1
|
Brasier N, Wang J, Gao W, Sempionatto JR, Dincer C, Ates HC, Güder F, Olenik S, Schauwecker I, Schaffarczyk D, Vayena E, Ritz N, Weisser M, Mtenga S, Ghaffari R, Rogers JA, Goldhahn J. Applied body-fluid analysis by wearable devices. Nature 2024; 636:57-68. [PMID: 39633192 DOI: 10.1038/s41586-024-08249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/18/2024] [Indexed: 12/07/2024]
Abstract
Wearable sensors are a recent paradigm in healthcare, enabling continuous, decentralized, and non- or minimally invasive monitoring of health and disease. Continuous measurements yield information-rich time series of physiological data that are holistic and clinically meaningful. Although most wearable sensors were initially restricted to biophysical measurements, the next generation of wearable devices is now emerging that enable biochemical monitoring of both small and large molecules in a variety of body fluids, such as sweat, breath, saliva, tears and interstitial fluid. Rapidly evolving data analysis and decision-making technologies through artificial intelligence has accelerated the application of wearables around the world. Although recent pilot trials have demonstrated the clinical applicability of these wearable devices, their widespread adoption will require large-scale validation across various conditions, ethical consideration and sociocultural acceptance. Successful translation of wearable devices from laboratory prototypes into clinical tools will further require a comprehensive transitional environment involving all stakeholders. The wearable device platforms must gain acceptance among different user groups, add clinical value for various medical indications, be eligible for reimbursements and contribute to public health initiatives. In this Perspective, we review state-of-the-art wearable devices for body-fluid analysis and their translation into clinical applications, and provide insight into their clinical purpose.
Collapse
Affiliation(s)
- Noé Brasier
- Collegium Helveticum, Zurich, Switzerland.
- Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland.
| | - Joseph Wang
- Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Juliane R Sempionatto
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- Munich Institute of Biomedical Engineering - MIBE, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - H Ceren Ates
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Firat Güder
- Department of Bioengineering, Imperial College London, London, UK
| | - Selin Olenik
- Department of Bioengineering, Imperial College London, London, UK
| | - Ivo Schauwecker
- European Patients Academy on Therapeutic Innovation (EUPATI CH), Zurich, Switzerland
- Digital Trial Innovation Platform (dtip), ETH Zurich, Zurich, Switzerland
| | | | - Effy Vayena
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Nicole Ritz
- University Children's Hospital Basel UKBB, Basel, Switzerland
- Paediatric Infectious Diseases and Vaccinology, University Children's Hospital Basel, Basel, Switzerland
- Department of Paediatrics and Paediatric Infectious Diseases, Children's Hospital, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Maja Weisser
- Department of Health Systems, Impact Evaluation and Policy, Ifakara Health Institute, Ifakara, Tanzania
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Sally Mtenga
- Department of Health Systems, Impact Evaluation and Policy, Ifakara Health Institute, Ifakara, Tanzania
| | - Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Epicore Biosystems Inc, Cambridge, MA, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Jörg Goldhahn
- Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
- Digital Trial Innovation Platform (dtip), ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Heng W, Yin S, Min J, Wang C, Han H, Shirzaei Sani E, Li J, Song Y, Rossiter HB, Gao W. A smart mask for exhaled breath condensate harvesting and analysis. Science 2024; 385:954-961. [PMID: 39208112 DOI: 10.1126/science.adn6471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Recent respiratory outbreaks have garnered substantial attention, yet most respiratory monitoring remains confined to physical signals. Exhaled breath condensate (EBC) harbors rich molecular information that could unveil diverse insights into an individual's health. Unfortunately, challenges related to sample collection and the lack of on-site analytical tools impede the widespread adoption of EBC analysis. Here, we introduce EBCare, a mask-based device for real-time in situ monitoring of EBC biomarkers. Using a tandem cooling strategy, automated microfluidics, highly selective electrochemical biosensors, and a wireless reading circuit, EBCare enables continuous multimodal monitoring of EBC analytes across real-life indoor and outdoor activities. We validated EBCare's usability in assessing metabolic conditions and respiratory airway inflammation in healthy participants, patients with chronic obstructive pulmonary disease or asthma, and patients after COVID-19 infection.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Ehsan Shirzaei Sani
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Harry B Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, Institute for Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
3
|
