1
|
Medvedeva AD, Portnova GV, Sysoeva OV. Lower loss rate of serotonergically modulated neuronal accumulator for time in patients with major depressive disorder. J Psychiatr Res 2023; 165:345-351. [PMID: 37586210 DOI: 10.1016/j.jpsychires.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/16/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Major depressive disorder (MDD) is characterized by dramatic and persistent worsening of mood, as well as a subjective feeling of time slowing. However, experimental data on time perception are inconsistent. As serotonergic dysfunction implicated in MDD etiology, we aim to examine time perception in MDD through the framework of lossy temporal integration model, previously also related to serotonergic transmission. Thirty-one patients with recurrent depressive disorder in partial remission and thirty control participants, without a history of psychiatric and neurological disorders, performed duration discrimination of visual stimuli (duration ranges from 3.2 to 6.4 s) and subjective minute production tasks. To infer about central serotonergic transmission, an electroencephalogram in response to the 1000 Hz tone of different intensity (50, 60, 70 and 80 dB SPL) was recorded. Patients with MDD shorten the past durations in the duration discrimination task significantly less than controls, thus being more objective. No difference in the subjective minute production was recorded. Patients with MDD have also exhibited larger auditory evoked potentials in response to the tones of high intensity (70 and 80 dB SPL) when compared with the controls. This resulted in a steeper slope of auditory evoked potentials by intensity function. These converging findings suggest a lower loss rate of neuronal temporal accumulator modulated by serotonergic transmission in patients with MDD.
Collapse
Affiliation(s)
| | - Galina V Portnova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Olga V Sysoeva
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Bromazepam increases the error of the time interval judgments and modulates the EEG alpha asymmetry during time estimation. Conscious Cogn 2022; 100:103317. [PMID: 35364385 DOI: 10.1016/j.concog.2022.103317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
AIM This study investigated the bromazepam effects in male subjects during the time estimation performance and EEG alpha asymmetry in electrodes associated with the frontal and motor cortex. MATERIAL AND METHODS This is a double-blind, crossover study with a sample of 32 healthy adults under control (placebo) vs. experimental (bromazepam) during visual time-estimation task in combination with electroencephalographic analysis. RESULTS The results demonstrated that the bromazepam increased the relative error in the 4 s, 7 s, and 9 s intervals (p = 0.001). In addition, oral bromazepam modulated the EEG alpha asymmetry in cortical areas during the time judgment (p ≤ 0.025). CONCLUSION The bromazepam decreases the precision of time estimation judgments and modulates the EEG alpha asymmetry, with greater left hemispheric dominance during time perception. Our findings suggest that bromazepam influences internal clock synchronization via the modulation of GABAergic receptors, strongly relating to attention, conscious perception, and behavioral performance.
Collapse
|
3
|
Zhang L, Wang W, Xu C, Duan H, Tian X, Zhang D. Potential genetic biomarkers are found to be associated with both cognitive function and blood pressure: a bivariate genome-wide association analysis. Mech Ageing Dev 2022; 204:111671. [PMID: 35364053 DOI: 10.1016/j.mad.2022.111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 11/15/2022]
|
4
|
Barki M, Xue H. GABRB2, a key player in neuropsychiatric disorders and beyond. Gene 2022; 809:146021. [PMID: 34673206 DOI: 10.1016/j.gene.2021.146021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
The GABA receptors represent the main inhibitory system in the central nervous system that ensure synaptogenesis, neurogenesis, and the regulation of neuronal plasticity and learning. GABAA receptors are pentameric in structure and belong to the Cys-loop superfamily. The GABRB2 gene, located on chromosome 5q34, encodes the β2 subunit that combines with the α and γ subunits to form the major subtype of GABAA receptors, which account for 43% of all GABAA receptors in the mammalian brain. Each subunit probably consists of an extracellular N-terminal domain, four membrane-spanning segments, a large intracellular loop between TM3 and TM4, and an extracellular C-terminal domain. Alternative splicing of the RNA transcript of the GABRB2 gene gives rise at least to four long and short isoforms with dissimilar electrophysiological properties. Furthermore, GABRB2 is imprinted and subjected to epigenetic regulation and positive selection. It has been associated with schizophrenia first in Han Chinese, and subsequently validated in other populations. Gabrb2 knockout mice also exhibited schizophrenia-like behavior and neuroinflammation that were ameliorated by the antipsychotic drug risperidone. GABRB2 was also associated with other neuropsychiatric disorders including bipolar disorder, epilepsy, autism spectrum disorder, Alzheimer's disease, frontotemporal dementia, substance dependence, depression, internet gaming disorder, and premenstrual dysphoric disorder. Recently, it has been postulated that GABRB2 might be a potential marker for different cancer types. As GABRB2 has a pivotal role in the central nervous system and is increasingly recognized to contribute to human diseases, further understanding of its structure and function may expedite the generation of new therapeutic approaches.
