS loci are known to be encoded only in monocots and are generally restricted to male reproductive tissues. Currently, only one miRNA (miR2275) is known to trigger the production of these 24 nt-dominated PHAS loci. In this study, we use stringent methodologies in order to examine whether or not 24 nt-dominated PHAS loci also exist in Arabidopsis thaliana. We find that highly expressed heterochromatic siRNAs were consistently misidentified as 24 nt-dominated PHAS loci using multiple PHAS-detecting algorithms. We also find that MIR2275 is not found in A. thaliana, and it seems to have been lost in the last common ancestor of Brassicales. Altogether, our research highlights the potential issues with widely used PHAS-detecting algorithms which may lead to false positives when trying to annotate new PHAS, especially 24 nt-dominated loci.
Collapse
Affiliation(s)
- Seth Polydore
- Genetics Ph.D. ProgramHuck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvania
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPennsylvania
| | - Alice Lunardon
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPennsylvania
| | - Michael J. Axtell
- Genetics Ph.D. ProgramHuck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvania
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPennsylvania
| |
Collapse
|
26
|
Morozov SY, Milyutina IA, Erokhina TN, Ozerova LV, Troitsky AV, Solovyev AG. TAS3 miR390-dependent loci in non-vascular land plants: towards a comprehensive reconstruction of the gene evolutionary history. PeerJ 2018; 6:e4636. [PMID: 29682420 PMCID: PMC5907777 DOI: 10.7717/peerj.4636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/28/2018] [Indexed: 01/09/2023] Open
Abstract
Trans-acting small interfering RNAs (ta-siRNAs) are transcribed from protein non-coding genomic TAS loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant non-vascular plant taxa such as Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in plant classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified charophyte alga sequences coding for SUPPRESSOR OF GENE SILENCING 3 (SGS3), which is required for generation of ta-siRNAs in plants, and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants.
Collapse
Affiliation(s)
- Sergey Y Morozov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Irina A Milyutina
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Tatiana N Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Liudmila V Ozerova
- Tsitsin Main Botanical Garden, Russian Academy of Science, Moscow, Russia
| | - Alexey V Troitsky
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
27
|
Ma W, Chen C, Liu Y, Zeng M, Meyers BC, Li J, Xia R. Coupling of microRNA-directed phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA-mediated gene silencing. THE NEW PHYTOLOGIST 2018; 217:1535-1550. [PMID: 29218722 DOI: 10.1111/nph.14934] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs) play vital regulatory roles in plant growth and development. Little is known about these small RNAs in litchi (Litchi chinensis), an economically important fruit crop widely cultivated in Southeast Asia. We profiled the litchi small RNA population with various deep-sequencing techniques and in-depth bioinformatic analyses. The genome-wide identification of miRNAs, their target genes, and phasiRNA-generating (PHAS) genes/loci showed that the function of miR482/2118 has expanded, relative to its canonical function. We also discovered that, for 29 PHAS loci, miRNA-mediated phasiRNA production was coupled with alternative splicing (AS) and alternative polyadenylation (APA). Most of these loci encoded long noncoding RNAs. An miR482/2118 targeted locus gave rise to four main transcript isoforms through AS/APA, and diverse phasiRNAs generated from these isoforms appeared to target long terminal repeat (LTR) retrotransposons and other unrelated genes. This coupling enables phasiRNA production from different exons of noncoding PHAS genes and yields diverse phasiRNA populations, both broadening and altering the range of downstream phasiRNA-regulated genes. Our results reveal the diversity of miRNA and phasiRNA in litchi, and demonstrate AS/APA as a new layer of regulation in small RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Wuqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Zeng
- Modern Education and Technology Center, South China Agricultural University, Guangzhou, 510642, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri - Columbia, 52 Agriculture Lab, Columbia, MO, 65211, USA
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
28
|
Bonar N, Liney M, Zhang R, Austin C, Dessoly J, Davidson D, Stephens J, McDougall G, Taylor M, Bryan GJ, Hornyik C. Potato miR828 Is Associated With Purple Tuber Skin and Flesh Color. FRONTIERS IN PLANT SCIENCE 2018; 9:1742. [PMID: 30619382 PMCID: PMC6297172 DOI: 10.3389/fpls.2018.01742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/08/2018] [Indexed: 05/10/2023]
Abstract
Anthocyanins are plant pigments responsible for the colors of many flowers, fruits and storage organs and have roles in abiotic and biotic stress resistance. Anthocyanins and polyphenols are bioactive compounds in plants including potato (Solanum tuberosum L.) which is the most important non-cereal crop in the world, cultivated for its tubers rich in starch and nutrients. The genetic regulation of the flavonoid biosynthetic pathway is relatively well known leading to the formation of anthocyanins. However, our knowledge of post-transcriptional regulation of anthocyanin biosynthesis is limited. There is increasing evidence that micro RNAs (miRNAs) and other small RNAs can regulate the expression level of key factors in anthocyanin production. In this study we have found strong associations between the high levels of miR828, TAS4 D4(-) and purple/red color of tuber skin and flesh. This was confirmed not only in different cultivars but in pigmented and non-pigmented sectors of the same tuber. Phytochemical analyses verified the levels of anthocyanins and polyphenols in different tissues. We showed that miR828 is able to direct cleavage of the RNA originating from Trans-acting siRNA gene 4 (TAS4) and initiate the production of phased small interfering RNAs (siRNAs) whose production depends on RNA-dependent RNA polymerase 6 (RDR6). MYB transcription factors were predicted as potential targets of miR828 and TAS4 D4(-) and their expression was characterized. MYB12 and R2R3-MYB genes showed decreased expression levels in purple skin and flesh in contrast with high levels of small RNAs in the same tissues. Moreover, we confirmed that R2R3-MYB and MYB-36284 are direct targets of the small RNAs. Overall, this study sheds light on the small RNA directed anthocyanin regulation in potato, which is an important member of the Solanaceae family.
