1
|
Hou L, Wu S, Yuan Z, Xue F, Li H. TEMR: Trans-ethnic mendelian randomization method using large-scale GWAS summary datasets. Am J Hum Genet 2025; 112:28-43. [PMID: 39689714 PMCID: PMC11739928 DOI: 10.1016/j.ajhg.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Available large-scale genome-wide association study (GWAS) summary datasets predominantly stem from European populations, while sample sizes for other ethnicities, notably Central/South Asian, East Asian, African, Hispanic, etc., remain comparatively limited, resulting in low precision of causal effect estimations within these ethnicities when using Mendelian randomization (MR). In this paper, we propose a trans-ethnic MR method, TEMR, to improve the statistical power and estimation precision of MR in a target population that is underrepresented, using trans-ethnic large-scale GWAS summary datasets. TEMR incorporates trans-ethnic genetic correlation coefficients through a conditional likelihood-based inference framework, producing calibrated p values with substantially improved MR power. In the simulation study, compared with other existing MR methods, TEMR exhibited superior precision and statistical power in causal effect estimation within the target populations. Finally, we applied TEMR to infer causal relationships between concentrations of 16 blood biomarkers and the risk of developing five diseases (hypertension, ischemic stroke, type 2 diabetes, schizophrenia, and major depression disorder) in East Asian, African, and Hispanic/Latino populations, leveraging biobank-scale GWAS summary data obtained from individuals of European descent. We found that the causal biomarkers were mostly validated by previous MR methods, and we also discovered 17 causal relationships that were not identified using previously published MR methods.
Collapse
Affiliation(s)
- Lei Hou
- Department of Medical Data, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China
| | - Sijia Wu
- Department of Medical Data, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China
| | - Zhongshang Yuan
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China; Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China
| | - Fuzhong Xue
- Department of Medical Data, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China.
| | - Hongkai Li
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China; Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, P.R. China.
| |
Collapse
|
2
|
Kamal MM, Teeya ST, Rahman MM, Talukder MEK, Sarmin S, Wani TA, Hasan MM. Prediction and assessment of deleterious and disease causing nonsynonymous single nucleotide polymorphisms (nsSNPs) in human FOXP4 gene: An in - silico study. Heliyon 2024; 10:e32791. [PMID: 38994097 PMCID: PMC11237951 DOI: 10.1016/j.heliyon.2024.e32791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
In humans, FOXP gene family is involved in embryonic development and cancer progression. The FOXP4 (Forkhead box protein P4) gene belongs to this FOXP gene family. FOXP4 gene plays a crucial role in oncogenesis. Single nucleotide polymorphisms are biological markers and common determinants of human diseases. Mutations can largely affect the function of the corresponding protein. Therefore, the molecular mechanism of nsSNPs in the FOXP4 gene needs to be elucidated. Initially, the SNPs of the FOXP4 gene were extracted from the dbSNP database and a total of 23124 SNPs was found, where 555 nonsynonymous, 20525 intronic, 1114 noncoding transcript, 334 synonymous were obtained and the rest were unspecified. Then, a series of bioinformatics tools (SIFT, PolyPhen2, SNAP2, PhD SNP, PANTHER, I-Mutant2.0, MUpro, GOR IV, ConSurf, NetSurfP 2.0, HOPE, DynaMut2, GeneMANIA, STRING and Schrodinger) were used to explore the effect of nsSNPs on FOXP4 protein function and structural stability. First, 555 nsSNPs were analyzed using SIFT, of which 57 were found as deleterious. Following, PolyPhen2, SNAP2, PhD SNP and PANTHER analyses, 10 nsSNPs (rs372762294, rs141899153, rs142575732, rs376938850, rs367607523, rs112517943, rs140387832, rs373949416, rs373949416 and rs376160648) were common and observed as deleterious, damaging and diseases associated. Following that, using I-Mutant2.0 and MUpro servers, 7 nsSNPs were found to be the most unstable. GOR IV predicted that these seven nsSNPs affect protein structure by altering the protein contents of alpha helixes, extended strands, and random coils. Following DynaMut2, 5 nsSNPs showed a decrease in the ΔΔG value compared with the wild-type and were found to be responsible for destabilizing the corresponding protein. GeneMANIA and STRING network revealed interaction of FOXP4 with other genes. Finally, molecular dynamics simulation analysis revealed consistent fluctuation in RMSD and RMSF values, Rg and hydrogen bonds in the mutant proteins compared with WT, which might alter the functional and structural stability of the corresponding protein. As a result, the aforementioned integrated comprehensive bioinformatic analyses provide insight into how various nsSNPs of the FOXP4 gene change the structural and functional properties of the corresponding protein, potentially proceeding with the pathophysiology of human diseases.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh
