1
|
Rivi V, Batabyal A, Benatti C, Tascedda F, Blom JMC, Lukowiak K. Quercetin, the new stress buster: Investigating the transcriptional and behavioral effects of this flavonoid on multiple stressors using Lymnaea stagnalis. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110053. [PMID: 39442780 DOI: 10.1016/j.cbpc.2024.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Growing evidence suggests that a flavonoid-rich diet can prevent or reverse the effects of stressors, although the underlying mechanisms remain poorly understood. One common and abundant flavonoid found in numerous foods is quercetin. This study utilizes the pond snail Lymnaea stagnalis, a valid model organism for learning and memory, and a simple but robust learning paradigm-operant conditioning of aerial respiration-to explore the behavioral and transcriptional effects of different stressors on snails' cognitive functions and to investigate whether quercetin exposure can prevent stress effects on learning and memory formation. Our findings demonstrate that three different stressors-severe food deprivation, lipopolysaccharide injection (an inflammatory challenge), and fluoride exposure (a neurotoxic agent)-block memory formation for operant conditioning and affect the expression levels of key targets related to stress response, energy balance, and immune response in the snails' central ring ganglia. Remarkably, exposing snails to quercetin for 1 h before stress presentation prevents these effects at both the behavioral and transcriptional levels, demonstrating the potent stress-preventive properties of quercetin. Despite the evolutionary distance from humans, L. stagnalis has proven to be a valuable model for studying conserved mechanisms by which bioactive compounds like quercetin mitigate the adverse effects of various stressors on cognitive functions across species. Moreover, these findings offer insights into quercetin's potential for mitigating stress-induced physiological and cognitive impairments.
Collapse
Affiliation(s)
- Veronica Rivi
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Anuradha Batabyal
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Physical and Natural Sciences, FLAME University, Pune, India
| | - Cristina Benatti
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy; CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy; Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna Maria Catharina Blom
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ken Lukowiak
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
2
|
Huang M, Liu X, Ren Y, Huang Q, Shi Y, Yuan P, Chen M. Quercetin: A Flavonoid with Potential for Treating Acute Lung Injury. Drug Des Devel Ther 2024; 18:5709-5728. [PMID: 39659949 PMCID: PMC11630707 DOI: 10.2147/dddt.s499037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
In intensive care units, acute lung injury (ALI) is a syndrome that is frequently encountered. It is associated with a high rate of morbidity and mortality. Despite the extensive research conducted by the medical community on its treatment, no specific effective drugs have been identified. Quercetin is a natural flavonoid with many biological activities and pharmacological effects. Research indicates that Quercetin can modulate various targets and signaling pathways, inhibiting oxidative stress, inflammatory responses, ferroptosis, apoptosis, fibrosis, and bacterial and viral infections in ALI. This regulation suggests its potential therapeutic application for the condition. Currently, there is no comprehensive review addressing the application of Quercetin in the treatment of ALI. This paper begins with a classification of ALI, followed by a detailed summary of the mechanisms through which Quercetin may treat ALI to evaluate its potential as a novel therapeutic option.
Collapse
Affiliation(s)
- Ma Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Xinxin Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Qianxia Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yuanzhi Shi
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Ping Yuan
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| |
Collapse
|
3
|
Liu Y, Wang X, Chen Y, Zhou L, Wang Y, Li L, Wang Z, Yang L. Pharmacological mechanisms of traditional Chinese medicine against acute lung injury: From active ingredients to herbal formulae. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155562. [PMID: 39536423 DOI: 10.1016/j.phymed.2024.155562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the leading causes of acute respiratory failure in many critical diseases and are among the main respiratory diseases with high clinical mortality. The global outbreak of coronavirus disease 2019 (COVID-19) can cause severe ARDS, resulting in a steep rise in the number of patient deaths. Therefore, it is important to explore the pathogenesis of ALI and find effective therapeutic agents. In recent years, thanks to modern biomedical tools, some progress has been made in the application of traditional Chinese medicine (TCM) treatment principles based on syndromic differentiation and holistic concepts in clinical and experimental studies of ALI. More and more TCM effective components and formulae have been verified to have significant curative effects, which have a certain guiding significance for clinical practice. PURPOSE It is hoped to provide reference for the clinical research of ALI/ARDS and provide theoretical basis and technical support for the scientific application of TCM in respiratory related diseases. METHODS We performed a literature survey using traditional books of Chinese medicine and online scientific databases including PubMed, Web of Science, Google Scholar, ScienceDirect, China National Knowledge Infrastructure (CNKI), and others up to January 2023. RESULTS In recent years, thanks to modern biomedical tools, some progress has been made in the application of TCM treatment principles based on syndromic differentiation and holistic concepts in clinical and experimental studies of ALI. This paper mainly reviews the research progress of ALI/ARDS mechanism, the understanding of its etiology and pathogenesis by TCM, and the therapeutic effects of TCM formulae and active ingredients of Chinese medicine. A large number of studies have shown that the effective components and formulae of TCM can prevent or treat ALI/ARDS in vivo and in vitro experiments. CONCLUSION TCM effective components and formulae play an important role in the prevention and treatment of ALI/ARDS through multiple approaches and multiple targets, and provide necessary theoretical support for the further development and utilization of TCM resources.
Collapse
Affiliation(s)
- Yamin Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xunjiang Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Limei Zhou
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yining Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Wu J, Lv T, Liu Y, Liu Y, Han Y, Liu X, Peng X, Tang F, Cai J. The role of quercetin in NLRP3-associated inflammation. Inflammopharmacology 2024; 32:3585-3610. [PMID: 39306817 DOI: 10.1007/s10787-024-01566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 11/10/2024]
Abstract
Quercetin is a natural flavonoid that is widely found in fruits and vegetables. As an important flavonoid, it exhibits a wide range of biological activities, including antioxidant, anti-inflammatory, antiviral, immunomodulatory, and analgesic activities. Quercetin exerts powerful antioxidant activity by regulating glutathione, enzyme activity, and the production of reactive oxygen species (ROS). Quercetin exerts powerful anti-inflammatory effects by acting on the Nod-like receptor protein 3 (NLRP3) inflammasome. In diabetes, quercetin has been shown to improve insulin sensitivity and reduce high blood sugar level, while, in neurological diseases, it potentially prevents neuronal degeneration and cognitive decline by regulating neuroinflammation. In addition, in liver diseases, quercetin may improve liver inflammation and fibrosis by regulating the NLRP3 activity. In addition, quercetin may improve inflammation in other diseases based on the NLRP3 inflammasome. With this background, in this review, we have discussed the progress in the study on the mechanism of quercetin toward improving inflammation via NLRP3 inflammasome in the past decade. In addition, from the perspective of quercetin glycoside derivatives, the anti-inflammatory mechanism of hyperoside, rutin, and isoquercetin based on NLRP3 inflammasome has been discussed. Moreover, we have discussed the pharmacokinetics of quercetin and its nanoformulation application, with the aim to provide new ideas for further research on the anti-inflammatory effect of quercetin and its glycoside derivatives based on NLRP3 inflammasome, as well as in drug development and application.
Collapse
Affiliation(s)
- Jiaqi Wu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Yu Liu
- Department of Oncology, Gong'an County People's Hospital, Jingzhou, 434000, China
| | - Yifan Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China
| | - Yukun Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, 434023, China
| | - Xin Liu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, Singapore, 138602, Singapore.
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, 434023, China.
| |
Collapse
|
5
|
Yu H, Liu S, Wang S, Gu X. The involvement of HDAC3 in the pathogenesis of lung injury and pulmonary fibrosis. Front Immunol 2024; 15:1392145. [PMID: 39391308 PMCID: PMC11464298 DOI: 10.3389/fimmu.2024.1392145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Acute lung injury (ALI) and its severe counterpart, acute respiratory distress syndrome (ARDS), are critical respiratory conditions with high mortality rates due primarily to acute and intense pulmonary inflammation. Despite significant research advances, effective pharmacological treatments for ALI and ARDS remain unavailable, highlighting an urgent need for therapeutic innovation. Notably, idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease characterized by the irreversible progression of fibrosis, which is initiated by repeated damage to the alveolar epithelium and leads to excessive extracellular matrix deposition. This condition is further complicated by dysregulated tissue repair and fibroblast dysfunction, exacerbating tissue remodeling processes and promoting progression to terminal pulmonary fibrosis. Similar to that noted for ALI and ARDS, treatment options for IPF are currently limited, with no specific drug therapy providing a cure. Histone deacetylase 3 (HDAC3), a notable member of the HDAC family with four splice variants (HD3α, -β, -γ, and -δ), plays multiple roles. HDAC3 regulates gene transcription through histone acetylation and adjusts nonhistone proteins posttranslationally, affecting certain mitochondrial and cytoplasmic proteins. Given its unique structure, HDAC3 impacts various physiological processes, such as inflammation, apoptosis, mitochondrial homeostasis, and macrophage polarization. This article explores the intricate role of HDAC3 in ALI/ARDS and IPF and evaluates its therapeutic potential the treatment of these severe pulmonary conditions.
Collapse
Affiliation(s)
| | | | | | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of
China Medical University, Shenyang, China
| |
Collapse
|
6
|
Mao Y, Yang Q, Liu J, Fu Y, Zhou S, Liu J, Ying L, Li Y. Quercetin Increases Growth Performance and Decreases Incidence of Diarrhea and Mechanism of Action in Weaned Piglets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:5632260. [PMID: 39139212 PMCID: PMC11321896 DOI: 10.1155/2024/5632260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
This study aimed to investigate the mechanism of quercetin increasing growth performance and decreasing incidence of diarrhea in weaned piglets. Forty-eight Duroc × Landrace × Large White weaned piglets with similar body weight (7.48 ± 0.20 kg, 28 days of age) were randomly divided into four treatments (control, 250 mg/kg quercetin, 500 mg/kg quercetin, and 750 mg/kg quercetin treatments) and fed with basal diet or experimental diet supplemented with quercetin. Performance, diarrhea rate and index, and content of serum anti-inflammatory factors were determined and calculated in weaned piglets; colonic flora and signaling pathways related to anti-inflammation were measured using 16S rDNA sequencing and RNA-seq, respectively. The results showed that compared with control, feed-to-gain ratio and content of serum interferon gamma (IFN-γ) were significantly decreased in the 500 and 750 mg/kg quercetin treatments (P < 0.05); quercetin significantly decreased diarrhea rate and diarrhea index (P < 0.05) and significantly increased the content of serum transforming growth factor (TGF-β) in weaned piglets (P < 0.05); the content of serum NF-κB was significantly decreased in the 750 mg/kg quercetin treatment (P < 0.05); moreover, quercetin significantly increased diversity of colonic flora (P < 0.05), and at the phylum level, the relative abundance of Actinobacteria in the 500 and 750 mg/kg treatments was significantly increased (P < 0.05), and the relative abundance of Proteobacteria in the three quercetin treatments were significantly decreased (P < 0.05) in the colon of weaned piglets; at the genus level, the relative abundance of Clostridium-sensu-stricto-1, Turicibacter, unclassified_f_Lachnospiraceae, Phascolarctobacterium, and Family_XIII _AD3011_group was significantly increased (P < 0.05); the relative abundance of Subdollgranulum and Blautia was significantly decreased in the 500 and 750 mg/kg treatments (P < 0.05); the relative abundance of Eschericha-Shigella, Terrisporobacter, and Eubacterium-coprostanoligenes was significantly increased (P < 0.05); the relative abundance of Streptocococcus, Sarcina, Staphylococcus, and Ruminococcaceae_UCG-008 was significantly decreased in the three quercetin treatments (P < 0.05); the relative abundance of Ruminococcaceae_UCG_014 was significantly increased in the 250 mg/kg quercetin treatment in the colon of weaned piglets (P < 0.05). The results of Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that differentially expressed genes (DEGs) from the quercetin treatments were significantly enriched in nuclear transcription factor-κB (NF-κB) signal pathway (P < 0.05); mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1R1 (IL-1R1), conserved helix-loop-helix ubiquitous kinase (CHUK), toll-like receptor 4 (TLR4), and IL-1β from quercetin treatments were significantly decreased in colonic mucosa of weaned piglets (P < 0.05). In summary, quercetin increased feed conversion ratio and decreased diarrhea through regulating NF-κB signaling pathway, controlling the balance between anti-inflammatory and proinflammatory factors, and modulating intestinal flora, thus promoting the absorption of nutrients in weaned piglets. These results provided the theoretical foundation for applying quercetin in preventing weaning piglets' diarrhea and animal husbandry practices.
