1
|
González-Gómez X, Figueiredo-González M, Villar-López R, Martínez-Carballo E. Biomonitoring of organic pollutants in pet dog plasma samples in North-Western Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161462. [PMID: 36623653 DOI: 10.1016/j.scitotenv.2023.161462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Most of organic pollutants (OPs) have the ability to interfere with biological systems causing negative effects in living beings, including humans. In the last decades, pets have been used as bioindicators of human exposure because they share the same habitat with their homeowners. We sought to determine levels of approximately 70 OPs, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated biphenyl ethers (PBDEs), organophosphate pesticides (OPPs), polycyclic aromatic hydrocarbons (PAHs) and pyrethroids (PYRs) in plasma samples from 39 pet dogs from Ourense (north-western Spain). The results revealed that PAHs were the dominant OPs (mean value 175 ± 319 ng/g lipid weight (lw)), followed by PYRs (132 ± 352 ng/g lw), PCBs (122 ± 96 ng/g lw), OCPs (33 ± 17 ng/g lw), PBDEs (19 ± 18 ng/g lw) and OPPs (2.1 ± 2.7 ng/g lw) in plasma samples. We have previously detected the target OPs in hair samples of pets, collected simultaneously and similar trend of some OPs has been observed. Moreover, pyrene and chrysene showed correlations between levels detected in both matrices.
Collapse
Affiliation(s)
- Xiana González-Gómez
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, Santiago de Compostela 15782, Spain.
| | - María Figueiredo-González
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense 32004, Spain.
| | - Roberto Villar-López
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense 32004, Spain
| | - Elena Martínez-Carballo
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense 32004, Spain.
| |
Collapse
|
2
|
An Analysis of the Structural Relationship between Thyroid Hormone-Signaling Disruption and Polybrominated Diphenyl Ethers: Potential Implications for Male Infertility. Int J Mol Sci 2023; 24:ijms24043296. [PMID: 36834711 PMCID: PMC9964322 DOI: 10.3390/ijms24043296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a common class of anthropogenic organobromine chemicals with fire-retardant properties and are extensively used in consumer products, such as electrical and electronic equipment, furniture, textiles, and foams. Due to their extensive use, PBDEs have wide eco-chemical dissemination and tend to bioaccumulate in wildlife and humans with many potential adverse health effects in humans, such as neurodevelopmental deficits, cancer, thyroid hormone disruption, dysfunction of reproductive system, and infertility. Many PBDEs have been listed as chemicals of international concern under the Stockholm Convention on Persistent Organic Pollutants. In this study, the aim was to investigate the structural interactions of PBDEs against thyroid hormone receptor (TRα) with potential implications in reproductive function. Structural binding of four PBDEs, i.e., BDE-28, BDE-100, BDE-153 and BDE-154 was investigated against the ligand binding pocket of TRα using Schrodinger's induced fit docking, followed by molecular interaction analysis and the binding energy estimation. The results indicated the stable and tight binding of all four PDBE ligands and similarity in the binding interaction pattern to that of TRα native ligand, triiodothyronine (T3). The estimated binding energy value for BDE-153 was the highest among four PBDEs and was more than that of T3. This was followed by BDE-154, which is approximately the same as that of TRα native ligand, T3. Furthermore, the value estimated for BDE-28 was the lowest; however, the binding energy value for BDE-100 was more than BDE-28 and close to that of TRα native ligand, T3. In conclusion, the results of our study suggested the thyroid signaling disruption potential of indicated ligands according to their binding energy order, which can possibly lead to disruption of reproductive function and infertility.
Collapse
|
3
|
Khidkhan K, Mizukawa H, Ikenaka Y, Nakayama SMM, Nomiyama K, Yokoyama N, Ichii O, Takiguchi M, Tanabe S, Ishizuka M. Biological effects related to exposure to polychlorinated biphenyl (PCB) and decabromodiphenyl ether (BDE-209) on cats. PLoS One 2023; 18:e0277689. [PMID: 36662783 PMCID: PMC9858064 DOI: 10.1371/journal.pone.0277689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/01/2022] [Indexed: 01/21/2023] Open
Abstract
As an animal familiar to humans, cats are considered to be sensitive to chemicals; cats may be exposed to polychlorinated biphenyls (PCBs) and decabromodiphenyl ether (BDE-209) from indoor dust, household products, and common pet food, leading to adverse endocrine effects, such as thyroid hormone dysfunction. To elucidate the general biological effects resulting from exposure of cats to PCBs and PBDEs, cats were treated with a single i.p. dose of a principal mixture of 12 PCBs and observed for a short-term period. Results revealed that the testis weight, serum albumin, and total protein of the treated group decrease statistically in comparison with those in the control group. The negative correlations suggested that the decrease in the total protein and albumin levels may be disturbed by 4'OH-CB18, 3'OH-CB28 and 3OH-CB101. Meanwhile, the serum albumin level and relative brain weight decreased significantly for cats subjected to 1-year continuous oral administration of BDE-209 in comparison to those of control cats. In addition, the subcutaneous fat as well as serum high-density lipoprotein (HDL) and triglycerides (TG) levels increased in cats treated with BDE-209 and down-regulation of stearoyl-CoA desaturase mRNA expression in the liver occurred. These results suggested that chronic BDE-209 treatment may restrain lipolysis in the liver, which is associated with lipogenesis in the subcutaneous fat. Evidence of liver and kidney cell damage was not observed as there was no significant difference in the liver enzymes, blood urea nitrogen and creatinine levels between the two groups of both experiments. To the best of our knowledge, this is the first study that provides information on the biochemical effects of organohalogen compounds in cats. Further investigations on risk assessment and other potential health effects of PCBs and PBDEs on the reproductive system, brain, and lipid metabolism in cats are required.