| | - Shamiha Tabassum Teeya
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Mahfuzur Rahman
- Department of Genetic Engineering & Biotechnology, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, 1216, Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering & Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh
| | - Sonia Sarmin
- BIRTAN-Bangladesh Institute of Research and Training on Applied Nutrition, Jhenaidah, 7300, Bangladesh
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
3
|
Zhang F, Zhou P, Wang L, Liao X, Liu X, Ke C, Wen S, Shu Y. Polymorphisms of IFN signaling genes and FOXP4 influence the severity of COVID-19. BMC Infect Dis 2024; 24:270. [PMID: 38429664 PMCID: PMC10905836 DOI: 10.1186/s12879-024-09040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/20/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The clinical manifestations of COVID-19 range from asymptomatic, mild to moderate, severe, and critical disease. Host genetic variants were recognized to affect the disease severity. However, the genetic landscape differs among various populations. Therefore, we explored the variants associated with COVID-19 severity in the Guangdong population. METHODS A total of 314 subjects were selected, of which the severe and critical COVID-19 patients were defined as "cases", and the mild and moderate patients were defined as "control". Twenty-two variants in interferon-related genes and FOXP4 were genotyped using the MassARRAY technology platform. RESULTS IFN signaling gene MX1 rs17000900 CA + AA genotype was correlated with a reduced risk of severe COVID-19 in males (P = 0.001, OR = 0.050, 95%CI = 0.008-0.316). The AT haplotype comprised of MX1 rs17000900 and rs2071430 was more likely to protect against COVID-19 severity (P = 6.3E-03). FOXP4 rs1886814 CC genotype (P = 0.001, OR = 3.747, 95%CI = 1.746-8.043) and rs2894439 GA + AA genotype (P = 0.001, OR = 5.703, 95% CI = 2.045-15.903) were correlated with increased risk of severe COVID-19. Haplotype CA comprised of rs1886814 and rs2894439 was found to be correlated with adverse outcomes (P = 7.0E-04). FOXP4 rs1886814 CC (P = 0.0004) and rs2894439 GA + AA carriers had higher neutralizing antibody titers (P = 0.0018). The CA + AA genotype of MX1 rs17000900 tended to be correlated with lower neutralizing antibody titers than CC genotype (P = 0.0663), but the difference was not statistically significant. CONCLUSION Our study found a possible association between MX1 and FOXP4 polymorphisms and the severity of COVID-19. Distinguishing high-risk patients who develop severe COVID-19 will provide clues for early intervention and individual treatment strategies.
Collapse
Affiliation(s)
- Feng Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Pingping Zhou
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, P. R. China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Xuejie Liu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, P. R. China
| | - Simin Wen
- Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, P. R. China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518107, P. R. China.
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102629, P. R. China.
| |
Collapse
|
4
|
Phillips AT, Boumil EF, Venkatesan A, Tilstra-Smith C, Castro N, Knox BE, Henty-Ridilla JL, Bernstein AM. The formin DAAM1 regulates the deubiquitinase activity of USP10 and integrin homeostasis. Eur J Cell Biol 2023; 102:151347. [PMID: 37562219 PMCID: PMC10839120 DOI: 10.1016/j.ejcb.2023.151347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
The differentiation of fibroblasts into pathological myofibroblasts during wound healing is characterized by increased cell surface expression of αv-integrins. Our previous studies found that the deubiquitinase (DUB) USP10 removes ubiquitin from αv-integrins, leading to cell surface integrin accumulation, subsequent TGFβ1 activation, and pathological myofibroblast differentiation. In this study, a yeast two-hybrid screen revealed a novel binding partner for USP10, the formin, DAAM1. We found that DAAM1 binds to and inhibits USP10's DUB activity through the FH2 domain of DAAM1 independent of its actin functions. The USP10/DAAM1 interaction was also supported by proximity ligation assay (PLA) in primary human corneal fibroblasts. Treatment with TGFβ1 significantly increased USP10 and DAAM1 protein expression, PLA signal, and co-localization to actin stress fibers. DAAM1 siRNA knockdown significantly reduced co-precipitation of USP10 and DAAM1 on purified actin stress fibers, and β1- and β5-integrin ubiquitination. This resulted in increased αv-, β1-, and β5-integrin total protein levels, αv-integrin recycling, and extracellular fibronectin (FN) deposition. Together, our data demonstrate that DAAM1 inhibits USP10's DUB activity on integrins subsequently regulating cell surface αv-integrin localization and FN accumulation.