Collapse
Affiliation(s)
- Nicola Bonar
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Michele Liney
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Ceri Austin
- Environmental and Biochemical Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Jimmy Dessoly
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Diane Davidson
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Jennifer Stephens
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Gordon McDougall
- Environmental and Biochemical Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Mark Taylor
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Glenn J. Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Csaba Hornyik
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Csaba Hornyik,
| |
Collapse
|
29
|
Abstract
Postranscriptional regulation has been widely shown to be regulated by several classes of small non-coding RNAs; most abundantly, microRNAs, which have been shown to be the first dominant class and has been widely characterized as post-transcriptional regulators. In addition to microRNAs, triggered by miRNAs, transcripts called as PHAS (or TAS) generate abundant class of small RNAs in 21-nt manner, which is a pattern formed by DICER-LIKE 4 (DCL4) processing. Although PHAS can be identified by aligning transcripts to reported PHAS in other species, the most sensitive and accurate way to discovery them is by mapping of the smallRNAs taking into account the transcript coordinates. Here, we describe a workflow that can be used for the identification PHAS and corresponding phasiRNAs in Brachypodium distachyon using publically availabe smallRNAs datasets.
Collapse
|
30
|
Yu Y, Zhou Y, Zhang Y, Chen Y. Grass phasiRNAs and male fertility. SCIENCE CHINA-LIFE SCIENCES 2017; 61:148-154. [PMID: 29052095 DOI: 10.1007/s11427-017-9166-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Recent studies have indicated that a special type of small noncoding RNAs, phased small-interfering RNAs (phasiRNAs) play crucial roles in many cellular processes of plant development. PhasiRNAs are generated from long RNA precursors at intervals of 21 or 24 nt in plants, and they are produced from both protein-coding gene and long noncoding RNA genes. Different from those in eudicots, grass phasiRNAs include a special class of small RNAs that are specifically expressed in reproductive organs. These grass phasiRNAs are associated with gametogenesis, especially with anther development and male fertility. In this review, we summarized current knowledge on these small noncoding RNAs in male germ cells and their possible biological functions and mechanisms in grass species.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanfei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuchan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yueqin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
31
|
Liu Y, Ke L, Wu G, Xu Y, Wu X, Xia R, Deng X, Xu Q. miR3954 is a trigger of phasiRNAs that affects flowering time in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:263-275. [PMID: 28749585 DOI: 10.1111/tpj.13650] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 05/27/2023]
Abstract
In plant, a few 22-nt miRNAs direct cleavages of their targets and trigger the biogenesis of phased small interfering RNAs (phasiRNAs) in plant. In this study, we characterized a miRNA triggering phasiRNAs generation, miR3954, and explored its downstream target genes and potential function. Our results demonstrated that miR3954 showed specific expression in the flowers of citrus species, and it targeted a NAC transcription factor (Cs7 g22460) and two non-coding RNA transcripts (lncRNAs, Cs1 g09600 and Cs1 g09635). The production of phasiRNAs was detected from transcripts targeted by miR3954, and was further verified in both sequencing data and transient expression experiments. PhasiRNAs derived from the two lncRNAs targeted not only miR3954-targeted NAC gene but also additional NAC homologous genes. No homologous genes of these two lncRNAs were found in plants other than citrus species, implying that this miR3954-lncRNAs-phasiRNAs-NAC pathway is likely citrus-specific. Transgenic analysis indicated that the miR3954-overexpressing lines showed decreased transcripts of lncRNA, elevated abundance of phasiRNAs and reduced expression of NAC genes. Interestingly, the overexpression of miR3954 leads to early flowering in citrus plants. In summary, our results illustrated a model of the regulatory network of miR3954-lncRNA-phasiRNAs-NAC, which may be functionally involved in flowering in citrus.