Dasgupta S, Ghosh N, Bhattacharyya P, Roy Chowdhury S, Chaudhury K. Metabolomics of asthma, COPD, and asthma-COPD overlap: an overview. Crit Rev Clin Lab Sci 2023; 60:153-170. [PMID: 36420874 DOI: 10.1080/10408363.2022.2140329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The two common progressive lung diseases, asthma and chronic obstructive pulmonary disease (COPD), are the leading causes of morbidity and mortality worldwide. Asthma-COPD overlap, referred to as ACO, is another complex pulmonary disease that manifests itself with features of both asthma and COPD. The disease has no clear diagnostic or therapeutic guidelines, thereby making both diagnosis and treatment challenging. Though a number of studies on ACO have been documented, gaps in knowledge regarding the pathophysiologic mechanism of this disorder exist. Addressing this issue is an urgent need for improved diagnostic and therapeutic management of the disease. Metabolomics, an increasingly popular technique, reveals the pathogenesis of complex diseases and holds promise in biomarker discovery. This comprehensive narrative review, comprising 99 original research articles in the last five years (2017-2022), summarizes the scientific advances in terms of metabolic alterations in patients with asthma, COPD, and ACO. The analytical tools, nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS), commonly used to study the expression of the metabolome, are discussed. Challenges frequently encountered during metabolite identification and quality assessment are highlighted. Bridging the gap between phenotype and metabotype is envisioned in the future.
Collapse
Affiliation(s)
- Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
4
|
Teng Y, Huang Y, Danfeng X, Tao X, Fan Y. The Role of Probiotics in Skin Photoaging and Related Mechanisms: A Review. Clin Cosmet Investig Dermatol 2022; 15:2455-2464. [PMID: 36420112 PMCID: PMC9677255 DOI: 10.2147/ccid.s388954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 07/21/2023]
Abstract
Solar ultraviolet radiation (UVR) is the primary pathogenetic factor in skin photoaging. It can disrupt cellular homeostasis by damaging DNA, inducing an inflammatory cascade, immunosuppression, and extracellular matrix (ECM) remodeling, resulting in a variety of dermatologic conditions. The skin microbiome plays an important role in the homeostasis and maintenance of healthy skin. Emerging evidence has indicated that highly diverse gut microbiome may also have an impact on the skin health, referred to as the gut-skin axis (GSA). Oral and topical probiotics through modulating the skin microbiome and gut-skin microbial interactions could serve as potential management to prevent and treat the skin photoaging by multiple pathways including reducing oxidative stress, inhibiting ECM remodeling, inhibiting the inflammatory cascade reaction, and maintaining immune homeostasis. In this review, the effects of oral and topical probiotics in skin photoaging and related mechanisms are both described systematically and comprehensively.
Collapse
Affiliation(s)
- Yan Teng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Youming Huang
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xu Danfeng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaohua Tao
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Yibin Fan
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
5
|
Reinke SN, Chaleckis R, Wheelock CE. Metabolomics in pulmonary medicine - extracting the most from your data. Eur Respir J 2022; 60:13993003.00102-2022. [PMID: 35618271 PMCID: PMC9386331 DOI: 10.1183/13993003.00102-2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/14/2022] [Indexed: 11/24/2022]
Abstract
The metabolome enables unprecedented insight into biochemistry, providing an integrated signature of the genome, transcriptome, proteome and exposome. Measurement requires rigorous protocols combined with specialised data analysis to achieve its promise.https://bit.ly/3yPiYkQ
Collapse
Affiliation(s)
- Stacey N Reinke
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Romanas Chaleckis
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.,Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden .,Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Hemmendinger M, Sauvain JJ, Hopf NB, Suárez G, Guseva Canu I. Challenges in Quantifying 8-OHdG and 8-Isoprostane in Exhaled Breath Condensate. Antioxidants (Basel) 2022; 11:antiox11050830. [PMID: 35624694 PMCID: PMC9138069 DOI: 10.3390/antiox11050830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Exhaled breath condensate (EBC) has attracted substantial interest in the last few years, enabling the assessment of airway inflammation with a non-invasive method. Concentrations of 8-Hydroxydesoxyguanosine (8-OHdG) and 8-isoprostane in EBC have been suggested as candidate biomarkers for lung diseases associated with inflammation and oxidative stress. EBC is a diluted biological matrix and consequently, requires highly sensitive chemical analytic methods (picomolar range) for biomarker quantification. We developed a new liquid chromatography coupled to tandem mass spectrometry method to quantify 8-OHdG and 8-isoprostane in EBC simultaneously. We applied this novel biomarker method in EBC obtained from 10 healthy subjects, 7 asthmatic subjects, and 9 subjects with chronic obstructive pulmonary disease. Both biomarkers were below the limit of detection (LOD) despite the good sensitivity of the chemical analytical method (LOD = 0.5 pg/mL for 8-OHdG; 1 pg/mL for 8-isoprostane). This lack of detection might result from factors affecting EBC collections. These findings are in line with methodological concerns already raised regarding the reliability of EBC collection for quantification of 8-OHdG and 8-isoprostane. Precaution is therefore needed when comparing literature results without considering methodological issues relative to EBC collection and analysis. Loss of analyte during EBC collection procedures still needs to be resolved before using these oxidative stress biomarkers in EBC.