Collapse
Affiliation(s)
- Kraisiri Khidkhan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hazuki Mizukawa
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Nozomu Yokoyama
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Osamu Ichii
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Estimating short and longer-term exposure of domestic cats to dietary iodine fluctuation. Sci Rep 2022; 12:8987. [PMID: 35643927 PMCID: PMC9148307 DOI: 10.1038/s41598-022-13139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Hyperthyroidism is a common endocrinopathy of domestic felines. In humans, toxic nodular goitre is pathophysiologically similar to feline hyperthyroidism and can be caused by chronically low or fluctuating dietary iodine intake. The aetiopathogenesis of feline hyperthyroidism is not known, but chronically low or fluctuating dietary iodine intake is likely common. This study assessed habitual iodine intake in domestic cats by: (1) conducting a dietary survey involving 361 owners of 549 cats, (2) analysing iodine content of 119 cat feeds, 38 urine and 64 hair samples and (3) assessing variation in iodine content of eight cat feeds over 4–6 different batches. Owners varied their cats feed regularly, usually on a day-to-day basis and often between wet and dry feeds with differing flavours. The majority (78%; 93 of 119) feeds for cats were within the guideline range for iodine. Of the 22% (n = 26 feeds) that were not compliant, the majority (n = 23) were below the nutritional minimum value with most (n = 16) being dry kibble. Iodine content of feeds did not vary considerably between types of feed or feed packaging, but variation between different batches of the same feed was 14–31%. Hence, urine iodine in cats also varied markedly. Cats being treated for hyperthyroidism had lower hair iodine. In conclusion, a survey assessing how domestic cats are fed, together with an analysis of commercial cat feeds suggests that domestic cats are likely to experience chronically low or fluctuating dietary iodine intake. The latter is supported by wide variation in urine iodine content.
Collapse
|
5
|
Sheikh IA, Beg MA. Structural binding perspectives of common plasticizers and a flame retardant, BDE-153, against thyroxine-binding globulin: potential for endocrine disruption. J Appl Toxicol 2021; 42:841-851. [PMID: 34725837 DOI: 10.1002/jat.4261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/07/2022]
Abstract
The human exposure to diverse endocrine-disrupting chemicals (EDCs) has increased dramatically over several decades with very adverse health effects. Plasticizers and flame retardants constitute important classes of EDCs interfering in endocrine physiology including the thyroid function. Thyroxine (T4) is an important hormone regulating metabolism and playing key roles in developmental processes. In this study, six phthalate and nonphthalate plasticizers and one flame retardant (BDE-153) were subjected to structural binding against thyroxine-binding globulin (TBG). The aim was to understand their potential role in thyroid dysfunction using structural binding approach. The structural study was performed using Schrodinger's induced fit docking, followed by binding energy estimations of ligands and the molecular interaction analysis between the ligands and the amino acid residues in the TBG ligand-binding pocket. The results indicated that all the compounds packed tightly into the TBG ligand-binding pocket with similar binding pattern to that of TBG native ligand, T4. A high majority of TBG interacting amino acid residues for ligands showed commonality with native ligand, T4. The estimated binding energy values were highest for BDE-153 followed by nonphthalate plasticizer, DINCH, with values comparable with native ligand, T4. The estimated binding energy values of other plasticizers DEHP, DEHT, DEHA, ATBC, and TOTM were less than DINCH. In conclusion, the tight docking conformations, amino acid interactions, and binding energy values of the most of the indicated ligands were comparable with TBG native ligand, T4, suggesting their potential for thyroid dysfunction. The results revealed highest potential thyroid disruptive action for BDE-153 and DINCH.
