1
|
Rahimi A, Sameei P, Mousavi S, Ghaderi K, Hassani A, Hassani S, Alipour S. Application of CRISPR/Cas9 System in the Treatment of Alzheimer's Disease and Neurodegenerative Diseases. Mol Neurobiol 2024; 61:9416-9431. [PMID: 38639864 DOI: 10.1007/s12035-024-04143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Alzheimer's, Parkinson's, and Huntington's are some of the most common neurological disorders, which affect millions of people worldwide. Although there have been many treatments for these diseases, there are still no effective treatments to treat or completely stop these disorders. Perhaps the lack of proper treatment for these diseases can be related to various reasons, but the poor results related to recent clinical research also prompted doctors to look for new treatment approaches. In this regard, various researchers from all over the world have provided many new treatments, one of which is CRISPR/Cas9. Today, the CRISPR/Cas9 system is mostly used for genetic modifications in various species. In addition, by using the abilities available in the CRISPR/Cas9 system, researchers can either remove or modify DNA sequences, which in this way can establish a suitable and useful treatment method for the treatment of genetic diseases that have undergone mutations. We conducted a non-systematic review of articles and study results from various databases, including PubMed, Medline, Web of Science, and Scopus, in recent years. and have investigated new treatment methods in neurodegenerative diseases with a focus on Alzheimer's disease. Then, in the following sections, the treatment methods were classified into three groups: anti-tau, anti-amyloid, and anti-APOE regimens. Finally, we discussed various applications of the CRISPR/Cas-9 system in Alzheimer's disease. Today, using CRISPR/Cas-9 technology, scientists create Alzheimer's disease models that have a more realistic phenotype and reveal the processes of pathogenesis; following the screening of defective genes, they establish treatments for this disease.
Collapse
Affiliation(s)
- Araz Rahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Parsa Sameei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sana Mousavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Kimia Ghaderi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Hassani
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sepideh Hassani
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran.
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran.
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Mohammad A, Ruegsegger GN, Olver TD, MacPherson REK. Gestational physical activity alters offspring brain APP processing in an age-specific manner. Appl Physiol Nutr Metab 2024; 49:1507-1516. [PMID: 39038365 DOI: 10.1139/apnm-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Maternal exercise is beneficial for offspring brain development. Amyloid precursor protein (APP) influences neurogenesis and synaptic plasticity. Cleavage products of APP are implicated in the proliferation of neural progenitor cells and neuronal network development. Our study aimed to investigate differences in APP processing in active or sedentary offspring of dams who were exposed to voluntary wheel running with and without a western diet throughout gestation. Female Wistar rats (7-8 weeks old) were fed a normal chow or western diet and randomized into voluntary wheel run or sedentary conditions. Dams returned to sedentary conditions post-parturition. The pups were weaned at 6 weeks after which point half of the samples were collected, while the rest of the pups remained on a normal diet, separated into sedentary or voluntary wheel run groups, and collected 12 weeks later. In utero exposure to maternal exercise was associated with higher neuronal nuclear protein, higher soluble APPα and lower soluble APPβ in offspring prefrontal cortex tissue at 6, but not 18 weeks of age. Neuronal nuclear protein is exclusive to mature neurons implying that offspring of mothers who exercised could have more neuron maturation potentially influenced by the higher APPα content at this early developmental stage. The voluntary wheel run offspring groups had a higher mature/pro brain derived neurotrophic factor ratio compared to the sedentary counterparts. The maternal effects were isolated to the juvenile 6-week-old pups, while the differences in the adult offspring were caused by their own exercise status.
Collapse
Affiliation(s)
- A Mohammad
- Department of Health Sciences, Brock University, St Catharines, ON, Canada
| | - G N Ruegsegger
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Colombia, MO, US
| | - T D Olver
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - R E K MacPherson
- Department of Health Sciences, Brock University, St Catharines, ON, Canada
| |
Collapse
|
3
|
Zheng X, Su B, Zhao Y, Chen C, Vellas B, Michel JP, Shao R. Foundations and implications of Human Aging Omics: A framework for identifying cumulative health risks from embryo to senescence. Sci Bull (Beijing) 2024; 69:3184-3187. [PMID: 39198091 DOI: 10.1016/j.scib.2024.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 09/01/2024]
Affiliation(s)
- Xiaoying Zheng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; APEC Health Science Academy (HeSAY), Peking University, Beijing 100871, China.
| | - Binbin Su
- Department of Geriatric Health Sciences, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yihao Zhao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Chen Chen
- Department of Geriatric Health Sciences, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Bruno Vellas
- Gérontopôle & Department of Geriatric Internal Medicine, Toulouse University Hospital, Toulouse 31000, France
| | | | - Ruitai Shao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Pramanik R, Dey A, Chakrabarty AK, Banerjee D, Narwaria A, Sharma S, Rai RK, Katiyar CK, Dubey SK. Diabetes mellitus and Alzheimer's disease: Understanding disease mechanisms, their correlation, and promising dual activity of selected herbs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118402. [PMID: 38821139 DOI: 10.1016/j.jep.2024.118402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This review explores the link between Type 2 Diabetes Mellitus (T2DM) and diabetes-induced Alzheimer's disease (AD). It emphasizes the shared pathophysiological links and mechanisms between the two conditions, focusing on reduced insulin levels and receptors, impaired glucose metabolism, insulin resistance, mitochondrial dysfunction, and oxidative damage in AD-affected brains-paralleling aspects of T2DM. The review suggests AD as a "diabetes of the brain," supported by cognitive enhancement through antidiabetic interventions. It focuses on the traditionally used Indian herbs as a means to manage both conditions while addressing developmental challenges. AIM OF THE STUDY This study explores the DM-AD connection, reviewing medicinal herbs with protective potential for both ailments, considering traditional uses and developmental challenges. MATERIALS AND METHODS Studied research, reviews, and ethnobotanical and scientific data from electronic databases and traditional books. RESULTS The study analyzes the pathophysiological links between DM and AD, emphasizing their interconnected factors. Eight Ayurvedic plants with dual protective effects against T2DM and AD are thoroughly reviewed with preclinical/clinical evidence. Historical context, phytoconstituents, and traditional applications are explored. Innovative formulations using these plants are examined. Challenges stemming from phytoconstituents' physicochemical properties are highlighted, prompting novel formulation development, including nanotechnology-based delivery systems. The study uncovers obstacles in formulating treatments for these diseases. CONCLUSION The review showcases the dual potential of chosen medicinal herbs against both diseases, along with their traditional applications, endorsing their use. It addresses formulation obstacles, proposing innovative delivery technologies for herbal therapies, while acknowledging their constraints. The review suggests the need for heightened investment and research in this area.
Collapse
Affiliation(s)
- Rima Pramanik
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Anuradha Dey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | | | - Dipankar Banerjee
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Avinash Narwaria
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Rajiva Kumar Rai
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Chandra Kant Katiyar
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata, 700056, India.
| |
Collapse
|
5
|
Almeida ZL, Vaz DC, Brito RMM. Morphological and Molecular Profiling of Amyloid-β Species in Alzheimer's Pathogenesis. Mol Neurobiol 2024:10.1007/s12035-024-04543-4. [PMID: 39446217 DOI: 10.1007/s12035-024-04543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia around the world (~ 65%). Here, we portray the neuropathology of AD, biomarkers, and classification of amyloid plaques (diffuse, non-cored, dense core, compact). Tau pathology and its involvement with Aβ plaques and cell death are discussed. Amyloid cascade hypotheses, aggregation mechanisms, and molecular species formed in vitro and in vivo (on- and off-pathways) are described. Aβ42/Aβ40 monomers, dimers, trimers, Aβ-derived diffusible ligands, globulomers, dodecamers, amylospheroids, amorphous aggregates, protofibrils, fibrils, and plaques are characterized (structure, size, morphology, solubility, toxicity, mechanistic steps). An update on AD-approved drugs by regulatory agencies, along with new Aβ-based therapies, is presented. Beyond prescribing Aβ plaque disruptors, cholinergic agonists, or NMDA receptor antagonists, other therapeutic strategies (RNAi, glutaminyl cyclase inhibitors, monoclonal antibodies, secretase modulators, Aβ aggregation inhibitors, and anti-amyloid vaccines) are already under clinical trials. New drug discovery approaches based on "designed multiple ligands", "hybrid molecules", or "multitarget-directed ligands" are also being put forward and may contribute to tackling this highly debilitating and fatal form of human dementia.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
- School of Health Sciences, Polytechnic Institute of Leiria, 2411-901, Leiria, Portugal.
- LSRE-LCM, Laboratory of Separation and Reaction Engineering and Laboratory of Catalysis and Materials, Leiria, 2411-901, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, 4200-465, Porto, Portugal.
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
6
|
Vicidomini C, Fontanella F, D’Alessandro T, Roviello GN. A Survey on Computational Methods in Drug Discovery for Neurodegenerative Diseases. Biomolecules 2024; 14:1330. [PMID: 39456263 PMCID: PMC11506269 DOI: 10.3390/biom14101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Currently, the age structure of the world population is changing due to declining birth rates and increasing life expectancy. As a result, physicians worldwide have to treat an increasing number of age-related diseases, of which neurological disorders represent a significant part. In this context, there is an urgent need to discover new therapeutic approaches to counteract the effects of neurodegeneration on human health, and computational science can be of pivotal importance for more effective neurodrug discovery. The knowledge of the molecular structure of the receptors and other biomolecules involved in neurological pathogenesis facilitates the design of new molecules as potential drugs to be used in the fight against diseases of high social relevance such as dementia, Alzheimer's disease (AD) and Parkinson's disease (PD), to cite only a few. However, the absence of comprehensive guidelines regarding the strengths and weaknesses of alternative approaches creates a fragmented and disconnected field, resulting in missed opportunities to enhance performance and achieve successful applications. This review aims to summarize some of the most innovative strategies based on computational methods used for neurodrug development. In particular, recent applications and the state-of-the-art of molecular docking and artificial intelligence for ligand- and target-based approaches in novel drug design were reviewed, highlighting the crucial role of in silico methods in the context of neurodrug discovery for neurodegenerative diseases.
Collapse
Affiliation(s)
- Caterina Vicidomini
- Institute of Biostructures and Bioimaging-Italian National Council for Research (IBB-CNR), Via De Amicis 95, 80145 Naples, Italy
| | - Francesco Fontanella
- Department of Electrical and Information Engineering “Maurizio Scarano”, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| | - Tiziana D’Alessandro
- Department of Electrical and Information Engineering “Maurizio Scarano”, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging-Italian National Council for Research (IBB-CNR), Via De Amicis 95, 80145 Naples, Italy
| |
Collapse
|
7
|
Ren H, Feng Q, Chen L, Li L, Wang J, Wu J, Dong L, Liu T, Wang Z. Ten-words recall test: an effective tool to differentiate mild cognitive impairment from subjective cognitive decline. Front Psychiatry 2024; 15:1429934. [PMID: 39465050 PMCID: PMC11502336 DOI: 10.3389/fpsyt.2024.1429934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are stages 2 and 3, respectively, of the Alzheimer's continuum. The Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog's) ten-words recall test is a validated method for the early detection of cognitive impairment in Alzheimer's disease. However, limited studies have investigated its ability to differentiate between SCD and MCI. Methods 203 participants with SCD and 62 participants with MCI underwent multiple neuropsychological assessments. The Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment-Basic (MOCA-B) served as brief global cognition tests. A binary logistic regression model was used to analyze the potential factors affecting MCI. The accuracy of the ten-words recall test was assessed using the area under the receiver operating characteristic (ROC) and the area under the curve (AUC). Results The neuropsychological assessment revealed significant differences in the ten-words recall test scores between the SCD (median age 61 years; 70.44% female) and MCI (median age 64 years; 61.29% female) groups (p < 0.001), with the MCI group scoring the highest. Using a cut-off value of 3.15 for the ten-words recall test, sensitivity for distinguishing MCI from SCD reached 87%, while specificity stood at 61% (AUC 0.777, p < 0.001). DeLong's test indicated no statistically significant difference in the ten-words recall test's ability to distinguish between SCD and MCI compared to the total score of ADAS-Cog (AUC 0.833, p) and MMSE (AUC 0.784, p > 0.05). However, a significant difference was observed when compared to MoCA-B (AUC 0.973, p < 0.001). In the population with an education level of ≤ 9 years, the optimal cut-off value for the ten-words recall test was 3.15, yielding a sensitivity of 91% and a specificity of 45% (AUC = 0.674, p = 0.030). In the population with an education level > 9 years, the optimal cut-off value was 3.63, resulting in a sensitivity of 79% and a specificity of 71% (AUC = 0.785, p < 0.001). Discussion The ten-words recall test from the ADAS-cog may detect MCI early owing to its simplicity and quick administration. It is an effective and convenient tool for rapidly identifying mild cognitive impairment.