Collapse
|
7
|
Abstract
Background COVID-19 is a highly contagious respiratory disease that can be transmitted through human exhaled breath. It has caused immense loss and has challenged the healthcare sector. It has affected the economy of countries and thereby affected numerous sectors. Analysis of human breath samples is an attractive strategy for rapid diagnosis of COVID-19 by monitoring breath biomarkers. Content Breath collection is a noninvasive process. Various technologies are employed for detection of breath biomarkers like mass spectrometry, biosensors, artificial learning, and machine learning. These tools have low turnaround time, robustness, and provide onsite results. Also, MS-based approaches are promising tools with high speed, specificity, sensitivity, reproducibility, and broader coverage, as well as its coupling with various chromatographic separation techniques providing better clinical and biochemical understanding of COVID-19 using breath samples. Summary Herein, we have tried to review the MS-based approaches as well as other techniques used for the analysis of breath samples for COVID-19 diagnosis. We have also highlighted the different breath analyzers being developed for COVID-19 detection.
Collapse
Affiliation(s)
- Jyoti Kanwar Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur-342005, Rajasthan, India
| | - Mithu Banerjee
- Address correspondence to this author at: AIIMS, Road, MI Phase-2, Basni, Jodhpur, Rajasthan, India—342005. E-mail:
| |
Collapse
|
8
|
Yuan ZC, Hu B. Mass Spectrometry-Based Human Breath Analysis: Towards COVID-19 Diagnosis and Research. JOURNAL OF ANALYSIS AND TESTING 2021; 5:287-297. [PMID: 34422436 PMCID: PMC8364943 DOI: 10.1007/s41664-021-00194-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
COVID-19 is a highly contagious respiratory disease that can be infected through human exhaled breath. Human breath analysis is an attractive strategy for rapid diagnosis of COVID-19 in a non-invasive way by monitoring breath biomarkers. Mass spectrometry (MS)-based approaches offer a promising analytical platform for human breath analysis due to their high speed, specificity, sensitivity, reproducibility, and broad coverage, as well as its versatile coupling methods with different chromatographic separation, and thus can lead to a better understanding of the clinical and biochemical processes of COVID-19. Herein, we try to review the developments and applications of MS-based approaches for multidimensional analysis of COVID-19 breath samples, including metabolites, proteins, microorganisms, and elements. New features of breath sampling and analysis are highlighted. Prospects and challenges on MS-based breath analysis related to COVID-19 diagnosis and study are discussed.
Collapse
Affiliation(s)
- Zi-Cheng Yuan
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632 China
| | - Bin Hu
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
9
|
Metabolomics in asthma: A platform for discovery. Mol Aspects Med 2021; 85:100990. [PMID: 34281719 DOI: 10.1016/j.mam.2021.100990] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Asthma, characterized by airway hyperresponsiveness, inflammation and remodeling, is a chronic airway disease with complex etiology. Severe asthma is characterized by frequent exacerbations and poor therapeutic response to conventional asthma therapy. A clear understanding of cellular and molecular mechanisms of asthma is critical for the discovery of novel targets for optimal therapeutic control of asthma. Metabolomics is emerging as a powerful tool to elucidate novel disease mechanisms in a variety of diseases. In this review, we summarize the current status of knowledge in asthma metabolomics at systemic and cellular levels. The findings demonstrate that various metabolic pathways, related to energy metabolism, macromolecular biosynthesis and redox signaling, are differentially modulated in asthma. Airway smooth muscle cell plays pivotal roles in asthma by contributing to airway hyperreactivity, inflammatory mediator release and remodeling. We posit that metabolomic profiling of airway structural cells, including airway smooth muscle cells, will shed light on molecular mechanisms of asthma and airway hyperresponsiveness and help identify novel therapeutic targets.