Collapse
Affiliation(s)
- Yuanlong Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Ke
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guizhi Wu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomeng Wu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, 510642, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
32
|
De Quattro C, Pè ME, Bertolini E. Long noncoding RNAs in the model species Brachypodium distachyon. Sci Rep 2017; 7:11252. [PMID: 28900227 PMCID: PMC5595811 DOI: 10.1038/s41598-017-11206-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic genomes are pervasively transcribed and only a small portion of the transcribed sequences belongs to protein coding genes. High-throughput sequencing technology contributed to consolidate this perspective, allowing the identification of numerous noncoding RNAs with key roles in biological processes. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nt with limited phylogenetic conservation, expressed at low levels and characterized by tissue/organ specific expression profiles. Although a large set of lncRNAs has been identified, the functional roles of lncRNAs are only beginning to be recognized and the molecular mechanism of lncRNA-mediated gene regulation remains largely unexplored, particularly in plants where their annotation and characterization are still incomplete. Using public and proprietary poly-(A)+ RNA-seq data as well as a collection of full length ESTs from several organs, developmental stages and stress conditions in three Brachypodium distachyon inbred lines, we describe the identification and the main features of thousands lncRNAs. Here we provide a genome-wide characterization of lncRNAs, highlighting their intraspecies conservation and describing their expression patterns among several organs/tissues and stress conditions. This work represents a fundamental resource to deepen our knowledge on long noncoding RNAs in C3 cereals, allowing the Brachypodium community to exploit these results in future research programs.
Collapse
Affiliation(s)
- Concetta De Quattro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
| |
Collapse
|
33
|
Zheng Y, Ding B, Fei Z, Wang Y. Comprehensive transcriptome analyses reveal tomato plant responses to tobacco rattle virus-based gene silencing vectors. Sci Rep 2017; 7:9771. [PMID: 28852064 PMCID: PMC5575331 DOI: 10.1038/s41598-017-10143-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/20/2017] [Indexed: 11/09/2022] Open
Abstract
In plants, virus-induced gene silencing (VIGS) is a popular tool for functional genomic studies or rapidly assessing individual gene functions. However, molecular details regarding plant responses to viral vectors remain elusive, which may complicate experimental designs and data interpretation. To this end, we documented whole transcriptome changes of tomato elicited by the application of the most widely used tobacco rattle virus (TRV)-based vectors, using comprehensive genome-wide analyses. Our data illustrated multiple biological processes with functional implications, including (1) the enhanced activity of miR167 in guiding the cleavage of an auxin response factor; (2) reduced accumulation of phased secondary small interfering RNAs from two genomic loci; (3) altered expression of ~500 protein-coding transcripts; and (4) twenty long noncoding RNAs specifically responsive to TRV vectors. Importantly, we unraveled large-scale changes in mRNA alternative splicing patterns. These observations will facilitate future application of VIGS vectors for functional studies benefiting the plant research community and help deepen the understanding of plant-virus interactions.
Collapse
Affiliation(s)
- Yi Zheng
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Biao Ding
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| | - Ying Wang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39759, USA.