Collapse
Affiliation(s)
- Hua Ren
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education (MoE) Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Qiansen Feng
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education (MoE) Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, The Fourth People's Hospital of Chengdu, Chengdu, China
- Nursing School of Zunyi Medical University, Guizhou, China
| | - Lei Chen
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education (MoE) Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, The Fourth People's Hospital of Chengdu, Chengdu, China
- Nursing School of Zunyi Medical University, Guizhou, China
| | - Linlin Li
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education (MoE) Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, The Fourth People's Hospital of Chengdu, Chengdu, China
- Nursing School of Zunyi Medical University, Guizhou, China
| | - Jiayu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education (MoE) Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, The Fourth People's Hospital of Chengdu, Chengdu, China
- Nursing School of Zunyi Medical University, Guizhou, China
| | - Jiajing Wu
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education (MoE) Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, The Fourth People's Hospital of Chengdu, Chengdu, China
- Nursing School of Zunyi Medical University, Guizhou, China
| | - Li Dong
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education (MoE) Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, The Fourth People's Hospital of Chengdu, Chengdu, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, China
| | - Tiejun Liu
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education (MoE) Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, The Fourth People's Hospital of Chengdu, Chengdu, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ziqi Wang
- The Clinical Hospital of Chengdu Brain Science Institute, Ministry of Education (MoE) Key Laboratory for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, The Fourth People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
8
|
Taguas I, Doval S, Maestú F, López-Sanz D. Toward a more comprehensive understanding of network centrality disruption in amnestic mild cognitive impairment: a MEG multilayer approach. Alzheimers Res Ther 2024; 16:216. [PMID: 39385281 PMCID: PMC11462918 DOI: 10.1186/s13195-024-01576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most common form of dementia. Its early stage, amnestic Mild Cognitive Impairment (aMCI), is characterized by disrupted information flow in the brain. Previous studies have yielded inconsistent results when using electrophysiological techniques to investigate functional connectivity changes in AD, and a contributing factor may be the study of brain activity divided into frequencies. METHODS Our study aimed to address this issue by employing a cross-frequency approach to compare the functional networks of 172 healthy subjects and 105 aMCI patients. Using magnetoencephalography, we constructed source-based multilayer graphs considering both intra- and inter-frequency functional connectivity. We then assessed changes in network organization through three centrality measures, and combined them into a unified centrality score to provide a comprehensive assessment of centrality disruption in aMCI. RESULTS The results revealed a noteworthy shift in centrality distribution in aMCI patients, both in terms of spatial distribution and frequency. Posterior brain regions decrease synchrony between their high-frequency oscillations and other regions' activity across all frequencies, while anterior regions increase synchrony between their low-frequency oscillations and other regions' activity across all frequencies. Thus, posterior regions reduce their relative importance in favor of anterior regions. CONCLUSIONS Our findings provide valuable insights into the intricate changes that occur in functional brain networks during the early stages of AD, demonstrating that considering the interplays between different frequency bands enhances our understanding of AD network dynamics and setting a precedent for the study of functional networks using a multilayer approach.
Collapse
Affiliation(s)
- Ignacio Taguas
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain.
- Department of Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, 28040, Spain.
| | - Sandra Doval
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain.
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain.
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, 28240, Spain.
| | - David López-Sanz
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28015, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, 28223, Spain
| |
Collapse
|
9
|
Su Y, Liu N, Wang P, Shang C, Sun R, Ma J, Li Z, Ma H, Sun Y, Zhang Z, Song J, Xie Z, Xu J, Zhang Z. Proteomic analysis and experimental validation reveal the blood-brain barrier protective of Huanshaodan in the treatment of SAMP8 mouse model of Alzheimer's disease. Chin Med 2024; 19:137. [PMID: 39369234 PMCID: PMC11456246 DOI: 10.1186/s13020-024-01016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Huanshaodan (HSD) is a Chinese Herbal Compound which has a definite clinical effect on Alzheimer's disease (AD), however, the underlying mechanism remains unclear. The aim of this study is to preliminarily reveal the mechanism of HSD in the treatment of AD model of SAMP8 mice. METHODS Chemical composition of HSD and its drug-containing serum were identified by Q-Orbitrap high resolution liquid mass spectrometry. Six-month-old SAMP8 mice were treated with HSD and Donepezil hydrochloride by gavage for 2 months, and Wogonin for 28 days. Behavioral test was performed to test the learning and memory ability of mice. Immunofluorescence (IF) or Western-blot methods were used to detect the levels of pSer404-tau and β-amyloid (Aβ) in the brain of mice. Hematoxylin-eosin (H&E) staining and Transmission electron microscopy (TEM) assay was applied to observe the pathological changes of neurons. Proteomic technology was carried out to analyze and identify the protein network of HSD interventions in AD. Then the pathological process of the revealed AD-related differential proteins was investigated by IF, Q-PCR, Western-blot, Fluorescence in situ hybridization (FISH) and 16S rRNA sequencing methods. RESULTS The results showed that HSD and Wogonin, one of the components in its drug-containing serum, can effectively improve the cognitive impairments of SAMP8 mice, protect hippocampal neurons and synapses, and reduce the expression of pSer404-tau and Aβ. HSD and Wogonin reduced the levels of fibrinogen β chain (FGB) and γ chain (FGG), the potential therapeutic targets revealed by proteomics analysis, reduced the colocalization of FGB and FGG with Aβ, ionized calcium binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), increased level of and myelin basic protein (MBP). Meanwhile, HSD and Wogonin increased ZO-1 and Occludin levels, improved brain microvascular injury, and reduced levels of bacteria/bacterial DNA and lipopolysaccharide (LPS) in the brain of mice. In addition, 16S rRNA sequencing indicated that HSD regulated the structure of intestinal microbiota of mice. CONCLUSION The effects of HSD on AD may be achieved by inhibiting the levels of fibrinogen and the interactions on glia cells in the brain, and by modulating the structure of intestinal microbiota and improving the blood-brain barrier function.
Collapse
Affiliation(s)
- Yunfang Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Zhengzhou, 450046, China
| | - Ningning Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Pan Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Congcong Shang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Ruiqin Sun
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Jinlian Ma
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Zhonghua Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Huifen Ma
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Yiran Sun
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Zijuan Zhang
- School of Basic Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Junying Song
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China
| | - Zhishen Xie
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China.
| | - Jiangyan Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China.
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, No. 156, Jinshuidong Road, Zhengzhou, 450046, China.
| |
Collapse
|
10
|
Abd Rahman IZ, Adam SH, Hamid AA, Mokhtar MH, Mustafar R, Kashim MIAM, Febriza A, Mansor NI. Potential Neuroprotective Effects of Alpinia officinarum Hance (Galangal): A Review. Nutrients 2024; 16:3378. [PMID: 39408345 PMCID: PMC11478918 DOI: 10.3390/nu16193378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: This review aims to provide a detailed understanding of the current evidence on Alpinia officinarum Hance (A. officinarum) and its potential therapeutic role in central nervous system (CNS) disorders. CNS disorders encompass a wide range of disorders affecting the brain and spinal cord, leading to various neurological, cognitive and psychiatric impairments. In recent years, natural products have emerged as potential neuroprotective agents for the treatment of CNS disorders due to their outstanding bioactivity and favourable safety profile. One such plant is A. officinarum, also known as lesser galangal, a perennial herb from the Zingiberaceae family. Its phytochemical compounds such as flavonoids and phenols have been documented to have a powerful antioxidants effect, capable of scavenging free radicals and preventing oxidative damage. Methods: In this review, we critically evaluate the in vitro and in vivo studies and examine the mechanisms by which A. officinarum exerts its neuroprotective effect. Results: Several studies have confirmed that A. officinarum exerts its neuroprotective effects by reducing oxidative stress and cell apoptosis, promoting neurite outgrowth, and modulating neurotransmitter levels and signalling pathways. Conclusions: Although previous studies have shown promising results in various models of neurological disorders, the underlying mechanisms of A. officinarum in Alzheimer's (AD) and Parkinson's disease (PD) are still poorly understood. Further studies on brain tissue and cognitive and motor functions in animal models of AD and PD are needed to validate the results observed in in vitro studies. In addition, further clinical studies are needed to confirm the safety and efficacy of A. officinarum in CNS disorders.
Collapse
Affiliation(s)
- Izzat Zulhilmi Abd Rahman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Siti Hajar Adam
- Preclinical Department, Faculty of Medicine & Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Ruslinda Mustafar
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Mohd Izhar Ariff Mohd Kashim
- Centre of Shariah, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ami Febriza
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, South Sulawesi, Indonesia;
| | - Nur Izzati Mansor
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
11
|
Zanjani F, Battle B, Richardson J. Alzheimer's Disease Risk Reduction Health Coaching: Comparative Analysis. THE GERONTOLOGIST 2024; 64:gnae106. [PMID: 39140428 DOI: 10.1093/geront/gnae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Recent guidelines point to lifestyle as a tool for decreasing Alzheimer's disease (AD) risk. To address the limited practice and availability of AD risk reduction interventions, this study aimed to explore the feasibility of a community-level lifestyle intervention targeting high-risk groups. RESEARCH DESIGN AND METHODS Diverse older adults (60+) living in the Richmond, VA, local area, with the following risk factors, incomes below $12,000/year and managing diabetes or cardiovascular disease, were offered weekly lifestyle telephone health coaching for 12 weeks in 2019-2020 (intervention group). The health coaching sessions provided Alzheimer's disease (AD) lifestyle risk reduction education and goal setting/planning. The intervention sample (n = 40, mean age 68 years (range: 60-76 years), was 90% African American/Black (n = 36) and 45% male (n = 18). Thereafter, in 2021-2022, n = 37 individuals in the same area were recruited as a comparison group and not given health coaching (control group), mean age of 65.5 years (range: 57-83 years), 92% African American/Black (n = 34), and 50% male (n = 18). RESULTS Repeated-measures intervention effects were seen for cognitive ability, indicating greater improvement in the intervention group (p < .01). Significant difference scores indicated greater cognitive ability (p < .01) and physical activity (p < .001) gains in the intervention group, with intervention subjects with reported memory problems showed relatively less physical activity gains (p < .05). DISCUSSION AND IMPLICATIONS This work creates the impetus for future large-scale AD risk reduction investigations to mitigate and improve modifiable risk among diverse older adults. Our positive trends in AD risk reduction support telephone-based health coaching as a feasible AD risk reduction intervention.
Collapse
Affiliation(s)
- Faika Zanjani
- Gerontology Department, College of Health Professions, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Brian Battle
- Gerontology Department, College of Health Professions, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Joann Richardson
- Kinesiology and Health Sciences Department, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
12
|
Sweetat S, Shabat MB, Theotokis P, Suissa N, Karafoulidou E, Touloumi O, Abu-Fanne R, Abramsky O, Wolf G, Saada A, Lotan A, Grigoriadis N, Rosenmann H. Ovariectomy and High Fat-Sugar-Salt Diet Induced Alzheimer's Disease/Vascular Dementia Features in Mice. Aging Dis 2024; 15:2284-2300. [PMID: 38913044 PMCID: PMC11346392 DOI: 10.14336/ad.2024.03110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
While the vast majority of Alzheimer's disease (AD) is non-familial, the animal models of AD that are commonly used for studying disease pathogenesis and development of therapy are mostly of a familial form. We aimed to generate a model reminiscent of the etiologies related to the common late-onset Alzheimer's disease (LOAD) sporadic disease that will recapitulate AD/dementia features. Naïve female mice underwent ovariectomy (OVX) to accelerate aging/menopause and were fed a high fat-sugar-salt diet to expose them to factors associated with increased risk of development of dementia/AD. The OVX mice fed a high fat-sugar-salt diet responded by dysregulation of glucose/insulin, lipid, and liver function homeostasis and increased body weight with slightly increased blood pressure. These mice developed AD-brain pathology (amyloid and tangle pathologies), gliosis (increased burden of astrocytes and activated microglia), impaied blood vessel density and neoangiogenesis, with cognitive impairment. Thus, OVX mice fed on a high fat-sugar-salt diet imitate a non-familial sporadic/environmental form of AD/dementia with vascular damage. This model is reminiscent of the etiologies related to the LOAD sporadic disease that represents a high portion of AD patients, with an added value of presenting concomitantly AD and vascular pathology, which is a common condition in dementia. Our model can, thereby, provide a valuable tool for studying disease pathogenesis and for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Sahar Sweetat
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Moti Ben Shabat
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Paschalis Theotokis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Nir Suissa
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Eleni Karafoulidou
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Olga Touloumi
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Rami Abu-Fanne
- Department of Clinical Biochemistry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Oded Abramsky
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Gilly Wolf
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
- Biological Psychiatry Laboratory, Hadassah Hebrew University Medical Center, Jerusalem Israel Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Psychology, School of Psychology and Social Sciences, Achva Academic College, Be'er Tuvia, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Lotan
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
- Biological Psychiatry Laboratory, Hadassah Hebrew University Medical Center, Jerusalem Israel Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nikolaos Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Hanna Rosenmann
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| |
Collapse
|
13
|
Tripathi A, Pandey VK, Sharma G, Sharma AR, Taufeeq A, Jha AK, Kim JC. Genomic Insights into Dementia: Precision Medicine and the Impact of Gene-Environment Interaction. Aging Dis 2024; 15:2113-2135. [PMID: 38607741 PMCID: PMC11346410 DOI: 10.14336/ad.2024.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The diagnosis, treatment, and management of dementia provide significant challenges due to its chronic cognitive impairment. The complexity of this condition is further highlighted by the impact of gene-environment interactions. A recent strategy combines advanced genomics and precision medicine methods to explore the complex genetic foundations of dementia. Utilizing the most recent research in the field of neurogenetics, the importance of precise genetic data in explaining the variation seen in dementia patients can be investigated. Gene-environment interactions are important because they influence genetic susceptibilities and aid in the development and progression of dementia. Modified to each patient's genetic profile, precision medicine has the potential to detect groups at risk and make previously unheard-of predictions about the course of diseases. Precision medicine techniques have the potential to completely transform treatment and diagnosis methods. Targeted medications that target genetic abnormalities will probably appear, providing the possibility for more efficient and customized medical interventions. Investigating the relationship between genes and the environment may lead to preventive measures that would enable people to change their surroundings and minimize the risk of dementia, leading to the improved lifestyle of affected people. This paper provides a comprehensive overview of the genomic insights into dementia, emphasizing the pivotal role of precision medicine, and gene-environment interactions.