Collapse
Affiliation(s)
- Yanjun Mao
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Qinglin Yang
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Junhong Liu
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Yuxin Fu
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Shuaishuai Zhou
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Jiayan Liu
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Linlin Ying
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| | - Yao Li
- College of Animal Science and TechnologyNortheast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Ho WY, Shen ZH, Chen Y, Chen TH, Lu X, Fu YS. Therapeutic implications of quercetin and its derived-products in COVID-19 protection and prophylactic. Heliyon 2024; 10:e30080. [PMID: 38765079 PMCID: PMC11098804 DOI: 10.1016/j.heliyon.2024.e30080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel human coronavirus, which has triggered a global pandemic of the coronavirus infectious disease 2019 (COVID-19). Outbreaks of emerging infectious diseases continue to challenge human health worldwide. The virus conquers human cells through the angiotensin-converting enzyme 2 receptor-driven pathway by mostly targeting the human respiratory tract. Quercetin is a natural flavonoid widely represented in the plant kingdom. Cumulative evidence has demonstrated that quercetin and its derivatives have various pharmacological properties including anti-cancer, anti-hypertension, anti-hyperlipidemia, anti-hyperglycemia, anti-microbial, antiviral, neuroprotective, and cardio-protective effects, because it is a potential treatment for severe inflammation and acute respiratory distress syndrome. Furthermore, it is the main life-threatening condition in patients with COVID-19. This article provides a comprehensive review of the primary literature on the predictable effectiveness of quercetin and its derivatives docked to multi-target of SARS-CoV-2 and host cells via in silico and some of validation through in vitro, in vivo, and clinically to fight SARS-CoV-2 infections, contribute to the reduction of inflammation, which suggests the preventive and therapeutic latency of quercetin and its derived-products against COVID-19 pandemic, multisystem inflammatory syndromes (MIS), and long-COVID.
Collapse
Affiliation(s)
- Wan-Yi Ho
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zi-Han Shen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Yijing Chen
- Department of Dentisty, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Ting-Hsu Chen
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - XiaoLin Lu
- Anatomy Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Yaw-Syan Fu
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Anatomy Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
| |
Collapse
|
8
|
Fang JY, Huang KY, Wang TH, Lin ZC, Chen CC, Chang SY, Chen EL, Chao TL, Yang SC, Yang PC, Chen CY. Development of nanoparticles incorporated with quercetin and ACE2-membrane as a novel therapy for COVID-19. J Nanobiotechnology 2024; 22:169. [PMID: 38609998 PMCID: PMC11015574 DOI: 10.1186/s12951-024-02435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
INTRODUCTION Angiotensin-converting enzyme 2 (ACE2) and AXL tyrosine kinase receptor are known to be involved in the SARS-CoV-2 entry of the host cell. Therefore, targeting ACE2 and AXL should be an effective strategy to inhibit virus entry into cells. However, developing agents that can simultaneously target ACE2 and AXL remains a formidable task. The natural compound quercetin has been shown to inhibit AXL expression. MATERIALS AND METHODS In this study, we employed PLGA nanoparticles to prepare nanoparticles encapsulated with quercetin, coated with ACE2-containing cell membranes, or encapsulated with quercetin and then coated with ACE-2-containing cell membranes. These nanoparticles were tested for their abilities to neutralize or inhibit viral infection. RESULTS Our data showed that nanoparticles encapsulated with quercetin and then coated with ACE2-containing cell membrane inhibited the expression of AXL without causing cytotoxic activity. Nanoparticles incorporated with both quercetin and ACE2-containing cell membrane were found to be able to neutralize pseudo virus infection and were more effective than free quercetin and nanoparticles encapsulated with quercetin at inhibition of pseudo virus and SARS-CoV-2 infection. CONCLUSIONS We have shown that the biomimetic nanoparticles incorporated with both ACE-2 membrane and quercetin showed the most antiviral activity and may be further explored for clinical application.
Collapse
Affiliation(s)
- Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Yen Huang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- National Taiwan University YongLin Institute of Health, Taipei, Taiwan
- Graduate School of Advanced Technology (Program for Precision Health and Intelligent Medicine), National Taiwan University, Taipei, Taiwan
| | - Tong-Hong Wang
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Biobank, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Chin-Chuan Chen
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Biobank, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - En-Li Chen
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shuenn-Chen Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pan-Chyr Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- , No.1, Sec 1, Jen-Ai Rd, R.O.C, 100225, Taipei, Taiwan.
| | - Chi-Yuan Chen
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Biobank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- , No.261, Wenhua 1st Rd., Guishan Dist, 33303, Taoyuan City, Taiwan.
| |
Collapse
|
9
|
Abdelgawad FAM, El-Hawary SS, El-Kader EMA, Alshehri SA, Rabeh MA, El-Mosallamy AEMK, Salama A, El Gedaily RA. Phytochemical Elucidation and Effect of Maesa indica (Roxb.) Sweet on Alleviation of Potassium Dichromate-Induced Pulmonary Damage in Rats. PLANTS (BASEL, SWITZERLAND) 2024; 13:338. [PMID: 38337870 PMCID: PMC10857331 DOI: 10.3390/plants13030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Maesa indica (Roxb.) Sweet is one of the well-known traditionally-used Indian plants. This plant is rich in secondary metabolites like phenolic acids, flavonoids, alkaloids, glycosides, saponins, and carbohydrates. It contains numerous therapeutically active compounds like palmitic acid, chrysophanol, glyceryl palmitate, stigmasterol, β-sitosterol, dodecane, maesaquinone, quercetin 3-rhaminoside, rutin, chlorogenic acid, catechin, quercetin, nitrendipine, 2,3-dihydroxypropyl octadeca-9,12-dienoate, kiritiquinon, and β-thujone. The Maesa indica plant has been reported to have many biological properties including antidiabetic, anticancer, anti-angiogenic, anti-leishmanial, antioxidant, radical scavenging, antibacterial, antiviral, and anti-coronavirus effects. One purpose of the current study was to investigate the leaves' metabolome via Triple-Time-of-Flight-Liquid-Chromatography-Mass Spectrometry (T-TOF LC/MS/MS) to identify the chemical constituents of the Maesa indica ethanolic extract (ME). Another purpose of this study was to explore the protective effect of ME against potassium dichromate (PD)-induced pulmonary damage in rats. Rats were assigned randomly into four experimental groups. Two different doses of the plant extract, (25 and 50 mg/kg), were administered orally for seven consecutive days before PD instillation injection. Results of our study revealed that ME enhanced cellular redox status as it decreased lipid peroxidation marker, MDA and elevated reduced glutathione (GSH). In addition, ME upregulated the cytoprotective signaling pathway PI3K/AKT. Moreover, ME administration ameliorated histopathological anomalies induced by PD. Several identified metabolites, such as chlorogenic acid, quercetin, apigenin, kaempferol, luteolin, and rutin, had previously indicated lung-protective effects, possibly through an antioxidant effect and inhibition of oxidative stress and inflammatory mediators. In conclusion, our results indicated that ME possesses lung-protective effects, which may be the result of its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
| | - Seham S. El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| | - Essam M. Abd El-Kader
- Department of Timber Trees Research, Horticultural Research Institute (ARC), Giza 12619, Egypt;
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62251, Saudi Arabia; (S.A.A.); (M.A.R.)
| | - Mohamed Abdelaaty Rabeh
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62251, Saudi Arabia; (S.A.A.); (M.A.R.)
| | | | - Abeer Salama
- Department of Pharmacology, National Research Centre, Cairo 12622, Egypt; (A.E.M.K.E.-M.); (A.S.)
| | - Rania A. El Gedaily
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 11562, Egypt;
| |
Collapse
|
10
|
Martín-Vicente P, López-Martínez C, Rioseras B, Albaiceta GM. Activation of senescence in critically ill patients: mechanisms, consequences and therapeutic opportunities. Ann Intensive Care 2024; 14:2. [PMID: 38180573 PMCID: PMC10769968 DOI: 10.1186/s13613-023-01236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Whereas aging is a whole-organism process, senescence is a cell mechanism that can be triggered by several stimuli. There is increasing evidence that critical conditions activate cell senescence programs irrespective of patient's age. In this review, we briefly describe the basic senescence pathways and the consequences of their activation in critically ill patients. The available evidence suggests a paradigm in which activation of senescence can be beneficial in the short term by rendering cells resistant to apoptosis, but also detrimental in a late phase by inducing a pro-inflammatory and pro-fibrotic state. Senescence can be a therapeutic target. The use of drugs that eliminate senescent cells (senolytics) or the senescence-associated phenotype (senomorphics) will require monitoring of these cell responses and identification of therapeutic windows to improve the outcome of critically ill patients.
Collapse
Affiliation(s)
- Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Beatriz Rioseras
- Servicio de Inmunología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain.