Collapse
Affiliation(s)
- Andrew T Phillips
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Edward F Boumil
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Arunkumar Venkatesan
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Christine Tilstra-Smith
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Nileyma Castro
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA; New York VA Health Care, Syracuse VA Medical Center, 800 Irving Ave, Syracuse 13210, USA
| | - Barry E Knox
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA; SUNY Upstate Medical University, Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Jessica L Henty-Ridilla
- SUNY Upstate Medical University, Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Audrey M Bernstein
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA; SUNY Upstate Medical University, Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, USA; New York VA Health Care, Syracuse VA Medical Center, 800 Irving Ave, Syracuse 13210, USA.
| |
Collapse
|
5
|
Kim JS, Manichaikul AW, Hoffman EA, Balte P, Anderson MR, Bernstein EJ, Madahar P, Oelsner EC, Kawut SM, Wysoczanski A, Laine AF, Adegunsoye A, Ma JZ, Taub MA, Mathias RA, Rich SS, Rotter JI, Noth I, Garcia CK, Barr RG, Podolanczuk AJ. MUC5B, telomere length and longitudinal quantitative interstitial lung changes: the MESA Lung Study. Thorax 2023; 78:566-573. [PMID: 36690926 PMCID: PMC9899287 DOI: 10.1136/thorax-2021-218139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The MUC5B promoter variant (rs35705950) and telomere length are linked to pulmonary fibrosis and CT-based qualitative assessments of interstitial abnormalities, but their associations with longitudinal quantitative changes of the lung interstitium among community-dwelling adults are unknown. METHODS We used data from participants in the Multi-Ethnic Study of Atherosclerosis with high-attenuation areas (HAAs, Examinations 1-6 (2000-2018)) and MUC5B genotype (n=4552) and telomere length (n=4488) assessments. HAA was defined as the per cent of imaged lung with attenuation of -600 to -250 Hounsfield units. We used linear mixed-effects models to examine associations of MUC5B risk allele (T) and telomere length with longitudinal changes in HAAs. Joint models were used to examine associations of longitudinal changes in HAAs with death and interstitial lung disease (ILD). RESULTS The MUC5B risk allele (T) was associated with an absolute change in HAAs of 2.60% (95% CI 0.36% to 4.86%) per 10 years overall. This association was stronger among those with a telomere length below an age-adjusted percentile of 5% (p value for interaction=0.008). A 1% increase in HAAs per year was associated with 7% increase in mortality risk (rate ratio (RR)=1.07, 95% CI 1.02 to 1.12) for overall death and 34% increase in ILD (RR=1.34, 95% CI 1.20 to 1.50). Longer baseline telomere length was cross-sectionally associated with less HAAs from baseline scans, but not with longitudinal changes in HAAs. CONCLUSIONS Longitudinal increases in HAAs were associated with the MUC5B risk allele and a higher risk of death and ILD.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ani W Manichaikul
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | - Pallavi Balte
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Michaela R Anderson
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Elana J Bernstein
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Purnema Madahar
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Steven M Kawut
- Department of Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics and Epidemiology, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Artur Wysoczanski
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Andrew F Laine
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rasika A Mathias
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen S Rich
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jerome I Rotter
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
- The Institute for Translational Genomics and Population Sciences, The Lundquist Institute, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Imre Noth
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Christine Kim Garcia
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Anna J Podolanczuk
- Division of Pulmonary and Critical Care, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
6
|
Brillet PY, Tran Ba S, Nunes H. How does the MESA Lung Study sharpen blurry edges in interstitial lung abnormalities? Eur Respir J 2023; 61:2300397. [PMID: 37290811 DOI: 10.1183/13993003.00397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023]
Affiliation(s)
- Pierre-Yves Brillet
- Inserm UMR 1272 "Hypoxie et Poumon", UFR SMBH, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Service de Radiologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| | - Stéphane Tran Ba
- Service de Radiologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| | - Hilario Nunes
- Inserm UMR 1272 "Hypoxie et Poumon", UFR SMBH, Université Sorbonne Paris-Nord, 93000 Bobigny, France
- Service de Pneumologie, Hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, 93009 Bobigny cedex, France
