1
|
Tang S, Borlak J. Genomics of human NAFLD: Lack of data reproducibility and high interpatient variability in drug target expression as major causes of drug failures. Hepatology 2024; 80:901-915. [PMID: 38358517 PMCID: PMC11407777 DOI: 10.1097/hep.0000000000000780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND AND AIMS NAFLD is a major disease burden and a foremost cause of chronic liver disease. Presently, nearly 300 trials evaluate the therapeutic efficacy of > 20 drugs. Remarkably, the majority of drugs fail. To better comprehend drug failures, we investigated the reproducibility of fatty liver genomic data across 418 liver biopsies and evaluated the interpatient variability of 18 drug targets. APPROACH AND RESULTS Apart from our own data, we retrieved NAFLD biopsy genomic data sets from public repositories and considered patient demographics. We divided the data into test and validation sets, assessed the reproducibility of differentially expressed genes and performed gene enrichment analysis. Patients were stratified by disease activity score, fibrosis grades and sex, and we investigated the regulation of 18 drug targets across 418 NAFLD biopsies of which 278 are NASH cases. We observed poor reproducibility of differentially expressed genes across 9 independent studies. On average, only 4% of differentially expressed genes are commonly regulated based on identical sex and 2% based on identical NAS disease score and fibrosis grade. Furthermore, we observed sex-specific gene regulations, and for females, we noticed induced expression of genes coding for inflammatory response, Ag presentation, and processing. Conversely, extracellular matrix receptor interactions are upregulated in males, and the data agree with clinical findings. Strikingly, and with the exception of stearoyl-CoA desaturase, most drug targets are not regulated in > 80% of patients. CONCLUSIONS Lack of data reproducibility, high interpatient variability, and the absence of disease-dependent drug target regulations are likely causes of NASH drug failures in clinical trials.
Collapse
|
2
|
Hu Y, Xu R, Feng J, Zhang Q, Zhang L, Li Y, Sun X, Gao J, Chen X, Du M, Chen Z, Liu X, Fan Y, Zhang Y. Identification of potential pathogenic hepatic super-enhancers regulatory network in high-fat diet induced hyperlipidemia. J Nutr Biochem 2024; 126:109584. [PMID: 38242178 DOI: 10.1016/j.jnutbio.2024.109584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Hyperlipidemia (HLP) is a prevalent metabolic disorder and a significant risk factor for cardiovascular disease. According to recent discoveries, super-enhancers (SEs) play a role in the increased expression of genes that encode important regulators of both cellular identity and the progression of diseases. However, the underlying function of SEs in the development of HLP is still unknown. We performed an integrative analysis of data on H3K27ac ChIP-seq and RNA sequencing obtained from liver tissues of mice under a low-fat diet (LFD) and high-fat diet (HFD) from GEO database. The rank ordering of super enhancers algorithm was employed for the computation and identification of SEs. A total of 1,877 and 1,847 SEs were identified in the LFD and HFD groups, respectively. The SE inhibitor JQ1 was able to potently reverse lipid deposition and the increased intracellular triglyceride and total cholesterol induced by oleic acid, indicating that SEs are involved in regulating lipid accumulation. Two hundred seventy-eight were considered as HFD-specific SEs (HSEs). GO and KEGG pathway enrichment analysis of the upregulated HSEs-associated genes revealed that they were mainly involved in lipid metabolic pathway. Four hub genes, namely Cd36, Pex11a, Ech1, and Cidec, were identified in the HSEs-associated protein-protein interaction network, and validated with two other datasets. Finally, we constructed a HSEs-specific regulatory network with Cidec and Cd36 as the core through the prediction and verification of transcription factors. Our study constructed a HSEs-associated regulatory network in the pathogenesis of HLP, providing new ideas for the underlying mechanisms and therapeutic targets of HLP.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Run Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qingwei Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lifu Zhang
- Unit 32680, People's Liberation Army of China, Shenyang, China
| | - Yiyang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuxiu Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jin Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ximing Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Menghan Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhouxiu Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China.
| | - Yuhua Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China.
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China.
| |
Collapse
|
3
|
HENG X, WANG Z, LI L, YANG L, HUANG S, JIN L, HE W. Mechanisms of Dangua Fang in multi-target and multi-method regulation of glycolipid metabolism based on phosphoproteomics. J TRADIT CHIN MED 2024; 44:334-344. [PMID: 38504539 PMCID: PMC10927395 DOI: 10.19852/j.cnki.jtcm.20230908.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/18/2022] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To explore the mechanism of Dangua Fang (, DGR) in multi-target and multi-method regulation of glycolipid metabolism based on phosphoproteomics. METHODS Sprague-Dawley rats with normal glucose levels were randomly divided into three groups, including a conventional diet control group (Group A), high-fat-high-sugar diet model group (Group B), and DGR group (Group C, high-fat-high-sugar diet containing 20.5 g DGR). After 10 weeks of intervention, the fasting blood glucose (FBG), 2 h blood glucose [PBG; using the oral glucose tolerance test (OGTT)], hemoglobin A1c (HbA1c), plasma total cholesterol (TC), and triglycerides (TG) were tested, and the livers of rats were removed to calculate the liver index. Then, hepatic portal TG were tested using the Gross permanent optimization-participatiory action planning enzymatic method and phosphoproteomics was performed using liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis followed by database search and bioinformatics analysis. Finally, cell experiments were used to verify the results of phosphoproteomics. Phosphorylated mitogen-activated protein kinase kinase kinase kinase 4 (MAP4k4) and phosphorylated adducin 1 (ADD1) were detected using western blotting. RESULTS DGR effectively reduced PBG, TG, and the liver index (P < 0.05), and significantly decreased HbA1c, TC, and hepatic portal TG (P < 0.01), showed significant hematoxylin and eosin (HE) staining, red oil O staining, and Masson staining of liver tissue. The total spectrum was 805 334, matched spectrum was 260 471, accounting for accounting 32.3%, peptides were 19 995, modified peptides were 14 671, identified proteins were 4601, quantifiable proteins were 4417, identified sites were 15 749, and quantified sites were 14659. Based on the threshold of expression fold change ( > 1.2), DGR up-regulated the modification of 228 phosphorylation sites involving 204 corresponding function proteins, and down-regulated the modification of 358 phosphorylation sites involving 358 corresponding function proteins, which included correcting 75 phosphorylation sites involving 64 corresponding function proteins relating to glycolipid metabolism. Therefore, DGR improved biological tissue processes, including information storage and processing, cellular processes and signaling, and metabolism. The metabolic functions regulated by DGR mainly include energy production and conversion, carbohydrate transport and metabolism, lipid transport and metabolism, inorganic ion transport and metabolism, secondary metabolite biosynthesis, transport, and catabolism. In vitro phosphorylation validation based on cell experiments showed that the change trends in the phosphorylation level of MAP4k4 and ADD1 were consistent with that of previous phosphoproteomics studies. CONCLUSION DGR extensively corrects the modification of phosphorylation sites to improve corresponding glycolipid metabolism-related protein expression in rats with glycolipid metabolism disorders, thereby regulating glycolipid metabolism through a multi-target and multi-method process.