Collapse
Affiliation(s)
- Manel Barki
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hong Xue
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
5
|
Rotondo EK, Bieszczad KM. Sensory cortical and subcortical auditory neurophysiological changes predict cue-specific extinction behavior enabled by the pharmacological inhibition of an epigenetic regulator during memory formation. Brain Res Bull 2021; 169:167-183. [PMID: 33515653 PMCID: PMC8591994 DOI: 10.1016/j.brainresbull.2021.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/03/2021] [Accepted: 01/22/2021] [Indexed: 11/19/2022]
Abstract
Extinction learning and memory have been broadly investigated at both behavioral and neural levels, but sensory system contributions to extinction processes have been less explored. Using a sound-reward extinction paradigm in male rats, we reveal both cortical and subcortical forms of plasticity associated with the cue-specificity of behavioral extinction memory. In the auditory cortex, frequency tuning narrowed by up to two-thirds of an octave around the remembered extinguished sound cue. Subcortical signals revealed in the auditory brainstem response (ABR) in the same animals developed smaller amplitudes of some (but not all) ABR peaks evoked by the extinguished sound frequency. Interestingly, treatment with an inhibitor of histone deacetylase 3 (HDAC3-i) facilitated both auditory cortical tuning bandwidth changes and changes in subcortical peak amplitude evoked only by the extinguished sound frequency. These neurophysiological changes were correlated to each other, and to the highly precise extinction behavior enabled by HDAC3-i (compared to vehicle controls). Thus, we show for the first time that HDAC3 regulates the specificity of sensory features consolidated in extinction memory. Further, the sensory cortical changes in tuning bandwidth recapitulate known effects of blocking HDAC3 to enhance cue specificity in other behavioral tasks. Therefore, the findings demonstrate how some forms of sensory neuroplasticity may encode specific sensory features of learning experiences in order to enable cue-specific behaviors.
Collapse
Affiliation(s)
- Elena K Rotondo
- Dept. of Psychology, Rutgers- The State University of New Jersey, Piscataway, NJ, 08854, United States
| | - Kasia M Bieszczad
- Dept. of Psychology, Rutgers- The State University of New Jersey, Piscataway, NJ, 08854, United States.
| |
Collapse
|
6
|
Buch AM, Liston C. Dissecting diagnostic heterogeneity in depression by integrating neuroimaging and genetics. Neuropsychopharmacology 2021; 46:156-175. [PMID: 32781460 PMCID: PMC7688954 DOI: 10.1038/s41386-020-00789-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Depression is a heterogeneous and etiologically complex psychiatric syndrome, not a unitary disease entity, encompassing a broad spectrum of psychopathology arising from distinct pathophysiological mechanisms. Motivated by a need to advance our understanding of these mechanisms and develop new treatment strategies, there is a renewed interest in investigating the neurobiological basis of heterogeneity in depression and rethinking our approach to diagnosis for research purposes. Large-scale genome-wide association studies have now identified multiple genetic risk variants implicating excitatory neurotransmission and synapse function and underscoring a highly polygenic inheritance pattern that may be another important contributor to heterogeneity in depression. Here, we review various sources of phenotypic heterogeneity and approaches to defining and studying depression subtypes, including symptom-based subtypes and biology-based approaches to decomposing the depression syndrome. We review "dimensional," "categorical," and "hybrid" approaches to parsing phenotypic heterogeneity in depression and defining subtypes using functional neuroimaging. Next, we review recent progress in neuroimaging genetics (correlating neuroimaging patterns of brain function with genetic data) and its potential utility for generating testable hypotheses concerning molecular and circuit-level mechanisms. We discuss how genetic variants and transcriptomic profiles may confer risk for depression by modulating brain structure and function. We conclude by highlighting several promising areas for future research into the neurobiological underpinnings of heterogeneity, including efforts to understand sexually dimorphic mechanisms, the longitudinal dynamics of depressive episodes, and strategies for developing personalized treatments and facilitating clinical decision-making.