Collapse
Affiliation(s)
- Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Amin Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Weiss JM, Jones B, Koekkoek J, Bignert A, Lamoree MH. Per- and polyfluoroalkyl substances (PFASs) in Swedish household dust and exposure of pet cats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39001-39013. [PMID: 33745045 PMCID: PMC8310504 DOI: 10.1007/s11356-021-13343-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are used in a wide range of products and have been found ubiquitously in our indoor environment, and there is evidence that exposure to PFAS can lead to adverse endocrine effects, such as thyroid hormone disruption. Pet cats have a high dust intake due to their grooming behavior and have been shown to be a suitable sentinel species for assessment of toddler's exposure. Here we used paired household dust (n=46) and cat serum (n=27) samples to establish whether dust is a relevant exposure pathway to PFASs. An analytical method for PFAS analysis was optimized using a low volume of cat serum samples, combining solid-phase extraction and online sample cleanup. Dust was extracted with methanol by sonication and cleaned up by addition of active carbon. In total, 27 PFASs were analyzed by liquid chromatography/mass spectrometry analysis. The correlation between PFAS levels in dust and serum, serum lipids and thyroid hormone levels, and PFAS levels in dust between different rooms were statistically evaluated. PFOS and PFDA could be quantified in all cat serum samples (median 2300 pg/mL and 430 pg/mL, respectively), followed by PFOA (median 1100 pg/mL), quantified in 96% of the samples. The levels of 6:2 and 8:2 diPAPs were determined in 65% and 92% of the serum samples, respectively, and were an order of magnitude lower (1.4-160 pg/mL). Household dust on the other hand was dominated by 6:2 and 8:2 diPAPs, with a median of 65 ng/g dust and 49 ng/g dust, respectively. PFOS (median 13 ng/g dust) and PFOA (median 9 ng/g dust) were quantified in 93% of the dust samples. Only eight PFASs were detected (>LOD) in at least 50% of the samples of both matrices and could be paired. Significant correlations between cat serum and dust were found for PFOA (rS=0.32, p<0.049) and PFUnDA (rS=0.55, p<0.001). Significant positive correlations were found between serum total thyroxine (rS=0.11, p<0.05) and PFNA and between serum cholesterol and PFHpA (rS=0.46, p<0.01), PFUnDA (rS=0.40, p<0.05), PFDoDA (rS=0.44, p<0.01), and sum PFAS (rS=0.48, p<0.01). In conclusion, this study confirmed that dust is a relevant exposure pathway for the ingestion of some PFASs for cats, and the serum levels of PFASs could be of relevance for the cat's health.
Collapse
Affiliation(s)
- Jana M Weiss
- Department of Environmental Science, Stockholm University, Svante Arrheniusväg 12, 10691, Stockholm, Sweden.
| | - Bernt Jones
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 75007, Uppsala, Sweden
| | - Jacco Koekkoek
- Department Environment & Health, Vrije Universiteit, De Boelelaan 1087, 1081HV, Amsterdam, The Netherlands
| | - Anders Bignert
- Department of Environmental Science, Stockholm University, Svante Arrheniusväg 12, 10691, Stockholm, Sweden
| | - Marja H Lamoree
- Department Environment & Health, Vrije Universiteit, De Boelelaan 1087, 1081HV, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Lumio RT, Tan MA, Magpantay HD. Biotechnology-based microbial degradation of plastic additives. 3 Biotech 2021; 11:350. [PMID: 34221820 PMCID: PMC8217394 DOI: 10.1007/s13205-021-02884-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/06/2021] [Indexed: 10/21/2022] Open
Abstract
Plastic additives are agents responsible to the flame resistance, durability, microbial resistance, and flexibility of plastic products. High demand for production and use of plastic additives is associated with environmental accumulation and various health hazards. One of the suitable methods of depleting plastic additive in the environment is bioremediation as it offers cost-efficiency, convenience, and sustainability. Microbial activity is one of the effective ways of detoxifying various compounds as microorganisms can adapt in an environment with high prevalence of pollutants. The present review discusses the use and abundance of these plastic additives, their health-related risks, the microorganisms capable of degrading them, the proposed mechanism of biodegradation, and current innovations capable of improving the efficiency of bioremediation.
Collapse
Affiliation(s)
- Rob T. Lumio
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Mario A. Tan
- The Graduate School, University of Santo Tomas, Manila, Philippines
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo, Tomas, Manila, Philippines
| | - Hilbert D. Magpantay
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| |
Collapse
|
8
|
Sheikh IA, Beg MA. Structural studies on the endocrine-disrupting role of polybrominated diphenyl ethers (PBDEs) in thyroid diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37866-37876. [PMID: 32613508 DOI: 10.1007/s11356-020-09913-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are synthetic brominated flame retardants with extensive applications in daily-life consumer products. However, PBDEs have become ubiquitous environmental contaminants due to their leach-out capability. The hazardous human health effects and endocrine-disrupting activity of PBDEs have led many governmental organizations to impose ban on their manufacture, causing their gradual phase out from commercial products. However, PBDEs and their metabolites are still being detected from biological and environmental samples owing to their persistence and bioaccumulation. The PDBE metabolites in these samples are present in concentrations often higher and even with higher toxic potential than parent PBDEs. The two commonly detected environmental PBDE congeners, 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) and 2,2',4,4',5-penta-bromodiphenyl ether (BDE-99), and their HO- and MeO- metabolites were considered in this study for their potential disrupting activity on thyroid hormone transport. Specifically, the study involved structural binding characterization of BDE-47 and BDE-99 including their two HO- and two MeO- metabolites with thyroxine-binding globulin (TBG), which is the main thyroid hormone transport protein in blood. The results showed that the binding pattern and molecular interactions of above two PBDEs and their metabolites exhibited overall similarity to native ligand, thyroxine in dock score, binding energy, and amino acid interactions with TBG. The BDE-99 and its metabolites were predicted to have stronger binding to TBG than BDE-47 with the metabolite 5-MeO-BDE-99 showing equal binding affinity to that of thyroxine. It is concluded that BDE-47 and BDE-99 and their metabolites have the potential to disrupt thyroid hormone transport and interfere in thyroid function.