Collapse
Affiliation(s)
- Xianpei HENG
- 1 Department of Endocrinology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Zhita WANG
- 1 Department of Endocrinology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Liang LI
- 1 Department of Endocrinology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Liuqing YANG
- 1 Department of Endocrinology, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| | - Suping HUANG
- 2 Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lang JIN
- 3 Faculty of Humanities and Management, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Weidong HE
- 4 Department of Geriatrics, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China
| |
Collapse
|
4
|
Willett RA, Tryndyak VP, Beland FA, Pogribny IP. Cellular and molecular alterations in a human hepatocellular in vitro model of nonalcoholic fatty liver disease development and stratification. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:74-92. [PMID: 38105681 DOI: 10.1080/26896583.2023.2293493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The rapidly increasing incidence of nonalcoholic fatty liver disease (NAFLD) is a growing health crisis worldwide. If not detected early, NAFLD progression can lead to irreversible pathological states, including liver fibrosis and cirrhosis. Using in vitro models to understand the molecular pathogenesis has been extremely beneficial; however, most studies have utilized only short-term exposures, highlighting a limitation in current research to model extended fat-induced liver injury. We treated Hep3B cells continuously with a low dose of oleic and palmitic free fatty acids (FFAs) for 7 or 28 days. Transcriptomic analysis identified dysregulated molecular pathways and differential expression of 984 and 917 genes after FFA treatment for 7 and 28 days respectively. DNA methylation analysis of altered DNA methylated regions (DMRs) found 7 DMRs in common. Pathway analysis of differentially expressed genes (DEGs) revealed transcriptomic changes primarily involved in lipid metabolism, small molecule biochemistry, and molecular transport. Western blot analysis revealed changes in PDK4 and CPT1A protein levels, indicative of mitochondrial stress. In line with this, there was mitochondrial morphological change demonstrating breakdown of the mitochondrial network. This in vitro model of human NAFL mimics results observed in human patients and may be used as a pre-clinical model for drug intervention.
Collapse
Affiliation(s)
- Rose A Willett
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
5
|
Sanchez-Quant E, Richter ML, Colomé-Tatché M, Martinez-Jimenez CP. Single-cell metabolic profiling reveals subgroups of primary human hepatocytes with heterogeneous responses to drug challenge. Genome Biol 2023; 24:234. [PMID: 37848949 PMCID: PMC10583437 DOI: 10.1186/s13059-023-03075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Xenobiotics are primarily metabolized by hepatocytes in the liver, and primary human hepatocytes are the gold standard model for the assessment of drug efficacy, safety, and toxicity in the early phases of drug development. Recent advances in single-cell genomics demonstrate liver zonation and ploidy as main drivers of cellular heterogeneity. However, little is known about the impact of hepatocyte specialization on liver function upon metabolic challenge, including hepatic metabolism, detoxification, and protein synthesis. RESULTS Here, we investigate the metabolic capacity of individual human hepatocytes in vitro. We assess how chronic accumulation of lipids enhances cellular heterogeneity and impairs the metabolisms of drugs. Using a phenotyping five-probe cocktail, we identify four functional subgroups of hepatocytes responding differently to drug challenge and fatty acid accumulation. These four subgroups display differential gene expression profiles upon cocktail treatment and xenobiotic metabolism-related specialization. Notably, intracellular fat accumulation leads to increased transcriptional variability and diminishes the drug-related metabolic capacity of hepatocytes. CONCLUSIONS Our results demonstrate that, upon a metabolic challenge such as exposure to drugs or intracellular fat accumulation, hepatocyte subgroups display different and heterogeneous transcriptional responses.
Collapse
Affiliation(s)
- Eva Sanchez-Quant
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Maria Lucia Richter
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354, Freising, Germany.
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 82152, Munich, Germany.
| | - Celia Pilar Martinez-Jimenez
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- TUM School of Medicine, Technical University of Munich, Munich (TUM), 80333, Munich, Germany.
| |
Collapse
|
6
|
Yamaji K, Iwabuchi S, Tokunaga Y, Hashimoto S, Yamane D, Toyama S, Kono R, Kitab B, Tsukiyama-Kohara K, Osawa Y, Hayashi Y, Hishima T, Tateno C, Kimura K, Okanoue T, Kohara M. Molecular insights of a CBP/β-catenin-signaling inhibitor on nonalcoholic steatohepatitis-induced liver fibrosis and disorder. Biomed Pharmacother 2023; 166:115379. [PMID: 37647690 DOI: 10.1016/j.biopha.2023.115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressive fibrotic disease associated with an increased risk of developing hepatocellular carcinoma; at present, no efficient therapeutic strategy has been established. Herein, we examined the efficacy of PRI-724, a potent inhibitor of CBP/β-catenin signaling, for treating NASH-related liver fibrosis and disorder and characterized its mechanism. Choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-fed mice exhibited NASH-induced liver fibrosis that is characterized by steatosis, lobular inflammation, hepatocellular injury and collagen fibrils. To examine the therapeutic effect, CDAHFD-fed mice were administered PRI-724. Serum levels of ALT and pro-fibrotic molecule, i.e. Mac-2 bp, alpha smooth muscle actin, type I and type III collagens, decreased significantly. mRNA levels of the matrix metalloproteinases Mmp8 and Mmp9 in the liver were significantly increased, and increases in the abundance of MMP9-producing neutrophils and macrophages were observed. Marco+Mmp9+Cd68+ Kupffer cells were only observed in the livers of mice treated with PRI-724, and Mmp9 expression in Marco+Cd68+ Kupffer cells increased 4.3-fold. Moreover, hepatic expression of the lipid metabolism regulator, pyruvate dehydrogenase kinase 4 and liver lipid droplets also decreased significantly. PRI-724-treated NASH mice not only recovered from NASH-related liver fibrosis through the effect of PRI-724 down-regulating the expression of pro-fibrotic genes and up-regulating the expression of anti-fibrotic genes, but they also recovered from NASH-induced liver disorder. PRI-724, a selective CBP/β-catenin inhibitor, thus shows a potent therapeutic effect for NASH-related liver fibrosis and for decreasing adipose tissue in the liver.
