1
|
Mohamed SA, Teleb DF, Saad El-Deen HK, Eid JI, El-Ghor AA. Association of new SNPs at DGAT1 gene with milk quality in Egyptian Zaraibi goat breed. Anim Biotechnol 2023; 34:2499-2504. [PMID: 35855643 DOI: 10.1080/10495398.2022.2101116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study aimed to detect putative genomic loci in candidate genes associated with milk composition in Egyptian Zaraibi goats. A total number of 50 samples were tested to detect polymorphism in exons 15 and 16 of the diacylglycerol acyltransferase 1 (DGAT1) gene. The PCR products were sequenced and aligned. Sequence analysis showed three new genotypes in the studied samples: T1C1 (T12C SNP), T2C2 (T84C), and AG (G219A), then three groups were created: the first group was BB with C1T1 and AG genotypes, the second was DD which contains C2T2 and AG genotypes, and the third was AG with only AG genotype. GLM showed that the DD group with C84T and G219A SNPs had significantly the highest fat percent. Meanwhile, the BB group with C84T and G219A SNPs recorded significantly the highest total solids levels. On the other hand, the AG group which has G219A SNP showed a non-significant effect on milk components. Those new SNPs were submitted to GenBank and approved to be published. Moreover, translation of those sequences showed that the G219A SNP causes a substitution of Glycine to Serine in exon 16 at position 106. This SNP (G106S) was predicted to be tolerated by SIFT with a score of 0.48.
Collapse
Affiliation(s)
- Shaimaa A Mohamed
- Sheep & Goat Research Department, Animal Production Research Institute, Giza, Egypt
| | - Doaa F Teleb
- Sheep & Goat Research Department, Animal Production Research Institute, Giza, Egypt
| | | | - Jehane I Eid
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Akmal A El-Ghor
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Gutiérrez-Reinoso MA, Aponte PM, García-Herreros M. Genomic and Phenotypic Udder Evaluation for Dairy Cattle Selection: A Review. Animals (Basel) 2023; 13:ani13101588. [PMID: 37238017 DOI: 10.3390/ani13101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The traditional point of view regarding dairy cattle selection has been challenged by recent genomic studies indicating that livestock productivity prediction can be redefined based on the evaluation of genomic and phenotypic data. Several studies that included different genomic-derived traits only indicated that interactions among them or even with conventional phenotypic evaluation criteria require further elucidation. Unfortunately, certain genomic and phenotypic-derived traits have been shown to be secondary factors influencing dairy production. Thus, these factors, as well as evaluation criteria, need to be defined. Owing to the variety of genomic and phenotypic udder-derived traits which may affect the modern dairy cow functionality and conformation, a definition of currently important traits in the broad sense is indicated. This is essential for cattle productivity and dairy sustainability. The main objective of the present review is to elucidate the possible relationships among genomic and phenotypic udder evaluation characteristics to define the most relevant traits related to selection for function and conformation in dairy cattle. This review aims to examine the potential impact of various udder-related evaluation criteria on dairy cattle productivity and explore how to mitigate the adverse effects of compromised udder conformation and functionality. Specifically, we will consider the implications for udder health, welfare, longevity, and production-derived traits. Subsequently, we will address several concerns covering the application of genomic and phenotypic evaluation criteria with emphasis on udder-related traits in dairy cattle selection as well as its evolution from origins to the present and future prospects.