Collapse
Affiliation(s)
- Anjali Tripathi
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vinay Kumar Pandey
- Division of Research & Innovation (DRI), School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Anam Taufeeq
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
14
|
Mubeen H, Masood A, Zafar A, Khan ZQ, Khan MQ, Nisa AU. Insights into AlphaFold's breakthrough in neurodegenerative diseases. Ir J Med Sci 2024; 193:2577-2588. [PMID: 38833116 DOI: 10.1007/s11845-024-03721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Neurodegenerative diseases (ND) are disorders of the central nervous system (CNS) characterized by impairment in neurons' functions, and complete loss, leading to memory loss, and difficulty in learning, language, and movement processes. The most common among these NDs are Alzheimer's disease (AD) and Parkinson's disease (PD), although several other disorders also exist. These are frontotemporal dementia (FTD), amyotrophic lateral syndrome (ALS), Huntington's disease (HD), and others; the major pathological hallmark of NDs is the proteinopathies, either of amyloid-β (Aβ), tauopathies, or synucleinopathies. Aggregation of proteins that do not undergo normal configuration, either due to mutations or through some disturbance in cellular pathway contributes to the diseases. Artificial Intelligence (AI) and deep learning (DL) have proven to be successful in the diagnosis and treatment of various congenital diseases. DL approaches like AlphaFold (AF) are a major leap towards success in CNS disorders. This 3D protein geometry modeling algorithm developed by DeepMind has the potential to revolutionize biology. AF has the potential to predict 3D-protein confirmation at an accuracy level comparable to experimentally predicted one, with the additional advantage of precisely estimating protein interactions. This breakthrough will be beneficial to identify diseases' advancement and the disturbance of signaling pathways stimulating impaired functions of proteins. Though AlphaFold has solved a major problem in structural biology, it cannot predict membrane proteins-a beneficial approach for drug designing.
Collapse
Affiliation(s)
- Hira Mubeen
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan.
| | - Ammara Masood
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Asma Zafar
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Zohaira Qayyum Khan
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Muneeza Qayyum Khan
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Alim Un Nisa
- Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| |
Collapse
|
15
|
Wei R, Wei P, Yuan H, Yi X, Aschner M, Jiang YM, Li SJ. Inflammation in Metal-Induced Neurological Disorders and Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:4459-4481. [PMID: 38206494 DOI: 10.1007/s12011-023-04041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Essential metals play critical roles in maintaining human health as they participate in various physiological activities. Nonetheless, both excessive accumulation and deficiency of these metals may result in neurotoxicity secondary to neuroinflammation and the activation of microglia and astrocytes. Activation of these cells can promote the release of pro-inflammatory cytokines. It is well known that neuroinflammation plays a critical role in metal-induced neurotoxicity as well as the development of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Initially seen as a defense mechanism, persistent inflammatory responses are now considered harmful. Astrocytes and microglia are key regulators of neuroinflammation in the central nervous system, and their excessive activation may induce sustained neuroinflammation. Therefore, in this review, we aim to emphasize the important role and molecular mechanisms underlying metal-induced neurotoxicity. Our objective is to raise the awareness on metal-induced neuroinflammation in neurological disorders. However, it is not only just neuroinflammation that different metals could induce; they can also cause harm to the nervous system through oxidative stress, apoptosis, and autophagy, to name a few. The primary pathophysiological mechanism by which these metals induce neurological disorders remains to be determined. In addition, given the various pathways through which individuals are exposed to metals, it is necessary to also consider the effects of co-exposure to multiple metals on neurological disorders.
Collapse
Affiliation(s)
- Ruokun Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Peiqi Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Haiyan Yuan
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Xiang Yi
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| |
Collapse
|
16
|
Pekcan G. Determination of Alzheimer's Drugs in a Human Urine Sample by Different Chemometric Methods: Chemometric Determination of Alzheimer's Drugs. Int J Anal Chem 2024; 2024:5535816. [PMID: 39371108 PMCID: PMC11452237 DOI: 10.1155/2024/5535816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/08/2024] Open
Abstract
In this study, spectrophotometric determination of donepezil and rivastigmine in healthy human urine samples was carried out by the statistical method. Partial least squares (PLS) and principal component regression (PCR) from multivariate calibration methods were used to evaluate the data obtained from the UV-Vis spectroscopy analysis of the urine sample. Mixtures of each early substance were prepared prior to urine sample analysis, and simultaneous determination of donepezil and rivastigmine was performed on the established chemometric model without any prior separation. The calibration curves of each drug were analyzed, and linearity values were also analyzed. For donepezil and rivastigmine, they were 0.9989 and 0.9997, respectively, and were linear over the concentration range of the synthetic mixture. When both chemometric methods (PLS and PCR) were evaluated in terms of accuracy and reproducibility, very high recoveries and small standard deviations were determined. In the PLS method, the standard error of prediction (SEC), the sum of the prediction residual errors (PRESS), the limit of quantitation (LOQ), and the limit of detection (LOD) values were 0.015, 0.0030, 0.067, 0.24, 0.018, 0.0042, 0.089, and 0.301 for donepezil and rivastigmine, respectively. In the PCR method, SEC, PRESS, LOD, and LOQ values are 0.016, 0.0054, 0.066, and 0.23 for donepezil and 0.022, 0.0062, 0.091, and 0.300 for rivastigmine. Chemometrics is used for speed, simplicity, and reliability. The proposed methods have been successfully applied to a sample of urine.
Collapse
Affiliation(s)
- Güzide Pekcan
- Department of ChemistryFaculty of Engineering and Natural SciencesSüleyman Demirel University, Isparta 32260, Turkey
| |
Collapse
|
17
|
Qiao N, Shao H. Identification of neutrophil extracellular trap-related genes in Alzheimer's disease based on comprehensive bioinformatics analysis. Comput Methods Biomech Biomed Engin 2024:1-14. [PMID: 39314024 DOI: 10.1080/10255842.2024.2399029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease. There are currently no effective interventions to slow down or prevent the occurrence and progression of AD. Neutrophil extracellular traps (NETs) have been proven to be tightly linked to AD. This project attempted to identify hub genes for AD based on NETs. Gene expression profiles of the training set and validation set were downloaded from the Gene Expression Omnibus (GEO) database, including non-demented (ND) controls and AD samples. NET-related genes (NETRGs) were collected from the literature. Differential analysis identified 21 AD differentially expressed NETRGs (AD-DE-NETRGs) majorly linked to functions such as defense response to bacterium as well as pathways including IL-17 signaling pathway, as evidenced by enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Protein-protein interaction (PPI) network, Minutia Cylinder-Code (MCC) algorithm, and molecular complex detection (MCODE) algorithm in the CytoHubba plug-in were employed to identify five hub genes (NFKBIA, SOCS3, CCL2, TIMP1, ACTB). Their diagnostic ability was validated in the validation set using receiver operating characteristic (ROC) curves and gene differential expression analysis. A total of 16 miRNAs and 132 lncRNAs were predicted through the mirDIP and ENCORI databases, and a lncRNA-miRNA-mRNA regulatory network was constructed using Cytoscape software. Small molecular compounds such as Benzo(a)pyrene and Copper Sulfate were predicted to target hub genes using the CTD database. This project successfully identified five hub genes, which may serve as potential biomarkers for AD, proffering clues for new therapeutic targets.
Collapse
Affiliation(s)
- Nana Qiao
- Department of Neurology, Xianyang Hospital of Yan'an University, Xianyang, China
| | - He Shao
- Department of Neurology, Xianyang Hospital of Yan'an University, Xianyang, China
| |
Collapse
|
18
|
Wang WE, Asken BM, DeSimone JC, Levy SA, Barker W, Fiala JA, Velez-Uribe I, Curiel Cid RE, Rósselli M, Marsiske M, Adjouadi M, Loewenstein DA, Duara R, Smith GE, Armstrong MJ, Barnes LL, Vaillancourt DE, Coombes SA. Neuroimaging and biofluid biomarkers across race and ethnicity in older adults across the spectrum of cognition. Ageing Res Rev 2024; 101:102507. [PMID: 39306249 DOI: 10.1016/j.arr.2024.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Neuroimaging and biofluid biomarkers provide a proxy of pathological changes for Alzheimer's disease (AD) and are useful in improving diagnosis and assessing disease progression. However, it is not clear how race/ethnicity and different prevalence of AD risks impact biomarker levels. In this narrative review, we survey studies focusing on comparing biomarker differences between non-Hispanic White American(s) (NHW), African American(s) (AA), Hispanic/Latino American(s) (HLA), and Asian American(s) with normal cognition, mild cognitive impairment, and dementia. We found no strong evidence of racial and ethnic differences in imaging biomarkers after controlling for cognitive status and cardiovascular risks. For biofluid biomarkers, in AA, higher levels of plasma Aβ42/Aβ40, and lower levels of CSF total tau and p-tau 181, were observed after controlling for APOE status and comorbidities compared to NHW. Examining the impact of AD risks and comorbidities on biomarkers and their contributions to racial/ethnic differences in cognitive impairment are critical to interpreting biomarkers, understanding their generalizability, and eliminating racial/ethnic health disparities.
Collapse
Affiliation(s)
- Wei-En Wang
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Breton M Asken
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Jesse C DeSimone
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Shellie-Anne Levy
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Warren Barker
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Wien Center for Alzheimer's Disease and Memory Disorders, Mt. Sinai Medical Center, Miami, FL, USA
| | - Jacob A Fiala
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Idaly Velez-Uribe
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Wien Center for Alzheimer's Disease and Memory Disorders, Mt. Sinai Medical Center, Miami, FL, USA
| | - Rosie E Curiel Cid
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Departments of Psychiatry and Behavioral Sciences and Neurology, Center for Cognitive Neuroscience and Aging, University of Miami, Miami, FL, USA
| | - Monica Rósselli
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Psychology, Florida Atlantic University, Davie, FL, USA
| | - Michael Marsiske
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Malek Adjouadi
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - David A Loewenstein
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Departments of Psychiatry and Behavioral Sciences and Neurology, Center for Cognitive Neuroscience and Aging, University of Miami, Miami, FL, USA
| | - Ranjan Duara
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Wien Center for Alzheimer's Disease and Memory Disorders, Mt. Sinai Medical Center, Miami, FL, USA
| | - Glenn E Smith
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Melissa J Armstrong
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL, USA
| | - Lisa L Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David E Vaillancourt
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Institute for Neurological Disease, University of Florida, Gainesville, FL, USA
| | - Stephen A Coombes
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
19
|
Shah S, Mansour HM, Aguilar TM, Lucke-Wold B. Mesenchymal Stem Cell-Derived Exosomes as a Neuroregeneration Treatment for Alzheimer's Disease. Biomedicines 2024; 12:2113. [PMID: 39335626 PMCID: PMC11428860 DOI: 10.3390/biomedicines12092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent kind of dementia and is a long-term degenerative disease. Pathologically, it is defined by the development of extracellular amyloid-β plaques and intracellular neurofibrillary tangles made up of hyperphosphorylated tau protein. This causes neuronal death, particularly in the hippocampus and cortex. Mesenchymal stem cell (MSC)-derived exosomes have been identified as possibly therapeutic and have promise for Alzheimer's disease due to their regenerative characteristics. METHODS A systematic retrieval of information was performed on PubMed. A total of 60 articles were found in a search on mesenchymal stem cells, exosomes, and Alzheimer's disease. A total of 16 ongoing clinical trials were searched and added from clinicaltrials.gov. We added 23 supporting articles to help provide information for certain sections. In total, we included 99 articles in this manuscript: 50 are review articles, 13 are preclinical studies, 16 are clinical studies, 16 are ongoing clinical trials, and 4 are observational studies. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. The clinical trials on mesenchymal stem cell exosomes for Alzheimer's disease were searched on clinicaltrials.gov. RESULTS Several experimental investigations have shown that MSC-Exo improves cognitive impairment in rats. In this review paper, we summarized existing understanding regarding the molecular and cellular pathways behind MSC-Exo-based cognitive function restoration, with a focus on MSC-Exo's therapeutic potential in the treatment of Alzheimer's disease. CONCLUSION AD is a significant health issue in our culture and is linked to several important neuropathological characteristics. Exosomes generated from stem cells, such as mesenchymal stem cells (MSCs) or neural stem cells (NSCs), have been examined more and more in a variety of AD models, indicating that they may be viable therapeutic agents for the treatment of diverse disorders. Exosome yields may be increased, and their therapeutic efficacy can be improved using a range of tailored techniques and culture conditions. It is necessary to provide standardized guidelines for exosome manufacture to carry out excellent preclinical and clinical research.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Hadeel M Mansour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Tania M Aguilar
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
20
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
21
|
Arora S, Patten SB, Mallo SC, Lojo-Seoane C, Felpete A, Facal-Mayo D, Pereiro AX. The influence of education in predicting conversion from Subjective cognitive decline (SCD) to objective cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 2024; 101:102487. [PMID: 39243892 DOI: 10.1016/j.arr.2024.102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Subjective cognitive decline (SCD) is considered a pre-symptomatic stage of dementia characterized by cognitive complaints. The ability of education to reduce the risk of dementia is well known. Our objective is to investigate the influence of education on the risk of progression from SCD to MCI or dementia. METHODS Prospective longitudinal studies of adults (≥50 years) with SCD evaluating progression to objective cognitive decline, MCI, or dementia were selected. Pooled estimates (random effects model) and 95 % confidence intervals were calculated, exploring heterogeneity. Standardized education differences, Odds Ratio, or Hazard Ratio between converters and non-converters were estimated. RESULTS The systematic review carried out showed that high education, as well as other cognitive reserve proxies, delays cognitive decline. The first meta-analysis showed a significant association of SCD with conversion in both high and low education strata. A second meta-analysis considering education as a continuous variable found that SCD converters showed two years less education than non-converters. CONCLUSIONS Our results suggest that education has a delaying effect against cognitive decline progression. The presumed improvement in accurately detecting cognitive decline associated with better metacognitive skills in higher-educated SCD participants does not seem to neutralize the incremental risk of objective cognitive decline associated with lower educational attainment.