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Avenida del Hospital Universitario s/n, 33011, Oviedo, Spain.
| |
Collapse
|
11
|
Lim EY, Lee SY, Shin HS, Kim GD. Reactive Oxygen Species and Strategies for Antioxidant Intervention in Acute Respiratory Distress Syndrome. Antioxidants (Basel) 2023; 12:2016. [PMID: 38001869 PMCID: PMC10669909 DOI: 10.3390/antiox12112016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening pulmonary condition characterized by the sudden onset of respiratory failure, pulmonary edema, dysfunction of endothelial and epithelial barriers, and the activation of inflammatory cascades. Despite the increasing number of deaths attributed to ARDS, a comprehensive therapeutic approach for managing patients with ARDS remains elusive. To elucidate the pathological mechanisms underlying ARDS, numerous studies have employed various preclinical models, often utilizing lipopolysaccharide as the ARDS inducer. Accumulating evidence emphasizes the pivotal role of reactive oxygen species (ROS) in the pathophysiology of ARDS. Both preclinical and clinical investigations have asserted the potential of antioxidants in ameliorating ARDS. This review focuses on various sources of ROS, including NADPH oxidase, uncoupled endothelial nitric oxide synthase, cytochrome P450, and xanthine oxidase, and provides a comprehensive overview of their roles in ARDS. Additionally, we discuss the potential of using antioxidants as a strategy for treating ARDS.
Collapse
Affiliation(s)
- Eun Yeong Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (E.Y.L.); (S.-Y.L.); (H.S.S.)
| |
Collapse
|
12
|
Zhang C, Chen X, Wei T, Song J, Tang X, Bi J, Chen C, Zhou J, Su X, Song Y. Xuebijing alleviates LPS-induced acute lung injury by downregulating pro-inflammatory cytokine production and inhibiting gasdermin-E-mediated pyroptosis of alveolar epithelial cells. Chin J Nat Med 2023; 21:576-588. [PMID: 37611976 DOI: 10.1016/s1875-5364(23)60463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 08/25/2023]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterized by diffuse alveolar injury primarily caused by an excessive inflammatory response. Regrettably, the lack of effective pharmacotherapy currently available contributes to the high mortality rate in patients with this condition. Xuebijing (XBJ), a traditional Chinese medicine recognized for its potent anti-inflammatory properties, exhibits promise as a potential therapeutic agent for ALI/ARDS. This study aimed to explore the preventive effects of XBJ on ALI and its underlying mechanism. To this end, we established an LPS-induced ALI model and treated ALI mice with XBJ. Our results demonstrated that pre-treatment with XBJ significantly alleviated lung inflammation and increased the survival rate of ALI mice by 37.5%. Moreover, XBJ substantially suppressed the production of TNF-α, IL-6, and IL-1β in the lung tissue. Subsequently, we performed a network pharmacology analysis and identified identified 109 potential target genes of XBJ that were mainly involved in multiple signaling pathways related to programmed cell death and anti-inflammatory responses. Furthermore, we found that XBJ exerted its inhibitory effect on gasdermin-E-mediated pyroptosis of lung cells by suppressing TNF-α production. Therefore, this study not only establishes the preventive efficacy of XBJ in ALI but also reveals its role in protecting alveolar epithelial cells against gasdermin-E-mediated pyroptosis by reducing TNF-α release.
Collapse
Affiliation(s)
- Cuiping Zhang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoyan Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tianchang Wei
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Juan Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinjun Tang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Bi
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuicui Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao Su
- The Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China; Shanghai Respiratory Research Institute, Shanghai 200032, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, China.
| |
Collapse
|
13
|
Matsushima M, Nose H, Tsuzuki H, Takekoshi M, Kusatsugu Y, Taniguchi H, Ohdachi T, Hashimoto N, Sato M, Kawabe T. Decrease in cholesterol in the cell membrane is essential for Nrf2 activation by quercetin. J Nutr Biochem 2023; 116:109329. [PMID: 36958420 DOI: 10.1016/j.jnutbio.2023.109329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/21/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Quercetin is a flavonoid with various cytoprotective effects. We previously reported that quercetin exerts anti-allergic, anti-oxidative, and anti-fibrotic activities via the induction of heme oxygenase (HO)-1. However, the mechanisms by which quercetin induces HO-1 to exhibit cytoprotective effects are poorly understood. We focused on its action on the cell membrane, which is the first part of the cell to interact with the extracellular environment. The cell membrane contains lipid rafts and caveolae, which play important roles in cellular signaling. A recent study showed that nuclear factor E2-related factor 2 (Nrf2), a transcription factor regulating anti-oxidative enzymes including HO-1, interacts with caveolin-1 (Cav-1), a component of caveolae, to regulate cellular anti-oxidative capacity. In this study, we investigated the changes in the cell membrane that leads to the induction of HO-1 by quercetin. Quercetin decreased the amount of cholesterol in the raft fractions, which in turn promoted the induction of HO-1. It also changed the composition of the lipid rafts and decreased and increased the expression of Cav-1 in the raft and non-raft fractions, respectively. Nrf2, which was localized in the cell membrane under resting conditions, was translocated along with Cav-1 to the nucleus after exposure to quercetin. These findings indicate for the first time that the HO-1-dependent cytoprotective effects of quercetin are mediated by the structural changes in lipid rafts brought about by decreasing the amount of cholesterol in the cell membrane, which thereby results in the translocation of the Cav-1-Nrf2 complex to the nucleus and induces the expression of HO-1.
Collapse
Affiliation(s)
- Miyoko Matsushima
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Haruka Nose
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Hikaru Tsuzuki
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Masahiro Takekoshi
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Yuto Kusatsugu
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Hinata Taniguchi
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Tomoko Ohdachi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Mitsuo Sato
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System
| | - Tsutomu Kawabe
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System.
| |
Collapse
|
14
|
Miyasaka Y, Kobayashi T, Gotoh N, Kuga M, Kobayashi M, Horio F, Hashimoto K, Kawabe T, Ohno T. Neonatal lethality of mouse A/J-7 SM consomic strain is caused by an insertion mutation in the Dchs1 gene. Mamm Genome 2023; 34:32-43. [PMID: 36434174 DOI: 10.1007/s00335-022-09966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022]
Abstract
Homosomic mice of the A/J-7SM consomic mouse strain that introduced the entire chromosome 7 (Chr 7) of SM/J into the A/J strain exhibited neonatal lethality. We tentatively maintained segregating inbred strains (A/J-7ASM and A/J-7DSM) in which the central portion of Chr 7 was heterozygous for the A/J and SM/J strains, and the centromeric and telomeric sides of Chr 7 were homozygous for the SM/J strain, instead of the A/J-7SM strain. Based on the chromosomal constitution of Chr 7 in A/J-7ASM and A/J-7DSM mice, the causative gene for neonatal lethality in homosomic mice was suggested to be located within an approximately 1.620 Mb region between D7Mit125 (104.879 Mb) and D7Mit355 (106.499 Mb) on Chr 7. RT-PCR analysis revealed that homosomic mice lacked dachsous cadherin-related 1 (Dchs1), which is located within the D7Mit125 to D7Mit355 region and functions in the regulation of planar cell polarity. Screening for mutations in Dchs1 indicated that homosomic mice possessed an early transposable (ETn)-like sequence in intron 1 of Dchs1. Moreover, an allelism test between Dchs1 ETn-like-insertion alleles detected in homosomic mice and CRISPR/Cas9-induced Dchs1 deletion alleles revealed that Dchs1 is a causative gene for neonatal lethality in homosomic mice. Based on these results, we concluded that in the A/J-7SM strain, ETn-like elements were inserted into intron 1 of SM/J-derived Dchs1 during strain development, which dramatically reduced Dchs1 expression, thus resulting in neonatal lethality in homosomic mice. Additionally, it was suggested that the timing of lethality in Dchs1 mutant mice is influenced by the genetic background.
Collapse
Affiliation(s)
- Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
| | - Takeshi Kobayashi
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Naoya Gotoh
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Masako Kuga
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Misato Kobayashi
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-Cho, Nisshin, Aichi, 470-0196, Japan
| | - Fumihiko Horio
- Department of Life Studies and Environmental Science, Nagoya Women's University, 3-40 Shioji-Cho, Mizuho-Ku, Nagoya, Aichi, 467-8610, Japan
| | - Katsunori Hashimoto
- Faculty of Medical Sciences, Shubun University, 6 Nikko-Cho, Ichinomiya, Aichi, 491-0938, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Dikou-Minami, Higashi-Ku, Nagoya, Aichi, 461-8673, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
15
|
Dey R, Samadder A, Nandi S. Selected Phytochemicals to Combat Lungs Injury: Natural Care. Comb Chem High Throughput Screen 2022; 25:2398-2412. [PMID: 35293289 DOI: 10.2174/1386207325666220315113121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/27/2023]
Abstract
The human has two lungs responsible for respiration and drug metabolism. Severe lung infection caused by bacteria, mycobacteria, viruses, fungi, and parasites may lead to lungs injury. Smoking and tobacco consumption may also produce lungs injury. Inflammatory and pain mediators are secreted by alveolar macrophages. The inflammatory mediators, such as cytokines, interleukin (IL)-1, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF)-α, neutrophils, and fibroblasts are accumulated in the alveoli sac, which becomes infected. It may lead to hypoxia followed by severe pulmonary congestion and the death of the patient. There is an urgent need for the treatment of artificial respiration and ventilation. However, the situation may be the worst for patients suffering from lung cancer, pulmonary tuberculosis, and acute pneumonia caused by acute respiratory distress syndrome (ARDS). Re-urgency has been happening in the case of coronavirus disease of 2019 (COVID-19) patients. Therefore, it is needed to protect the lungs with the intake of natural phytomedicines. In the present review, several selected phyto components having the potential role in lung injury therapy have been discussed. Regular intake of natural vegetables and fruits bearing these constituents may save the lungs even in the dangerous attack of SARS-CoV-2 in lung cancer, pulmonary TB, and pneumatic patients.