Collapse
|
10
|
Khoubnasabjafari M, Mogaddam MRA, Rahimpour E, Soleymani J, Saei AA, Jouyban A. Breathomics: Review of Sample Collection and Analysis, Data Modeling and Clinical Applications. Crit Rev Anal Chem 2021; 52:1461-1487. [PMID: 33691552 DOI: 10.1080/10408347.2021.1889961] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolomics research is rapidly gaining momentum in disease diagnosis, on top of other Omics technologies. Breathomics, as a branch of metabolomics is developing in various frontiers, for early and noninvasive monitoring of disease. This review starts with a brief introduction to metabolomics and breathomics. A number of important technical issues in exhaled breath collection and factors affecting the sampling procedures are presented. We review the recent progress in metabolomics approaches and a summary of their applications on the respiratory and non-respiratory diseases investigated by breath analysis. Recent reports on breathomics studies retrieved from Scopus and Pubmed were reviewed in this work. We conclude that analyzing breath metabolites (both volatile and nonvolatile) is valuable in disease diagnoses, and therefore believe that breathomics will turn into a promising noninvasive discipline in biomarker discovery and early disease detection in personalized medicine. The problem of wide variations in the reported metabolite concentrations from breathomics studies should be tackled by developing more accurate analytical methods and sophisticated numerical analytical alogorithms.
Collapse
Affiliation(s)
- Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center and Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Li Z, Bai X, Peng T, Yi X, Luo L, Yang J, Liu J, Wang Y, He T, Wang X, Zhu H, Wang H, Tao K, Zheng Z, Su L, Hu D. New Insights Into the Skin Microbial Communities and Skin Aging. Front Microbiol 2020; 11:565549. [PMID: 33193154 PMCID: PMC7649423 DOI: 10.3389/fmicb.2020.565549] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Although it is well-known that human skin aging is accompanied by an alteration in the skin microbiota, we know little about how the composition of these changes during the course of aging and the effects of age-related skin microbes on aging. Using 16S ribosomal DNA and internal transcribed spacer ribosomal DNA sequencing to profile the microbiomes of 160 skin samples from two anatomical sites, the cheek and the abdomen, on 80 individuals of varying ages, we developed age-related microbiota profiles for both intrinsic skin aging and photoaging to provide an improved understanding of the age-dependent variation in skin microbial composition. According to the landscape, the microbial composition in the Children group was significantly different from that in the other age groups. Further correlation analysis with clinical parameters and functional prediction in each group revealed that high enrichment of nine microbial communities (i.e., Cyanobacteria, Staphylococcus, Cutibacterium, Lactobacillus, Corynebacterium, Streptococcus, Neisseria, Candida, and Malassezia) and 18 pathways (such as biosynthesis of antibiotics) potentially affected skin aging, implying that skin microbiomes may perform key functions in skin aging by regulating the immune response, resistance to ultraviolet light, and biosynthesis and metabolism of age-related substances. Our work re-establishes that skin microbiomes play an important regulatory role in the aging process and opens a new approach for targeted microbial therapy for skin aging.