| |
Collapse
|
34
|
Comprehensive Transcriptome Analyses Reveal that Potato Spindle Tuber Viroid Triggers Genome-Wide Changes in Alternative Splicing, Inducible trans-Acting Activity of Phased Secondary Small Interfering RNAs, and Immune Responses. J Virol 2017; 91:JVI.00247-17. [PMID: 28331096 DOI: 10.1128/jvi.00247-17] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/16/2017] [Indexed: 11/20/2022] Open
Abstract
Many pathogens express noncoding RNAs (ncRNAs) during infection processes. In the most extreme case, pathogenic ncRNAs alone (such as viroids) can infect eukaryotic organisms, leading to diseases. While a few pathogenic ncRNAs have been implicated in regulating gene expression, the functions of most pathogenic ncRNAs in host-pathogen interactions remain unclear. Here, we employ potato spindle tuber viroid (PSTVd) infecting tomato as a system to dissect host interactions with pathogenic ncRNAs, using comprehensive transcriptome analyses. We uncover various new activities in regulating gene expression during PSTVd infection, such as genome-wide alteration in alternative splicing of host protein-coding genes, enhanced guided-cleavage activities of a host microRNA, and induction of the trans-acting function of phased secondary small interfering RNAs. Furthermore, we reveal that PSTVd infection massively activates genes involved in plant immune responses, mainly those in the calcium-dependent protein kinase and mitogen-activated protein kinase cascades, as well as prominent genes involved in hypersensitive responses, cell wall fortification, and hormone signaling. Intriguingly, our data support a notion that plant immune systems can respond to pathogenic ncRNAs, which has broad implications for providing new opportunities for understanding the complexity of immune systems in differentiating "self" and "nonself," as well as lay the foundation for resolving the long-standing question regarding the pathogenesis mechanisms of viroids and perhaps other infectious RNAs.IMPORTANCE Numerous pathogens, including viruses, express pathogenic noncoding transcripts during infection. In the most extreme case, pathogenic noncoding RNAs alone (i.e., viroids) can cause disease in plants. While some work has demonstrated that pathogenic noncoding RNAs interact with host factors for function, the biological significance of pathogenic noncoding RNAs in host-pathogen interactions remains largely unclear. Here, we apply comprehensive genome-wide analyses of plant-viroid interactions and discover several novel molecular activities underlying nuclear-replicating viroid infection processes in plants, including effects on the expression and function of host noncoding transcripts, as well as the alternative splicing of host protein-coding genes. Importantly, we show that plant immunity is activated upon infection of a nuclear-replicating viroid, which is a new concept that helps to understand viroid-based pathogenesis. Our finding has broad implications for understanding the complexity of host immune systems and the diverse functions of noncoding RNAs.
Collapse
|
35
|
Abstract
Biological processes such as defense mechanisms and microbial offense strategies are regulated through RNA induced interference in eukaryotes. Genetic mutations are modulated through biogenesis of small RNAs which directly impacts upon host development. Plant defense mechanisms are regulated and supported by a diversified group of small RNAs which are involved in streamlining several RNA interference pathways leading toward the initiation of pathogen gene silencing mechanisms. In the similar context, pathogens also utilize the support of small RNAs to launch their offensive attacks. Also there are strong evidences about the active involvement of these RNAs in symbiotic associations. Interestingly, small RNAs are not limited to the individuals in whom they are produced; they also show cross kingdom influences through variable interactions with other species thus leading toward the inter-organismic gene silencing. The phenomenon is understandable in the microbes which utilize these mechanisms to overcome host defense line. Understanding the mechanism of triggering host defense strategies can be a valuable step toward the generation of disease resistant host plants. We think that the cross kingdom trafficking of small RNA is an interesting insight that is needed to be explored for its vitality.
Collapse
Affiliation(s)
- Waqar Islam
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Saif Ul Islam
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Muhammad Qasim
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Liande Wang
- a College of Plant Protection , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| |
Collapse
|
36
|
Sosa-Valencia G, Palomar M, Covarrubias AA, Reyes JL. The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2013-2026. [PMID: 28338719 PMCID: PMC5429018 DOI: 10.1093/jxb/erw380] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent studies have identified microRNAs as post-transcriptional regulators involved in stress responses. miR1514a is a legume microRNA that is induced in response to drought stress in Phaseolus vulgaris (common bean) and shows differential accumulation levels in roots during water deficit in two cultivars with different drought tolerance phenotypes. A recent degradome analysis revealed that miR1514a targets the transcripts of two NAC transcription factors (TFs), Phvul.010g121000 and Phvul.010g120700. Furthermore, expression studies and small RNA-seq data indicate that only Phvul.010g120700 generates phasiRNAs, which also accumulate under water deficit conditions. To confirm these results, we over-expressed miR1514a in transgenic hairy roots, and observed a reduced accumulation of Phvul.010g120700 and an increase in NAC-derived phasiRNAs; inhibition of miR1514a activity resulted in the opposite effect. Moreover, we determined that a NAC-derived phasiRNA associates with ARGONAUTE 1 (AGO1), suggesting that it is functional. In addition, a transcriptome analysis of transgenic hairy roots with reduced miR1514a levels revealed several differentially expressed transcripts, mainly involved in metabolism and stress responses, suggesting they are regulated by the NAC TF and/or by phasiRNAs. This work therefore demonstrates the participation of miR1514 in the regulation of a NAC transcription factor transcript through phasiRNA production during the plant response to water deficit.