Collapse
Affiliation(s)
- Miguel A Gutiérrez-Reinoso
- Carrera de Medicina Veterinaria, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad Técnica de Cotopaxi (UTC), Latacunga 0501491, Ecuador
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
| | - Pedro M Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
- Campus Cumbayá, Instituto de Investigaciones en Biomedicina "One-Health", Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| | - Manuel García-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
| |
Collapse
|
3
|
Becker D, Weikard R, Heimes A, Hadlich F, Hammon HM, Meyerholz MM, Petzl W, Zerbe H, Schuberth HJ, Hoedemaker M, Schmicke M, Engelmann S, Kühn C. Allele-biased expression of the bovine APOB gene associated with the cholesterol deficiency defect suggests cis-regulatory enhancer effects of the LTR retrotransposon insertion. Sci Rep 2022; 12:13469. [PMID: 35931741 PMCID: PMC9355974 DOI: 10.1038/s41598-022-17798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/31/2022] [Indexed: 11/09/2022] Open
Abstract
The insertion of an endogenous retroviral long terminal repeat (LTR) sequence into the bovine apolipoprotein B (APOB) gene is causal to the inherited genetic defect cholesterol deficiency (CD) observed in neonatal and young calves. Affected calves suffer from developmental abnormalities, symptoms of incurable diarrhoea and often die within weeks to a few months after birth. Neither the detailed effects of the LTR insertion on APOB expression profile nor the specific mode of inheritance nor detailed phenotypic consequences of the mutation are undisputed. In our study, we analysed German Holstein dairy heifers at the peak of hepatic metabolic load and exposed to an additional pathogen challenge for clinical, metabolic and hepatic transcriptome differences between wild type (CDF) and heterozygote carriers of the mutation (CDC). Our data revealed that a divergent allele-biased expression pattern of the APOB gene in heterozygous CDC animals leads to a tenfold higher expression of exons upstream and a decreased expression of exons downstream of the LTR insertion compared to expression levels of CDF animals. This expression pattern could be a result of enhancer activity induced by the LTR insertion, in addition to a previously reported artificial polyadenylation signal. Thus, our data support a regulatory potential of mobile element insertions. With regard to the phenotype generated by the LTR insertion, heterozygote CDC carriers display significantly differential hepatic expression of genes involved in cholesterol biosynthesis and lipid metabolism. Phenotypically, CDC carriers show a significantly affected lipomobilization compared to wild type animals. These results reject a completely recessive mode of inheritance for the CD defect, which should be considered for selection decisions in the affected population. Exemplarily, our results illustrate the regulatory impact of mobile element insertions not only on specific host target gene expression but also on global transcriptome profiles with subsequent biological, functional and phenotypic consequences in a natural in-vivo model of a non-model mammalian organism.
Collapse
Affiliation(s)
- Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Rosemarie Weikard
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Annika Heimes
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Harald M Hammon
- Institute of Nutritional Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marie M Meyerholz
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
- Institute for Immunology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfram Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Holm Zerbe
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | | | - Martina Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marion Schmicke
- Faculty of Natural Sciences III, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Susanne Engelmann
- Institute for Microbiology, Technical University Braunschweig, Brunswick, Germany
- Microbial Proteomics, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Christa Kühn
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
- Agricultural and Environmental Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
4
|
Lippolis JD, Putz EJ, Reinhardt TA, Casas E, Weber WJ, Crooker BA. Effect of Holstein genotype on immune response to an intramammary Escherichia coli challenge. J Dairy Sci 2022; 105:5435-5448. [DOI: 10.3168/jds.2021-21166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
|
5
|