Collapse
Affiliation(s)
- Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohd Amin Beg
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
9
|
Khidkhan K, Mizukawa H, Ikenaka Y, Nakayama SMM, Nomiyama K, Yokoyama N, Ichii O, Takiguchi M, Tanabe S, Ishizuka M. Altered hepatic cytochrome P450 expression in cats after chronic exposure to decabromodiphenyl ether (BDE-209). J Vet Med Sci 2020; 82:978-982. [PMID: 32435004 PMCID: PMC7399315 DOI: 10.1292/jvms.20-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The knowledge of cytochrome P450 (CYP) expression involved in chemical exposure are necessary in clinical applications for the medication and prediction of adverse effects. The
aim of this study was to evaluate the mRNA expression of CYP1–CYP3 families in cats exposed to BDE-209 for one year. All selected CYP isoforms showed no significant difference in
mRNA expressions between control and exposure groups, however, CYP3A12 and CYP3A131 revealed tend to be two times higher in the exposure group compared to control group. The
present results indicate that the chronic exposure of BDE209 could not alter CYP expression in the liver of cats. This result considered caused by the deficiency of CYP2B subfamily
which is major metabolism enzyme of polybrominated diphenyl ethers (PBDEs) in cat.
Collapse
Affiliation(s)
- Kraisiri Khidkhan
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Hazuki Mizukawa
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Shouta M M Nakayama
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Nozomu Yokoyama
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Osamu Ichii
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.,Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Sapporo, Hokkaido 060-8589, Japan
| | - Mitsuyoshi Takiguchi
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
10
|
Khidkhan K, Mizukawa H, Ikenaka Y, Nakayama SMM, Nomiyama K, Yokoyama N, Ichii O, Darwish WS, Takiguchi M, Tanabe S, Ishizuka M. Tissue distribution and characterization of feline cytochrome P450 genes related to polychlorinated biphenyl exposure. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108613. [PMID: 31487551 DOI: 10.1016/j.cbpc.2019.108613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
Cats have been known to be extremely sensitive to chemical exposures. To understand these model species' sensitivity to chemicals and their toxicities, the expression profiles of xenobiotic-metabolizing enzymes should be studied. Unfortunately, the characterization of cytochrome P450 (CYP), the dominant enzyme in phase I metabolism, in cats has not extensively been studied. Polychlorinated biphenyls (PCBs) are known as CYP inducers in animals, but the information regarding the PCB-induced CYP expression in cats is limited. Therefore, in the present study, we aimed to elucidate the mRNA expression of the CYP1-CYP3 families in the cat tissues and to investigate the CYP mRNA expression related to PCB exposure. In cats, the greatest abundance of CYP1-CYP3 (CYP1A2, CYP2A13, CYP2C41, CYP2D6, CYP2E1, CYP2E2, CYP2F2, CYP2F5, CYP2J2, CYP2U1, and CYP3A132) was expressed in the liver, but some extrahepatic isozymes were found in the kidney (CYP1A1), heart (CYP1B1), lung (CYP2B11 and CYP2S1) and small intestine (CYP3A131). In cats, CYP1A1, CYP1A2 and CYP1B1 were significantly upregulated in the liver as well as in several tissues exposed to PCBs, indicating that these CYPs were distinctly induced by PCBs. The strong correlations between 3,3',4,4'-tetrachlorobiphenyl (CB77) and CYP1A1 and CYP1B1 mRNA expressions were noted, demonstrating that CB77 could be a potent CYP1 inducer. In addition, these CYP isoforms could play an essential role in the PCBs biotransformation, particularly 3-4 Cl-PCBs, because a high hydroxylated metabolite level of 3-4 Cl-OH-PCBs was observed in the liver.