Collapse
Affiliation(s)
- Amanda M Buch
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69th Street, Box 240, New York, NY, 10021, USA
| | - Conor Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69th Street, Box 240, New York, NY, 10021, USA.
| |
Collapse
|
7
|
Garcés MS, Alústiza I, Albajes-Eizagirre A, Goena J, Molero P, Radua J, Ortuño F. An fMRI Study Using a Combined Task of Interval Discrimination and Oddball Could Reveal Common Brain Circuits of Cognitive Change. Front Psychiatry 2021; 12:786113. [PMID: 34987432 PMCID: PMC8721204 DOI: 10.3389/fpsyt.2021.786113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 12/04/2022] Open
Abstract
Recent functional neuroimaging studies suggest that the brain networks responsible for time processing are involved during other cognitive processes, leading to a hypothesis that time-related processing is needed to perform a range of tasks across various cognitive functions. To examine this hypothesis, we analyze whether, in healthy subjects, the brain structures activated or deactivated during performance of timing and oddball-detection type tasks coincide. To this end, we conducted two independent signed differential mapping (SDM) meta-analyses of functional magnetic resonance imaging (fMRI) studies assessing the cerebral generators of the responses elicited by tasks based on timing and oddball-detection paradigms. Finally, we undertook a multimodal meta-analysis to detect brain regions common to the findings of the two previous meta-analyses. We found that healthy subjects showed significant activation in cortical areas related to timing and salience networks. The patterns of activation and deactivation corresponding to each task type partially coincided. We hypothesize that there exists a time and change-detection network that serves as a common underlying resource used in a broad range of cognitive processes.
Collapse
Affiliation(s)
- María Sol Garcés
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain.,Colegio de Ciencias Sociales y Humanidades, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Irene Alústiza
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Anton Albajes-Eizagirre
- Imaging of Mood and Anxiety Related Disorders (IMARD) Group, d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM ES, Barcelona, Spain
| | - Javier Goena
- Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Patricio Molero
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| | - Joaquim Radua
- Imaging of Mood and Anxiety Related Disorders (IMARD) Group, d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM ES, Barcelona, Spain.,Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet SE, Solna, Sweden
| | - Felipe Ortuño
- Department of Psychiatry and Clinical Psychology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
| |
Collapse
|
8
|
Fontes RM, Marinho V, Carvalho V, Rocha K, Magalhães F, Moura I, Ribeiro P, Velasques B, Cagy M, Gupta DS, Bastos VH, Teles AS, Teixeira S. Time estimation exposure modifies cognitive aspects and cortical activity of attention deficit hyperactivity disorder adults. Int J Neurosci 2020; 130:999-1014. [DOI: 10.1080/00207454.2020.1715394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rhailana Medeiros Fontes
- Neuro-Innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Victor Marinho
- Neuro-Innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil
- The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Valécia Carvalho
- Neuro-Innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil
- The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Kaline Rocha
- Neuro-Innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil
- The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Francisco Magalhães
- Neuro-Innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil
- The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Iris Moura
- Neuro-Innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil
- Masters Programs in Biotechnology, Federal University of Piauí, Parnaíba, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry, Federal University of Rio De Janeiro, Rio De Janeiro, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry, Federal University of Rio De Janeiro, Rio De Janeiro, Brazil
| | - Mauricio Cagy
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry, Federal University of Rio De Janeiro, Rio De Janeiro, Brazil
| | - Daya S. Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Victor Hugo Bastos
- The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
- Masters Programs in Biotechnology, Federal University of Piauí, Parnaíba, Brazil
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Ariel Soares Teles
- Neuro-Innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil
- Masters Programs in Biotechnology, Federal University of Piauí, Parnaíba, Brazil
- Federal Institute of Maranhão, Maranhão, Brazil
| | - Silmar Teixeira
- Neuro-Innovation Technology & Brain Mapping Laboratory, Federal University of Piauí, Parnaíba, Brazil
- The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
- Masters Programs in Biotechnology, Federal University of Piauí, Parnaíba, Brazil
| |
Collapse
|
9
|
Tulver K. The factorial structure of individual differences in visual perception. Conscious Cogn 2019; 73:102762. [PMID: 31176848 DOI: 10.1016/j.concog.2019.102762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/02/2019] [Accepted: 05/27/2019] [Indexed: 12/25/2022]
Abstract
Although at first glance the way we perceive the world is similar for most individuals and resembles a veridical interpretation of the environment, the persistent individual differences found in many perceptual processes continue to inspire and confuse researchers. Despite numerous attempts to map out the reliable factors and correlates of individual variance in perception, the factorial structure of vision has remained elusive. The current article reviews recent developments in the study of individual differences in perception with a focus on work that has applied latent variable techniques for analysing performance across multiple visual paradigms. As this overview reveals, studies that have attempted to answer the question whether one general or several specific factors best describe vision tend to reject the monolithic view. Some general notes are also provided regarding pitfalls that should be taken into account when designing such research in the future.