Collapse
Affiliation(s)
- Guadalupe Sosa-Valencia
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca Mor., Mexico
| | - Miguel Palomar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca Mor., Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca Mor., Mexico
| | - José L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Col. Chamilpa, C.P. 62210, Cuernavaca Mor., Mexico
| |
Collapse
|
37
|
Xie J, Yang X, Song Y, Du Q, Li Y, Chen J, Zhang D. Adaptive evolution and functional innovation of Populus-specific recently evolved microRNAs. THE NEW PHYTOLOGIST 2017; 213:206-219. [PMID: 27277139 DOI: 10.1111/nph.14046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 05/23/2023]
Abstract
Lineage-specific microRNAs (miRNAs) undergo rapid turnover during evolution; however, their origin and functional importance have remained controversial. Here, we examine the origin, evolution, and potential roles in local adaptation of Populus-specific miRNAs, which originated after the recent salicoid-specific, whole-genome duplication. RNA sequencing was used to generate extensive, comparable miRNA and gene expression data for six tissues. A natural population of Populus trichocarpa and closely related species were used to study the divergence rates, evolution, and adaptive variation of miRNAs. MiRNAs that originated in 5' untranslated regions had higher expression levels and their expression showed high correlation with their host genes. Compared with conserved miRNAs, a significantly higher proportion of Populus-specific miRNAs appear to target genes that were duplicated in salicoids. Examination of single nucleotide polymorphisms in Populus-specific miRNA precursors showed high amounts of population differentiation. We also characterized the newly emerged MIR6445 family, which could trigger the production of phased small interfering RNAs from NAC mRNAs, which encode a transcription factor with primary roles in a variety of plant developmental processes. Together, these observations provide evolutionary insights into the birth and potential roles of Populus-specific miRNAs in genome maintenance, local adaptation, and functional innovation.
Collapse
Affiliation(s)
- Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Ying Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
38
|
de Vries S, von Dahlen JK, Uhlmann C, Schnake A, Kloesges T, Rose LE. Signatures of selection and host-adapted gene expression of the Phytophthora infestans RNA silencing suppressor PSR2. MOLECULAR PLANT PATHOLOGY 2017; 18:110-124. [PMID: 27503598 PMCID: PMC6638260 DOI: 10.1111/mpp.12465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/07/2016] [Accepted: 08/04/2016] [Indexed: 05/04/2023]
Abstract
Phytophthora infestans is a devastating pathogen in agricultural systems. Recently, an RNA silencing suppressor (PSR2, 'Phytophthora suppressor of RNA silencing 2') has been described in P. infestans. PSR2 has been shown to increase the virulence of Phytophthora pathogens on their hosts. This gene is one of the few effectors present in many economically important Phytophthora species. In this study, we investigated: (i) the evolutionary history of PSR2 within and between species of Phytophthora; and (ii) the interaction between sequence variation, gene expression and virulence. In P. infestans, the highest PiPSR2 expression was correlated with decreased symptom expression. The highest gene expression was observed in the biotrophic phase of the pathogen, suggesting that PSR2 is important during early infection. Protein sequence conservation was negatively correlated with host range, suggesting host range as a driver of PSR2 evolution. Within species, we detected elevated amino acid variation, as observed for other effectors; however, the frequency spectrum of the mutations was inconsistent with strong balancing selection. This evolutionary pattern may be related to the conservation of the host target(s) of PSR2 and the absence of known corresponding R genes. In summary, our study indicates that PSR2 is a conserved effector that acts as a master switch to modify plant gene regulation early during infection for the pathogen's benefit. The conservation of PSR2 and its important role in virulence make it a promising target for pathogen management.
Collapse
Affiliation(s)
- Sophie de Vries
- Institute of Population GeneticsHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
- iGRAD‐Plant Graduate SchoolHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
| | - Janina K. von Dahlen
- Institute of Population GeneticsHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
| | - Constanze Uhlmann
- Institute of Population GeneticsHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
| | - Anika Schnake
- Institute of Population GeneticsHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
| | - Thorsten Kloesges
- Institute of Population GeneticsHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
| | - Laura E. Rose
- Institute of Population GeneticsHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
- iGRAD‐Plant Graduate SchoolHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
- Ceplas, Cluster of Excellence in Plant SciencesHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
| |
Collapse
|
39
|
Komiya R. Biogenesis of diverse plant phasiRNAs involves an miRNA-trigger and Dicer-processing. JOURNAL OF PLANT RESEARCH 2017; 130:17-23. [PMID: 27900550 PMCID: PMC5219027 DOI: 10.1007/s10265-016-0878-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 05/18/2023]
Abstract
It has been almost 30 years since RNA interference (RNAi) was shown to silence genes via double-stranded RNAs (dsRNAs) in Caenorhabditis elegans (Fire et al. 1998). 20-30-nucleotide (nt) small non-coding RNAs are a key element of the RNAi machinery. Recently, phased small interfering RNAs (phasiRNAs), small RNAs that are generated from a long RNA precursor at intervals of 21 to 26-nt, have been identified in plants and animals. In Drosophila, phasiRNAs are generated by the endonuclease, Zucchini (Zuc), in germlines. These phasiRNAs, known as one of PIWI-interacting RNAs (piRNAs), mainly repress transposable elements. Similarly, reproduction-specific phasiRNAs have been identified in the family Poaceae, although DICER LIKE (DCL) protein-dependent phasiRNA biogenesis in rice is distinct from piRNA biogenesis in animals. In plants, phasiRNA biogenesis is initiated when 22-nt microRNAs (miRNAs) cleave single-stranded target RNAs. Subsequently, RNA-dependent RNA polymerase (RDR) forms dsRNAs from the cleaved RNAs, and dsRNAs are further processed by DCLs into 21 to 24-nt phasiRNAs. Finally, the phasiRNAs are loaded to ARGONAUTE (AGO) proteins to induce RNA-silencing. There are diverse types of phasiRNA precursors and the miRNAs that trigger the biogenesis. Their expression patterns also differ among plant species, suggesting that species-specific combinations of these triggers dictate the spatio-temporal pattern of phasiRNA biogenesis during development, or in response to environmental stimuli.