Collapse
Affiliation(s)
- Kraisiri Khidkhan
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Hazuki Mizukawa
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime, 790-8577, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Shouta M M Nakayama
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Nozomu Yokoyama
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Osamu Ichii
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Wageh Sobhy Darwish
- Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0818, Japan; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mitsuyoshi Takiguchi
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| |
Collapse
|
11
|
Takaguchi K, Nishikawa H, Mizukawa H, Tanoue R, Yokoyama N, Ichii O, Takiguchi M, Nakayama SMM, Ikenaka Y, Kunisue T, Ishizuka M, Tanabe S, Iwata H, Nomiyama K. Effects of PCB exposure on serum thyroid hormone levels in dogs and cats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1172-1183. [PMID: 31726548 DOI: 10.1016/j.scitotenv.2019.06.300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) might disrupt thyroid function. However, there is no clear evidence of PCB exposure disrupting thyroid hormone (TH) homeostasis in dogs and cats. The present study conducted in vivo experiments to evaluate the effects of a mixture of 12 PCB congeners (CB18, 28, 70, 77, 99, 101, 118, 138, 153, 180, 187 and 202, each congener 0.5 mg/kg BW, i.p. administration) on serum TH levels in male dogs (Canis lupus familiaris) and male cats (Felis silvestris catus). In PCB-exposed dogs, the time courses of higher-chlorinated PCBs and L-thyroxine (T4)-like OH-PCBs (4-OH-CB107 and 4-OH-CB202) concentrations were unchanged or tended to increase, whereas those of lower-chlorinated PCBs and OH-PCBs tended to decrease after 24 h. In PCB-exposed cats, concentrations of PCBs increased until 6 h and then remained unchanged. The levels of lower-chlorinated OH-PCBs including 4'-OH-CB18 increased until 96 h and then decreased. In PCB-exposed dogs, free T4 concentrations were higher than those in the control group at 48 and 96 h after PCB administration and positively correlated with the levels of T4-like OH-PCBs, suggesting competitive binding of T4 and T4-like OH-PCBs to a TH transporter, transthyretin. Serum levels of total T4 and total 3,3',5-triiodo-L-thyronine (T3) in PCB-exposed dogs were lower than in the control group at 24 and 48 h and negatively correlated with PCB concentrations, implying that PCB exposure enhanced TH excretion by increasing TH uptake and TH conjugation enzyme activities in the dog liver. In contrast, no obvious changes in TH levels were observed in PCB-exposed cats. This could be explained by the lower levels of T4-like OH-PCBs and lower hepatic conjugation enzyme activities in cats compared with dogs. Different effects on serum TH levels in PCB-exposed dogs and cats are likely to be attributable to species-specific PCB and TH metabolism.
Collapse
Affiliation(s)
- Kohki Takaguchi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Nishikawa
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hazuki Mizukawa
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime 790-8566, Japan
| | - Rumi Tanoue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Nozomu Yokoyama
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Osamu Ichii
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Mitsuyoshi Takiguchi
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shouta M M Nakayama
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, X6001, Potchefstroom 2520, South Africa
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
12
|
Jones B, Engdahl JN, Weiss J. Are persistent organic pollutants important in the etiology of feline hyperthyroidism? A review. Acta Vet Scand 2019; 61:45. [PMID: 31581952 PMCID: PMC6777032 DOI: 10.1186/s13028-019-0478-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
Feline hyperthyroidism is a rather new disease, first reported from the North American east coast in 1979. The prevalence is increasing, especially in older cats, and hyperthyroidism is now reported worldwide as the most common feline endocrinopathy. Several studies have been performed trying to identify important etiological factors such as exposure to persistent organic pollutants, and especially brominated flame retardants, have been suggested to be of importance for the development of the disease. Recent studies have shown higher concentrations of these contaminants in serum of hyperthyroid cats in comparison to cats with normal thyroid status. However, other still unknown factors are most probably of importance for the development of this disease.
Collapse
Affiliation(s)
- Bernt Jones
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | | | - Jana Weiss
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 114 18 Stockholm, Sweden
| |
Collapse
|
13
|
Poutasse CM, Herbstman JB, Peterson ME, Gordon J, Soboroff PH, Holmes D, Gonzalez D, Tidwell LG, Anderson KA. Silicone Pet Tags Associate Tris(1,3-dichloro-2-isopropyl) Phosphate Exposures with Feline Hyperthyroidism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9203-9213. [PMID: 31290326 PMCID: PMC7330886 DOI: 10.1021/acs.est.9b02226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Feline hyperthyroidism is the most commonly diagnosed endocrine-related disease among senior and geriatric housecats, but the causes remain unknown. Exposure to endocrine-disrupting compounds with thyroid targets, such as flame retardants (FRs), may contribute to disease development. Silicone passive sampling devices, or pet tags, quantitatively assessed the bioavailable FR exposures of 78 cats (≥7 y) in New York and Oregon using gas chromatography-mass spectrometry. Pet tags were analyzed for 36 polybrominated diphenyl ethers, six organophosphate esters (OPEs), and two alternative brominated FRs. In nonhyperthyroid cats, serum free thyroxine (fT4), total T4 (TT4), total triiodothyronine, and thyroid-stimulating hormone concentrations were compared with FR concentrations. Tris(1,3-dichloro-2-isopropyl) phosphate (TDCIPP) concentrations were higher in hyperthyroid pet tags in comparison to nonhyperthyroid pet tags (adjusted odds ratio, p < 0.07; Mantel-Cox, p < 0.02). Higher TDCIPP concentrations were associated with air freshener use in comparison to no use (p < 0.01), residences built since 2005 compared to those pre-1989 (p < 0.002), and cats preferring to spend time on upholstered furniture in comparison to no preference (p < 0.05). Higher TDCIPP concentrations were associated with higher fT4 and TT4 concentrations (p < 0.05). This study provides proof-of-concept data for the use of silicone pet tags with companion animals and further indicates that bioavailable TDCIPP exposures are associated with feline hyperthyroidism.