Collapse
Affiliation(s)
- Sonali Arora
- Department of Developmental Psychology, University of Santiago de Compostela, Santiago de Compostela, Xosé María Suárez Núñez, Campus Sur, Santiago de Compostela, Galicia 15782, Spain; Applied Cognitive Neuroscience and Psychogerontology group, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Rúa Xosé María Suárez Núñez, s/n, Campus Vida, Santiago de Compostela 15782, Spain.
| | - Scott B Patten
- Department of Psychiatry, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Sabela C Mallo
- Department of Developmental Psychology, University of Santiago de Compostela, Santiago de Compostela, Xosé María Suárez Núñez, Campus Sur, Santiago de Compostela, Galicia 15782, Spain; Applied Cognitive Neuroscience and Psychogerontology group, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Rúa Xosé María Suárez Núñez, s/n, Campus Vida, Santiago de Compostela 15782, Spain.
| | - Cristina Lojo-Seoane
- Department of Developmental Psychology, University of Santiago de Compostela, Santiago de Compostela, Xosé María Suárez Núñez, Campus Sur, Santiago de Compostela, Galicia 15782, Spain; Applied Cognitive Neuroscience and Psychogerontology group, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Rúa Xosé María Suárez Núñez, s/n, Campus Vida, Santiago de Compostela 15782, Spain.
| | - Alba Felpete
- Department of Developmental Psychology, University of Santiago de Compostela, Santiago de Compostela, Xosé María Suárez Núñez, Campus Sur, Santiago de Compostela, Galicia 15782, Spain.
| | - David Facal-Mayo
- Department of Developmental Psychology, University of Santiago de Compostela, Santiago de Compostela, Xosé María Suárez Núñez, Campus Sur, Santiago de Compostela, Galicia 15782, Spain; Applied Cognitive Neuroscience and Psychogerontology group, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Rúa Xosé María Suárez Núñez, s/n, Campus Vida, Santiago de Compostela 15782, Spain.
| | - Arturo X Pereiro
- Department of Developmental Psychology, University of Santiago de Compostela, Santiago de Compostela, Xosé María Suárez Núñez, Campus Sur, Santiago de Compostela, Galicia 15782, Spain; Applied Cognitive Neuroscience and Psychogerontology group, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Rúa Xosé María Suárez Núñez, s/n, Campus Vida, Santiago de Compostela 15782, Spain.
| |
Collapse
|
22
|
Wen W, Huang SM, Zhang B. Mechanisms Underlying Obesity-induced Aβ Accumulation in Alzheimer's Disease: A Qualitative Review. J Integr Neurosci 2024; 23:163. [PMID: 39344225 DOI: 10.31083/j.jin2309163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 10/01/2024] Open
Abstract
Epidemiological studies show that individuals with obesity are more likely to develop Alzheimer's disease (AD) than those who do not have obesity. However, the mechanisms underlying the relationship between obesity and AD are not entirely unclear. Here, we have reviewed and analyzed relevant articles published in the literature and found that obesity has correlation or potential increase in the levels of β-amyloid (Aβ) protein, which may explain why people with obesity are more likely to suffer from AD. Additionally, the published findings point to the roles of obesity-related metabolic disorders, such as diabetes, inflammation, oxidative stress, and imbalance in gut microbiota in Aβ accumulation caused by obesity. Therefore, in-depth experimental and clinical studies on these mechanisms in the future may help shed light on appropriate prevention and treatment strategies for AD, such as dietary changes and regular exercise to reverse or prevent obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Wei Wen
- Department of Pharmacology, College of Basic Medicine, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China
| | - Bo Zhang
- Department of Neuroscience, Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China
| |
Collapse
|
23
|
Chen J, Zhou X, Yuan XL, Xu J, Zhang X, Duan X. Causal association among glaucoma, cerebral cortical structures, and Alzheimer's disease: insights from genetic correlation and Mendelian randomization. Cereb Cortex 2024; 34:bhae385. [PMID: 39323397 DOI: 10.1093/cercor/bhae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
Glaucoma and Alzheimer's disease are critical degenerative neuropathies with global impact. Previous studies have indicated that glaucomatous damage could extend beyond ocular structures, leading to brain alterations potentially associated with Alzheimer's disease risk. This study aimed to explore the causal associations among glaucoma, brain alterations, and Alzheimer's disease. We conducted a comprehensive investigation into the genetic correlation and causality between glaucoma, glaucoma endophenotypes, cerebral cortical surficial area and thickness, and Alzheimer's disease (including late-onset Alzheimer's disease, cognitive performance, and reaction time) using linkage disequilibrium score regression and Mendelian randomization. This study showed suggestive genetic correlations between glaucoma, cortical structures, and Alzheimer's disease. The genetically predicted all-caused glaucoma was nominally associated with a decreased risk of Alzheimer's disease (OR = 0.96, 95% CI: 0.93-0.99, P = 0.013). We found evidence for suggestive causality between glaucoma (endophenotypes) and 20 cortical regions and between 29 cortical regions and Alzheimer's disease (endophenotypes). Four cortical regions were causally associated with cognitive performance or reaction time at a significant threshold (P < 6.2E-04). Thirteen shared cortical regions between glaucoma (endophenotypes) and Alzheimer's disease (endophenotypes) were identified. Our findings complex causal relationships among glaucoma, cerebral cortical structures, and Alzheimer's disease. More studies are required to clarify the mediation effect of cortical alterations in the relationship between glaucoma and Alzheimer's disease.
Collapse
Affiliation(s)
- Jiawei Chen
- Aier Academy of Ophthalmology, Central South University, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Xiaoyu Zhou
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Xiang-Ling Yuan
- Aier Academy of Ophthalmology, Central South University, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Eye Institute, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Jiahao Xu
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Xinyue Zhang
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| | - Xuanchu Duan
- Aier Academy of Ophthalmology, Central South University, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Department of Glaucoma, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, No. 188 South Furong Road, Tianxin District, Changsha 410015, Hunan, P.R. China
| |
Collapse
|
24
|
Wong M, Kiss A, Herrmann N, Lanctôt KL, Gallagher D. Modifiable Risk Factors Associated With Cognitive Decline in Late Life Depression: Findings From the Canadian Longitudinal Study on Aging: Facteurs de risque modifiables associés au déclin cognitif dans la dépression en fin de vie : constatations de l'Étude longitudinale canadienne sur le vieillissement. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2024; 69:708-716. [PMID: 38751067 PMCID: PMC11351061 DOI: 10.1177/07067437241255095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
OBJECTIVE Depression in later life is associated with a two-fold increased risk of dementia. It is not clear to what extent potentially modifiable risk factors account for this association. METHOD Older adults (age 50 + ) with objective health measures (n = 14,014) from the Canadian Longitudinal Study on Aging were followed for a mean duration of 35 months. Linear regression analyses were used to determine if clinically significant depression (Centre for Epidemiologic Studies Depression scale score (CESD) ≥ 10) was associated with global cognitive decline, assessed with a neuropsychological battery during follow-up, and if modifiable risk factors mediated this association. RESULTS Depression was associated with an excess of risk factors for cognitive decline including: vascular disease, hypertension, diabetes, apnoea during sleep, higher body mass index, smoking, physical inactivity and lack of social participation. In regression analyses depression remained independently associated with cognitive decline over time (beta -0.060, P = 0.038) as did cerebrovascular disease (beta -0.197, P < 0.001), HbA1C (beta -0.059, P < 0.001), visual impairment (beta -0.070, P = 0.007), hearing impairment (beta -0.098, P < 0.001) and physical inactivity (beta -0.075, P = 0.014). In mediation analyses, we found that cerebrovascular disease (z = -3.525, P < 0.001), HbA1C (z = -4.976, P < 0.001) and physical inactivity (z = -3.998, P < 0.001) partially mediated the association between depression and cognitive decline. CONCLUSIONS In this large sample of Canadian older adults incorporating several objective health measures, older adults with depression were at increased risk of cognitive decline and had an excess of potentially modifiable risk factors. Clinicians should pay particular attention to control of diabetes, physical inactivity and risk factors for cerebrovascular disease in older adults presenting with depression as they can contribute to accelerated cognitive decline and may be addressed during routine clinical care.
Collapse
Affiliation(s)
- Melissa Wong
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Alex Kiss
- Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
- Institute of Health Policy, Management, and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Krista L. Lanctôt
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Xie Y, Xie D, Chen C. Hsa_circ_0049472 contributed to amyloid-beta peptide-induced neurotoxicity, apoptosis and inflammation via regulating PI3K-AKT signaling pathway by interacting with miR-22-3p/ZNF217 axis. Brain Res Bull 2024; 215:111004. [PMID: 38852653 DOI: 10.1016/j.brainresbull.2024.111004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) exhibited important roles in Alzheimer's disease (AD). Here, we focused on the dysregulation of hsa_circ_0049472 (circ_0049472) and potential functions in SK-N-SH cells with amyloid-beta peptide (Aβ) treatment in AD. METHODS RNA expression was detected by real-time quantitative PCR. Cell viability and proliferation were measured by MTS and Edu assays. Flow cytometry was used for apoptosis detection, and cell inflammation was assessed using enzyme-linked immunosorbent assay. Target interaction was validated by dual-luciferase reporter assay and RNA immunoprecipitation assay. Protein expression and phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) pathway were examined by Immunoblotting. RESULTS Aβ treatment inhibited cell viability and proliferation of SK-N-SH cells, but enhanced apoptosis rate, apoptosis protein levels (Bcl2-associated X protein and cleaved-caspase-3) and inflammatory cytokines (interleukin -6, IL-1β, tumor necrosis factor-α). Then, circ_0049472 expression was shown to be upregulated in response to Aβ stimulation and knockdown of circ_0049472 has ameliorated Aβ-induced cell injury. Circ_0049472 was identified as a sponge for miR-22-3p, and miR-22-3p inhibition reversed the regulation of circ_0049472 knockdown in Aβ-treated cells. Furthermore, ZNF217 acted as a target of miR-22-3p and circ_0049472 could regulate ZNF217 expression via binding to miR-22-3p. Overexpression of miR-22-3p abated Aβ-induced apoptosis and inflammation via downregulating ZNF217. Furthermore, Aβ reduced proteins levels of p-PI3K and p-AKT, and this inhibition of PI3K-AKT pathway was restored by the regulation of circ_0049472/miR-22-3p/ZNF217 axis. CONCLUSION Circ_0049472 was involved in Aβ-induced neural injury by regulating miR-22-3p/ZNF217 axis to affect PI3K-AKT pathway. This study has discovered an innovative mechanism for AD.