Collapse
Affiliation(s)
- Reina Komiya
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
40
|
Ta KN, Sabot F, Adam H, Vigouroux Y, De Mita S, Ghesquière A, Do NV, Gantet P, Jouannic S. miR2118-triggered phased siRNAs are differentially expressed during the panicle development of wild and domesticated African rice species. RICE (NEW YORK, N.Y.) 2016; 9:10. [PMID: 26969003 PMCID: PMC4788661 DOI: 10.1186/s12284-016-0082-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/06/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Rice exhibits a wide range of panicle structures. To explain these variations, much emphasis has been placed on changes in transcriptional regulation, but no large-scale study has yet reported on changes in small RNA regulation in the various rice species. To evaluate this aspect, we performed deep sequencing and expression profiling of small RNAs from two closely related species with contrasting panicle development: the cultivated African rice Oryza glaberrima and its wild relative Oryza barthii. RESULTS Our RNA-seq analysis revealed a dramatic difference between the two species in the 21 nucleotide small RNA population, corresponding mainly to miR2118-triggered phased siRNAs. A detailed expression profiling during the panicle development of O. glaberrima and O. barthii using qRT-PCRs and in situ hybridization, confirmed a delayed expression of the phased siRNAs as well as their lncRNA precursors and regulators (miR2118 and MEL1 gene) in O. glaberrima compared to O. barthii. We provide evidence that the 21-nt phasiRNA pathway in rice is associated with male-gametogenesis but is initiated in spikelet meristems. CONCLUSION Differential expression of the miR2118-triggered 21-nt phasiRNA pathway between the two African rice species reflects differential rates of determinate fate acquisition of panicle meristems between the two species.
Collapse
Affiliation(s)
- K. N. Ta
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
- />LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Pham Van Dong road, Hanoi, Vietnam
| | - F. Sabot
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
| | - H. Adam
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
| | - Y. Vigouroux
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
| | - S. De Mita
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
- />Present address: INRA, Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, F-54280 Champenoux, France
| | - A. Ghesquière
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
| | - N. V. Do
- />LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Pham Van Dong road, Hanoi, Vietnam
| | - P. Gantet
- />LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Pham Van Dong road, Hanoi, Vietnam
- />Université de Montpellier, UMR DIADE, Place Eugène Bataillon, F-34095 Montpellier, Cedex 5 France
| | - S. Jouannic
- />IRD, UMR DIADE, 911, avenue Agropolis, BP64501, F-34394 Montpellier, Cedex 5 France
- />LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Pham Van Dong road, Hanoi, Vietnam
| |
Collapse
|
41
|
Tworak A, Urbanowicz A, Podkowinski J, Kurzynska-Kokorniak A, Koralewska N, Figlerowicz M. Six Medicago truncatula Dicer-like protein genes are expressed in plant cells and upregulated in nodules. PLANT CELL REPORTS 2016; 35:1043-1052. [PMID: 26825594 PMCID: PMC4833791 DOI: 10.1007/s00299-016-1936-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
Here we report the existence of six putative Dicer-like genes in the Medicago truncatula genome. They are ubiquitously expressed throughout the plant and significantly induced in root nodules. Over the past decade, small noncoding RNAs (sncRNA) have emerged as widespread and important regulatory molecules influencing both the structure and expression of plant genomes. One of the key factors involved in sncRNA biogenesis in plants is a group of RNase III-type nucleases known as Dicer-like (DCL) proteins. Based on functional analysis of DCL proteins identified in Arabidopsis thaliana, four types of DCLs were distinguished (DCL1-4). DCL1 mainly produces 21 nt miRNAs. The products generated by DCL2, DCL3, and DCL4 belong to various classes of siRNAs that are 22, 24 and 21 nt in length, respectively. M. truncatula is a model legume plant closely related to many economically important cultivable species. By screening the recent M. truncatula genome assembly, we were able to identify three new DCL genes in addition to the MtDCL1-3 genes that had been earlier characterized. The newly found genes include MtDCL4 and two MtDCL2 homologs. We showed that all six M. truncatula DCL genes are expressed in plant cells. The first of the identified MtDCL2 paralogs encodes a truncated version of the DCL2 protein, while the second undergoes substantial and specific upregulation in the root nodules. Additionally, we identified an alternative splicing variant of MtDCL1 mRNA, similar to the one found in Arabidopsis. Our results indicate that DCL genes are differently activated during Medicago symbiosis with nitrogen fixing bacteria and upon pathogen infection. In addition, we hypothesize that the alternative splicing variant of MtDCL1 mRNA may be involved in tissue-specific regulation of the DCL1 level.