Collapse
Affiliation(s)
| | - Julie B. Herbstman
- Department of Environmental Health Sciences, Columbia University, New York, NY 10032
| | | | - Jana Gordon
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | | | - Darrell Holmes
- Department of Environmental Health Sciences, Columbia University, New York, NY 10032
| | - Dezere Gonzalez
- Department of Environmental Health Sciences, Columbia University, New York, NY 10032
| | - Lane G. Tidwell
- Department of Toxicology, Oregon State University, Corvallis, OR 97331
| | - Kim A. Anderson
- Department of Toxicology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
14
|
Čulin J. Brominated flame retardants: Recommendation for different listing under the Hong Kong Convention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:919-926. [PMID: 29729509 DOI: 10.1016/j.scitotenv.2018.04.342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/03/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
When the Hong Kong International Convention for the Safe and Environmentally Sound Recycling of Ships, 2009 enters into effect, ships to be sent for recycling will be required to carry an Inventory of Hazardous Materials (IHM) on board, which identifies the hazardous materials contained in the ship's structure or equipment. In its current form, IHM covers two classes of brominated flame retardants (BFRs), namely polybrominated biphenyls and polybrominated diphenyl ethers. Emerging evidence from recent literature suggests that members of all classes of BFRs are present in all environmental compartments and that exposure to them is associated with a wide range of harmful effects in humans and animals, effects that include endocrine disruption. Despite a growing body of research, the necessary data to perform health and environmental risk assessment are still lacking. This paper reviews environmental and human health impacts and discusses some issues of BFR environmental management. It is suggested that based on a precautionary approach, the inclusion of all classes of BFRs in IHM is warranted.
Collapse
Affiliation(s)
- Jelena Čulin
- University of Zadar, Maritime Department, M. Pavlinovića 1, 23000 Zadar, Croatia.
| |
Collapse
|
15
|
Vuong AM, Braun JM, Webster GM, Thomas Zoeller R, Hoofnagle AN, Sjödin A, Yolton K, Lanphear BP, Chen A. Polybrominated diphenyl ether (PBDE) exposures and thyroid hormones in children at age 3 years. ENVIRONMENT INTERNATIONAL 2018; 117:339-347. [PMID: 29787984 PMCID: PMC5997562 DOI: 10.1016/j.envint.2018.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) reduce serum thyroid hormone concentrations in animal studies, but few studies have examined the impact of early-life PBDE exposures on thyroid hormone disruption in childhood. METHODS We used data from 162 mother-child pairs from the Health Outcomes and Measures of the Environment Study (2003-2006, Cincinnati, OH). We measured PBDEs in maternal serum at 16 ± 3 weeks gestation and in child serum at 1-3 years. Thyroid hormones were measured in serum at 3 years. We used multiple informant models to investigate associations between prenatal and early-life PBDE exposures and thyroid hormone levels at age 3 years. RESULTS Prenatal PBDEs were associated with decreased thyroid stimulating hormone (TSH) levels at age 3 years. A 10-fold increase in prenatal ∑PBDEs (BDE-28, -47, -99, -100, and -153) was associated with a 27.6% decrease (95% CI -40.8%, -11.3%) in TSH. A ten-fold increase in prenatal ∑PBDEs was associated with a 0.25 pg/mL (0.07, 0.43) increase in free triiodothyronine (FT3). Child sex modified associations between prenatal PBDEs and thyroid hormones, with significant decrements in TSH among females and decreased free T4 (FT4) in males. Prenatal ∑PBDEs were not associated with TT4, FT4, or total T3. CONCLUSIONS These findings suggest an inverse relationship between prenatal ∑PBDEs and TSH at 3 years. Associations may be sexually dimorphic, with an inverse relationship between prenatal BDE-47 and -99 and TSH in females and null associations among males.
Collapse
Affiliation(s)
- Ann M Vuong
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati 45267, OH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, 121 South Main St, Box G-S121-2, Providence 02912, RI, USA
| | - Glenys M Webster
- BC Children's Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, BC, Canada
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, 611 North Pleasant St, Amherst 01003, MA, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, 1959 NE Pacific St, NW120, Seattle 98195, WA, USA
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Mail Stop F-20, 4770 Buford Highway NE, Atlanta 30341, GA, USA
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7035, Cincinnati 45229, OH, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, BC, Canada
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati 45267, OH, USA.