Collapse
Affiliation(s)
- Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yuko Tokunaga
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Daisuke Yamane
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Sakiko Toyama
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Risa Kono
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Bouchra Kitab
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Yosuke Osawa
- Department of Gastroenterology, International University of Health and Welfare Hospital, Nasushiobara 324-8501, Japan
| | - Yukiko Hayashi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan
| | - Chise Tateno
- R&D Department, PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Kiminori Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka 564-0013, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
7
|
Yan J, Ye G, Shao Y, Zhou H. Identification of novel prognostic biomarkers in the TF-enhancer-target regulatory network in hepatocellular carcinoma and immune infiltration analysis. Front Genet 2023; 14:1158341. [PMID: 37065474 PMCID: PMC10090374 DOI: 10.3389/fgene.2023.1158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) remains notorious for its high malignancy, poor prognosis and high mortality. The exploration of novel therapeutic agents for HCC has remained challenging due to its complex aetiology. Therefore, it is necessary to elucidate the pathogenesis and mechanism of HCC for clinical intervention.Methods: We collected data from several public data portals and systematically analysed the association between transcription factors (TFs), eRNA-associated enhancers and downstream targets. We next filtered the prognostic genes and established a novel prognosis-related nomogram model. Moreover, we explored the potential mechanisms of the identified prognostic genes. The expression level was validated by several ways.Results: We first constructed a significant TF-enhancer-target regulatory network and identified DAPK1 as a coregulatory differentially expressed prognosis-related gene. We combined common clinicopathological factors and built a prognostic nomogram model for HCC. We found that our regulatory network was correlated with the processes of synthesizing various substances. Moreover, we explored the role of DAPK1 in HCC and found that it was associated with immune cell infiltration and DNA methylation. Several immunostimulators and targeting drugs could be promising immune therapy targets. The tumor immune microenvironment was analyzed. Finally, the lower DAPK1 expression in HCC was validated via the GEO database, UALCAN cohort, and qRT-PCR.Conclusion: In conclusion, we established a significant TF-enhancer-target regulatory network and identified downregulated DAPK1 as an important prognostic and diagnostic gene in HCC. Its potential biological functions and mechanisms were annotated using bioinformatics tools.
Collapse
Affiliation(s)
- Jianing Yan
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Gastroenterology, Institute of Digestive Disease of Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Gastroenterology, Institute of Digestive Disease of Ningbo University, Ningbo, China
| | - Yongfu Shao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Gastroenterology, Institute of Digestive Disease of Ningbo University, Ningbo, China
- *Correspondence: Yongfu Shao,
| | - Hanxuan Zhou
- Department of Pharmacy, Yinzhou Integrated TCM and Western Medicine Hospital, Ningbo, China
| |
Collapse
|
8
|
A Comparison of Primary Human Hepatocytes and Hepatoma Cell Lines to Model the Effects of Fatty Acids, Fructose and Glucose on Liver Cell Lipid Accumulation. Nutrients 2022; 15:nu15010040. [PMID: 36615698 PMCID: PMC9824391 DOI: 10.3390/nu15010040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) begins with lipid accumulation within hepatocytes, but the relative contributions of different macronutrients is still unclear. We investigated the impact of fatty acids, glucose and fructose on lipid accumulation in primary human hepatocytes (PHH) and three different cell lines: HepG2 (human hepatoblastoma−derived cell line), Huh7 (human hepatocellular carcinoma cell line) and McA-RH7777 (McA, rat hepatocellular carcinoma cell line). Cells were treated for 48 h with fatty acids (0 or 200 μM), glucose (5 mM or 11 mM) and fructose (0 mM, 2 mM or 8 mM). Lipid accumulation was measured via Nile Red staining. All cell types accumulated lipid in response to fatty acids (p < 0.001). PHH and McA, but not HepG2 or Huh7 cells, accumulated more lipid with 11 mM glucose plus fatty acids (p = 0.004, fatty acid × glucose interaction, for both), but only PHH increased lipid accumulation in response to fructose (p < 0.001). Considerable variation was observed between PHH cells from different individuals. Lipid accumulation in PHH was increased by insulin (p = 0.003) with inter-individual variability. Similarly, insulin increased lipid accumulation in both HepG2 and McA cells, with a bigger response in McA in the presence of fatty acids (p < 0.001 for fatty acid × insulin). McA were more insulin sensitive than either HepG2 or Huh7 cells in terms of AKT phosphorylation (p < 0.001 insulin × cell type interaction). Hence, glucose and fructose can contribute to the accumulation of lipid in PHH with considerable inter-individual variation, but hepatoma cell lines are not good models of PHH.