Collapse
Affiliation(s)
- Zichao Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tingwei Peng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaowei Yi
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jizhong Yang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xujie Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ke Tao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
12
|
Development and validation of exhaled breath condensate microRNAs to identify and endotype asthma in children. PLoS One 2019; 14:e0224983. [PMID: 31703106 PMCID: PMC6839869 DOI: 10.1371/journal.pone.0224983] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/26/2019] [Indexed: 12/26/2022] Open
Abstract
Detection and quantification of microRNAs (miRNAs) in exhaled breath condensate (EBC) has been poorly explored. Therefore we aimed to assess miRNAs in EBC as potential biomarkers to diagnose and endotype asthma in school aged children. In a cross sectional, nested case control study, all the asthmatic children (n = 71) and a random sample of controls (n = 115), aged 7 to 12 years, attending 71 classrooms from 20 local schools were selected and arbitrarily allocated to the development or validation set. Participants underwent skin-prick testing, spirometry with bronchodilation, had exhaled level of nitric oxide determined and EBC collected. Based on previous studies eleven miRNAs were chosen and analyzed in EBC by reverse transcription-quantitative real-time PCR. Principal component analysis was applied to identify miRNAs profiles and associations were estimated using regression models. In the development set (n = 89) two clusters of miRNAs were identified. After adjustments, cluster 1 and three of its clustered miRNAs, miR-126-3p, miR-133a-3p and miR-145-5p were positively associated with asthma. Moreover miR-21-5p was negatively associated with symptomatic asthma and positively associated with positive bronchodilation without symptoms. An association was also found between miR-126-3p, cluster 2 and one of its clustered miRNA, miR-146-5p, with higher FEF25-75 reversibility. These findings were confirmed in the validation set (n = 97) where two identical clusters of miRNAs were identified. Additional significant associations were observed between miR-155-5p with symptomatic asthma, negative bronchodilation with symptoms and positive bronchodilation without symptoms. We showed that microRNAs can be measured in EBC of children and may be used as potential biomarkers of asthma, assisting asthma endotype establishment.
Collapse
|
13
|
Núñez-Naveira L, Mariñas-Pardo LA, Montero-Martínez C. Mass Spectrometry Analysis of the Exhaled Breath Condensate and Proposal of Dermcidin and S100A9 as Possible Markers for Lung Cancer Prognosis. Lung 2019; 197:523-531. [PMID: 31115649 DOI: 10.1007/s00408-019-00238-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/11/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION New sampling techniques to analyse lung diseases, such as exhaled breath condensate (EBC), are a breakthrough in research field since they are less invasive and less traumatic for the patients compared to lung biopsies. Nevertheless, there is an increasing need to optimize not only the sampling protocols but the storage and processing of specimens to get accurate results. METHODS Exhaled breath condensate was sampled employing the ECoScreen device. Concentrated protein was obtained after ultracentrifugation, lyophilization and reversed-phase chromatography. MALDI-time of flight (TOF)/TOF mass spectrometry (MS) was applied to determine the protein profile in EBC. Commercially available ELISA kits were used to detect the selected biomarker in the EBC after MALDI-MS proteins identification. RESULTS The obtained EBC volume after two periods of 10 min doubled the amount obtained after 20 min. One hundred peptides were detected by MALDI-MS, and 18 proteins were identified after reversed-phase chromatography concentration. Dermcidin (P81605), S100A9 (P06702) and Cathepsin G (P08311) were selected to be analysed by ELISA. Dermcidin and S100A9 expression were statistically higher in lung cancer versus healthy volunteers. VEGF concentrations decreased, respectively, by 5.94 and 11.42-fold after 1 and 2 years of frozen EBC preservation in parallel with the declined number of proteins identified by MALDI-MS. CONCLUSION Exhaled breath condensate analysis combined with MS technique may become a valuable method for lung cancer screening and Dermcidin and S100A9 may serve as biomarkers for lung cancer diagnosis or prognosis.
Collapse
Affiliation(s)
- Laura Núñez-Naveira
- University Hospital Complex of A Coruña (CHUAC), As Xubias de Arriba, 84, 15006, A Coruña, Spain.,Biomedical Research Institute of A Coruña (INIBIC), As Xubias de Arriba, 84, 15006, A Coruña, Spain
| | - Luis Antonio Mariñas-Pardo
- University Hospital Complex of A Coruña (CHUAC), As Xubias de Arriba, 84, 15006, A Coruña, Spain. .,Biomedical Research Institute of A Coruña (INIBIC), As Xubias de Arriba, 84, 15006, A Coruña, Spain.