Collapse
Affiliation(s)
- Rishita Dey
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India.,Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| |
Collapse
|
16
|
Rahman MM, Bibi S, Rahaman MS, Rahman F, Islam F, Khan MS, Hasan MM, Parvez A, Hossain MA, Maeesa SK, Islam MR, Najda A, Al-Malky HS, Mohamed HRH, AlGwaiz HIM, Awaji AA, Germoush MO, Kensara OA, Abdel-Daim MM, Saeed M, Kamal MA. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed Pharmacother 2022; 150:113041. [PMID: 35658211 DOI: 10.1016/j.biopha.2022.113041] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lung diseases including chronic obstructive pulmonary disease (COPD), infections like influenza, acute respiratory distress syndrome (ARDS), asthma and pneumonia lung cancer (LC) are common causes of sickness and death worldwide due to their remoteness, cold and harsh climatic conditions, and inaccessible health care facilities. PURPOSE Many drugs have already been proposed for the treatment of lung diseases. Few of them are in clinical trials and have the potential to cure infectious diseases. Plant extracts or herbal products have been extensively used as Traditional Chinese Medicine (TCM) and Indian Ayurveda. Moreover, it has been involved in the inhibition of certain genes/protiens effects to promote regulation of signaling pathways. Natural remedies have been scientifically proven with remarkable bioactivities and are considered a cheap and safe source for lung disease. METHODS This comprehensive review highlighted the literature about traditional plants and their metabolites with their applications for the treatment of lung diseases through experimental models in humans. Natural drugs information and mode of mechanism have been studied through the literature retrieved by Google Scholar, ScienceDirect, SciFinder, Scopus and Medline PubMed resources against lung diseases. RESULTS In vitro, in vivo and computational studies have been explained for natural metabolites derived from plants (like flavonoids, alkaloids, and terpenoids) against different types of lung diseases. Probiotics have also been biologically active therapeutics against cancer, anti-inflammation, antiplatelet, antiviral, and antioxidants associated with lung diseases. CONCLUSION The results of the mentioned natural metabolites repurposed for different lung diseases especially for SARS-CoV-2 should be evaluated more by advance computational applications, experimental models in the biological system, also need to be validated by clinical trials so that we may be able to retrieve potential drugs for most challenging lung diseases especially SARS-CoV-2.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; Department of Biosciences, Shifa Tameer-e-Milat University, Islamabad, Pakistan.
| | - Md Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Anwar Parvez
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Abid Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saila Kabir Maeesa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hussah I M AlGwaiz
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Osama A Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah 21955, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudia Arabia
| | - Mohammad Amjad Kamal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh; West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
17
|
Shati AA, Zaki MSA, Alqahtani YA, Al-Qahtani SM, Haidara MA, Dawood AF, AlMohanna AM, El-Bidawy MH, Alaa Eldeen M, Eid RA. Antioxidant Activity of Vitamin C against LPS-Induced Septic Cardiomyopathy by Down-Regulation of Oxidative Stress and Inflammation. Curr Issues Mol Biol 2022; 44:2387-2400. [PMID: 35678692 PMCID: PMC9164034 DOI: 10.3390/cimb44050163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
In severe cases of sepsis, endotoxin-induced cardiomyopathy can cause major damage to the heart. This study was designed to see if Vitamin C (Vit C) could prevent lipopolysaccharide-induced heart damage. Eighteen Sprague Dawley male rats (n = 6) were divided into three groups. Rats received 0.5 mL saline by oral gavage in addition to a standard diet (Control group), rats received one dose of endotoxin on day 15 (lipopolysaccharide) (LPS) (6 mg/kg), which produced endotoxemia (Endotoxin group), and rats that received 500 mg/Kg BW of Vit C by oral gavage for 15 days before LPS administration (Endotoxin plus Vit C group). In all groups, blood and tissue samples were collected on day 15, six hours after LPS administration, for histopathological and biochemical analysis. The LPS injection lowered superoxide dismutase (SOD) levels and increased malondialdehyde in tissues compared with a control group. Furthermore, the endotoxin group showed elevated inflammatory biomarkers, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Both light and electron microscopy showed that the endotoxic-treated group’s cardiomyocytes, intercalated disks, mitochondria, and endothelial cells were damaged. In endotoxemic rats, Vit C pretreatment significantly reduced MDA levels and restored SOD activity, minimized biomarkers of inflammation, and mitigated cardiomyocyte damage. In conclusion: Vit C protects against endotoxin-induced cardiomyopathy by inhibiting oxidative stress cytokines.
Collapse
Affiliation(s)
- Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (A.A.S.); (Y.A.A.); (S.M.A.-Q.)
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia;
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig 31527, Egypt
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (A.A.S.); (Y.A.A.); (S.M.A.-Q.)
| | - Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (A.A.S.); (Y.A.A.); (S.M.A.-Q.)
| | - Mohamed A. Haidara
- Department of Physiology, Kasr Al-Aini College of Medicine, Cairo University, Cairo 11519, Egypt; (M.A.H.); (M.H.E.-B.)
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh P.O. Box 84428, Saudi Arabia; (A.F.D.); (A.M.A.)
| | - Asmaa M. AlMohanna
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh P.O. Box 84428, Saudi Arabia; (A.F.D.); (A.M.A.)
| | - Mahmoud H. El-Bidawy
- Department of Physiology, Kasr Al-Aini College of Medicine, Cairo University, Cairo 11519, Egypt; (M.A.H.); (M.H.E.-B.)
- Department of BMS, Division of Physiology, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj P.O. Box 11942, Saudi Arabia
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Zoology Department, College of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Correspondence: or
| |
Collapse
|
18
|
Inhaled Placental Mesenchymal Stromal Cell Secretome from Two- and Three-Dimensional Cell Cultures Promotes Survival and Regeneration in Acute Lung Injury Model in Mice. Int J Mol Sci 2022; 23:ijms23073417. [PMID: 35408778 PMCID: PMC8998959 DOI: 10.3390/ijms23073417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is a common clinical problem, leading to significant morbidity and mortality, and no effective pharmacotherapy exists. The problem of ARDS causing mortality became more apparent during the COVID-19 pandemic. Biotherapeutic products containing multipotent mesenchymal stromal cell (MMSC) secretome may provide a new therapeutic paradigm for human healthcare due to their immunomodulating and regenerative abilities. The content and regenerative capacity of the secretome depends on cell origin and type of cultivation (two- or three-dimensional (2D/3D)). In this study, we investigated the proteomic profile of the secretome from 2D- and 3D-cultured placental MMSC and lung fibroblasts (LFBs) and the effect of inhalation of freeze-dried secretome on survival, lung inflammation, lung tissue regeneration, fibrin deposition in a lethal ALI model in mice. We found that three inhaled administrations of freeze-dried secretome from 2D- and 3D-cultured placental MMSC and LFB protected mice from death, restored the histological structure of damaged lungs, and decreased fibrin deposition. At the same time, 3D MMSC secretome exhibited a more pronounced trend in lung recovery than 2D MMSC and LFB-derived secretome in some measures. Taking together, these studies show that inhalation of cell secretome may also be considered as a potential therapy for the management of ARDS in patients suffering from severe pneumonia, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, their effectiveness requires further investigation.
Collapse
|
19
|
Hsieh HL, Yu MC, Cheng LC, Chu MY, Huang TH, Yeh TS, Tsai MM. Quercetin exerts anti-inflammatory effects via inhibiting tumor necrosis factor-α-induced matrix metalloproteinase-9 expression in normal human gastric epithelial cells. World J Gastroenterol 2022; 28:1139-1158. [PMID: 35431500 PMCID: PMC8985486 DOI: 10.3748/wjg.v28.i11.1139] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/23/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric injury is the most common digestive system disease worldwide and involves inflammation, which can lead to gastric ulcer or gastric cancer (GC). Matrix metallopeptidase-9 [MMP-9 (gelatinase-B)] plays an important role in inflammation and GC progression. Quercetin and quercetin-rich diets represent potential food supplements and a source of medications for treating gastric injury given their anti-inflammatory activities. However, the effects and mechanisms of action of quercetin on human chronic gastritis and whether quercetin can relieve symptoms remain unclear.
AIM To assess whether tumor necrosis factor-α (TNF-α)-induced MMP-9 expression mediates the anti-inflammatory effects of quercetin in normal human gastric mucosal epithelial cells.
METHODS The normal human gastric mucosa epithelial cell line GES-1 was used to establish a normal human gastric epithelial cell model of TNF-α-induced MMP-9 protein overexpression to evaluate the anti-inflammatory effects of quercetin. The cell counting Kit-8 assay was used to evaluate the effects of varying quercetin doses on cell viability in the normal GES-1 cell line. Cell migration was measured using Transwell assay. The expression of proto-oncogene tyrosine-protein kinase Src (c-Src), phospho (p)-c-Src, extracellular-signal-regulated kinase 2 (ERK2), p-ERK1/2, c-Fos, p-c-Fos, nuclear factor kappa B (NF-κB/p65), and p-p65 and the effects of their inhibitors were examined using Western blot analysis and measurement of luciferase activity. p65 expression was detected by immunofluorescence. MMP-9 mRNA and protein levels were measured by quantitative reverse transcription polymerase chain reaction (qRT–PCR) and gelatin zymography, respectively.
RESULTS qRT-PCR and gelatin zymography showed that TNF-α induced MMP-9 mRNA and protein expression in a dose- and time-dependent manner. These effects were reduced by the pretreatment of GES-1 cells with quercetin or a TNF-α antagonist (TNFR inhibitor) in a dose- and time-dependent manner. Quercetin and TNF-α antagonists decreased the TNF-α-induced phosphorylation of c-Src, ERK1/2, c-Fos, and p65 in a dose- and time-dependent manner. Quercetin, TNF-α antagonist, PP1, U0126, and tanshinone IIA (TSIIA) reduced TNF-α-induced c-Fos phosphorylation and AP-1–Luciferase (Luc) activity in a dose- and time-dependent manner. Pretreatment with quercetin, TNF-α antagonist, PP1, U0126, or Bay 11-7082 reduced TNF-α-induced p65 phosphorylation and translocation and p65–Luc activity in a dose- and time-dependent manner. TNF-α significantly increased GES-1 cell migration, and these results were reduced by pretreatment with quercetin or a TNF-α antagonist.