| |
Collapse
|
16
|
Serpe FP, Fiorito F, Esposito M, Ferrari A, Fracassi F, Miniero R, Pietra M, Roncada P, Brambilla G. Polychlorobiphenyl levels in the serum of cats from residential flats in Italy: Role of the indoor environment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:777-785. [PMID: 29553911 DOI: 10.1080/10934529.2018.1445079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The domestic cat (Felis catus) was used as a sentinel of exposure to polychlorobiphenyls (PCBs) in indoor urban environments y. Sera from 120 cats were pooled to form 30 different groups selected by age (<2 years; > 2 ≤ 8 years; > 8 years), sex, municipality (Bologna and Turin) and environment (indoor vs. outdoor). Test portions of 1 mL were analyzed by means of gas chromatography coupled to high-resolution mass spectrometry (GC-HRMS) for six selected indicators non-dioxin-like PCBs (∑6 PCBs: congeners #28, #52, #101, #132, #153 and #180) and the results were computed in the upper-bound mode. The internal dose of PCBs attributable to the cats' alimentary lipid intake ranged from 32.4 to 1,446 ng/g (P50 165; mean 258). The Wilcoxon test revealed significantly lower PCB burden in "outdoor" groups than in "indoor" groups. Age correlated well with the heptachlorinated and most bio-accumulative congener, PCB #180, and slightly with hexachlorinated PCBs #138 and #153. Contamination attributable to house dust collected in 15 living-rooms ranged from 10.0 to 279 ng/g dry weight (P50 97.4; mean 94.4). Exposure estimates indicated a 0.6-16 ng/kg bw range of daily ∑6 PCB intake from a default value of 200 mg/cat of dust ingestion. The intake of PCBs due to dust ingestion fell within the same order of magnitude as that computed from a 60 g daily intake of commercial dry pet foods, while inhalation accounted for 0.21-8.2 ng/kg bw/day, on setting the nominal ∑6 PCB contamination in outdoor and indoor air at 0.37 and 15 ng/m3, respectively. Italian indoor cats could be exposed to higher levels of ∑6 PCBs than the Reference Dose (RfD) of 10 ng/kg/bw/day; this supports the World Health Organization's statement that the quality of the indoor environment is a major determinant of health.
Collapse
Affiliation(s)
| | - Filomena Fiorito
- a Istituto Zooprofilattico Sperimentale del Mezzogiorno , Portici (Naples) , Italy
| | - Mauro Esposito
- a Istituto Zooprofilattico Sperimentale del Mezzogiorno , Portici (Naples) , Italy
| | - Angelo Ferrari
- b Istituto Zooprofilattico Sperimentale del Piemonte , Liguria e Valle d'Aosta, Turin , Italy
| | - Federico Fracassi
- c Università degli Studi di Bologna , Department of Veterinary Medical Sciences , Ozzano Emilia , Bologna , Italy
| | - Roberto Miniero
- d Istituto Superiore di sanità , Environment & Health Department , Rome , Italy
| | - Marco Pietra
- c Università degli Studi di Bologna , Department of Veterinary Medical Sciences , Ozzano Emilia , Bologna , Italy
| | - Paola Roncada
- c Università degli Studi di Bologna , Department of Veterinary Medical Sciences , Ozzano Emilia , Bologna , Italy
| | - Gianfranco Brambilla
- e Istituto Superiore di sanità , Food Safety, Nutrition, and Veterinary Public Health Department , Rome , Italy
| |
Collapse
|
17
|
Bree L, Gallagher BA, Shiel RE, Mooney CT. Prevalence and risk factors for hyperthyroidism in Irish cats from the greater Dublin area. Ir Vet J 2018; 71:2. [PMID: 29372047 PMCID: PMC5769238 DOI: 10.1186/s13620-017-0113-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/21/2017] [Indexed: 11/10/2022] Open
Abstract
Background Hyperthyroidism is common in older cats. Prevalence varies geographically, but is anecdotally considered low in Ireland. The aim of this study was to document prevalence of hyperthyroidism in older cats in the greater Dublin area of Ireland and to assess environmental and clinical associations for development and identification of the disease. Methods Primary-care veterinary practices were requested to select cats aged 10 years or older where blood sampling was being performed for health screening or clinical investigations. Surplus serum/plasma samples were submitted to University College Dublin Diagnostic Endocrine Laboratory for total thyroxine (T4) measurement. Cats were classified as hyperthyroid, equivocal or euthyroid based on a total T4 concentration (reference interval, 15-60 nmol/L), of >60 nmol/L, 30-60 nmol/L or <30 nmol/L, respectively. Simultaneous free T4 or repeat (after 4-6 weeks) total T4 measurement was recommended in all equivocal cases. Animals receiving treatment for hyperthyroidism were excluded. A questionnaire completed by the client and veterinarian detailing historical and physical information was also required. Associations between categorical variables were analysed by Chi-square or Fisher's exact test and odds ratio (OR) calculated. A P value of <0.05 was considered statistically significant. Results Samples were submitted from 507 cats including 107 (21.1%) hyperthyroid, 54 (10.6%) equivocal and 346 (68.2%) euthyroid. The presence of goitre (P < 0.0001), tachypnoea (P = 0.0378), tachycardia (P = 0.002), polyphagia (P = 0.0003) and weight loss (P < 0.0001) were significantly associated with hyperthyroidism. Cats with goitre were more likely to be diagnosed as hyperthyroid [OR 2.85, (95% CI 1.75-4.62] compared to those without. However, goitre was only palpated in 40 of 102 (39.2%) hyperthyroid cats. Increasing age was the only significant (P < 0.002) risk factor for development of hyperthyroidism. A relationship between hyperthyroidism and sex, breed, lifestyle, parasite control, vaccination status or feeding habits was not identified. Conclusions Hyperthyroidism is not uncommon in Irish cats. Age was the only significant risk factor for its development. The high proportion of hyperthyroid cats without palpable goitre (> 60%) may reflect failure to detect goitre and account for the perceived low prevalence of this condition in Ireland.