Collapse
|
9
|
Ma Y, Li Q, Chen G, Tan Z, Cao H, Bin Y, Zhou Y, Yi J, Luo X, Tan J, Li J, Si Z. Transcriptomic analysis reveals a novel regulatory factor of ECHDC1 involved in lipid metabolism of non-alcoholic fatty liver disease. Biochem Biophys Res Commun 2022; 605:1-8. [PMID: 35305493 DOI: 10.1016/j.bbrc.2022.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the highest incidence of chronic liver disease worldwide characterized by lipid accumulation in the liver. The full understanding of the lipogenesis of NAFLD is extreme importance. Here, whole-genome transcriptome analysis was performed on liver tissues of NAFLD patients and healthy controls to identify the differentially expressed genes and find new pathways and target genes related to the lipogenesis of NAFLD. Combined with the Gene Expression Omnibus (GEO) database, we found 86 overlapping genes, many of which are related to lipid metabolism of NAFLD. ECHDC1 is one of 86 overlapping genes, and its role in NAFLD has not been reported. The expression of ECHDC1 was significantly increased in liver tissue of patients with NAFLD than that of healthy controls, and oil Red O intensity was positively correlated with the expression levels of ECHDC1. Inhibition of ECHDC1 expression in HepG2 cells by RNAi significantly reduced intracellular lipid droplet number in vitro. In summary, this study analyzed pathogenic factors related to NAFLD at the whole-genome level and demonstrated that ECHDC1 may be involved in the occurrence and development of NAFLD by regulating hepatic lipid metabolism.
Collapse
Affiliation(s)
- Yongqiang Ma
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, PR China
| | - Qiang Li
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, PR China; Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, PR China
| | - Guangshun Chen
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, PR China; Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, PR China
| | - Zhi Tan
- Department of Gastroenterology, The First Hospital of Changsha, Changsha, Hunan, 410005, PR China
| | - Hui Cao
- Department of Gastroenterology, The First Hospital of Changsha, Changsha, Hunan, 410005, PR China
| | - Yangyang Bin
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, PR China
| | - Yi Zhou
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, PR China
| | - Junfang Yi
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, PR China
| | - Xiaohua Luo
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, PR China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Science, Central South University, 410078, Changsha, Hunan, PR China
| | - Jiequn Li
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, PR China; Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, PR China.
| | - Zhongzhou Si
- Department of Liver Transplant, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, PR China; Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, PR China.
| |
Collapse
|
10
|
Li HY, Peng ZG. Targeting lipophagy as a potential therapeutic strategy for nonalcoholic fatty liver disease. Biochem Pharmacol 2022; 197:114933. [PMID: 35093393 DOI: 10.1016/j.bcp.2022.114933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 02/09/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming an increasingly serious disease worldwide. Unfortunately, no specific drug has been approved to treat NAFLD. Accumulating evidence suggests that lipotoxicity, which is induced by an excess of intracellular triacylglycerols (TAGs), is a potential mechanism underlying the ill-defined progression of NAFLD. Under physiological conditions, a balance is maintained between TAGs and free fatty acids (FFAs) in the liver. TAGs are catabolized to FFAs through neutral lipolysis and/or lipophagy, while FFAs can be anabolized to TAGs through an esterification reaction. However, in the livers of patients with NAFLD, lipophagy appears to fail. Reversing this abnormal state through several lipophagic molecules (mTORC1, AMPK, PLIN, etc.) facilitates NAFLD amelioration; therefore, restoring failed lipophagy may be a highly efficient therapeutic strategy for NAFLD. Here, we outline the lipophagy phases with the relevant important proteins and discuss the roles of lipophagy in the progression of NAFLD. Additionally, the potential candidate drugs with therapeutic value targeting these proteins are discussed to show novel strategies for future treatment of NAFLD.
Collapse
Affiliation(s)
- Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
11
|
Pelechá M, Villanueva-Bádenas E, Timor-López E, Donato MT, Tolosa L. Cell Models and Omics Techniques for the Study of Nonalcoholic Fatty Liver Disease: Focusing on Stem Cell-Derived Cell Models. Antioxidants (Basel) 2021; 11:86. [PMID: 35052590 PMCID: PMC8772881 DOI: 10.3390/antiox11010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now the leading cause of chronic liver disease in western countries. The molecular mechanisms leading to NAFLD are only partially understood, and effective therapeutic interventions are clearly needed. Therefore, preclinical research is required to improve knowledge about NAFLD physiopathology and to identify new therapeutic targets. Primary human hepatocytes, human hepatic cell lines, and human stem cell-derived hepatocyte-like cells exhibit different hepatic phenotypes and have been widely used for studying NAFLD pathogenesis. In this paper, apart from employing the different in vitro cell models for the in vitro assessment of NAFLD, we also reviewed other approaches (metabolomics, transcriptomics, and high-content screening). We aimed to summarize the characteristics of different cell types and methods and to discuss their major advantages and disadvantages for NAFLD modeling.
Collapse
Affiliation(s)
- María Pelechá
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
| | - Estela Villanueva-Bádenas
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
| | - Enrique Timor-López
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
| | - María Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Fernandez-Checa JC, Bagnaninchi P, Ye H, Sancho-Bru P, Falcon-Perez JM, Royo F, Garcia-Ruiz C, Konu O, Miranda J, Lunov O, Dejneka A, Elfick A, McDonald A, Sullivan GJ, Aithal GP, Lucena MI, Andrade RJ, Fromenty B, Kranendonk M, Cubero FJ, Nelson LJ. Advanced preclinical models for evaluation of drug-induced liver injury - consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. J Hepatol 2021; 75:935-959. [PMID: 34171436 DOI: 10.1016/j.jhep.2021.06.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of the leading indications for liver transplantation in Western societies. Given the wide use of both prescribed and over the counter drugs, DILI has become a major health issue for which there is a pressing need to find novel and effective therapies. Although significant progress has been made in understanding the molecular mechanisms underlying DILI, our incomplete knowledge of its pathogenesis and inability to predict DILI is largely due to both discordance between human and animal DILI in preclinical drug development and a lack of models that faithfully recapitulate complex pathophysiological features of human DILI. This is exemplified by the hepatotoxicity of acetaminophen (APAP) overdose, a major cause of ALF because of its extensive worldwide use as an analgesic. Despite intensive efforts utilising current animal and in vitro models, the mechanisms involved in the hepatotoxicity of APAP are still not fully understood. In this expert Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury Network, we aim to facilitate and outline clinically impactful discoveries by detailing the requirements for more realistic human-based systems to assess hepatotoxicity and guide future drug safety testing. We present novel insights and discuss major players in APAP pathophysiology, and describe emerging in vitro and in vivo pre-clinical models, as well as advanced imaging and in silico technologies, which may improve prediction of clinical outcomes of DILI.