CONCLUSION Quercetin significantly downregulates TNF-α-induced MMP-9 expression in GES-1 cells via the TNFR-c-Src–ERK1/2 and c-Fos or NF-κB pathways.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Li-Ching Cheng
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Mei-Yi Chu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Tzu-Hao Huang
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Ta-Sen Yeh
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
20
|
Rubusoside relieves lipopolysaccharide-induced acute lung injury via modulating inflammatory responses: in vitro and in vivo studies. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Al‐Ani B, ShamsEldeen AM, Kamar SS, Haidara MA, Al‐Hashem F, Alshahrani MY, Al‐Hakami AM, Kader DHA, Maarouf A. Lipopolysaccharide induces acute lung injury and alveolar hemorrhage in association with the cytokine storm, coagulopathy and AT1R/JAK/STAT augmentation in a rat model that mimics moderate and severe Covid‐19 pathology. Clin Exp Pharmacol Physiol 2022; 49:483-491. [PMID: 35066912 DOI: 10.1111/1440-1681.13620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Bahjat Al‐Ani
- Department of Physiology College of Medicine King Khalid University Abha 61421 Saudi Arabia
| | - Asmaa M. ShamsEldeen
- Department of Physiology Kasr Al‐Aini Faculty of Medicine Cairo University Cairo Egypt
| | - Samaa S. Kamar
- Department of Medical Histology Kasr Al‐Aini Faculty of Medicine Cairo University Cairo Egypt
| | - Mohamed A. Haidara
- Department of Physiology Kasr Al‐Aini Faculty of Medicine Cairo University Cairo Egypt
| | - Fahaid Al‐Hashem
- Department of Physiology College of Medicine King Khalid University Abha 61421 Saudi Arabia
| | - Mohammad Y. Alshahrani
- Research Center for Advanced Materials Science (RCAMS) King Khalid University Abha 61413 Saudi Arabia
- Department of Clinical Laboratory Sciences College of Applied Medical Sciences King Khalid University Abha 61413 Saudi Arabia
| | - Ahmed M. Al‐Hakami
- Department of Microbiology and Clinical Parasitology College of Medicine King Khalid University Abha 61421 Saudi Arabia
| | - Dina H. Abdel Kader
- Department of Medical Histology Kasr Al‐Aini Faculty of Medicine Cairo University Cairo Egypt
| | - Amro Maarouf
- Department of Clinical Biochemistry University Hospitals Birmingham NHS Foundation Trust Birmingham UK
| |
Collapse
|
22
|
Bernini R, Velotti F. Natural Polyphenols as Immunomodulators to Rescue Immune Response Homeostasis: Quercetin as a Research Model against Severe COVID-19. Molecules 2021; 26:molecules26195803. [PMID: 34641348 PMCID: PMC8510228 DOI: 10.3390/molecules26195803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
The COVID-19 pandemic is caused by SARS-CoV-2 and is leading to the worst health crisis of this century. It emerged in China during late 2019 and rapidly spread all over the world, producing a broad spectrum of clinical disease severity, ranging from asymptomatic infection to death (4.3 million victims so far). Consequently, the scientific research is devoted to investigating the mechanisms of COVID-19 pathogenesis to both identify specific therapeutic drugs and develop vaccines. Although immunological mechanisms driving COVID-19 pathogenesis are still largely unknown, new understanding has emerged about the innate and adaptive immune responses elicited in SARS-CoV-2 infection, which are mainly focused on the dysregulated inflammatory response in severe COVID-19. Polyphenols are naturally occurring products with immunomodulatory activity, playing a relevant role in reducing inflammation and preventing the onset of serious chronic diseases. Mainly based on data collected before the appearance of SARS-CoV-2, polyphenols have been recently suggested as promising agents to fight COVID-19, and some clinical trials have already been approved with polyphenols to treat COVID-19. The aim of this review is to analyze and discuss the in vitro and in vivo research on the immunomodulatory activity of quercetin as a research model of polyphenols, focusing on research that addresses issues related to the dysregulated immune response in severe COVID-19. From this analysis, it emerges that although encouraging data are present, they are still insufficient to recommend polyphenols as potential immunomodulatory agents against COVID-19.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Correspondence: (R.B.); (F.V.)
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
- Correspondence: (R.B.); (F.V.)
| |
Collapse
|
23
|
Khazdair MR, Saadat S, Aslani MR, Shakeri F, Boskabady MH. Experimental and clinical studies on the effects of Portulaca oleracea L. and its constituents on respiratory, allergic, and immunologic disorders, a review. Phytother Res 2021; 35:6813-6842. [PMID: 34462981 DOI: 10.1002/ptr.7268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Various pharmacological effects for Portulaca oleracea were shown in previous studies. Therefore, the effects of P. oleracea and its derivatives on respiratory, allergic, and immunologic diseases according to update experimental and clinical studies are provided in this review article. PubMed/Medline, Scopus, and Google Scholar were searched using appropriate keywords until the end of December 2020. The effects of P. oleracea and its constituents such as quercetin and kaempferol on an animal model of asthma were shown. Portulaca oleracea and its constituents also showed therapeutic effects on chronic obstructive pulmonary disease and chronic bronchitis in both experimental and clinical studies. The possible bronchodilatory effect of P. oleracea and its ingredients was also reported. Portulaca oleracea and its constituents showed the preventive effect on lung cancer and a clinical study showed the effect of P. oleracea on patients with lung adenocarcinoma. In addition, a various constituents of P. oleracea including, quercetin and kaempferol showed therapeutic effects on lung infections. This review indicates the therapeutic effect of P. oleracea and its constituents on various lung and allergic disorders but more clinical studies are required to establish the clinical efficacy of this plant and its constituents on lung and allergic disorders.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeideh Saadat
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Aslani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Wang J, Wu Q, Ding L, Song S, Li Y, Shi L, Wang T, Zhao D, Wang Z, Li X. Therapeutic Effects and Molecular Mechanisms of Bioactive Compounds Against Respiratory Diseases: Traditional Chinese Medicine Theory and High-Frequency Use. Front Pharmacol 2021; 12:734450. [PMID: 34512360 PMCID: PMC8429615 DOI: 10.3389/fphar.2021.734450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
Respiratory diseases, especially the pandemic of respiratory infectious diseases and refractory chronic lung diseases, remain a key clinical issue and research hot spot due to their high prevalence rates and poor prognosis. In this review, we aimed to summarize the recent advances in the therapeutic effects and molecular mechanisms of key common bioactive compounds from Chinese herbal medicine. Based on the theories of traditional Chinese medicine related to lung diseases, we searched several electronic databases to determine the high-frequency Chinese medicines in clinical application. The active compounds and metabolites from the selected medicines were identified using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) by analyzing oral bioavailability and drug similarity index. Then, the pharmacological effects and molecular mechanisms of the selected bioactive compounds in the viral and bacterial infections, inflammation, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, and lung cancer were summarized. We found that 31 bioactive compounds from the selected 10 common Chinese herbs, such as epigallocatechin-3-gallate (EGCG), kaempferol, isorhamnetin, quercetin, and β-sitosterol, can mainly regulate NF-κB, Nrf2/HO-1, NLRP3, TGF-β/Smad, MAPK, and PI3K/Akt/mTOR pathways to inhibit infection, inflammation, extracellular matrix deposition, and tumor growth in a series of lung-related diseases. This review provides novel perspectives on the preclinical study and clinical application of Chinese herbal medicines and their bioactive compounds against respiratory diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Ding
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yaxin Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Shi
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Tan Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
25
|
Peritore AF, D’Amico R, Siracusa R, Cordaro M, Fusco R, Gugliandolo E, Genovese T, Crupi R, Di Paola R, Cuzzocrea S, Impellizzeri D. Management of Acute Lung Injury: Palmitoylethanolamide as a New Approach. Int J Mol Sci 2021; 22:ijms22115533. [PMID: 34073872 PMCID: PMC8197255 DOI: 10.3390/ijms22115533] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1β, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.
Collapse
Affiliation(s)
- Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy;
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98122 Messina, Italy; (E.G.); (R.C.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98122 Messina, Italy; (E.G.); (R.C.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
- Correspondence: (R.D.P.); (S.C.); Tel.: +39-90-6765208 (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (R.D.P.); (S.C.); Tel.: +39-90-6765208 (S.C.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98122 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| |
Collapse
|
26
|
Wieczfinska J, Sitarek P, Kowalczyk T, Skała E, Pawliczak R. The Anti-inflammatory Potential of Selected Plant-derived Compounds in Respiratory Diseases. Curr Pharm Des 2021; 26:2876-2884. [PMID: 32250214 DOI: 10.2174/1381612826666200406093257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/06/2020] [Indexed: 01/04/2023]
Abstract
Inflammation plays a major role in chronic airway diseases like asthma, COPD, and cystic fibrosis. Inflammation plays a crucial role in the worsening of the lung function resulting in worsening symptoms. The inflammatory process is very complexed, therefore the strategies for developing an effective treatment for inflammatory airway diseases would benefit from the use of natural substances. Plant products have demonstrated anti-inflammatory properties on various lung disease models and numerous natural plant agents have successfully been used to treat inflammation. Naturally occurring substances may exert some anti-inflammatory effects by modulating some of the inflammatory pathways. These agents have been used in different cultures for thousands of years and have proven to be relatively safe. Parthenolide, apocynin, proanthocyanidins, and boswellic acid present different mechanisms of actions - among others, through NF-kB or NADPH oxidase inhibition, therefore showing a wide range of applications in various inflammatory diseases. Moreover, some of them have also antioxidant properties. This review provides an overview of the anti-inflammatory effects of some of the natural agents and illustrates their great potential as sources of drugs to cover an extensive range of pharmacological effects.
Collapse
Affiliation(s)
| | - Przemyslaw Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, S. Banacha 12/16, 90-237, Lodz, Poland
| | - Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
27
|
Wang J, Yan X, Wang T, Fang L. Potential effect of astragaloside IV on the lipopolysaccharide induced inflammation via the inactivation of NF-κB signaling pathway. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_267_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
29
|
CHi X, Liang X, Shen J, Duan X, Zhou R, Liu P. Resveratrol exerts anti-inflammatory effect in lipopolysaccharide-induced lung inflammation via downregulation of antioxidant and inflammatory mediators. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_41_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Xiao K, He W, Guan W, Hou F, Yan P, Xu J, Zhou T, Liu Y, Xie L. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury. Cell Death Dis 2020; 11:863. [PMID: 33060560 PMCID: PMC7567061 DOI: 10.1038/s41419-020-03034-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) is a pulmonary disorder, which can result in fibrosis of the lung tissues. Recently, mesenchymal stem cell (MSC) has become a novel therapeutic method for ALI. However, the potential mechanism by which MSC regulates the progression of ALI remains blurry. The present study focused on investigating the mechanism underneath MSC-reversed lung injury and fibrosis. At first, we determined that coculture with MSC led to the inactivation of NF-κB signaling and therefore suppressed hedgehog pathway in LPS-treated MLE-12 cells. Besides, we confirmed that MSC-exosomes were responsible for the inhibition of EMT process in LPS-treated MLE-12 cells through transmitting miRNAs. Mechanism investigation revealed that MSC-exosome transmitted miR-182-5p and miR-23a-3p into LPS-treated MLE-12 cells to, respectively, target Ikbkb and Usp5. Of note, Usp5 interacted with IKKβ to hamper IKKβ ubiquitination. Moreover, co-inhibition of miR-182-5p and miR-23a-3p offset the suppression of MSC on EMT process in LPS-treated MLE-12 cells as well as in LPS-injured lungs of mice. Besides, the retarding effect of MSC on p65 nuclear translocation was also counteracted after co-inhibiting miR-182-5p and miR-23a-3p, both in vitro and in vivo. In summary, MSC-exosome transmitted miR-23a-3p and miR-182-5p reversed the progression of LPS-induced lung injury and fibrosis through inhibiting NF-κB and hedgehog pathways via silencing Ikbkb and destabilizing IKKβ.
Collapse
Affiliation(s)
- Kun Xiao
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Wanxue He
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China
| | - Wei Guan
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Fei Hou
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China
| | - Peng Yan
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Jianqiao Xu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Ting Zhou
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China
| | - Yuhong Liu
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, 100853, China. .,Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.
| | - Lixin Xie
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.
| |
Collapse
|
31
|
Xu C, Fang MY, Wang K, Liu J, Tai GP, Zhang ZT, Ruan BF. Discovery and Development of Inflammatory Inhibitors from 2-Phenylchromonone (Flavone) Scaffolds. Curr Top Med Chem 2020; 20:2578-2598. [PMID: 32972343 DOI: 10.2174/1568026620666200924115611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022]
Abstract
Flavonoids are compounds based on a 2-phenylchromonone scaffold. Flavonoids can be divided into flavonoids, flavonols, dihydroflavones, anthocyanins, chalcones and diflavones according to the oxidation degree of the central tricarbonyl chain, the connection position of B-ring (2-or 3-position), and whether the tricarbonyl chain forms a ring or not. There are a variety of biological activities about flavonoids, such as anti-inflammatory activity, anti-oxidation and anti-tumor activity, and the antiinflammatory activity is apparent. This paper reviews the anti-inflammatory activities and mechanisms of flavonoids and their derivatives reported in China and abroad from 2011 till date (2011-2020), in order to find a good drug scaffold for the study of anti-inflammatory activities.