Collapse
Affiliation(s)
- Yuanrun Xie
- Department of Neurosurgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Dan Xie
- Department of Otolaryngology, Huangshi No.5 Hospital, Huangshi City, Hubei, China
| | - Chao Chen
- Department of Neurosurgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China.
| |
Collapse
|
26
|
Uwishema O, Kassahun Bekele B, Nazir A, Filbert Luta E, Abdulnaser Al-Saab E, Jacques Desire I, Franklin Ozioma C, Wojtara M. Breaking barriers: addressing inequities in Alzheimer's disease diagnosis and treatment in Africa. Ann Med Surg (Lond) 2024; 86:5299-5303. [PMID: 39239000 PMCID: PMC11374311 DOI: 10.1097/ms9.0000000000002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/24/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Alzheimer's disease represents a substantial and escalating public health threat across Africa. Alzheimer's disease leads to substantial cognitive impairment and memory loss, placing a heavy burden on the affected individuals and their families, friends, and caregivers. It affects 2.67 million people in Africa, the majority of whom live in sub-Saharan Africa. The prevalence of this disease is expected to rise drastically to approximately 150 million individuals worldwide by 2050, as estimated by the WHO. Aim This paper offers an integrative profile of Alzheimer's disease in Africa, spanning known genetic and modifiable risks, discusses the existing challenges in diagnosis and treatment, projections on prevalence and disability-adjusted life year burden through 2050, and priority policy responses needed to rebalance the equation. Methods This paper examines available literature to summarize current knowledge on risk factors, diagnosis, treatments, and burden of Alzheimer's disease in Africa. Gather epidemiological assessments, clinical guidelines, and commentary related to Alzheimer's disease in Africa. Results The data reveals concerning realities regarding Alzheimer's disease diagnosis and care in Africa. Diagnostic infrastructure shortcomings, resource limitations, and knowledge gaps emerge as recurring barriers. Positron emission tomography scans, cerebrospinal fluid assays, and other mainstay detection modalities common in developed countries show restricted availability. Conclusion Addressing Africa's Alzheimer's disease crisis demands a multipronged strategy to uplift diagnostic capacities, treatment availability, specialist training, public awareness, and coordinated policymaking. Prioritizing biomarkers and imaging to confirm early neurodegeneration is foundational, alongside drug access expansion.
Collapse
Affiliation(s)
| | - Bezawit Kassahun Bekele
- Oli Health Magazine Organization, Research and Education
- Department of medicine, University of Nigeria, Nsukka, Nigeria
- Addis Ababa University, School of Medicine, Addis Ababa, Ethiopia
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and Education
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Erick Filbert Luta
- Oli Health Magazine Organization, Research and Education
- Department of medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
- Department of medicine, Tanzania Medical Students Association (TAMSA)
| | - Elaf Abdulnaser Al-Saab
- Oli Health Magazine Organization, Research and Education
- Department of medicine, Al Iraqia University School of Medicine, Baghdad, Iraq
| | - Irakiza Jacques Desire
- Oli Health Magazine Organization, Research and Education
- Department of medicine, University of Rwanda, Kigali, Rwanda
| | - Chukwuma Franklin Ozioma
- Oli Health Magazine Organization, Research and Education
- Department of medicine, University of Nigeria, Nsukka, Nigeria
| | - Magda Wojtara
- Oli Health Magazine Organization, Research and Education
| |
Collapse
|
27
|
Lin H, Zhang C, Gao Y, Zhou Y, Ma B, Jiang J, Long X, Yimamu N, Zhong K, Li Y, Cui X, Wang H. HLH-30/TFEB modulates autophagy to improve proteostasis in Aβ transgenic Caenorhabditis elegans. Front Pharmacol 2024; 15:1433030. [PMID: 39281281 PMCID: PMC11392864 DOI: 10.3389/fphar.2024.1433030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that affects elderly individuals, characterized by senile plaques formed by extracellular amyloid beta (Aβ). Autophagy dysfunction is a manifestation of protein homeostasis imbalance in patients with AD, but its relationship with Aβ remains unclear. Here, we showed that in Aβ transgenic Caenorhabditis elegans, Aβ activated the TOR pathway and reduced the nuclear entry of HLH-30, leading to autophagy dysfunction characterized by autophagosome accumulation. Then, utilizing RNA-seq, we investigated the regulatory mechanisms by which HLH-30 modulates autophagy in C. elegans. We found that HLH-30 elevated the transcript levels of v-ATPase and cathepsin, thus enhancing lysosomal activity. This led to an increase in autophagic flux, facilitating more pronounced degradation of Aβ. Moreover, HLH-30 reduced the level of ROS induction by Aβ and enhanced the antioxidant stress capacity of the worms through the gsto-1 gene. Additionally, we identified two HLH-30/TFEB activators, saikosaponin B2 and hypericin, that improved autophagic flux, thereby enhancing protein homeostasis in C. elegans. Overall, our findings suggested that HLH-30/TFEB plays a key role in modulating autophagy and can be considered a promising drug target for AD treatments.
Collapse
Affiliation(s)
- Hongru Lin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chen Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yehui Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yi Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Botian Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jinyun Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xue Long
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Nuerziya Yimamu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kaixin Zhong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingzi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xianghuan Cui
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hongbing Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Tongji Alpha Natural Medicine Research Institute, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Morozova I, Zorkina Y, Berdalin A, Ikonnikova A, Emelyanova M, Fedoseeva E, Antonova O, Gryadunov D, Andryushchenko A, Ushakova V, Abramova O, Zeltser A, Kurmishev M, Savilov V, Osipova N, Preobrazhenskaya I, Kostyuk G, Morozova A. Dynamics of Cognitive Impairment in MCI Patients over a Three-Year Period: The Informative Role of Blood Biomarkers, Neuroimaging, and Genetic Factors. Diagnostics (Basel) 2024; 14:1883. [PMID: 39272668 PMCID: PMC11394601 DOI: 10.3390/diagnostics14171883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Given the high growth rates of cognitive decline among the elderly population and the lack of effective etiological treatments, early diagnosis of cognitive impairment progression is an imperative task for modern science and medicine. It is of particular interest to identify predictors of an unfavorable subsequent course of cognitive disorders, specifically, rapid progression. Our study assessed the informative role of various risk factors on the dynamics of cognitive impairment among mild cognitive impairment (MCI) patients. The study included patients with MCI (N = 338) who underwent neuropsychological assessment, magnetic resonance imaging (MRI) examination, blood sampling for general and biochemical analysis, APOE genotyping, and polygenic risk score (PRS) evaluation. The APOE ε4/ε4 genotype was found to be associated with a diminished overall cognitive scores initial assessment and negative cognitive dynamics. No associations were found between cognitive changes and the PRS. The progression of cognitive impairment was associated with the width of the third ventricle and hematological parameters, specifically, hematocrit and erythrocyte levels. The absence of significant associations between the dynamics of cognitive decline and PRS over three years can be attributed to the provided suitable medical care for the prevention of cognitive impairment. Adding other risk factors and their inclusion in panels assessing the risk of progression of cognitive impairment should be considered.
Collapse
Affiliation(s)
- Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Alexander Berdalin
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Anna Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina Emelyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Fedoseeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Olga Antonova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alisa Andryushchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Valeriya Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Angelina Zeltser
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Marat Kurmishev
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Victor Savilov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Natalia Osipova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
| | - Irina Preobrazhenskaya
- Department of Nervous Diseases and Neurosurgery, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- Department of Mental Health, Faculty of Psychology, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Psychiatry and Psychosomatics, I. M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education Russian Biotechnological University, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 115191 Moscow, Russia
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| |
Collapse
|
29
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
30
|
Redhwan A, Adnan M, Bakhsh HR, Alshammari N, Surti M, Parashar M, Patel M, Patel M, Manjegowda DS, Sharma S. Computational Identification and Functional Analysis of Potentially Pathogenic nsSNPs in the NLRP3 Gene Linked to Alzheimer's Disease. Cell Biochem Biophys 2024:10.1007/s12013-024-01465-9. [PMID: 39167281 DOI: 10.1007/s12013-024-01465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Single Nucleotide Polymorphisms (SNPs) are key in understanding complex diseases. Nonsynonymous single-nucleotide polymorphisms (nsSNPs) occur in protein-coding regions, potentially altering amino acid sequences, protein structure and function. Computational methods are vital for distinguishing deleterious nsSNPs from neutral ones. We investigated the role of NLRP3 gene in neuroinflammation associated with Alzheimer's disease (AD) pathogenesis. A total of 893 missense (nsSNPs) were obtained from the dbSNP database and subjected to rigorous filtering using bioinformatics tools like SIFT, Align GVGD, PolyPhen-2, and PANTHER to identify potentially damaging variants. Of these, 18 nsSNPs were consistently predicted to have deleterious effects across all tools. Notably, 16 of these variants exhibited reduced protein stability, while only 4 were predicted to be buried within the protein structure. Among the identified nsSNPs, rs180177442 (R262L and R262P), rs201875324 (T659I), and rs139814109 (T897M) were classified as high-risk variants due to their significant deleterious impact, probable damaging effects, and association with decreased protein stability. Molecular docking and simulation analyses were conducted utilizing Memantine, a standard drug utilized in AD treatment, to investigate potential interactions with the altered protein structures. Additional clinical and genetic investigations are necessary to elucidate the underlying mechanisms that link NLRP3 polymorphisms with the initiation of AD.
Collapse
Affiliation(s)
- Alya Redhwan
- Department of Health, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Hadeel R Bakhsh
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Health, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Malvi Surti
- 4Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Mansi Parashar
- 4Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Mirav Patel
- 4Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Mitesh Patel
- 4Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Dinesh Sosalagere Manjegowda
- 4Department of Human Genetics, School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, 560078, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bangalore, India.
| |
Collapse
|
31
|
Wang AY, Hu HY, Huang LY, Xiao CY, Li QY, Tan L, Hu H. Risk factors for cognitive decline in non-demented elders with amyloid-beta positivity. Alzheimers Res Ther 2024; 16:189. [PMID: 39160609 PMCID: PMC11331665 DOI: 10.1186/s13195-024-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND As a currently incurable but preventable disease, the prevention and early diagnosis of Alzheimer's disease (AD) has long been a research hotspot. Amyloid deposition has been shown to be a major pathological feature of AD. Notably, not all the people with amyloid-beta (Aβ) pathology will have significant cognitive declines and eventually develop AD. Therefore, the aim of this study was to explore the risk factors for cognitive decline in Aβ-positive participants. METHODS We included 650 non-demented participants who were Aβ-positive at baseline from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Mixed effects and COX regression models were applied to assess 37 potential risk factors. Mixed effects models were employed to assess the temporal associations between potential risk factors and four cognitive assessment scales. COX regression models were used to assess the impact of potential risk factors on cognitive diagnosis conversion. Univariate and multivariate analyses were applied to the above models. Additionally, we used the Cochran-Armitage trend test to examine whether the incidence of cognitive decline increased with the number concurrent of risk factors. RESULTS Six factors (low diastolic pressure, low body mass index, retired status, a history of drug abuse, Parkinsonism, and depression) were the identified risk factors and four factors (a history of urinary disease, musculoskeletal diseases, no major surgical history, and no prior dermatologic-connective tissue diseases) were found to be suggestive risk factors. The incidence of cognitive decline in the Aβ-positive participants gradually increased as the number of concurrent risk factors increased (p for trend = 0.0005). CONCLUSIONS Our study may facilitate the understanding of the potential pathological processes in AD and provide novel targets for the prevention of cognitive decline among participants with Aβ positivity.
Collapse
Affiliation(s)
- An-Yi Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Chu-Yun Xiao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Qiong-Yao Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China.