Khan MZ, Ma Y, Ma J, Xiao J, Liu Y, Liu S, Khan A, Khan IM, Cao Z. Association of DGAT1 With Cattle, Buffalo, Goat, and Sheep Milk and Meat Production Traits. Front Vet Sci 2021; 8:712470. [PMID: 34485439 PMCID: PMC8415568 DOI: 10.3389/fvets.2021.712470] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Milk fatty acids are essential for many dairy product productions, while intramuscular fat (IMF) is associated with the quality of meat. The triacylglycerols (TAGs) are the major components of IMF and milk fat. Therefore, understanding the polymorphisms and genes linked to fat synthesis is important for animal production. Identifying quantitative trait loci (QTLs) and genes associated with milk and meat production traits has been the objective of various mapping studies in the last decade. Consistently, the QTLs on chromosomes 14, 15, and 9 have been found to be associated with milk and meat production traits in cattle, goat, and buffalo and sheep, respectively. Diacylglycerol O-acyltransferase 1 (DGAT1) gene has been reported on chromosomes 14, 15, and 9 in cattle, goat, and buffalo and sheep, respectively. Being a key role in fat metabolism and TAG synthesis, the DGAT1 has obtained considerable attention especially in animal milk production. In addition to milk production, DGAT1 has also been a subject of interest in animal meat production. Several polymorphisms have been documented in DGAT1 in various animal species including cattle, buffalo, goat, and sheep for their association with milk production traits. In addition, the DGAT1 has also been studied for their role in meat production traits in cattle, sheep, and goat. However, very limited studies have been conducted in cattle for association of DGAT1 with meat production traits in cattle. Moreover, not a single study reported the association of DGAT1 with meat production traits in buffalo; thus, further studies are warranted to fulfill this huge gap. Keeping in view the important role of DGAT1 in animal production, the current review article was designed to highlight the major development and new insights on DGAT1 effect on milk and meat production traits in cattle, buffalo, sheep, and goat. Moreover, we have also highlighted the possible future contributions of DGAT1 for the studied species.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ibrar Muhammad Khan
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Heimes A, Brodhagen J, Weikard R, Seyfert HM, Becker D, Meyerholz MM, Petzl W, Zerbe H, Hoedemaker M, Rohmeier L, Schuberth HJ, Schmicke M, Engelmann S, Kühn C. Hepatic Transcriptome Analysis Identifies Divergent Pathogen-Specific Targeting-Strategies to Modulate the Innate Immune System in Response to Intramammary Infection. Front Immunol 2020; 11:715. [PMID: 32411137 PMCID: PMC7202451 DOI: 10.3389/fimmu.2020.00715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Mastitis is one of the major risks for public health and animal welfare in the dairy industry. Two of the most important pathogens to cause mastitis in dairy cattle are Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). While S. aureus generally induces a chronic and subclinical mastitis, E. coli is an important etiological pathogen resulting in an acute and clinical mastitis. The liver plays a central role in both, the metabolic and inflammatory physiology of the dairy cow, which is particularly challenged in the early lactation due to high metabolic and immunological demands. In the current study, we challenged the mammary glands of Holstein cows with S. aureus or E. coli, respectively, mimicking an early lactation infection. We compared the animals' liver transcriptomes with those of untreated controls to investigate the hepatic response of the individuals. Both, S. aureus and E. coli elicited systemic effects on the host after intramammary challenge and seemed to use pathogen-specific targeting strategies to bypass the innate immune system. The most striking result of our study is that we demonstrate for the first time that S. aureus intramammary challenge causes an immune response beyond the original local site of the mastitis. We found that in the peripheral liver tissue defined biological pathways are switched on in a coordinated manner to balance the immune response in the entire organism. TGFB1 signaling plays a crucial role in this context. Important pathways involving actin and integrin, key components of the cytoskeleton, were downregulated in the liver of S. aureus infected cows. In the hepatic transcriptome of E. coli infected cows, important components of the complement system were significantly lower expressed compared to the control cows. Notably, while S. aureus inhibits the cell signaling by Rho GTPases in the liver, E. coli switches the complement system off. Also, metabolic hepatic pathways (e.g., lipid metabolism) are affected after mammary gland challenge, demonstrating that the liver restricts metabolic tasks in favor of the predominant immune response after infection. Our results provide new insights for the infection-induced modifications of the dairy cow's hepatic transcriptome following mastitis.