Collapse
Affiliation(s)
- Chen Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meng-Yuan Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ke Wang
- Center of Tobacco Industry Development, Xuanzhou District, Xuancheng, 242000, China
| | - Jing Liu
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, China,Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Guang-Ping Tai
- Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, China
| | - Zhao-Ting Zhang
- Center of Tobacco Industry Development, Xuanzhou District, Xuancheng, 242000, China
| | - Ban-Feng Ruan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China,Key Lab of Biofabrication of Anhui Higher Education, Hefei University, Hefei 230601, China
| |
Collapse
|
32
|
Sugiyama T, Matsushima M, Ohdachi T, Hashimoto N, Hasegawa Y, Yokoi K, Kawabe T. Involvement of heme oxygenase-1 in suppression of T cell activation by quercetin. Immunopharmacol Immunotoxicol 2020; 42:295-305. [PMID: 32397768 DOI: 10.1080/08923973.2020.1759623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM Acute rejection is still a major problem in transplantation and one of the most important causes of late graft loss. Cyclosporine and tacrolimus are widely used for suppression of T cell function to avoid graft rejection, but long-term use of these compounds is associated with serious toxicities. Quercetin, a flavonoid found in fruits and vegetables, has been demonstrated to exhibit cytoprotective effects through the induction of heme oxygenase (HO) -1, an enzyme involved in heme catabolism. We hypothesized that quercetin induces HO-1 in T cells and suppresses T cell function via HO-1. In the present study, we showed that quercetin suppressed the A23187-mediated expression of interleukin (IL) -2 in T cells. METHODS Mouse splenocytes, enriched T cells, and EL4 cells, a mouse T cell line, were treated with quercetin, and then stimulated with A23187, a calcium ionophore, concanavalin A, or anti-CD3ε and anti-CD28 antibodies. Cell proliferation, expression of IL-2, calcium mobilization, apoptosis, cell cycle, and phosphorylation of extracellular signal-regulated kinase (ERK) were investigated. RESULTS Quercetin induced HO-1, and this induction of HO-1 was implicated in the suppression of IL-2 production. Furthermore, the induction of HO-1 by quercetin suppressed the influx of calcium ions, a known trigger of IL-2 production. Additionally, quercetin suppressed T cell proliferation through promotion of cell cycle arrest via HO-1 induction, but quercetin did not induce apoptosis. To investigate the role of the signal transduction pathway in quercetin's effect on cell proliferation, we evaluated the phosphorylation of ERK in T cells. Quercetin suppressed the A23187-mediated stimulation of ERK, an effect that was mediated through HO-1. These results suggested that HO-1 is involved in the suppressive effects of quercetin on T cell activation and proliferation. CONCLUSION Our findings indicate that the quercetin may be a promising candidate for inducing HO-1 in T cells, thereby facilitating immunosuppressive effects.
Collapse
Affiliation(s)
- Tomoshi Sugiyama
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyoko Matsushima
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Ohdachi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
33
|
Boots AW, Veith C, Albrecht C, Bartholome R, Drittij MJ, Claessen SMH, Bast A, Rosenbruch M, Jonkers L, van Schooten FJ, Schins RPF. The dietary antioxidant quercetin reduces hallmarks of bleomycin-induced lung fibrogenesis in mice. BMC Pulm Med 2020; 20:112. [PMID: 32349726 PMCID: PMC7191795 DOI: 10.1186/s12890-020-1142-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, lethal disease of which the etiology is still not fully understood. Current treatment comprises two FDA-approved drugs that can slow down yet not stop or reverse the disease. As IPF pathology is associated with an altered redox balance, adding a redox modulating component to current therapy might exert beneficial effects. Quercetin is a dietary antioxidant with strong redox modulating capacities that is suggested to exert part of its antioxidative effects via activation of the redox-sensitive transcription factor Nrf2 that regulates endogenous antioxidant levels. Therefore, the aim of the present study was to investigate if the dietary antioxidant quercetin can exert anti-fibrotic effects in a mouse model of bleomycin-induced pulmonary fibrogenesis through Nrf2-dependent restoration of redox imbalance. METHODS Homozygous Nrf2 deficient mice and their wildtype littermates were fed a control diet without or with 800 mg quercetin per kg diet from 7 days prior to a single 1 μg/2 μl per g BW bleomycin challenge until they were sacrificed 14 days afterwards. Lung tissue and plasma were collected to determine markers of fibrosis (expression of extracellular matrix genes and histopathology), inflammation (pulmonary gene expression and plasma levels of tumor necrosis factor-α (TNFα) and keratinocyte chemoattrachtant (KC)), and redox balance (pulmonary gene expression of antioxidants and malondialdehyde-dG (MDA)- DNA adducts). RESULTS Mice fed the enriched diet for 7 days prior to the bleomycin challenge had significantly enhanced plasma and pulmonary quercetin levels (11.08 ± 0.73 μM versus 7.05 ± 0.2 μM) combined with increased expression of Nrf2 and Nrf2-responsive genes compared to mice fed the control diet in lung tissue. Upon bleomycin treatment, quercetin-fed mice displayed reduced expression of collagen (COL1A2) and fibronectin (FN1) and a tendency of reduced inflammatory lesions (2.8 ± 0.7 versus 1.9 ± 0.8). These beneficial effects were accompanied by reduced pulmonary gene expression of TNFα and KC, but not their plasma levels, and enhanced Nrf2-induced pulmonary antioxidant defences. In Nrf2 deficient mice, no effect of the dietary antioxidant on either histology or inflammatory lesions was observed. CONCLUSION Quercetin exerts anti-fibrogenic and anti-inflammatory effects on bleomycin-induced pulmonary damage in mice possibly through modulation of the redox balance by inducing Nrf2. However, quercetin could not rescue the bleomycin-induced pulmonary damage indicating that quercetin alone cannot ameliorate the progression of IPF.
Collapse
Affiliation(s)
- Agnes W Boots
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands. .,IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, DE, Germany.
| | - Carmen Veith
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Catrin Albrecht
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, DE, Germany
| | - Roger Bartholome
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Marie-José Drittij
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Sandra M H Claessen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | | | - Leonie Jonkers
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229, ER, Maastricht, The Netherlands
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, DE, Germany
| |
Collapse
|
34
|
The HO-1 Signal Prevents HMGB1-Mediated Activation of NLRP3 Inflammasomes in Lipopolysaccharide-Induced Acute Lung Injury In Vitro. J Surg Res 2020; 247:335-343. [DOI: 10.1016/j.jss.2019.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/08/2019] [Accepted: 10/01/2019] [Indexed: 01/02/2023]
|
35
|
Shawky E, Nada AA, Ibrahim RS. Potential role of medicinal plants and their constituents in the mitigation of SARS-CoV-2: identifying related therapeutic targets using network pharmacology and molecular docking analyses. RSC Adv 2020; 10:27961-27983. [PMID: 35519104 PMCID: PMC9055652 DOI: 10.1039/d0ra05126h] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
Since the outbreak of Coronavirus disease (COVID-19) caused by SARS-CoV-2 in December 2019, there has been no vaccine or specific antiviral medication for treatment of the infection where supportive care and prevention of complications is the current management strategy. In this work, the potential use of medicinal plants and more than 16 500 of their constituents was investigated within two suggested therapeutic strategies in the fight against SARS-CoV-2 including prevention of SARS-CoV-2 RNA synthesis and replication, through targeting vital proteins and enzymes as well as modulation of the host's immunity through production of virulence factors. Molecular docking studies on the viral enzymes 3Clpro, PLpro and RdRp suggested rocymosin B, verbascoside, rutin, caftaric acid, luteolin 7-rutinoside, fenugreekine and cyanidin 3-(6′′-malonylglucoside) as promising molecules for further drug development. Meanwhile, the medicinal plants Glycyrrhiza glabra, Hibiscus sabdariffa, Cichorium intybus, Chrysanthemum coronarium, Nigella sativa, Anastatica hierochuntica, Euphorbia species, Psidium guajava and Epilobium hirsutum were enriched in compounds with the multi-targets PTGS2, IL2, IL1b, VCAM1 and TNF such as quercetin, ursolic acid, kaempferol, isorhamnetin, luteolin, glycerrhizin and apigenin. Enriched pathways of the molecular targets included cytokine–cytokine receptor interaction, TNF signaling pathway, NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, NF-kappa B signaling pathway and JAK-STAT3 signaling pathway which are all closely related to inflammatory, innate and adaptive immune responses. The present study identified natural compounds targeting SARS-CoV-2 for further in vitro and in vivo studies and emphasizes the potential role of medicinal plants in the mitigation of SARS-CoV-2. Since the outbreak of Coronavirus disease (COVID-19) caused by SARS-CoV-2 in December 2019, there has been no vaccine or specific antiviral medication for treatment of the infection where supportive care and prevention of complications is the current management strategy.![]()
Collapse
Affiliation(s)
- Eman Shawky
- Department of Pharmacognosy
- Faculty of Pharmacy
- Alexandria University
- Alexandria 21521
- Egypt
| | - Ahmed A. Nada
- Department of Pharmacognosy
- Faculty of Pharmacy
- Alexandria University
- Alexandria 21521
- Egypt
| | - Reham S. Ibrahim
- Department of Pharmacognosy
- Faculty of Pharmacy
- Alexandria University
- Alexandria 21521
- Egypt
| |
Collapse
|
36
|
Synergistic Effect of Quercetin in Combination with Sulfamethoxazole as New Antibacterial Agent: In Vitro and In Vivo Study. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02083-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Preparation, characterization and in-vitro efficacy of quercetin loaded liquid crystalline nanoparticles for the treatment of asthma. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Huang XT, Liu W, Zhou Y, Hao CX, Zhou Y, Zhang CY, Sun CC, Luo ZQ, Tang SY. Dihydroartemisinin attenuates lipopolysaccharide‑induced acute lung injury in mice by suppressing NF‑κB signaling in an Nrf2‑dependent manner. Int J Mol Med 2019; 44:2213-2222. [PMID: 31661121 PMCID: PMC6844637 DOI: 10.3892/ijmm.2019.4387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Acute lung injury (ALI) is a severe health issue with significant morbidity and mortality. Artemisinin is used for the treatment of fever and malaria in clinical practice. Dihydroartemisinin (DHA), the major active metabolite of artemisinin, plays a role in anti‑organizational fibrosis and anti‑neuronal cell death. However, whether DHA can attenuate ALI remains unclear. The current study thus examined the effects of DHA on ALI and primary macrophages. The results revealed that DHA attenuated lipopolysaccharide (LPS)‑induced pulmonary pathological damage. DHA suppressed the LPS‑induced infiltration of inflammatory cells, the elevation of myeloperoxidase activity, oxidative stress and the production of pro‑inflammatory cytokines, including interleukin (IL)‑1β, tumor necrosis factor‑α, and IL‑6. Furthermore, DHA reduced the LPS‑induced inflammatory response by suppressing the degradation of I‑κB and the nuclear translocation of nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB)/p65 in vivo and in vitro. DHA activated the nuclear factor‑erythroid 2 related factor 2 (Nrf2) pathway, which was suppressed by LPS treatment. The Nrf2 inhibitor, ML385, diminished the protective effects of DHA against LPS‑induced inflammation in macrophages. On the whole, the findings of this study demonstrate that DHA exerts therapeutic effects against LPS‑induced ALI by inhibiting the Nrf2‑mediated NF‑κB activation in macrophages. The present study also confirmed the therapeutic effects of DHA in mice with LPS‑induced ALI. Thus, these findings demonstrate that DHA exhibits anti‑inflammatory activities and may be a therapeutic candidate for the treatment of ALI.