| | - Carmen Montero-Martínez
- University Hospital Complex of A Coruña (CHUAC), As Xubias de Arriba, 84, 15006, A Coruña, Spain
| |
Collapse
|
14
|
Chandler JD, Horati H, Walker DI, Pagliano E, Tirouvanziam R, Veltman M, Scholte BJ, Janssens HM, Go YM, Jones DP. Determination of thiocyanate in exhaled breath condensate. Free Radic Biol Med 2018; 126:334-340. [PMID: 30144632 PMCID: PMC6166650 DOI: 10.1016/j.freeradbiomed.2018.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 01/09/2023]
Abstract
Thiocyanate is a heme peroxidase substrate that scavenges oxidants produced during inflammation and regulates host defense. In cystic fibrosis (CF) patients, increased airway thiocyanate levels are associated with improved lung function. Research on airway thiocyanate is limited, however, because convenient non-invasive airway sampling methods, such as exhaled breath condensate (EBC), yield low concentrations that are difficult to detect with available assays. In the present study, we developed a method for the determination of thiocyanate in dilute samples using isotope dilution headspace gas chromatography-coupled high-resolution, accurate-mass mass spectrometry (GC-HRMS). The method reliably quantified as little as 4 pmol thiocyanate in EBC and could detect even lower amounts. We successfully measured thiocyanate in EBC from seven healthy donors, with a mean ± SD of 27 ± 16 nM and a median inter-assay coefficient of variation of 10.4% over six months. The method was applied to other biological fluids (plasma from the same visit as EBC donation; bronchoalveolar lavage fluid [BALF] from infants with CF; and healthy adult mouse BALF), giving reliable quantification of samples ranging from 10 nM to 100 µM. Thiocyanate concentrations in fluids besides EBC were (from lowest to highest): 0.73 ± 0.39 µM in BALF of healthy adult mice (n = 6); 1.4 ± 1.4 µM in BALF from infants with CF (n = 24); 46 ± 22 µM in the plasma of adult volunteers (n = 7). These results demonstrate the utility of this new method for clinical determination of thiocyanate in EBC and other biological fluids.
Collapse
Affiliation(s)
- Joshua D Chandler
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hamed Horati
- Department of Pediatric Pulmonology, Erasmus MC, Rotterdam, the Netherlands; Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | - Douglas I Walker
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Enea Pagliano
- Measurement Science and Standards, National Research Council of Canada, Ottawa, Canada
| | - Rabindra Tirouvanziam
- Division of Pulmonary, Allergy & Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mieke Veltman
- Department of Pediatric Pulmonology, Erasmus MC, Rotterdam, the Netherlands; Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | - Bob J Scholte
- Department of Pediatric Pulmonology, Erasmus MC, Rotterdam, the Netherlands; Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | - Hettie M Janssens
- Department of Pediatric Pulmonology, Erasmus MC, Rotterdam, the Netherlands
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Wang XR, Cassells J, Berna AZ. Stability control for breath analysis using GC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1097-1098:27-34. [PMID: 30199747 PMCID: PMC6167955 DOI: 10.1016/j.jchromb.2018.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 11/27/2022]
Abstract
Gas chromatography mass spectrometry (GC-MS) instruments provide researchers and clinicians with a vast amount of information on sample composition, thus these instruments are seen as gold standard in breath analysis research. However, there are many factors that can confound the data measured by GC-MS instruments. These factors will make interpretation of GC-MS data unreliable for breath analysis research. We present in this paper detailed studies of two of these factors: instrument variation over time and chemical degradation of known biomarkers during storage in sorbent tubes. We found that a single quadrupole MS showed larger variability in measurements than a quadrupole time-of-flight MS when the same mixture of chemical standards was analysed for a period of up to 8 weeks. We recommend procedures of normalising the data. Moreover, the stability studies of breath biomarkers like thioethers, previously found indicative of malaria, showed that there is a need to store the samples in sorbent tubes at low temperature, 6 °C, for no more than 20 days to avoid the total decay of the chemicals.