Collapse
Affiliation(s)
- Annika Heimes
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Johanna Brodhagen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Rosemarie Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Hans-Martin Seyfert
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Doreen Becker
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Marie M Meyerholz
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Wolfram Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Holm Zerbe
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Martina Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hanover, Hanover, Germany
| | - Laura Rohmeier
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany.,Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hanover, Hanover, Germany
| | | | - Marion Schmicke
- Faculty of Natural Sciences III, Martin-Luther Universität Halle-Wittenberg, Halle, Germany
| | - Susanne Engelmann
- Technical University Braunschweig, Institute for Microbiology, Brunswick, Germany.,Helmholtz Centre for Infection Research, Microbial Proteomics, Brunswick, Germany
| | - Christa Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany.,Agricultural and Environmental Faculty, University Rostock, Rostock, Germany
| |
Collapse
|
7
|
Heimes A, Brodhagen J, Weikard R, Becker D, Meyerholz MM, Petzl W, Zerbe H, Schuberth HJ, Hoedemaker M, Schmicke M, Engelmann S, Kühn C. Cows selected for divergent mastitis susceptibility display a differential liver transcriptome profile after experimental Staphylococcus aureus mammary gland inoculation. J Dairy Sci 2020; 103:6364-6373. [PMID: 32307160 DOI: 10.3168/jds.2019-17612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/15/2020] [Indexed: 01/12/2023]
Abstract
Infection and inflammation of the mammary gland, and especially prevention of mastitis, are still major challenges for the dairy industry. Different approaches have been tried to reduce the incidence of mastitis. Genetic selection of cows with lower susceptibility to mastitis promises sustainable success in this regard. Bos taurus autosome (BTA) 18, particularly the region between 43 and 59 Mb, harbors quantitative trait loci (QTL) for somatic cell score, a surrogate trait for mastitis susceptibility. Scrutinizing the molecular bases hereof, we challenged udders from half-sib heifers having inherited either favorable paternal haplotypes for somatic cell score (Q) or unfavorable haplotypes (q) with the Staphylococcus aureus pathogen. RNA sequencing was used for an in-depth analysis of challenge-related alterations in the hepatic transcriptome. Liver exerts highly relevant immune functions aside from being the key metabolic organ. Hence, a holistic approach focusing on the liver enabled us to identify challenge-related and genotype-dependent differentially expressed genes and underlying regulatory networks. In response to the S. aureus challenge, we found that heifers with Q haplotypes displayed more activated immune genes and pathways after S. aureus challenge compared with their q half-sibs. Furthermore, we found a significant enrichment of differentially expressed loci in the genomic target region on BTA18, suggesting the existence of a regionally acting regulatory element with effects on a variety of genes in this region.
Collapse
Affiliation(s)
- A Heimes
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - J Brodhagen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - R Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - D Becker
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany
| | - M M Meyerholz
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany; Immunology Unit, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - W Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| | - H Zerbe
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| | - H-J Schuberth
- Immunology Unit, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - M Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
| | - M Schmicke
- Faculty of Natural Sciences III, Martin-Luther Universität Halle-Wittenberg, 06120 Halle, Germany
| | - S Engelmann
- Technical University Braunschweig, Institute for Microbiology, 38023 Braunschweig, Germany; Helmholtz Centre for Infection Research, Microbial Proteomics, 38124 Braunschweig, Germany
| | - C Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, 18196 Dummerstorf, Germany; Agricultural and Environmental Faculty, University Rostock, 18059 Rostock, Germany.
| |
Collapse
|
8
|
Rohmeier L, Petzl W, Koy M, Eickhoff T, Hülsebusch A, Jander S, Macias L, Heimes A, Engelmann S, Hoedemaker M, Seyfert HM, Kühn C, Schuberth HJ, Zerbe H, Meyerholz MM. In vivo model to study the impact of genetic variation on clinical outcome of mastitis in uniparous dairy cows. BMC Vet Res 2020; 16:33. [PMID: 32005239 PMCID: PMC6995066 DOI: 10.1186/s12917-020-2251-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In dairy herds, mastitis causes detrimental economic losses. Genetic selection offers a sustainable tool to select animals with reduced susceptibility towards postpartum diseases. Studying underlying mechanisms is important to assess the physiological processes that cause differences between selected haplotypes. Therefore, the objective of this study was to establish an in vivo infection model to study the impact of selecting for alternative paternal haplotypes in a particular genomic region on cattle chromosome 18 for mastitis susceptibility under defined conditions in uniparous dairy cows. RESULTS At the start of pathogen challenge, no significant differences between the favorable (Q) and unfavorable (q) haplotypes were detected. Intramammary infection (IMI) with Staphylococcus aureus 1027 (S. aureus, n = 24, 96 h) or Escherichia coli 1303 (E. coli, n = 12, 24 h) was successfully induced in all uniparous cows. This finding was confirmed by clinical signs of mastitis and repeated recovery of the respective pathogen from milk samples of challenged quarters in each animal. After S. aureus challenge, Q-uniparous cows showed lower somatic cell counts 24 h and 36 h after challenge (P < 0.05), lower bacterial shedding in milk 12 h after challenge (P < 0.01) and a minor decrease in total milk yield 12 h and 24 h after challenge (P < 0.01) compared to q-uniparous cows. CONCLUSION An in vivo infection model to study the impact of genetic selection for mastitis susceptibility under defined conditions in uniparous dairy cows was successfully established and revealed significant differences between the two genetically selected haplotype groups. This result might explain their differences in susceptibility towards IMI. These clinical findings form the basis for further in-depth molecular analysis to clarify the underlying genetic mechanisms for mastitis resistance.