Collapse
Affiliation(s)
- Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, Hunan 410078, P.R. China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Cai-Xia Hao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Chen-Yu Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Chen-Chen Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zi-Qiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
39
|
Khajah MA, Orabi KY, Hawai S, Sary HG, El-Hashim AZ. Onion bulb extract reduces colitis severity in mice via modulation of colonic inflammatory pathways and the apoptotic machinery. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:112008. [PMID: 31158441 DOI: 10.1016/j.jep.2019.112008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of nutraceutical-based products has increased in recent years due to their demonstrated efficacy and their good safety profile. Onion is one of the most commonly used plants in the traditional medicine for the management of various conditions including inflammatory and gastrointestinal diseases. However, little is known regarding the molecular mechanism of the anti-inflammatory effects of onion particularly in inflammatory bowel disease (IBD). AIM OF THE STUDY To test the anti-inflammatory effects of onion bulb extract (OBE) in an IBD mouse model and the molecular mechanisms responsible for these effects such as modulation of the expression and/or the activity profile of various pro-inflammatory molecules. MATERIALS AND METHODS Colitis was induced in mice by dextran sulfate sodium (DSS) daily administration for 5 days. Animals were sacrificed, colons were removed and the severity of the inflammation was determined by the gross and histological assessments. The colonic level/activity of various cytokines and chemokines were measured using proteome profiling-based assay, western blotting, and immunofluorescence techniques. RESULTS DSS-induced colitis was significantly reduced by the daily OBE treatment and 5-aminosalicylic acid (5-ASA, positive control), particularly at 100-200 mg/kg doses, at both the gross and histological levels. OBE was also shown to reduce colonic expression and activity of several pro-inflammatory molecules and signaling pathways, such as mitogen activated protein kinase family, mammalian target of rapamycin, cyclooxygenase-2, and tissue inhibitors of metalloproteinases. In addition, OBE reduced the expression of interferon-γ, various C-C and C-X-C chemokines, and molecules involved in the apoptotic machinery such as cytochrome c, caspase-3 and -8, B-cell lymphoma-extra-large and -2. CONCLUSIONS OBE showed anti-inflammatory actions in IBD mouse model, which is attributed, in part, to the modulation of the expression and the activity of important pro-inflammatory molecules and signaling pathways involved in the inflammatory response. These data suggest that OBE may be a promising lead in the therapeutic management of IBD.
Collapse
Affiliation(s)
- Maitham A Khajah
- Faculty of Pharmacy, Department of Pharmacology and Therapeutics, Kuwait University, PO Box 24923, Safat, 13110, Kuwait.
| | - Khaled Y Orabi
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kuwait University, PO Box 24923, Safat, 13110, Kuwait
| | - Sana Hawai
- Faculty of Pharmacy, Department of Pharmacology and Therapeutics, Kuwait University, PO Box 24923, Safat, 13110, Kuwait
| | - Hanan G Sary
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kuwait University, PO Box 24923, Safat, 13110, Kuwait
| | - Ahmed Z El-Hashim
- Faculty of Pharmacy, Department of Pharmacology and Therapeutics, Kuwait University, PO Box 24923, Safat, 13110, Kuwait
| |
Collapse
|
40
|
Wang T, Jiang L, Wei X, Dong Z, Liu B, Zhao J, Wang L, Xie P, Wang Y, Zhou S. Inhibition of miR-221 alleviates LPS-induced acute lung injury via inactivation of SOCS1/NF-κB signaling pathway. Cell Cycle 2019; 18:1893-1907. [PMID: 31208297 DOI: 10.1080/15384101.2019.1632136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The role of inflammation response has been well documented in the development of acute lung injury (ALI). However, little is known about the functions of miRNAs in the regulation of inflammation in ALI. The aim of this study was to explore the effects of miRNAs in the regulation of inflammation in ALI and to elucidate the biomolecular mechanisms responsible for these effects. The expression profiles of miRNAs in lung tissues from lipopolysaccharide (LPS)-induced ALI mice model were analyzed using a microarray. It was observed that microRNA-221-3p (miR-221) was significantly increased in lung tissues in ALI mice. The inhibition of miR-221 attenuated lung injury including decreased lung W/D weight ratio and lung permeability and survival rates of ALI mice, as well as apoptosis, whereas its agomir-mediated upregulation exacerbated the lung injury. Concomitantly, miR-221 inhibition significantly reduced LPS-induced pulmonary inflammation, while LPS-induced pulmonary inflammation was aggravated by miR-221 upregulation. Of note, suppressor of cytokine signaling-1 (SOCS1), an effective suppressor of the NF-κB signaling pathway, was found to be a direct target of miR-221 in RAW264.7 cells. Overexpression of SOCS1 by pcDNA-SOCS1 plasmids markedly reversed the miR-221 inhibition-mediated inhibitory effects on inflammation and apoptosis in LPS-treated RAW264.7 cells. Finally, it was found that miR-221 inhibition suppressed LPS induced the activation of the NF-κB signaling pathway, as demonstrated by downregulation of phosphorylated-IκBα, p-p65 and upregulation of IκBα, whilst miR-221 overexpression had an opposite result in ALI mice. Our findings demonstrate that inhibition of miR-221 can alleviate LPS-induced inflammation via inactivation of SOCS1/NF-κB signaling pathway in ALI mice.
Collapse
Affiliation(s)
- Tao Wang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Lihua Jiang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Xiaoyong Wei
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Zhenghua Dong
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Bo Liu
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Junbo Zhao
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Lijuan Wang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Peilin Xie
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Yuxia Wang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Shangyou Zhou
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| |
Collapse
|
41
|
Sant B, Kumar P, Soni AK, Kannan GM, Nagar DP, Prasad GBKS, Bhaskar ASB. Neutrophil mediated inflammatory lung damage following single Sub lethal inhalation exposure to plant protein toxin abrin in mice. Exp Lung Res 2019; 45:135-150. [PMID: 31190576 DOI: 10.1080/01902148.2019.1620898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abrin, a highly toxic plant protein found in the seeds of Abrus precatorius plant. To date, there is no antidote against abrin intoxication. Abrin is toxic by all routes of exposure, but inhalation exposure is the most toxic of all routes. Present study was conducted to evaluate the acute inhalation toxicity of aerosolized abrin in BALB/c mice. Animals were exposed to 0.2 and 0.8LC50 doses of aerosolized abrin and evaluated at 1 and 3 day post toxin exposure. Bronchoalveolar fluid from lungs was used for evaluation of markers for lung injury. Abrin inhalation exposure caused rise in LDH activity, protein content, increase in β-glucuronidase and myeloperoxidase activity. Increase in CRP activity, MMP-9 expression and recruitment of CD11b + inflammatory cells in lungs was also observed which was associated with severe inflammation and lung damage. Histopathological findings support the lung damage after abrin exposure. Our results indicate lung injury after single aerosol inhalation exposure, associated with excessive inflammation, oxidative stress, pulmonary edema followed by lung damage. These results could supplement treatment strategies and planning for therapeutic approaches against aerosolized abrin inhalation exposure.
Collapse
Affiliation(s)
- Bhavana Sant
- a Division of Pharmacology and Toxicology , Defence Research and Development Establishment , Gwalior , India
| | - Pravin Kumar
- a Division of Pharmacology and Toxicology , Defence Research and Development Establishment , Gwalior , India
| | - A K Soni
- a Division of Pharmacology and Toxicology , Defence Research and Development Establishment , Gwalior , India
| | - G M Kannan
- a Division of Pharmacology and Toxicology , Defence Research and Development Establishment , Gwalior , India
| | - D P Nagar
- a Division of Pharmacology and Toxicology , Defence Research and Development Establishment , Gwalior , India
| | - G B K S Prasad
- b School of Studies in Biochemistry , Jiwaji University , Gwalior , India
| | - A S B Bhaskar
- a Division of Pharmacology and Toxicology , Defence Research and Development Establishment , Gwalior , India
| |
Collapse
|
42
|
Wang C, Qu Z, Kong L, Xu L, Zhang M, Liu J, Yang Z. RETRACTED: Quercetin ameliorates lipopolysaccharide-caused inflammatory damage via down-regulation of miR-221 in WI-38 cells. Exp Mol Pathol 2019; 108:1-8. [PMID: 30849307 DOI: 10.1016/j.yexmp.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Given the comments of Dr Elisabeth Bik regarding this article “… the Western blot bands in all 400+ papers are all very regularly spaced and have a smooth appearance in the shape of a dumbbell or tadpole, without any of the usual smudges or stains. All bands are placed on similar looking backgrounds, suggesting they were copy/pasted from other sources, or computer generated”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Chong Wang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhenghai Qu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lingpeng Kong
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lei Xu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Mengxue Zhang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jianke Liu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhaochuan Yang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
43
|
Lin Y, Qiu D, Huang L, Zhang S, Song C, Wang B, Wu J, Chen C. A novel chalcone derivative, L2H17, ameliorates lipopolysaccharide-induced acute lung injury via upregulating HO-1 activity. Int Immunopharmacol 2019; 71:100-108. [DOI: 10.1016/j.intimp.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 12/25/2022]
|
44
|
Cheng SC, Wu YH, Huang WC, Pang JHS, Huang TH, Cheng CY. Anti-inflammatory property of quercetin through downregulation of ICAM-1 and MMP-9 in TNF-α-activated retinal pigment epithelial cells. Cytokine 2019; 116:48-60. [PMID: 30685603 DOI: 10.1016/j.cyto.2019.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/24/2022]
Abstract
Quercetin is a flavonoid polyphenolic compound present in fruits and vegetables that has proven anti-inflammatory activity. The goal of the present investigation was to investigate the effects of quercetin on tumor necrosis factor-α (TNF-α)-induced inflammatory responses via the expression of ICAM-1 and MMP-9 in human retinal pigment epithelial cells (ARPE-19 cells). Real-time PCR, gelatin zymography, and Western blot analysis showed that TNF-α induced the expression of ICAM-1 and MMP-9 protein and mRNA in a time-dependent manner. These effects were attenuated by pretreatment of ARPE-19 cells with quercetin. Quercetin inhibited the TNF-α-induced phosphorylation of PKCδ, JNK1/2, ERK1/2. Quercetin, rottlerin, SP600125 and U0126 attenuated TNF-α-stimulated c-Jun phosphorylation and AP-1-Luc activity. Pretreatment with quercetin, rottlerin, SP600125, or Bay 11-7082 attenuated TNF-α-induced NF-κB (p65) phosphorylation, translocation and RelA/p65-Luc activity. TNF-α significantly increased MMP-9 promoter activity and THP-1 cell adherence, and these effects were attenuated by pretreatment with quercetin, rottlerin, SP600125, U0126, tanshinone IIA or Bay 11-7082. These results suggest that quercetin attenuates TNF-α-induced ICAM-1 and MMP-9 expression in ARPE-19 cells via the MEK1/2-ERK1/2 and PKCδ-JNK1/2-c-Jun or NF-κB pathways.