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China.
| |
Collapse
|
32
|
Chen AM, Gajdošík M, Ahmed W, Ahn S, Babb JS, Blessing EM, Boutajangout A, de Leon MJ, Debure L, Gaggi N, Gajdošík M, George A, Ghuman M, Glodzik L, Harvey P, Juchem C, Marsh K, Peralta R, Rusinek H, Sheriff S, Vedvyas A, Wisniewski T, Zheng H, Osorio R, Kirov II. Retrospective analysis of Braak stage- and APOE4 allele-dependent associations between MR spectroscopy and markers of tau and neurodegeneration in cognitively unimpaired elderly. Neuroimage 2024; 297:120742. [PMID: 39029606 PMCID: PMC11404707 DOI: 10.1016/j.neuroimage.2024.120742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024] Open
Abstract
PURPOSE The pathological hallmarks of Alzheimer's disease (AD), amyloid, tau, and associated neurodegeneration, are present in the cortical gray matter (GM) years before symptom onset, and at significantly greater levels in carriers of the apolipoprotein E4 (APOE4) allele. Their respective biomarkers, A/T/N, have been found to correlate with aspects of brain biochemistry, measured with magnetic resonance spectroscopy (MRS), indicating a potential for MRS to augment the A/T/N framework for staging and prediction of AD. Unfortunately, the relationships between MRS and A/T/N biomarkers are unclear, largely due to a lack of studies examining them in the context of the spatial and temporal model of T/N progression. Advanced MRS acquisition and post-processing approaches have enabled us to address this knowledge gap and test the hypotheses, that glutamate-plus-glutamine (Glx) and N-acetyl-aspartate (NAA), metabolites reflecting synaptic and neuronal health, respectively, measured from regions on the Braak stage continuum, correlate with: (i) cerebrospinal fluid (CSF) p-tau181 level (T), and (ii) hippocampal volume or cortical thickness of parietal lobe GM (N). We hypothesized that these correlations will be moderated by Braak stage and APOE4 genotype. METHODS We conducted a retrospective imaging study of 34 cognitively unimpaired elderly individuals who received APOE4 genotyping and lumbar puncture from pre-existing prospective studies at the NYU Grossman School of Medicine between October 2014 and January 2019. Subjects returned for their imaging exam between April 2018 and February 2020. Metabolites were measured from the left hippocampus (Braak II) using a single-voxel semi-adiabatic localization by adiabatic selective refocusing sequence; and from the bilateral posterior cingulate cortex (PCC; Braak IV), bilateral precuneus (Braak V), and bilateral precentral gyrus (Braak VI) using a multi-voxel echo-planar spectroscopic imaging sequence. Pearson and Spearman correlations were used to examine the relationships between absolute levels of choline, creatine, myo-inositol, Glx, and NAA and CSF p-tau181, and between these metabolites and hippocampal volume or parietal cortical thicknesses. Covariates included age, sex, years of education, Fazekas score, and months between CSF collection and MRI exam. RESULTS There was a direct correlation between hippocampal Glx and CSF p-tau181 in APOE4 carriers (Pearson's r = 0.76, p = 0.02), but not after adjusting for covariates. In the entire cohort, there was a direct correlation between hippocampal NAA and hippocampal volume (Spearman's r = 0.55, p = 0.001), even after adjusting for age and Fazekas score (Spearman's r = 0.48, p = 0.006). This relationship was observed only in APOE4 carriers (Pearson's r = 0.66, p = 0.017), and was also retained after adjustment (Pearson's r = 0.76, p = 0.008; metabolite-by-carrier interaction p = 0.03). There were no findings in the PCC, nor in the negative control (late Braak stage) regions of the precuneus and precentral gyrus. CONCLUSIONS Our findings are in line with the spatially- and temporally-resolved Braak staging model of pathological severity in which the hippocampus is affected earlier than the PCC. The correlations, between MRS markers of synaptic and neuronal health and, respectively, T and N pathology, were found exclusively within APOE4 carriers, suggesting a connection with AD pathological change, rather than with normal aging. We therefore conclude that MRS has the potential to augment early A/T/N staging, with the hippocampus serving as a more sensitive MRS target compared to the PCC.
Collapse
Affiliation(s)
- Anna M Chen
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Martin Gajdošík
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Wajiha Ahmed
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sinyeob Ahn
- Siemens Medical Solutions USA Inc., Malvern, PA, USA
| | - James S Babb
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Esther M Blessing
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Healthy Brain Aging and Sleep Center, NYU Langone Health, New York, NY, USA
| | - Allal Boutajangout
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Mony J de Leon
- Retired Director, Center for Brain Health, Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ludovic Debure
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Naomi Gaggi
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Healthy Brain Aging and Sleep Center, NYU Langone Health, New York, NY, USA
| | - Mia Gajdošík
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ajax George
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Mobeena Ghuman
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Lidia Glodzik
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Patrick Harvey
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Christoph Juchem
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Karyn Marsh
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Rosemary Peralta
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Henry Rusinek
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alok Vedvyas
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Helena Zheng
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ricardo Osorio
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA; Healthy Brain Aging and Sleep Center, NYU Langone Health, New York, NY, USA.
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI(2)R), Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA; Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Ong SC, Tay LX, Yee TF, Teh EE, Ch'ng ASH, Razali RM, Lim WC, Zam UAABUM, Parumasivam T. Direct healthcare expenditure on Alzheimer's disease from healthcare providers' perspective in Malaysia: a micro-costing approach. Sci Rep 2024; 14:18855. [PMID: 39143230 PMCID: PMC11324753 DOI: 10.1038/s41598-024-69745-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
Alzheimer's disease (AD) is an important geriatric disease that creates challenges in health policy planning. There is no previous attempt to quantify the actual direct healthcare cost of AD among older adults in Malaysia. This retrospective observational study with bottom-up micro-costing approach aimed to evaluate the direct healthcare expenditure on AD along with its potential predictors from healthcare providers' perspective, conducted across six tertiary hospitals in Malaysia. AD patients aged 65 and above who received AD treatment between 1 January 2016 and 31 December 2021 were included. Direct healthcare cost (DHC) of AD was estimated by extracting one-year follow-up information from patient medical records. As a result, 333 AD patients were included in the study. The mean DHC of AD was estimated RM2641.30 (USD 572.45) per patient per year (PPPY) from the healthcare payer's perspective. Laboratory investigations accounted for 37.2% of total DHC, followed by clinic care (31.5%) and prescription medicine (24.9%). As disease severity increases, annual DHC increases from RM2459.04 (mild), RM 2642.27 (moderate), to RM3087.61 (severe) PPPY. Patients aged 81 and above recorded significantly higher annual DHC (p = 0.003). Such real-world estimates are important in assisting the process of formulating healthcare policies in geriatric care.
Collapse
Affiliation(s)
- Siew Chin Ong
- Discipline of Social and Administrative Pharmacy, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| | - Lyn Xuan Tay
- Discipline of Social and Administrative Pharmacy, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Teck Fah Yee
- Pharmacy Department, Hospital Queen Elizabeth, Ministry of Health Malaysia, 88586, Kota Kinabalu, Sabah, Malaysia
| | - Ewe Eow Teh
- Department of Psychiatry & Mental Health, Hospital Pulau Pinang, Ministry of Health Malaysia, 10990, Pulau Pinang, Malaysia
| | - Alan Swee Hock Ch'ng
- Department of Medicine, Seberang Jaya Hospital, Ministry of Health Malaysia, 13700, Seberang Perai, Penang, Malaysia
| | - Rizah Mazzuin Razali
- Geriatric Unit, Department of Medicine, Kuala Lumpur Hospital, Ministry of Health Malaysia, 50586, Kuala Lumpur, Malaysia
| | - Wan Chieh Lim
- Geriatrics Unit, Internal Medicine Department, Taiping General Hospital, Ministry of Health Malaysia, 34000, Taiping, Perak, Malaysia
| | | | - Thaigarajan Parumasivam
- Discipline of Pharmaceutical Technology, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
34
|
Teng S, Han C, Zhou J, He Z, Qian W. m 5C RNA methylation: a potential mechanism for infectious Alzheimer's disease. Front Cell Dev Biol 2024; 12:1440143. [PMID: 39175875 PMCID: PMC11338875 DOI: 10.3389/fcell.2024.1440143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder caused by a variety of factors, including age, genetic susceptibility, cardiovascular disease, traumatic brain injury, and environmental factors. The pathogenesis of AD is largely associated with the overproduction and accumulation of amyloid-β peptides and the hyperphosphorylation of tau protein in the brain. Recent studies have identified the presence of diverse pathogens, including viruses, bacteria, and parasites, in the tissues of AD patients, underscoring the critical role of central nervous system infections in inducing pathological changes associated with AD. Nevertheless, it remains unestablished about the specific mechanism by which infections lead to the occurrence of AD. As an important post-transcriptional RNA modification, RNA 5-methylcytosine (m5C) methylation regulates a wide range of biological processes, including RNA splicing, nuclear export, stability, and translation, therefore affecting cellular function. Moreover, it has been recently demonstrated that multiple pathogenic microbial infections are associated with the m5C methylation of the host. However, the role of m5C methylation in infectious AD is still uncertain. Therefore, this review discusses the mechanisms of pathogen-induced AD and summarizes research on the molecular mechanisms of m5C methylation in infectious AD, thereby providing new insight into exploring the mechanism underlying infectious AD.
Collapse
Affiliation(s)
- Sisi Teng
- Department of Neurology, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cunqiao Han
- Department of Emergency, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Zhou
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Zhenyan He
- Department of Neurosurgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Weiwei Qian
- Department of Emergency, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
35
|
Zhang M, Liang C, Chen X, Cai Y, Cui L. Interplay between microglia and environmental risk factors in Alzheimer's disease. Neural Regen Res 2024; 19:1718-1727. [PMID: 38103237 PMCID: PMC10960290 DOI: 10.4103/1673-5374.389745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease, among the most common neurodegenerative disorders, is characterized by progressive cognitive impairment. At present, the Alzheimer's disease main risk remains genetic risks, but major environmental factors are increasingly shown to impact Alzheimer's disease development and progression. Microglia, the most important brain immune cells, play a central role in Alzheimer's disease pathogenesis and are considered environmental and lifestyle "sensors." Factors like environmental pollution and modern lifestyles (e.g., chronic stress, poor dietary habits, sleep, and circadian rhythm disorders) can cause neuroinflammatory responses that lead to cognitive impairment via microglial functioning and phenotypic regulation. However, the specific mechanisms underlying interactions among these factors and microglia in Alzheimer's disease are unclear. Herein, we: discuss the biological effects of air pollution, chronic stress, gut microbiota, sleep patterns, physical exercise, cigarette smoking, and caffeine consumption on microglia; consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer's disease; and present the neuroprotective effects of a healthy lifestyle. Toward intervening and controlling these environmental risk factors at an early Alzheimer's disease stage, understanding the role of microglia in Alzheimer's disease development, and targeting strategies to target microglia, could be essential to future Alzheimer's disease treatments.
Collapse
Affiliation(s)
- Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
36
|
Liu L, Xu J, Huang X, Wang Y, Ma X, Wang X, Liu Y, Ren X, Li J, Wang Y, Zhou S, Yuan L. DHA dietary intervention caused different hippocampal lipid and protein profile in ApoE-/- and C57BL/6J mice. Biomed Pharmacother 2024; 177:117088. [PMID: 38971007 DOI: 10.1016/j.biopha.2024.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Changes in protein and lipid levels may occur in the Alzheimer's disease brain, and DHA can have beneficial effects on it. To investigate the impact of DHA dietary intervention on brain protein and lipid profile in ApoE-/- mice and C57 mice. METHOD Three-month-old ApoE-/- mice and C57 mice were randomly divided into two groups respectively, and fed with control diet and DHA-fortified diet for five months. Cortical TC, HDL-C and LDL-C levels and cholesterol metabolism-related protein expression were measured by ELISA or immunohistochemistry methods. Hippocampus were collected for proteomic and lipidomics analysis by LC-MS/MS and differential proteins and lipid metabolites were screened and further analyzed by GO functional annotation and KEGG pathway enrichment analysis. RESULTS DHA intervention decreased cortical TC level in both C57 and ApoE-/- mice (P < 0.05), but caused different change of cortical HDL-C, LDL-C level and LDL-C/HDL-C ratio in C57 and ApoE-/- mice (P < 0.05). Discrepant cortical and hippocampal LDLR, ABCG1, Lox1 and SORT1 protein expression was found between C57 and ApoE-/- mice (P < 0.05), and DHA treatment caused different changes of these proteins in C57 and ApoE-/- mice (P < 0.05). Differential hippocampal proteins and lipids profile were found in C57 and ApoE-/- mice before and after DHA treatment, which were mainly involved in vesicular transport and phospholipid metabolic pathways. CONCLUSION ApoE genetic defect caused abnormal cholesterol metabolism, and affected protein and lipid profile, as well as discrepant response of hippocampal protein and lipids profile in the brain of mice given DHA fortified diet intervention.
Collapse
Affiliation(s)
- Lu Liu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Jingjing Xu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xiaochen Huang
- School of Public Health, Capital Medical University, Beijing, China
| | - Ying Wang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Xiaojun Ma
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xixiang Wang
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Yu Liu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xiuwen Ren
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Jiahao Li
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Yueyong Wang
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK.
| | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases.
| |
Collapse
|
37
|
Dalal S, Ramirez-Gomez J, Sharma B, Devara D, Kumar S. MicroRNAs and synapse turnover in Alzheimer's disease. Ageing Res Rev 2024; 99:102377. [PMID: 38871301 DOI: 10.1016/j.arr.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain, leading to synaptic dysfunction and cognitive decline. Healthy synapses are the crucial for normal brain function, memory restoration and other neurophysiological function. Synapse loss and synaptic dysfunction are two primary events that occur during AD initiation. Synapse lifecycle and/or synapse turnover is divided into five key stages and several sub-stages such as synapse formation, synapse assembly, synapse maturation, synapse transmission and synapse termination. In normal state, the synapse turnover is regulated by various biological and molecular factors for a healthy neurotransmission. In AD, the different stages of synapse turnover are affected by AD-related toxic proteins. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and have been implicated in various neurological diseases, including AD. Deregulation of miRNAs modulate the synaptic proteins and affect the synapse turnover at different stages. In this review, we discussed the key milestones of synapse turnover and how they are affected in AD. Further, we discussed the involvement of miRNAs in synaptic turnover, focusing specifically on their role in AD pathogenesis. We also emphasized the regulatory mechanisms by which miRNAs modulate the synaptic turnover stages in AD. Current studies will help to understand the synaptic life-cycle and role of miRNAs in each stage that is deregulated in AD, further allowing for a better understanding of the pathogenesis of devastating disease.