Collapse
Affiliation(s)
| | - Julie Cassells
- CSIRO Health and Biosecurity, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Amalia Z Berna
- CSIRO Health and Biosecurity, GPO Box 1700, Canberra, ACT 2601, Australia; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Pité H, Morais-Almeida M, Rocha SM. Metabolomics in asthma: where do we stand? Curr Opin Pulm Med 2018; 24:94-103. [PMID: 29059088 DOI: 10.1097/mcp.0000000000000437] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Metabolomics has been used to uncover the metabolic signatures of asthma, both for biomarker identification and pathophysiologic mechanisms research. We aimed to review recent advances in this field, published since 2016, and discuss these findings implications to future research and application into clinical practice. RECENT FINDINGS Experimental asthma models and clinical studies in both children and adults supported independent metabolic signatures of asthma. Common reported pathways included purine, glycerophospholipid, glutathione, fatty acids, and arginine and proline metabolism. Metabolomics-based studies identified candidate biomarkers related to asthma severity and corticosteroid resistance, and supported the definition of the obesity-related phenotype at the molecular level. A systematic review with meta-analysis and recent prospective studies favored exhaled volatile organic compounds as one of the most promising biomarkers in asthma diagnosis and monitoring. SUMMARY Metabolomics has provided unique and novel insights into asthma profiling at the molecular level. Current challenges include procedures standardization and control of potentially confounding variables for external validation. Point-of-care technology developments bring metabolomics closer to clinical practice. In addition to biomarkers identification, relating metabolites to their biologic role will serve as critical foundations for understanding the biology underpinning asthma heterogeneity and for specific-targeted therapies. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Helena Pité
- Allergy Center, CUF Descobertas Hospital and CUF Infante Santo Hospital.,CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon
| | | | - Sílvia M Rocha
- Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
17
|
Tejero Rioseras A, Singh KD, Nowak N, Gaugg MT, Bruderer T, Zenobi R, Sinues PML. Real-Time Monitoring of Tricarboxylic Acid Metabolites in Exhaled Breath. Anal Chem 2018; 90:6453-6460. [DOI: 10.1021/acs.analchem.7b04600] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alberto Tejero Rioseras
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- SEADM, S.L., 28036 Madrid, Spain
- Department of Analytical Chemistry, University of Cordoba, 14005 Cordoba, Spain
| | - Kapil Dev Singh
- University Children’s Hospital Basel, University of Basel, 4056 Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Nora Nowak
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin T. Gaugg
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Tobias Bruderer
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Pablo M.-L. Sinues
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- University Children’s Hospital Basel, University of Basel, 4056 Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| |
Collapse
|
18
|
Effect of temperature control on the metabolite content in exhaled breath condensate. Anal Chim Acta 2017; 1006:49-60. [PMID: 30016264 DOI: 10.1016/j.aca.2017.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 01/13/2023]
Abstract
The non-invasive, quick, and safe collection of exhaled breath condensate makes it a candidate as a diagnostic matrix in personalized health monitoring devices. The lack of standardization in collection methods and sample analysis is a persistent limitation preventing its practical use. The collection method and hardware design are recognized to significantly affect the metabolomic content of EBC samples, but this has not been systematically studied. Here, we completed a series of experiments to determine the sole effect of collection temperature on the metabolomic content of EBC. Temperature is a likely parameter that can be controlled to standardize among different devices. The study considered six temperature levels covering two physical phases of the sample; liquid and solid. The use of a single device in our study allowed keeping saliva filtering and collector surface effects as constant parameters and the temperature as a controlled variable; the physiological differences were minimized by averaging samples from a group of volunteers and a period of time. After EBC collection, we used an organic solvent rinse to collect the non-water-soluble compounds from the condenser surface. This additional matrix enhanced metabolites recovery, was less dependent on temperature changes, and may possibly serve as an additional pointer to standardize EBC sampling methodologies. The collected EBC samples were analyzed with a set of mass spectrometry methods to provide an overview of the compounds and their concentrations present at each temperature level. The total number of volatile and polar non-volatile compounds slightly increased in each physical phase as the collection temperature was lowered to minimum, 0 °C for liquid and -30, -56 °C for solid. The low-polarity non-volatile compounds showed a weak dependence on the collection temperature. The metabolomic content of EBC samples may not be solely dependent on temperature but may be influenced by other phenomena such as greater sample dilution due to condensation from the ambient air at colder temperatures, or due to adhesion properties of the collector surface and occurring chemical reactions. The relative importance of other design parameters such as condenser coating versus temperature requires further investigation.
Collapse
|
19
|
Di Venere M, Viglio S, Cagnone M, Bardoni A, Salvini R, Iadarola P. Advances in the analysis of “less-conventional” human body fluids: An overview of the CE- and HPLC-MS applications in the years 2015-2017. Electrophoresis 2017; 39:160-178. [DOI: 10.1002/elps.201700276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Monica Di Venere
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Simona Viglio
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Maddalena Cagnone
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Anna Bardoni
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Roberta Salvini
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”; Biochemistry Unit; University of Pavia; Pavia PV Italy
| |
Collapse
|