Collapse
Affiliation(s)
- Shu-Chen Cheng
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hong Wu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tse-Hung Huang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
45
|
Cumaoğlu A, Ağkaya AÖ, Özkul Z. Effect of the Lipid Peroxidation Product 4-Hydroxynonenal on Neuroinflammation in Microglial Cells: Protective Role of Quercetin and Monochloropivaloylquercetin. Turk J Pharm Sci 2018; 16:54-61. [PMID: 32454696 DOI: 10.4274/tjps.58966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022]
Abstract
Objectives The lipid peroxidation-derived aldehyde 4-hydroxynonenal (HNE) has been implicated in a number of oxidative stress-induced inflammatory pathologies such as neurodegenerative diseases and aging. In this regard, we investigated the effects of HNE on neuroinflammatory responses by measuring cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) induction with cytokine production. In addition, we measured nuclear factor erythroid 2-related factor 2 (Nrf-2)/Kelch-like ECH-associated protein 1 (Keap1) signaling proteins, and antioxidant enzymes heme oxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate dehydrogenase, quinone 1 (NQO1), and compared the results with quercetin and monochloropivaloylquercetin (MPQ) pretreated microglial cells. Materials and Methods Cytotoxicity was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and production of cytokines was determined by cytokine array. Furthermore, intracellular Nfr2/Keap1 signaling proteins, HO-1, NQO1, and COX-2 expression were analyzed by western blot in 2.5 μM HNE treated BV-2 cells. Results Inducible nitric oxide synthase (iNOS) and COX-2 mRNA levels were measured with reverse transcription-quantitative polymerase chain reaction. HNE induced both COX-2 mRNA and protein levels, iNOS mRNA expression, and cytokine production. In addition, HNE markedly increased Keap1 levels and decreased cytoplasmic Nrf-2 expression with antioxidant enzyme HO-1 levels. Quercetin and monochloropivaloylquercetin treatment alleviated neuroinflammatory responses in microglial cells, by decreasing COX-2 mRNA expression. Monochloropivaloylquercetin decreased cytoplasmic Keap1 levels and increased nuclear translocation of Nrf-2 resulted in induction of HO-1 and NQO1 expression. Conclusion These results suggest that HNE could be a link between oxidative stress and inflammation in BV-2 microglia cells. In particular, monochloropivaloylquercetin alleviated inflammation, probably by decreasing the expression of proinflammatory genes and strengthening the antioxidant defense system.
Collapse
Affiliation(s)
- Ahmet Cumaoğlu
- Erciyes University, Faculty of Pharmacy, Department of Biochemistry, Kayseri, Turkey
| | - Aslı Özge Ağkaya
- Erciyes University, Faculty of Pharmacy, Department of Biochemistry, Kayseri, Turkey
| | - Zehra Özkul
- Erciyes University, Faculty of Pharmacy, Department of Biochemistry, Kayseri, Turkey
| |
Collapse
|
46
|
Wang XF, Song SD, Li YJ, Hu ZQ, Zhang ZW, Yan CG, Li ZG, Tang HF. Protective Effect of Quercetin in LPS-Induced Murine Acute Lung Injury Mediated by cAMP-Epac Pathway. Inflammation 2018; 41:1093-1103. [PMID: 29569077 DOI: 10.1007/s10753-018-0761-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quercetin (Que) as an abundant flavonol element possesses potent antioxidative properties and has protective effect in lipopolysaccharide (LPS)-induced acute lung injury (ALI), but the specific mechanism is still unclear, so we investigated the effect of Que from in vivo and in vitro studies and the related mechanism of cAMP-PKA/Epac pathway. The results in mice suggested that Que can inhibit the release of inflammatory cytokine, block neutrophil recruitment, and decrease the albumin leakage in dose-dependent manners. At the same time, Que can increase the cAMP content of lung tissue, and Epac content, except PKA. The results in epithelial cell (MLE-12) suggested that Que also can inhibit the inflammatory mediators keratinocyte-derived chemokines release after LPS stimulation; Epac inhibitor ESI-09 functionally antagonizes the inhibitory effect of Que; meanwhile, PKA inhibitor H89 functionally enhances the inhibitory effect of Que. Overexpression of Epac1 in MLE-12 suggested that Epac1 enhance the effect of Que. All those results suggested that the protective effect of quercetin in ALI is involved in cAMP-Epac pathway.
Collapse
Affiliation(s)
- Xue-Feng Wang
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Shun-de Song
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Jun Li
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zheng Qiang Hu
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhe-Wen Zhang
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Guang Yan
- Department of Pathogenic Biology and Immunology, Southeast University School of Medicine, Nanjing, 210009, China
| | - Zi-Gang Li
- Department of Anesthesiology, Women's Hospital,School of Medicine, Zhejiang University , Hangzhou, 310006, China
| | - Hui-Fang Tang
- Zhejiang Respiratory Drugs Research Laboratory, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Dong SA, Zhang Y, Yu JB, Li XY, Gong LR, Shi J, Kang YY. Carbon monoxide attenuates lipopolysaccharide-induced lung injury by mitofusin proteins via p38 MAPK pathway. J Surg Res 2018; 228:201-210. [DOI: 10.1016/j.jss.2018.03.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/01/2018] [Accepted: 03/15/2018] [Indexed: 01/31/2023]
|
48
|
Zhao H, Ma Y, Zhang L. Low-molecular-mass hyaluronan induces pulmonary inflammation by up-regulation of Mcl-1 to inhibit neutrophil apoptosis via PI3K/Akt1 pathway. Immunology 2018; 155:387-395. [PMID: 29975419 DOI: 10.1111/imm.12981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Although low-molecular-mass hyaluronan (LMMHA) has been implicated in pulmonary inflammatory diseases, the signalling pathway of LMMHA (200 000 molecular weight) that initiates the inflammatory response in lung is still unknown. In this study, we evaluate the role of phosphoinositide 3-kinase (PI3K) and its downstream signalling pathway in LMMHA-induced lung inflammatory responses. Our results indicate that pharmacological inhibition of PI3K or genetic deletion of Akt1 enhances neutrophil apoptosis, attenuates neutrophil influx into the lungs of mice and diminishes the expression of pro-inflammatory factors such as interleukin-6, keratinocyte cell-derived chemokine and pro-matrix metalloproteinase-9 in bronchoalveolar lavage fluid after intratracheal administration of LMMHA. More importantly, we found that PI3K/Akt1 participates in LMMHA-induced inflammatory responses, which are mainly mediated by the myeloid leukaemia cell differentiation protein (Mcl-1). Our study suggests that LMMHA induced significantly increased levels of inflammatory factors in bronchoalveolar lavage fluid and activation of the PI3K/Akt1 pathway, which up-regulates the expression of the anti-apoptotic protein Mcl-1 and inhibits the activation of caspase-3, thereby suppressing neutrophil apoptosis to trigger lung inflammation. These findings reveal a novel molecular mechanism underlying sterile inflammation and provides a new potential target for the treatment of pulmonary disease.
Collapse
Affiliation(s)
- Hang Zhao
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yating Ma
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Leifang Zhang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
49
|
Khalil SR, Mohammed AT, Abd El-fattah AH, Zaglool AW. Intermediate filament protein expression pattern and inflammatory response changes in kidneys of rats receiving doxorubicin chemotherapy and quercetin. Toxicol Lett 2018; 288:89-98. [DOI: 10.1016/j.toxlet.2018.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/28/2022]
|
50
|
Gao Y, Wang N, Li RH, Xiao YZ. The Role of Autophagy and the Chemokine (C-X-C Motif) Ligand 16 During Acute Lung Injury in Mice. Med Sci Monit 2018; 24:2404-2412. [PMID: 29677174 PMCID: PMC5928852 DOI: 10.12659/msm.906016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Acute lung injury (ALI) is responsible for mortality in hospitalized patients. Autophagy can negatively regulate inflammatory response, and CXCL16 (chemokine (C-X-C motif) ligand 16) is a kind of chemokine, which is closely related to the inflammatory response. However, the relationship between autophagy and CXCL16 in ALI is still unclear. This study aimed to investigate the role of autophagy and chemokine CXCL16 in ALI in mice. Material/Methods Thirty-two male C57BL/6 mice were divided into four groups. The control group (C group) was given normal saline through intraperitoneal injection. The L group was given LPS (lipopolysaccharide) at 30 mg/kg to construct an ALI model. The 3-MA group received an intraperitoneal injection of inhibitor of autophagy 3-methyladenine at 15 mg/kg, 30 minutes before LPS injection. The anti-CXCL16 group was given 20 mg/kg of CXCL16 monoclonal antibody 30 minutes before the LPS injection. Results In the 3-MA Group, the level of histological analysis, lung wet/dry ratio, total protein of BAL (bronchoalveolar lavage fluid) and TNF-α level were higher than the L group (p<0.05), the level of autophagy was lower than the L group (p<0.05), and the level of CXCL16 was higher than the L group (p<0.05). In the anti-CXCL16 group, the level of histological analysis, lung wet/dry ratio, BAL protein, and TNF-α level were declined compared to the L group (p<0.05), but there was no statistically significant difference in expression of CXCL16 detected by ELISA between the anti-CXCL16 group and the L group (p>0.05). Conclusions Autophagy played a protective role in ALI induced by LPS in mice. Autophagy could regulate the level of CXCL16. The chemokine CXCL16 could exacerbate ALI.
Collapse
Affiliation(s)
- Ye Gao
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Ni Wang
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Rui H Li
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Yang Z Xiao
- Department of Emergency Anesthesia, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|