Collapse
Affiliation(s)
- Sarthak Dalal
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jaime Ramirez-Gomez
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Davin Devara
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; L. Frederick Francis Graduate School of Biomedicael Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
38
|
Ni Y, Wang Z, Zhuge F, Zhou K, Zheng L, Hu X, Wang S, Fu O, Fu Z. Hydrolyzed Chicken Meat Extract and Its Bioactive Cyclopeptides Protect Neural Function by Attenuating Inflammation and Apoptosis via PI3K/AKT and AMPK Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16708-16725. [PMID: 39016108 DOI: 10.1021/acs.jafc.4c02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Cognitive decline is inevitable with age, and due to the lack of well-established pharmacotherapies for neurodegenerative disorders, dietary supplements have become important alternatives to ameliorate brain deterioration. Hydrolyzed chicken meat extract (HCE) and its bioactive components were previously found to improve neuroinflammation and cognitive decline by regulating microglia polarization. However, the effects and mechanisms of these bioactives on neurons remain unclear. Here, the most potent bioactive component on neural function in HCE was screened out, and the detailed mechanism was clarified through in vivo and in vitro experiments. We found that HCE, cyclo(Val-Pro), cyclo(Phe-Phe), cyclo(His-Pro), cyclo(Leu-Lys), and arginine exerted stronger anti-inflammatory and antioxidant effects among the 12 bioactives in amyloid β (Aβ)-treated HT-22 cells. Further transcriptome sequencing and polymerase chain reaction (PCR) array analysis showed that these bioactives participated in different signaling pathways, and cyclo(Val-Pro) was identified as the most potent cyclic dipeptide. In addition, the antiapoptotic and neuroprotective effect of cyclo(Val-Pro) was partly regulated by the activation of PI3K/AKT and AMPK pathways, and the inhibition of these pathways abolished the effect of cyclo(Val-Pro). Moreover, cyclo(Val-Pro) enhanced cognitive function and neurogenesis and alleviated neuroinflammation and oxidative stress in middle-aged mice, with an effect similar to HCE. Hippocampal transcriptome analysis further revealed that HCE and cyclo(Val-Pro) significantly enriched the neuroactive ligand-receptor interaction pathway, verified by enhanced neurotransmitter levels and upregulated neurotransmitter receptor-related gene expression. Therefore, the mechanism of cyclo(Val-Pro) on neural function might be associated with PI3K/AKT and AMPK pathway-mediated antiapoptotic effect and neurogenesis and the activation of the neurotransmitter-receptor pathway.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhaorong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, China
| | - Kexin Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xinyang Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sisi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ou Fu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
39
|
Xiang X, Palasuberniam P, Pare R. The Role of Estrogen across Multiple Disease Mechanisms. Curr Issues Mol Biol 2024; 46:8170-8196. [PMID: 39194700 DOI: 10.3390/cimb46080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Estrogen is a significant hormone that is involved in a multitude of physiological and pathological processes. In addition to its pivotal role in the reproductive system, estrogen is also implicated in the pathogenesis of a multitude of diseases. Nevertheless, previous research on the role of estrogen in a multitude of diseases, including Alzheimer's disease, depression, cardiovascular disease, diabetes, osteoporosis, gastrointestinal diseases, and estrogen-dependent cancers, has concentrated on a single disease area, resulting in a lack of comprehensive understanding of cross-disease mechanisms. This has brought some challenges to the current treatment methods for these diseases, because estrogen as a potential therapeutic tool has not yet fully developed its potential. Therefore, this review aims to comprehensively explore the mechanism of estrogen in these seven types of diseases. The objective of this study is to describe the relationship between each disease and estrogen, including the ways in which estrogen participates in regulating disease mechanisms, and to outline the efficacy of estrogen in treating these diseases in clinical practice. By studying the role of estrogen in a variety of disease mechanisms, it is hoped that a more accurate theoretical basis and clinical guidance for future treatment strategies will be provided, thus promoting the effective management and treatment of these diseases.
Collapse
Affiliation(s)
- Xiuting Xiang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Praneetha Palasuberniam
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Rahmawati Pare
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
40
|
Li L, Yang C, Jia M, Wang Y, Zhao Y, Li Q, Gong J, He Y, Xu K, Liu X, Chen X, Hu J, Liu Z. Synbiotic therapy with Clostridium sporogenes and xylan promotes gut-derived indole-3-propionic acid and improves cognitive impairments in an Alzheimer's disease mouse model. Food Funct 2024; 15:7865-7882. [PMID: 38967039 DOI: 10.1039/d4fo00886c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized primarily by cognitive impairment. Recent investigations have highlighted the potential of nutritional interventions that target the gut-brain axis, such as probiotics and prebiotics, in forestalling the onset of AD. In this study, whole-genome sequencing was employed to identify xylan as the optimal carbon source for the tryptophan metabolism regulating probiotic Clostridium sporogenes (C. sporogenes). Subsequent in vivo studies demonstrated that administration of a synbiotic formulation comprising C. sporogenes (1 × 1010 CFU per day) and xylan (1%, w/w) over a duration of 30 days markedly enhanced cognitive performance and spatial memory faculties in the 5xFAD transgenic AD mouse model. The synbiotic treatment significantly reduced amyloid-β (Aβ) accumulation in the cortex and hippocampus of the brain. Importantly, synbiotic therapy substantially restored the synaptic ultrastructure in AD mice and suppressed neuroinflammatory responses. Moreover, the intervention escalated levels of the microbial metabolite indole-3-propionic acid (IPA) and augmented the relative prevalence of IPA-synthesizing bacteria, Lachnospira and Clostridium, while reducing the dominant bacteria in AD, such as Aquabacterium, Corynebacterium, and Romboutsia. Notably, synbiotic treatment also prevented the disruption of gut barrier integrity. Correlation analysis indicated a strong positive association between gut microbiota-generated IPA levels and behavioral changes. In conclusion, this study demonstrates that synbiotic supplementation significantly improves cognitive and intellectual deficits in 5xFAD mice, which could be partly attributed to enhanced IPA production by gut microbiota. These findings provide a theoretical basis for considering synbiotic therapy as a novel microbiota-targeted approach for the treatment of metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Yang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuhao Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyuan Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Gong
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying He
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuhui Chen
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518004, China
| | - Jun Hu
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518004, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
41
|
Khamies SM, El-Yamany MF, Ibrahim SM. Canagliflozin Mitigated Cognitive Impairment in Streptozotocin-Induced Sporadic Alzheimer's Disease in Mice: Role of AMPK/SIRT-1 Signaling Pathway in Modulating Neuroinflammation. J Neuroimmune Pharmacol 2024; 19:39. [PMID: 39073453 DOI: 10.1007/s11481-024-10140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Sporadic Alzheimer's disease (SAD) represents a major health concern especially among elderly. Noteworthy, neuroinflammation and oxidative stress are highly implicated in AD pathogenesis resulting in enhanced disease progression. Moreover, most of the available anti-Alzheimer drugs have several adverse effects with variable efficacy, therefore new strategies, including agents with anti-inflammatory and antioxidant effects, are encouraged. Along these lines, canagliflozin (CAN), with its anti-inflammatory and anti-apoptotic activities, presents a promising candidate for AD treatment. Therefore, this study aimed to evaluate the therapeutic potential of CAN via regulation of AMPK/SIRT-1/BDNF/GSK-3β signaling pathway in SAD. SAD model was induced by intracerebroventricular streptozotocin injection (ICV-STZ;3 mg/kg, once), while CAN was administered (10 mg/kg/day, orally) to STZ-treated mice for 21 days. Behavioral tests, novel object recognition (NOR), Y-Maze, and Morris Water Maze (MWM) tests, histopathological examination, total adenosine monophosphate-activated protein kinase (T-AMPK) expression, p-AMPK, and silent information regulator-1 (SIRT-1) were evaluated. Furthermore, brain-derived neurotrophic factor (BDNF), glycogen synthase kinase-3β (GSK-3β), acetylcholinesterase (AChE), Tau protein, insulin-degrading enzyme (IDE), nuclear factor erythroid-2 (Nrf-2), interleukin-6 (IL-6), nuclear factor kappa-B-p65 (NFκB-p65), beta-site APP cleaving enzyme 1 (BACE-1), and amyloid beta (Aβ) plaque were assessed. CAN restored STZ-induced cognitive deficits, confirmed by improved behavioral tests and histopathological examination. Besides, CAN halted STZ-induced neurotoxicity through activation of p-AMPK/SIRT-1/BDNF pathway, subsequently reduction of GSK-3β, Tau protein, AChE, NFκB-p65, IL-6, BACE-1, and Aβ plaque associated with increased IDE and Nrf-2. Consequentially, our findings assumed that CAN, via targeting p-AMPK/SIRT-1 pathway, combated neuroinflammation and oxidative stress in STZ-induced AD. Thus, this study highlighted the promising effect of CAN for treating AD.
Collapse
Affiliation(s)
- Sara M Khamies
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Menoufia University, Menoufia, 32511, Egypt
| | - Mohammed F El-Yamany
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| | - Sherehan M Ibrahim
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
42
|
Yang C, Wu X, Feng J, Wu C, Cui X, Wang Z, Yang L. Clinical values of serum C5a in Alzheimer's disease patients with different dementia stages. Neurosci Lett 2024; 836:137833. [PMID: 38796095 DOI: 10.1016/j.neulet.2024.137833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Alzheimer's disease (AD) is characterized by abnormal inflammatory responses, and complement C5a (C5a) is known to initiate inflammation. This study aimed to investigate the associations between serum C5a, inflammatory responses, and cognitive function in AD patients. A total of 242 AD patients and 132 age-matched controls were included. Enzyme-linked immunosorbent assay revealed increased levels of C5a, interleukin (IL)-4, IL-6, IL-10, IL-1β, and tumor necrosis factor (TNF)-α with advancing stages of AD. Pearson correlation coefficient and receiver operating characteristic curve revealed positive correlations between serum C5a levels, inflammatory cytokine levels, Neuropsychiatric Inventory (NPI) and Activities of Daily Living (ADL) scores, and negative correlations with Mini-mental State Examination (MMSE) and Montreal cognitive assessment (MoCA) scores. Serum C5a above 68.68 pg/mL could aid in the diagnosis of AD. Multivariable logistic analysis revealed that serum C5a was an independent risk factor for IL-1β/IL-6/IL-10/TNF-α and an independent protective factor for IL-4. Higher serum C5a levels were associated with lower MMSE and MoCA scores. In conclusion, elevated serum C5a levels were beneficial for AD diagnosis and predictive of inflammation and cognitive dysfunction.
Collapse
Affiliation(s)
- Caijia Yang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xian Wu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun Feng
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunyu Wu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xing Cui
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zeyu Wang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen, China
| | - Lizhen Yang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
43
|
Gomes TM, Sousa P, Campos C, Perestrelo R, Câmara JS. Secondary Bioactive Metabolites from Foods of Plant Origin as Theravention Agents against Neurodegenerative Disorders. Foods 2024; 13:2289. [PMID: 39063373 PMCID: PMC11275480 DOI: 10.3390/foods13142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative disorders (NDDs) such as Alzheimer's (AD) and Parkinson's (PD) are on the rise, robbing people of their memories and independence. While risk factors such as age and genetics play an important role, exciting studies suggest that a diet rich in foods from plant origin may offer a line of defense. These kinds of foods, namely fruits and vegetables, are packed with a plethora of powerful bioactive secondary metabolites (SBMs), including terpenoids, polyphenols, glucosinolates, phytosterols and capsaicinoids, which exhibit a wide range of biological activities including antioxidant, antidiabetic, antihypertensive, anti-Alzheimer's, antiproliferative, and antimicrobial properties, associated with preventive effects in the development of chronic diseases mediated by oxidative stress such as type 2 diabetes mellitus, respiratory diseases, cancer, cardiovascular diseases, and NDDs. This review explores the potential of SBMs as theravention agents (metabolites with therapeutic and preventive action) against NDDs. By understanding the science behind plant-based prevention, we may be able to develop new strategies to promote brain health and prevent the rise in NDDs. The proposed review stands out by emphasizing the integration of multiple SBMs in plant-based foods and their potential in preventing NDDs. Previous research has often focused on individual compounds or specific foods, but this review aims to present a comprehensive fingerprint of how a diet rich in various SBMs can synergistically contribute to brain health. The risk factors related to NDD development and the diagnostic process, in addition to some examples of food-related products and medicinal plants that significantly reduce the inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), are highlighted.