Collapse
Affiliation(s)
- Jose C Fernandez-Checa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033.
| | - Pierre Bagnaninchi
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK
| | - Hui Ye
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Pau Sancho-Bru
- Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Juan M Falcon-Perez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, 48015, Spain
| | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Carmen Garcia-Ruiz
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Joana Miranda
- Research Institute for iMedicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Alison McDonald
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Gareth J Sullivan
- University of Oslo and the Oslo University Hospital, Oslo, Norway; Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hosptial, Oslo, Norway
| | - Guruprasad P Aithal
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, Málaga, Spain
| | - Raul J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación, Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Malaga, Spain
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Leonard J Nelson
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK; Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences (EPS), Heriot-Watt University, Edinburgh EH12 2AS, Scotland, UK.
| |
Collapse
|
13
|
Nawroth JC, Petropolis DB, Manatakis DV, Maulana TI, Burchett G, Schlünder K, Witt A, Shukla A, Kodella K, Ronxhi J, Kulkarni G, Hamilton G, Seki E, Lu S, Karalis KC. Modeling alcohol-associated liver disease in a human Liver-Chip. Cell Rep 2021; 36:109393. [PMID: 34289365 PMCID: PMC8342038 DOI: 10.1016/j.celrep.2021.109393] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/03/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol-associated liver disease (ALD) is a global health issue and leads to progressive liver injury, comorbidities, and increased mortality. Human-relevant preclinical models of ALD are urgently needed. Here, we leverage a triculture human Liver-Chip with biomimetic hepatic sinusoids and bile canaliculi to model ALD employing human-relevant blood alcohol concentrations (BACs) and multimodal profiling of clinically relevant endpoints. Our Liver-Chip recapitulates established ALD markers in response to 48 h of exposure to ethanol, including lipid accumulation and oxidative stress, in a concentration-dependent manner and supports the study of secondary insults, such as high blood endotoxin levels. We show that remodeling of the bile canalicular network can provide an in vitro quantitative readout of alcoholic liver toxicity. In summary, we report the development of a human ALD Liver-Chip as a powerful platform for modeling alcohol-induced liver injury with the potential for direct translation to clinical research and evaluation of patient-specific responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anke Witt
- Emulate, Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | | | | | - Janey Ronxhi
- Emulate, Inc., 27 Drydock Avenue, Boston, MA 02210, USA
| | | | | | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
14
|
Abbey D, Conlon D, Rainville C, Elwyn S, Quiroz-Figueroa K, Billheimer J, Schultz DC, Hand NJ, Cherry S, Rader DJ. Lipid droplet screen in human hepatocytes identifies TRRAP as a regulator of cellular triglyceride metabolism. Clin Transl Sci 2021; 14:1369-1379. [PMID: 34156146 PMCID: PMC8301584 DOI: 10.1111/cts.12988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
Hepatocytes store triglycerides (TGs) in the form of lipid droplets (LDs), which are increased in hepatosteatosis. The regulation of hepatic LDs is poorly understood and new therapies to reduce hepatosteatosis are needed. We performed a siRNA kinase and phosphatase screen in HuH‐7 cells using high‐content automated imaging of LDs. Changes in accumulated lipids were quantified with developed pipeline that measures intensity, area, and number of LDs. Selected “hits,” which reduced lipid accumulation, were further validated with other lipid and expression assays. Among several siRNAs that resulted in significantly reduced LDs, one was targeted to the nuclear adapter protein, transformation/transcription domain‐associated protein (TRRAP). Knockdown of TRRAP reduced triglyceride accumulation in HuH‐7 hepatocytes, in part by reducing C/EBPα‐mediated de novo synthesis of TGs. These findings implicate TRRAP as a novel regulator of hepatic TG metabolism and nominate it as a potential drug target for hepatosteatosis.
Collapse
Affiliation(s)
- Deepti Abbey
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donna Conlon
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher Rainville
- High Throughput Screening Core, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susannah Elwyn
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine Quiroz-Figueroa
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey Billheimer
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David C Schultz
- High Throughput Screening Core, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas J Hand
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J Rader
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Flores-León M, Alcaraz N, Pérez-Domínguez M, Torres-Arciga K, Rebollar-Vega R, De la Rosa-Velázquez IA, Arriaga-Canon C, Herrera LA, Arias C, González-Barrios R. Transcriptional Profiles Reveal Deregulation of Lipid Metabolism and Inflammatory Pathways in Neurons Exposed to Palmitic Acid. Mol Neurobiol 2021; 58:4639-4651. [PMID: 34155583 DOI: 10.1007/s12035-021-02434-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
The effects of the consumption of high-fat diets (HFD) have been studied to unravel the molecular pathways they are altering in order to understand the link between increased caloric intake, metabolic diseases, and the risk of cognitive dysfunction. The saturated fatty acid, palmitic acid (PA), is the main component of HFD and it has been found increased in the circulation of obese and diabetic people. In the central nervous system, PA has been associated with inflammatory responses in astrocytes, but the effects on neurons exposed to it have not been largely investigated. Given that PA affects a variety of metabolic pathways, we aimed to analyze the transcriptomic profile activated by this fatty acid to shed light on the mechanisms of neuronal dysfunction. In the current study, we profiled the transcriptome response after PA exposition at non-toxic doses in primary hippocampal neurons. Gene ontology and Reactome pathway analysis revealed a pattern of gene expression which is associated with inflammatory pathways, and importantly, with the activation of lipid metabolism that is considered not very active in neurons. Validation by quantitative RT-PCR (qRT-PCR) of Hmgcs2, Angptl4, Ugt8, and Rnf145 support the results obtained by RNAseq. Overall, these findings suggest that neurons are able to respond to saturated fatty acids changing the expression pattern of genes associated with inflammatory response and lipid utilization that may be involved in the neuronal damage associated with metabolic diseases.