Collapse
Affiliation(s)
- Laura Bree
- 1Section of Small Animal Clinical Studies, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Barbara A Gallagher
- Present Address: Chestergates Veterinary Specialists, Telford Court Chestergates Roads Chester, Cheshire, CH1 6LT UK
| | - Robert E Shiel
- 1Section of Small Animal Clinical Studies, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carmel T Mooney
- 1Section of Small Animal Clinical Studies, School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
18
|
Lau G, Walter K, Kass P, Puschner B. Comparison of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in the serum of hypothyroxinemic and euthyroid dogs. PeerJ 2017; 5:e3780. [PMID: 28924500 PMCID: PMC5600179 DOI: 10.7717/peerj.3780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To determine the profile of 14 polybrominated diphenyl ethers (PBDEs) and 23 polychlorinated biphenyls (PCBs) in serum of domestic canines and whether this was predictive of thyroid hormone status. SAMPLES Serum samples were collected from 51 client-owned dogs visiting the University of California Davis William R. Pritchard Veterinary Medical Teaching Hospital during 2012 to 2016 for routine appointments. Fifteen dogs were diagnosed with hypothyroxinemia while 36 were euthyroid. PROCEDURES Concentrations of PBDEs and PCBs in canine serum samples were measured by gas chromatography mass spectrometry. Logistic regression analysis was used to determine the association between the presence/absence of canine hypothyroxinemia and the serum concentration of individual PBDE or PCB congeners. RESULTS The median concentrations of total PBDE and PCB congeners in the hypothyroxinemic group were 660 and 1,371 ng/g lipid, respectively, which were higher than concentrations detected in the control group. However, logistic regression analysis determined that current concentrations of PBDEs and PCBs in canines were not significantly associated with hypothyroxinemia. BDE 183 was the only congener showing near significance (p = 0.068). CONCLUSIONS PBDE and PCB congeners were detected in all canine samples confirming ongoing exposure to these pollutants. Because household dogs share the human environment, they may serve as biosentinels of human exposure to these contaminants.
Collapse
Affiliation(s)
- Grace Lau
- Department of Molecular Biosciences, University of California, Davis, CA, United States of America
| | - Kyla Walter
- Department of Molecular Biosciences, University of California, Davis, CA, United States of America
| | - Philip Kass
- Department of Population Health and Reproduction, University of California, Davis, CA, United States of America
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California, Davis, CA, United States of America
| |
Collapse
|
19
|
Lau G, Walter K, Kass P, Puschner B. Comparison of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in the serum of hypothyroxinemic and euthyroid dogs. PeerJ 2017. [PMID: 28924500 DOI: 10.7717/peeq.3780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
OBJECTIVE To determine the profile of 14 polybrominated diphenyl ethers (PBDEs) and 23 polychlorinated biphenyls (PCBs) in serum of domestic canines and whether this was predictive of thyroid hormone status. SAMPLES Serum samples were collected from 51 client-owned dogs visiting the University of California Davis William R. Pritchard Veterinary Medical Teaching Hospital during 2012 to 2016 for routine appointments. Fifteen dogs were diagnosed with hypothyroxinemia while 36 were euthyroid. PROCEDURES Concentrations of PBDEs and PCBs in canine serum samples were measured by gas chromatography mass spectrometry. Logistic regression analysis was used to determine the association between the presence/absence of canine hypothyroxinemia and the serum concentration of individual PBDE or PCB congeners. RESULTS The median concentrations of total PBDE and PCB congeners in the hypothyroxinemic group were 660 and 1,371 ng/g lipid, respectively, which were higher than concentrations detected in the control group. However, logistic regression analysis determined that current concentrations of PBDEs and PCBs in canines were not significantly associated with hypothyroxinemia. BDE 183 was the only congener showing near significance (p = 0.068). CONCLUSIONS PBDE and PCB congeners were detected in all canine samples confirming ongoing exposure to these pollutants. Because household dogs share the human environment, they may serve as biosentinels of human exposure to these contaminants.
Collapse
Affiliation(s)
- Grace Lau
- Department of Molecular Biosciences, University of California, Davis, CA, United States of America
| | - Kyla Walter
- Department of Molecular Biosciences, University of California, Davis, CA, United States of America
| | - Philip Kass
- Department of Population Health and Reproduction, University of California, Davis, CA, United States of America
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California, Davis, CA, United States of America
| |
Collapse
|