Collapse
Affiliation(s)
- L. Rohmeier
- Clinic for Ruminants with Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - W. Petzl
- Clinic for Ruminants with Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
| | - M. Koy
- Immunology Unit, University of Veterinary Medicine Hannover Foundation, Bünteweg 2, 30559 Hannover, Germany
- Clinic for Poultry, University of Veterinary Medicine Hannover Foundation, Bünteweg, 17 30559 Hannover, Germany
| | - T. Eickhoff
- Immunology Unit, University of Veterinary Medicine Hannover Foundation, Bünteweg 2, 30559 Hannover, Germany
| | - A. Hülsebusch
- Immunology Unit, University of Veterinary Medicine Hannover Foundation, Bünteweg 2, 30559 Hannover, Germany
| | - S. Jander
- Immunology Unit, University of Veterinary Medicine Hannover Foundation, Bünteweg 2, 30559 Hannover, Germany
| | - L. Macias
- Clinic for Ruminants with Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
| | - A. Heimes
- Leibniz Institute for Farm Animal Biology, Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - S. Engelmann
- Technical University Braunschweig, Institute for Microbiology, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Helmholtz Center for Infection Research, Microbial Proteomics, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - M. Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hannover Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - H. M. Seyfert
- Leibniz Institute for Farm Animal Biology, Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - C. Kühn
- Leibniz Institute for Farm Animal Biology, Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Agricultural and Environmental Faculty, University Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - H. J. Schuberth
- Immunology Unit, University of Veterinary Medicine Hannover Foundation, Bünteweg 2, 30559 Hannover, Germany
| | - H. Zerbe
- Clinic for Ruminants with Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
| | - M. M. Meyerholz
- Clinic for Ruminants with Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, 85764 Oberschleissheim, Germany
- Immunology Unit, University of Veterinary Medicine Hannover Foundation, Bünteweg 2, 30559 Hannover, Germany
| |
Collapse
|
9
|
Heimes A, Brodhagen J, Weikard R, Hammon HM, Meyerholz MM, Petzl W, Zerbe H, Engelmann S, Schmicke M, Hoedemaker M, Schuberth HJ, Kühn C. Correction to: Characterization of functional traits with focus on udder health in heifers with divergent paternally inherited haplotypes on BTA18. BMC Vet Res 2019; 15:285. [PMID: 31395056 PMCID: PMC6688331 DOI: 10.1186/s12917-019-2034-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- A Heimes
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - J Brodhagen
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - R Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - H M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - M M Meyerholz
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstr. 16, 85764, Oberschleißheim, Germany
| | - W Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstr. 16, 85764, Oberschleißheim, Germany
| | - H Zerbe
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstr. 16, 85764, Oberschleißheim, Germany
| | - S Engelmann
- Institute for Microbiology, Technical University Braunschweig, Postfach 3329, 38023, Braunschweig, Germany.,Microbial Proteomics, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - M Schmicke
- Clinic for Cattle, University of Veterinary Medicine Hanover, Bischofsholer Damm 15, 30173, Hanover, Germany
| | - M Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hanover, Bischofsholer Damm 15, 30173, Hanover, Germany
| | - H-J Schuberth
- Immunology Unit, University of Veterinary Medicine Hanover, Bünteweg 2, Geb. 261, 30559, Hanover, Germany
| | - C Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany. .,Agricultural and Environmental Faculty, University Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany.
| |
Collapse
|