Collapse
Affiliation(s)
- M Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - N Alcaraz
- The Bioinformatics Centre. Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen N, Denmark
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, CP 14610, Mexico City, Mexico
| | - M Pérez-Domínguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - K Torres-Arciga
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - R Rebollar-Vega
- Genomics Laboratory, Red de Apoyo a La Investigación - CIC, Universidad Nacional Autónoma de México, INMCNSZ, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, 14080, Mexico City, Mexico
| | - I A De la Rosa-Velázquez
- Genomics Laboratory, Red de Apoyo a La Investigación - CIC, Universidad Nacional Autónoma de México, INMCNSZ, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, 14080, Mexico City, Mexico
- Next Generation Sequencing Core Facility, Helmholtz Zentrum Muenchen, Ingolstaedter Landstr 1, 85754, Neuherberg, Germany
| | - C Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - L A Herrera
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, CP 14610, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Avenida San Fernando No. 22, Colonia Sección XVI, Tlalpan, CP 14080, Mexico City, Mexico.
| |
Collapse
|
16
|
Wathes DC, Cheng Z, Salavati M, Buggiotti L, Takeda H, Tang L, Becker F, Ingvartsen KI, Ferris C, Hostens M, Crowe MA. Relationships between metabolic profiles and gene expression in liver and leukocytes of dairy cows in early lactation. J Dairy Sci 2021; 104:3596-3616. [PMID: 33455774 DOI: 10.3168/jds.2020-19165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Homeorhetic mechanisms assist dairy cows in the transition from pregnancy to lactation. Less successful cows develop severe negative energy balance (NEB), placing them at risk of metabolic and infectious diseases and reduced fertility. We have previously placed multiparous Holstein Friesian cows from 4 herds into metabolic clusters, using as biomarkers measurements of plasma nonesterified fatty acids, β-hydroxybutyrate, glucose and IGF-1 collected at 14 and 35 d in milk (DIM). This study characterized the global transcriptomic profiles of liver and circulating leukocytes from the same animals to determine underlying mechanisms associated with their metabolic and immune function. Liver biopsy and whole-blood samples were collected around 14 DIM for RNA sequencing. All cows with available RNA sequencing data were placed into balanced (BAL, n = 44), intermediate (n = 44), or imbalanced (IMBAL, n = 19) metabolic cluster groups. Differential gene expression was compared between the 3 groups using ANOVA, but only the comparison between BAL and IMBAL cows is reported. Pathway analysis was undertaken using DAVID Bioinformatic Resources (https://david.ncifcrf.gov/). Milk yields did not differ between BAL and IMBAL cows but dry matter intake was less in IMBAL cows and they were in greater energy deficit at 14 DIM (-4.48 v -11.70 MJ/d for BAL and IMBAL cows). Significantly differentially expressed pathways in hepatic tissue included AMPK signaling, glucagon signaling, adipocytokine signaling, and insulin resistance. Genes involved in lipid metabolism and cholesterol transport were more highly expressed in IMBAL cows but IGF1 and IGFALS were downregulated. Leukocytes from BAL cows had greater expression of histones and genes involved in nucleosomes and cell division. Leukocyte expression of heat shock proteins increased in IMBAL cows, suggesting an unfolded protein response, and several key genes involved in immune responses to pathogens were upregulated (e.g., DEFB13, HP, OAS1Z, PTX3, and TLR4). Differentially expressed genes upregulated in IMBAL cows in both tissues included CD36, CPT1, KFL11, and PDK4, all central regulators of energy metabolism. The IMBAL cows therefore had greater difficulty maintaining glucose homeostasis and had dysregulated hepatic lipid metabolism. Their energy deficit was associated with a reduced capacity for cell division and greater evidence of stress responses in the leukocyte population, likely contributing to an increased risk of infectious disease.
Collapse
Affiliation(s)
- D C Wathes
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom.
| | - Z Cheng
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom
| | - M Salavati
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom
| | - L Buggiotti
- Royal Veterinary College, Hatfield, AL9 7TA Hertfordshire, United Kingdom
| | - H Takeda
- Unit of Animal Genomics, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - L Tang
- Unit of Animal Genomics, GIGA Institute, University of Liège, B-4000 Liège, Belgium
| | - F Becker
- Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - K I Ingvartsen
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - C Ferris
- Agri-Food and Biosciences Institute, Belfast BT9 5PX, United Kingdom
| | - M Hostens
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, B-9820 Merelbeke, Belgium
| | - M A Crowe
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | | |
Collapse
|
17
|
Si Z, Guan X, Teng X, Peng X, Wan Z, Li Q, Chen G, Tan J, Li J. Identification of CYP46A1 as a new regulator of lipid metabolism through CRISPR-based whole-genome screening. FASEB J 2020; 34:13776-13791. [PMID: 32816363 DOI: 10.1096/fj.202001067r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
Abnormal lipid droplet (LD) metabolism causes a variety of disorders, especially to nonalcoholic fatty liver disease (NAFLD). But the mechanism of abnormal aggregation of LD is still not fully elucidated. Here, Genome-wide CRISPR-Cas9 knockout (GeCKO) screening was employed to identify candidate genes regulating LD metabolism in L02 cell. We analyzed simultaneously the transcriptomics of liver tissues of NAFLD to find potential genes involved in pathogenesis of NAFLD. After integration these data, we found that the expression of 43 candidate genes from the GeCKO screening was also decreased in tissues of NAFLD patients. Many of these 43 overlapping genes have been reported to play an important role in the formation of LD. Subsequently, we focused on CYP46A1, one of 43 candidate genes and mitochondria-related genes. We confirmed that the protein expression of CYP46A1 is deceased in tissues of NAFLD patients. Downregulation or overexpression of CYP46A1 affected LD accumulation in vitro. Deficiency of CYP46A1 impaired mitochondrial morphology and function, which may be responsible for the accumulation of LD. In summary, this study explored regulatory factors of LD accumulation at the whole-genome level, and demonstrated that CYP46A1 regulated LD formation involving in NAFLD pathogenesis. It provides new clues for studying the molecular mechanisms of diseases related to abnormal lipid metabolism.