Collapse
Affiliation(s)
- Telma Marisa Gomes
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - Patrícia Sousa
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - Catarina Campos
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
| | - José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal; (T.M.G.); (P.S.); (C.C.); (R.P.)
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
44
|
Gong B, Zhang W, Cong W, Gu Y, Ji W, Yin T, Zhou H, Hu H, Zhuang J, Luo Y, Liu Y, Gao J, Yin Y. Systemic Administration of Neurotransmitter-Derived Lipidoids-PROTACs-DNA Nanocomplex Promotes Tau Clearance and Cognitive Recovery for Alzheimer's Disease Therapy. Adv Healthc Mater 2024:e2400149. [PMID: 39007278 DOI: 10.1002/adhm.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Alzheimer's disease (AD) poses a significant burden on the economy and healthcare systems worldwide. Although the pathophysiology of AD remains debatable, its progression is strongly correlated with the accumulation of tau aggregates. Therefore, tau clearance from brain lesions can be a promising strategy for AD therapy. To achieve this, the present study combined proteolysis-targeting chimera (PROTAC), a novel protein-degradation technique that mediates degradation of target proteins via the ubiquitin-proteasome system, and a neurotransmitter-derived lipidoid (NT-lipidoid) nanoparticle delivery system with high blood-brain barrier-penetration activity, to generate a novel nanomedicine named NPD. Peptide 1, a cationic tau-targeting PROTAC is loaded onto the positively charged nanoparticles using DNA-intercalation technology. The resulting nanomedicine displayed good encapsulation efficiency, serum stability, drug release profile, and blood-brain barrier-penetration capability. Furthermore, NPD potently induced tau clearance in both cultured neuronal cells and the brains of AD mice. Moreover, intravenous injection of NPD led to a significant improvement in the cognitive function of the AD mice, without any remarkable abnormalities, thereby supporting its clinical development. Collectively, the novel nanomedicine developed in this study may serve as an innovative strategy for AD therapy, since it effectively and specifically induces tau protein clearance in brain lesions, which in turn enhances cognition.
Collapse
Affiliation(s)
- Baofeng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Weicong Zhang
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Wei Cong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuankai Gu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Honglei Zhou
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Yi Luo
- New Drug Discovery and Development, Biotheus Inc., Zhuhai, 519080, China
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University of Medicine, Shanghai, 200240, China
| | - Yan Liu
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University of Medicine, Shanghai, 200240, China
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| |
Collapse
|
45
|
Constantinou C, Meliou K, Skouras A, Siafaka P, Christodoulou P. Liposomes against Alzheimer's Disease: Current Research and Future Prospects. Biomedicines 2024; 12:1519. [PMID: 39062092 PMCID: PMC11275096 DOI: 10.3390/biomedicines12071519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease, the most common neurodegenerative disease, affects more than 60 million people worldwide, a number that is estimated to double by 2050. Alzheimer's disease is characterized by progressive memory loss, the impairment of behavior, and mood changes, as well as the disturbed daily routine of the patient. Although there are some active molecules that can be beneficial by halting the progression of the disease, the blood-brain barrier and other physiological barriers hinder their delivery and, consequently, the appropriate management of the disease. Therefore, drug delivery systems that effectively target and overcome the blood-brain barrier to reach the targeted brain area would improve treatment effectiveness. Liposomes are lipophilic carriers that consist of a phospholipid bilayer structure, simulating the physiological lipidic layer of the blood-brain barrier and enabling better delivery of the drug to the brain. Given that pure liposomes may have less targeting affinity than functionalized liposomes, modification with groups such as lactoferrin, poly(ethylene glycol), and transferrin may improve specificity. In this mini-review, we summarize the literature on the use of liposomes for the treatment of Alzheimer's disease, focusing on the functionalization moieties of liposomes. In addition, challenges in brain delivery are also discussed.
Collapse
Affiliation(s)
- Christiana Constantinou
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | - Katerina Meliou
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | - Athanasios Skouras
- Department of Nursing, Faculty of Health Sciences, Hellenic Mediterranean University, 71004 Heraklion, Crete, Greece;
| | - Panoraia Siafaka
- Department of Life Sciences, School of Sciences, Pharmacy Program, European University Cyprus, 2404 Nicosia, Cyprus; (C.C.); (K.M.); (P.S.)
| | | |
Collapse
|
46
|
Guo R, Shen X, Ealing J, Zhou J, Lu J, Ning Y. Efficacy and safety of acupuncture for cognitive impairment in Alzheimer's disease: a systematic review and meta-analysis. FRONTIERS IN DEMENTIA 2024; 3:1380221. [PMID: 39081600 PMCID: PMC11285646 DOI: 10.3389/frdem.2024.1380221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/22/2024] [Indexed: 08/02/2024]
Abstract
Objective To systematically evaluate the efficacy of acupuncture in the treatment of cognitive impairment in Alzheimer's disease (AD) by meta-analysis, in order to provide evidence-based evidence for the application of acupuncture therapy in the clinical process of AD. Methods From the establishment of the database to December 31, 2022, China Biomedical Literature Database (CBM), China National Knowledge Network (CNKI), VIP database, WanFang Database, Pubmed, Embase and Cochrane Library Database were systematically searched. To collect published randomized controlled clinical trials (RCTS) of acupuncture in the treatment of cognitive impairment in AD. The subjects in the intervention group were given acupuncture alone or combined with other treatments the same as the control group; the control group received conventional Western medicine treatment. The main outcome indicators of the study were cognitive function assessment of subjects, including: Simple Mental State Examination Scale (MMSE), Assessment of daily Living Ability Scale (ADL), Alzheimer's Disease Cognitive Function Assessment Scale (ADAS-Cog), TCM syndrome score (SDSD), Montreal Cognitive Test (MoCA), Secondary outcome indicators were the occurrence of adverse reactions. Literature screening, data extraction, and quality evaluation of the included literature were performed independently by two researchers, according to bias risk assessment tools recommended in the Cochrane manual. Data were analyzed by RevMan5.3 software. Dichotomous variables were represented by risk ratio (OR) and 95% CI, and continuity variables were represented by mean difference (MD) and 95% CI. For heterogeneity analysis, when P > 0.1 and I 2 ≤ 50%, fixed effect model was applied. When P ≤ 0.1 and I 2 > 50%, the random effects model is applied. Results A total of 1,172 eligible subjects were included in 18 RCTS, including 595 in the intervention group and 577 in the control group. The results of meta-analysis are as follows: acupuncture intervention group improved MMSE [MD = 1.67, 95% CI (0.94, 2.41), P < 0.00001], ADL [MD = -1.18, 95% CI (-3.09, 0.72), P = 0.22], ADAS-Cog [MD = 3.31, 95% CI (5.84, 0.78), P = 0.01], SDSD [MD = 2.40, 95% CI (3.53, 1.26), P < 0.0001], MoCA [MD = 4.80, 95% CI (3.74, 5.86), P = 0.04] were better than the control group. No serious adverse reactions related to acupuncture were observed in the intervention group, and the incidence and severity of adverse reactions were lower than those in the control group, with statistical significance [OR = 0.17, 95% CI (0.04, 0.67), P = 0.01]. Conclusion Existing data show that acupuncture therapy has certain advantages in improving cognitive dysfunction and improving self-care ability of patients with Alzheimer's disease. However, due to the small number of RCTS and cases evaluating the efficacy of acupuncture, and the possibility of measurement bias and selectivity bias in included studies, it is still unable to conduct high-intensity demonstration on its effectiveness. Further large-scale, high-quality randomized, double-blind controlled trials are needed to evaluate its efficacy. Systematic Review Registration https://inplasy.com/inplasy-2021-12-0125/, identifier: INPLASY2021120125.
Collapse
Affiliation(s)
- Ruyue Guo
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoming Shen
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - John Ealing
- Salford Royal Hospital, Salford, United Kingdom
| | - Jiao Zhou
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jin Lu
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunfan Ning
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
47
|
Amelimojarad M, Amelimojarad M, Cui X. The emerging role of brain neuroinflammatory responses in Alzheimer's disease. Front Aging Neurosci 2024; 16:1391517. [PMID: 39021707 PMCID: PMC11253199 DOI: 10.3389/fnagi.2024.1391517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
As the most common cause of dementia, Alzheimer's disease (AD) is characterized by neurodegeneration and synaptic loss with an increasing prevalence in the elderly. Increased inflammatory responses triggers brain cells to produce pro-inflammatory cytokines and accelerates the Aβ accumulation, tau protein hyper-phosphorylation leading to neurodegeneration. Therefore, in this paper, we discuss the current understanding of how inflammation affects brain activity to induce AD pathology, the inflammatory biomarkers and possible therapies that combat inflammation for AD.
Collapse
Affiliation(s)
| | | | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
48
|
Kaštelan S, Nikuševa-Martić T, Pašalić D, Antunica AG, Zimak DM. Genetic and Epigenetic Biomarkers Linking Alzheimer's Disease and Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:7271. [PMID: 39000382 PMCID: PMC11242094 DOI: 10.3390/ijms25137271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) represents a prominent neurodegenerative disorder (NDD), accounting for the majority of dementia cases worldwide. In addition to memory deficits, individuals with AD also experience alterations in the visual system. As the retina is an extension of the central nervous system (CNS), the loss in retinal ganglion cells manifests clinically as decreased visual acuity, narrowed visual field, and reduced contrast sensitivity. Among the extensively studied retinal disorders, age-related macular degeneration (AMD) shares numerous aging processes and risk factors with NDDs such as cognitive impairment that occurs in AD. Histopathological investigations have revealed similarities in pathological deposits found in the retina and brain of patients with AD and AMD. Cellular aging processes demonstrate similar associations with organelles and signaling pathways in retinal and brain tissues. Despite these similarities, there are distinct genetic backgrounds underlying these diseases. This review comprehensively explores the genetic similarities and differences between AMD and AD. The purpose of this review is to discuss the parallels and differences between AMD and AD in terms of pathophysiology, genetics, and epigenetics.
Collapse
Affiliation(s)
- Snježana Kaštelan
- Department of Ophthalmology, Clinical Hospital Dubrava, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tamara Nikuševa-Martić
- Department of Biology and Genetics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Daria Pašalić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
49
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
50
|
Liao J, Zhang Y, Tang Z, Liu P, He L. Causal relationships between peripheral immune cells and Alzheimer's disease: a two-sample Mendelian randomization study. Neurol Sci 2024; 45:3117-3124. [PMID: 38267604 DOI: 10.1007/s10072-024-07324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVE Previous research suggests that peripheral immune cells may play a role in the development of Alzheimer's disease (AD). Our study aims to determine if the composition of peripheral immune cells directly contributes to the occurrence of AD. METHODS We utilized a two-sample Mendelian randomization (MR) approach to examine the association between peripheral immune cells and AD.The primary analysis method used was the inverse variance weighted (IVW) method, and we also conducted analyses using MR Egger, weighted median, simple mode, and weighted mode methods to ensure the accuracy of the results.Heterogeneity and horizontal pleiotropy were evaluated using Cochran's Q statistics and the MR Egger intercept, respectively. RESULTS The study found a significant correlation between increased IgD + CD24- AC cells (Odds Ratio [OR] = 1.03, 95% Confidence Interval [CI] = 1.01-1.06, P = 0.0172), increased CD4 + %leukocyte (OR = 1.08, 95% CI = 1.02-1.14, P = 0.0086), and increased CD4 + CD8dim AC cells (OR = 1.06, 95% CI = 1.01-1.11, P = 0.0218), with an increased susceptibility to AD. Conversely, an increase in EM DN (CD4-CD8-) %T cells (OR = 0.95, 95% CI = 0.92-0.99, P = 0.0164) and an increase in DN (CD4-CD8-) AC cells (OR = 0.93, 95% CI = 0.88-0.99, P = 0.0145) were associated with a protective effect against AD. CONCLUSION Our findings establish a causal link between peripheral immune cells and AD. This study is the first to examine the relationship between peripheral immune cells and AD using MR, offering valuable insights for early diagnosis and treatment decisions.
Collapse
Affiliation(s)
- Jing Liao
- Ruikang Hospital, Affiliated to Guangxi University of Chinese Medicine, 10 Huadong Road, Xingning District, Nanning City, Guangxi, 53000, China.
| | - Yongquan Zhang
- Ruikang Hospital, Affiliated to Guangxi University of Chinese Medicine, 10 Huadong Road, Xingning District, Nanning City, Guangxi, 53000, China
| | - Zhanhong Tang
- First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning City, Guangxi, 530021, China
| | - Pinjing Liu
- Ruikang Hospital, Affiliated to Guangxi University of Chinese Medicine, 10 Huadong Road, Xingning District, Nanning City, Guangxi, 53000, China
| | - Luoyi He
- Ruikang Hospital, Affiliated to Guangxi University of Chinese Medicine, 10 Huadong Road, Xingning District, Nanning City, Guangxi, 53000, China
| |
Collapse
|