Collapse
Affiliation(s)
- Aleksander Tworak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Jan Podkowinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Anna Kurzynska-Kokorniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Natalia Koralewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland.
| |
Collapse
|
42
|
Wu P, Wu Y, Liu CC, Liu LW, Ma FF, Wu XY, Wu M, Hang YY, Chen JQ, Shao ZQ, Wang B. Identification of Arbuscular Mycorrhiza (AM)-Responsive microRNAs in Tomato. FRONTIERS IN PLANT SCIENCE 2016; 7:429. [PMID: 27066061 PMCID: PMC4814767 DOI: 10.3389/fpls.2016.00429] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/18/2016] [Indexed: 05/25/2023]
Abstract
A majority of land plants can form symbiosis with arbuscular mycorrhizal (AM) fungi. MicroRNAs (miRNAs) have been implicated to regulate this process in legumes, but their involvement in non-legume species is largely unknown. In this study, by performing deep sequencing of sRNA libraries in tomato roots and comparing with tomato genome, a total of 700 potential miRNAs were predicted, among them, 187 are known plant miRNAs that have been previously deposited in miRBase. Unlike the profiles in other plants such as rice and Arabidopsis, a large proportion of predicted tomato miRNAs was 24 nt in length. A similar pattern was observed in the potato genome but not in tobacco, indicating a Solanum genus-specific expansion of 24-nt miRNAs. About 40% identified tomato miRNAs showed significantly altered expressions upon Rhizophagus irregularis inoculation, suggesting the potential roles of these novel miRNAs in AM symbiosis. The differential expression of five known and six novel miRNAs were further validated using qPCR analysis. Interestingly, three up-regulated known tomato miRNAs belong to a known miR171 family, a member of which has been reported in Medicago truncatula to regulate AM symbiosis. Thus, the miR171 family likely regulates AM symbiosis conservatively across different plant lineages. More than 1000 genes targeted by potential AM-responsive miRNAs were provided and their roles in AM symbiosis are worth further exploring.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Yue Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Cheng-Chen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Li-Wei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Fang-Fang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Xiao-Yi Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Mian Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Yue-Yu Hang
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| |
Collapse
|
43
|
Valli AA, Santos BACM, Hnatova S, Bassett AR, Molnar A, Chung BY, Baulcombe DC. Most microRNAs in the single-cell alga Chlamydomonas reinhardtii are produced by Dicer-like 3-mediated cleavage of introns and untranslated regions of coding RNAs. Genome Res 2016; 26:519-29. [PMID: 26968199 PMCID: PMC4817775 DOI: 10.1101/gr.199703.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/10/2016] [Indexed: 01/20/2023]
Abstract
We describe here a forward genetic screen to investigate the biogenesis, mode of action, and biological function of miRNA-mediated RNA silencing in the model algal species, Chlamydomonas reinhardtii. Among the mutants from this screen, there were three at Dicer-like 3 that failed to produce both miRNAs and siRNAs and others affecting diverse post-biogenesis stages of miRNA-mediated silencing. The DCL3-dependent siRNAs fell into several classes including transposon- and repeat-derived siRNAs as in higher plants. The DCL3-dependent miRNAs differ from those of higher plants, however, in that many of them are derived from mRNAs or from the introns of pre-mRNAs. Transcriptome analysis of the wild-type and dcl3 mutant strains revealed a further difference from higher plants in that the sRNAs are rarely negative switches of mRNA accumulation. The few transcripts that were more abundant in dcl3 mutant strains than in wild-type cells were not due to sRNA-targeted RNA degradation but to direct DCL3 cleavage of miRNA and siRNA precursor structures embedded in the untranslated (and translated) regions of the mRNAs. Our analysis reveals that the miRNA-mediated RNA silencing in C. reinhardtii differs from that of higher plants and informs about the evolution and function of this pathway in eukaryotes.