Collapse
Affiliation(s)
- Zhongzhou Si
- Center for Organ Transplantation, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xinjie Guan
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, P.R. China
| | | | - Xiaoxia Peng
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, P.R. China
| | - Zhengqin Wan
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, P.R. China
| | - Qiang Li
- Center for Organ Transplantation, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Guangshun Chen
- Center for Organ Transplantation, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Science, Central South University, Changsha, P.R. China
| | - Jiequn Li
- Center for Organ Transplantation, Second Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
18
|
Gunn PJ, Pramfalk C, Millar V, Cornfield T, Hutchinson M, Johnson EM, Nagarajan SR, Troncoso‐Rey P, Mithen RF, Pinnick KE, Traka MH, Green CJ, Hodson L. Modifying nutritional substrates induces macrovesicular lipid droplet accumulation and metabolic alterations in a cellular model of hepatic steatosis. Physiol Rep 2020; 8:e14482. [PMID: 32643289 PMCID: PMC7343665 DOI: 10.14814/phy2.14482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/02/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) begins with steatosis, where a mixed macrovesicular pattern of large and small lipid droplets (LDs) develops. Since in vitro models recapitulating this are limited, the aims of this study were to develop mixed macrovesicular steatosis in immortalized hepatocytes and investigate effects on intracellular metabolism by altering nutritional substrates. METHODS Huh7 cells were cultured in 11 mM glucose and 2% human serum (HS) for 7 days before additional sugars and fatty acids (FAs), either with 200 µM FAs (low fat low sugar; LFLS), 5.5 mM fructose + 200 µM FAs (low fat high sugar; LFHS), or 5.5 mM fructose + 800 µM FAs (high fat high sugar; HFHS), were added for 7 days. FA metabolism, lipid droplet characteristics, and transcriptomic signatures were investigated. RESULTS Between the LFLS and LFHS conditions, there were few notable differences. In the HFHS condition, intracellular triacylglycerol (TAG) was increased and the LD pattern and distribution was similar to that found in primary steatotic hepatocytes. HFHS-treated cells had lower levels of de novo-derived FAs and secreted larger, TAG-rich lipoprotein particles. RNA sequencing and gene set enrichment analysis showed changes in several pathways including those involved in metabolism and cell cycle. CONCLUSIONS Repeated doses of HFHS treatment resulted in a cellular model of NAFLD with a mixed macrovesicular LD pattern and metabolic dysfunction. Since these nutrients have been implicated in the development of NAFLD in humans, the model provides a good physiological basis for studying NAFLD development or regression in vitro.
Collapse
Affiliation(s)
- Pippa J. Gunn
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Camilla Pramfalk
- Division of Clinical ChemistryDepartment of Laboratory MedicineKarolinska Institutet at Karolinska University Hospital HuddingeStockholmSweden
| | - Val Millar
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Thomas Cornfield
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Matthew Hutchinson
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Elspeth M. Johnson
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Shilpa R. Nagarajan
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | | | | | - Katherine E. Pinnick
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | | | - Charlotte J. Green
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and MetabolismRadcliffe Department of MedicineUniversity of OxfordOxfordUK
- National Institute for Health Research Oxford Biomedical Research CentreOxford University Hospital TrustsOxfordUK
| |
Collapse
|
19
|
Vacca M, Leslie J, Virtue S, Lam BYH, Govaere O, Tiniakos D, Snow S, Davies S, Petkevicius K, Tong Z, Peirce V, Nielsen MJ, Ament Z, Li W, Kostrzewski T, Leeming DJ, Ratziu V, Allison MED, Anstee QM, Griffin JL, Oakley F, Vidal-Puig A. Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. Nat Metab 2020; 2:514-531. [PMID: 32694734 DOI: 10.1038/s42255-020-0214-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by lipotoxicity, inflammation and fibrosis, ultimately leading to end-stage liver disease. The molecular mechanisms promoting NASH are poorly understood, and treatment options are limited. Here, we demonstrate that hepatic expression of bone morphogenetic protein 8B (BMP8B), a member of the transforming growth factor beta (TGFβ)-BMP superfamily, increases proportionally to disease stage in people and animal models with NASH. BMP8B signals via both SMAD2/3 and SMAD1/5/9 branches of the TGFβ-BMP pathway in hepatic stellate cells (HSCs), promoting their proinflammatory phenotype. In vivo, the absence of BMP8B prevents HSC activation, reduces inflammation and affects the wound-healing responses, thereby limiting NASH progression. Evidence is featured in primary human 3D microtissues modelling NASH, when challenged with recombinant BMP8. Our data show that BMP8B is a major contributor to NASH progression. Owing to the near absence of BMP8B in healthy livers, inhibition of BMP8B may represent a promising new therapeutic avenue for NASH treatment.
Collapse
Affiliation(s)
- Michele Vacca
- TVP Lab, WT/MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Samuel Virtue
- TVP Lab, WT/MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Brian Y H Lam
- Yeo Group and Genomics and Transcriptomics Core, WT/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Pathology, Aretaieion Hospital, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | | - Susan Davies
- Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge, UK
| | - Kasparas Petkevicius
- TVP Lab, WT/MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Zhen Tong
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Vivian Peirce
- TVP Lab, WT/MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | | | - Zsuzsanna Ament
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Wei Li
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Vlad Ratziu
- Sorbonne Université, Institute for Cardiometabolism and Nutrition (ICAN), Hôpital Pitié-Salpêtrière, Paris, France
| | - Michael E D Allison
- Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge, UK
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Biomolecular Medicine, Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Antonio Vidal-Puig
- TVP Lab, WT/MRC Institute of Metabolic Science, MRC Metabolic Diseases Unit - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
- Welcome Trust Sanger Institute, Hinxton, UK.
- Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei Area, Nanjing, P R China.
| |
Collapse
|
20
|
Brulport A, Vaiman D, Chagnon MC, Le Corre L. Obesogen effect of bisphenol S alters mRNA expression and DNA methylation profiling in male mouse liver. CHEMOSPHERE 2020; 241:125092. [PMID: 31683443 DOI: 10.1016/j.chemosphere.2019.125092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Environmental pollution is increasingly considered an important factor involved in the obesity incidence. Endocrine disruptors (EDs) are important actors in the concept of DOHaD (Developmental Origins of Health and Disease), where epigenetic mechanisms play crucial roles. Bisphenol A (BPA), a monomer used in the manufacture of plastics and resins is one of the most studied obesogenic endocrine disruptor. Bisphenol S (BPS), a BPA substitute, has the same obesogenic properties, acting at low doses with a sex-specific effect following perinatal exposure. Since the liver is a major organ in regulating body lipid homeostasis, we investigated gene expression and DNA methylation under low-dose BPS exposure. The BPS obesogenic effect was associated with an increase of hepatic triglyceride content. These physiological disturbances were accompanied by genome-wide changes in gene expression (1366 genes significantly modified more than 1.5-fold). Gene ontology analysis revealed alteration of gene cascades involved in protein translation and complement regulation. It was associated with hepatic DNA hypomethylation in autosomes and hypermethylation in sex chromosomes. Although no systematic correlation has been found between gene repression and hypermethylation, several genes related to liver metabolism were either hypermethylated (Acsl4, Gpr40, Cel, Pparδ, Abca6, Ces3a, Sgms2) or hypomethylated (Soga1, Gpihbp1, Nr1d2, Mlxipl, Rps6kb2, Esrrb, Thra, Cidec). In specific cases (Hapln4, ApoA4, Cidec, genes involved in lipid metabolism and liver fibrosis) mRNA upregulation was associated with hypomethylation. In conclusion, we show for the first time wide disruptive physiological effects of low-dose of BPS, which raises the question of its harmlessness as an industrial substitute for BPA.
Collapse
Affiliation(s)
- Axelle Brulport
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSup, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Daniel Vaiman
- From Gametes to Birth Team (FGTB), INSERM, U1016, Institut Cochin, F-75014, Paris, France; CNRS UMR8104, F-75014, Paris, France; Université Sorbonne Paris Cité, F-75014, Paris, France
| | - Marie-Christine Chagnon
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSup, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Ludovic Le Corre
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSup, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France.
| |
Collapse
|
21
|
Duan L, Ramachandran A, Akakpo JY, Woolbright BL, Zhang Y, Jaeschke H. Mice deficient in pyruvate dehydrogenase kinase 4 are protected against acetaminophen-induced hepatotoxicity. Toxicol Appl Pharmacol 2019; 387:114849. [PMID: 31809757 DOI: 10.1016/j.taap.2019.114849] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Though mitochondrial oxidant stress plays a critical role in the progression of acetaminophen (APAP) overdose-induced liver damage, the influence of mitochondrial bioenergetics on this is not well characterized. This is important, since lifestyle and diet alter hepatic mitochondrial bioenergetics and an understanding of its effects on APAP-induced liver injury is clinically relevant. Pyruvate dehydrogenase (PDH) is critical to mitochondrial bioenergetics, since it controls the rate of generation of reducing equivalents driving respiration, and pyruvate dehydrogenase kinase 4 (PDK4) regulates (inhibits) PDH by phosphorylation. We examined APAP-induced liver injury in PDK4-deficient (PDK4-/-) mice, which would have constitutively active PDH and hence elevated flux through the mitochondrial electron transport chain. PDK4-/- mice showed significant protection against APAP-induced liver injury when compared to wild type (WT) mice as measured by ALT levels and histology. Deficiency of PDK4 did not alter APAP metabolism, with similar APAP-adduct levels in PDK4-/- and WT mice, and no difference in JNK activation and translocation to mitochondria. However, subsequent amplification of mitochondrial dysfunction with release of mitochondrial AIF, peroxynitrite formation and DNA fragmentation were prevented. Interestingly, APAP induced a rapid decline in UCP2 protein levels in PDK4-deficient mice. These data suggest that adaptive changes in mitochondrial bioenergetics induced by enhanced respiratory chain flux in PDK4-/- mice render them highly efficient in handling APAP-induced oxidant stress, probably through modulation of UCP2 levels. Further investigation of these specific adaptive mechanisms would provide better insight into the control exerted by mitochondrial bioenergetics on cellular responses to an APAP overdose.
Collapse
Affiliation(s)
- Luqi Duan
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
22
|
Zhang Y, Wang S, Zhao T, Yang L, Guo S, Shi Y, Zhang X, Zhou L, Ye L. Mono-2-ethylhexyl phthalate (MEHP) promoted lipid accumulation via JAK2/STAT5 and aggravated oxidative stress in BRL-3A cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109611. [PMID: 31491605 DOI: 10.1016/j.ecoenv.2019.109611] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Mono-2-ethylhexyl phthalate (MEHP), as the major metabolite of Di-(2-ethylhexyl) phthalate (DEHP), can induce lipid accumulation in hepatocytes and further leads to non-alcoholic fatty liver disease (NAFLD), while the underlying mechanism is unclear. We aim to clarify the effects of JAK2/STAT5 pathway on lipid accumulation induced by MEHP and the role of oxidation stress in NAFLD. BRL-3A hepatocytes were exposed to MEHP (0, 10, 50, 100 and 200 μM) for 24 h and 48 h. Then the lipid droplets in cells were observed by Oil-Red-O staining and quantified by isopropyl alcohol. The levels of TG, SOD, TBARS, AST and ALT were all detected by commercial kits. RT-PCR was used to detect mRNA expression, and western blotting was used to detect the expression of proteins encoded by JAK2/STAT5 pathway genes and lipid metabolism-related genes. As a result, MEHP promoted the lipid synthesis and accumulation in BRL-3A cells. MEHP down-regulated the expression and inhibited the activation of JAK2/STAT5. Moreover, the lipid metabolism-related kinases levels were elevated after MEHP exposure. In addition, the SOD levels were gradually decreased and the TBARS levels were increased in MEHP-treated groups. The lipid metabolism-related proteins levels were correlated with the oxidation stress levels. Furthermore, the ALT and AST levels were elevated after MEHP exposure. Therefore, we concluded that MEHP led to lipid accumulation through inhibiting JAK2/STAT5 pathway, resulted in damaging liver parenchyma and NAFLD by aggravating oxidation stress.
Collapse
Affiliation(s)
- Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuyue Wang
- Department of Emergency, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuangyu Guo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yanbin Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|