Collapse
Affiliation(s)
- Kadi Tulver
- Institute of Psychology, University of Tartu, Estonia.
| |
Collapse
|
10
|
The BDNF Val66Met Polymorphism Promotes Changes in the Neuronal Integrity and Alters the Time Perception. J Mol Neurosci 2018; 67:82-88. [DOI: 10.1007/s12031-018-1212-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022]
|
11
|
Marinho FVC, Pinto GR, Oliveira T, Gomes A, Lima V, Ferreira-Fernandes H, Rocha K, Magalhães F, Velasques B, Ribeiro P, Cagy M, Gupta D, Bastos VH, Teixeira S. The SLC6A3 3'-UTR VNTR and intron 8 VNTR polymorphisms association in the time estimation. Brain Struct Funct 2018; 224:253-262. [PMID: 30310975 DOI: 10.1007/s00429-018-1773-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 10/06/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The present study investigated the association of 3'-UTR VNTR and intron 8 VNTR polymorphisms with a time estimation task performance. MATERIALS AND METHODS One hundred and eight men in a Brazilian Northeast population (18-32 years old) participated in the experiment. The 3'-UTR VNTR and intron 8 VNTR polymorphisms were associated alone and combined to absolute error (AE) and relative error (RE) in a time estimation task (target duration: 1 s, 4 s, 7 s and 9 s). RESULTS We found an association of the behavioral variable with intron 8 VNTR for the time intervals of 1 s and 9 s (p < 0.001) and polymorphisms combinatorial effect for 1 s (p ≤ 0.05). CONCLUSION The intron 8 VNTR polymorphism and the combinatorial effect can modulate the time estimate in the domain of supra seconds, and thus our study indicates a role of the dopamine transporter in the neurobiological areas related to the time intervals judgment.
Collapse
Affiliation(s)
- Francisco Victor Costa Marinho
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião no. 2819, Nossa Sra. de Fátima, Parnaíba, PI, CEP: 64202-020, Brazil. .,Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil. .,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil.
| | - Giovanny R Pinto
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Thomaz Oliveira
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião no. 2819, Nossa Sra. de Fátima, Parnaíba, PI, CEP: 64202-020, Brazil.,Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Anderson Gomes
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Valéria Lima
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Hygor Ferreira-Fernandes
- Genetics and Molecular Biology Laboratory, Federal University of Piauí, Parnaíba, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Kaline Rocha
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião no. 2819, Nossa Sra. de Fátima, Parnaíba, PI, CEP: 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Francisco Magalhães
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião no. 2819, Nossa Sra. de Fátima, Parnaíba, PI, CEP: 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Cagy
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daya Gupta
- Department of Biology, Camden County College, Blackwood, NJ, USA
| | - Victor Hugo Bastos
- Brain Mapping and Functionality Laboratory, Federal University of Piauí, Parnaíba, Brazil
| | - Silmar Teixeira
- Neuro-innovation Technology and Brain Mapping Laboratory, Federal University of Piauí, Av. São Sebastião no. 2819, Nossa Sra. de Fátima, Parnaíba, PI, CEP: 64202-020, Brazil.,The Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|