Collapse
Affiliation(s)
- Adrian A Valli
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| | - Bruno A C M Santos
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| | - Silvia Hnatova
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| | - Andrew R Bassett
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| | - Attila Molnar
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| | - Betty Y Chung
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge CB2 3EA, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
44
|
Khatabi B, Arikit S, Xia R, Winter S, Oumar D, Mongomake K, Meyers BC, Fondong VN. High-resolution identification and abundance profiling of cassava (Manihot esculenta Crantz) microRNAs. BMC Genomics 2016; 17:85. [PMID: 26822616 PMCID: PMC4730657 DOI: 10.1186/s12864-016-2391-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 01/13/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are endogenous sRNAs that play regulatory roles in plant growth, development, and biotic and abiotic stress responses. In plants, one subset of sRNAs, microRNAs (miRNAs) exhibit tissue-differential expression and regulate gene expression mainly through direct cleavage of mRNA or indirectly via production of secondary phased siRNAs (phasiRNAs) that silence cognate target transcripts in trans. RESULTS Here, we have identified cassava (Manihot esculenta Crantz) miRNAs using high resolution sequencing of sRNA libraries from leaf, stem, callus, male and female flower tissues. To analyze the data, we built a cassava genome database and, via sequence analysis and secondary structure prediction, 38 miRNAs not previously reported in cassava were identified. These new cassava miRNAs included two miRNAs not previously been reported in any plant species. The miRNAs exhibited tissue-differential accumulation as confirmed by quantitative RT-PCR and Northern blot analysis, largely reflecting levels observed in sequencing data. Some of the miRNAs identified were predicted to trigger production of secondary phased siRNAs (phasiRNAs) from 80 PHAS loci. CONCLUSIONS Cassava is a woody perennial shrub, grown principally for its starch-rich storage roots, which are rich in calories. In this study, new miRNAs were identified and their expression was validated using qRT-PCR of RNA from five different tissues. The data obtained expand the list of annotated miRNAs and provide additional new resources for cassava improvement research.
Collapse
Affiliation(s)
- Behnam Khatabi
- Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA.
| | - Siwaret Arikit
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA.
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen and Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand.
| | - Rui Xia
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA.
| | - Stephan Winter
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
| | - Doungous Oumar
- Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA.
- Ekona Research Centre, Southwest, Cameroon.
| | - Kone Mongomake
- Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA.
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire.
| | - Blake C Meyers
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Vincent N Fondong
- Department of Biological Sciences, Delaware State University, Dover, DE, 19901, USA.
| |
Collapse
|
45
|
Chekanova JA. Long non-coding RNAs and their functions in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:207-16. [PMID: 26342908 DOI: 10.1016/j.pbi.2015.08.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 05/18/2023]
Abstract
Eukaryotic genomes encode thousands of long noncoding RNAs (lncRNAs), which play important roles in essential biological processes. Although lncRNAs function in the nuclear and cytoplasmic compartments, most of them occur in the nucleus, often in association with chromatin. Indeed, many lncRNAs have emerged as key regulators of gene expression and genome stability. Emerging evidence also suggests that lncRNAs may contribute to the organization of nuclear domains. This review briefly summarizes the major types of eukaryotic lncRNAs and provides examples of their mechanisms of action, with focus on plant lncRNAs, mainly in Arabidopsis thaliana, and describes current advances in our understanding of the mechanisms of lncRNA action and the roles of lncRNAs in RNA-dependent DNA methylation and in the regulation of flowering time.
Collapse
Affiliation(s)
- Julia A Chekanova
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| |
Collapse
|
46
|
Itaya A, Lucas WJ, Qi Y, Qu F, Wang Y, Zhong X, Liu CM. In memory of Professor Biao Ding (1960-2015). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:730-731. [PMID: 26182880 DOI: 10.1111/jipb.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Asuka Itaya
- Agriculture and Agri-Food Canada, Ottawa, Canada
| | - William J Lucas
- Department of Plant Biology, University of California, Davis, USA
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Feng Qu
- Department of Plant Pathology, Ohio State University, Columbus, USA
| | - Ying Wang
- Department of Molecular Genetics, Ohio State University, Columbus, USA
| | - Xuehua Zhong
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin, Madison, USA
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|