| |
Collapse
|
7
|
Abstract
OBJECTIVE Interindividual variability in the clinical progression of COVID-19 may be explained by host genetics. Emerging literature supports a potential inherited predisposition to severe forms of COVID-19. Demographic and inflammatory characteristics of COVID-19 suggest that acquired hematologic mutations leading to clonal hematopoiesis (CH) may further increase vulnerability to adverse sequelae. This review summarizes the available literature examining genetic predispositions to severe COVID-19 and describes how these findings could eventually be used to improve its clinical management. DATA SOURCES A PubMed literature search was performed. STUDY SELECTION Studies examining the significance of inherited genetic variation or acquired CH mutations in severe COVID-19 were selected for inclusion. DATA EXTRACTION Relevant genetic association data and aspects of study design were qualitatively assessed and narratively synthesized. DATA SYNTHESIS Genetic variants affecting inflammatory responses may increase susceptibility to severe COVID-19. Genome-wide association studies and candidate gene approaches have identified a list of inherited mutations, which likely alter cytokine and interferon secretion, and lung-specific mechanisms of immunity in COVID-19. The potential role of CH in COVID-19 is more uncertain at present; however, the available evidence suggests that the various types of acquired mutations and their differential influence on immune cell function must be carefully considered. CONCLUSIONS The current literature supports the hypothesis that host genetic factors affect vulnerability to severe COVID-19. Further research is required to confirm the full scope of relevant variants and the causal mechanisms underlying these associations. Clinical approaches, which consider the genetic basis of interindividual variability in COVID-19 and potentially other causes of critical illness, could optimize hospital resource allocation, predict responsiveness to treatment, identify more efficacious drug targets, and ultimately improve outcomes.
Collapse
|
8
|
Barmania F, Mellet J, Holborn MA, Pepper MS. Genetic Associations with Coronavirus Susceptibility and Disease Severity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:119-140. [PMID: 37378764 DOI: 10.1007/978-3-031-28012-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) global public health emergency, and the disease it causes is highly variable in its clinical presentation. Host genetic factors are increasingly recognised as a determinant of infection susceptibility and disease severity. Several initiatives and groups have been established to analyse and review host genetic epidemiology associated with COVID-19 outcomes. Here, we review the genetic loci associated with COVID-19 susceptibility and severity focusing on the common variants identified in genome-wide association studies.
Collapse
Affiliation(s)
- Fatima Barmania
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Megan A Holborn
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
9
|
Larach DB, Lewis A, Bastarache L, Pandit A, He J, Sinha A, Douville NJ, Heung M, Mathis MR, Mosley JD, Wanderer JP, Kheterpal S, Zawistowski M, Brummett CM, Siew ED, Robinson-Cohen C, Kertai MD. Limited clinical utility for GWAS or polygenic risk score for postoperative acute kidney injury in non-cardiac surgery in European-ancestry patients. BMC Nephrol 2022; 23:339. [PMID: 36271344 PMCID: PMC9587619 DOI: 10.1186/s12882-022-02964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/27/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Prior studies support a genetic basis for postoperative acute kidney injury (AKI). We conducted a genome-wide association study (GWAS), assessed the clinical utility of a polygenic risk score (PRS), and estimated the heritable component of AKI in patients who underwent noncardiac surgery. METHODS We performed a retrospective large-scale genome-wide association study followed by a meta-analysis of patients who underwent noncardiac surgery at the Vanderbilt University Medical Center ("Vanderbilt" cohort) or Michigan Medicine, the academic medical center of the University of Michigan ("Michigan" cohort). In the Vanderbilt cohort, the relationship between polygenic risk score for estimated glomerular filtration rate and postoperative AKI was also tested to explore the predictive power of aggregating multiple common genetic variants associated with AKI risk. Similarly, in the Vanderbilt cohort genome-wide complex trait analysis was used to estimate the heritable component of AKI due to common genetic variants. RESULTS The study population included 8248 adults in the Vanderbilt cohort (mean [SD] 58.05 [15.23] years, 50.2% men) and 5998 adults in Michigan cohort (56.24 [14.76] years, 49% men). Incident postoperative AKI events occurred in 959 patients (11.6%) and in 277 patients (4.6%), respectively. No loci met genome-wide significance in the GWAS and meta-analysis. PRS for estimated glomerular filtration rate explained a very small percentage of variance in rates of postoperative AKI and was not significantly associated with AKI (odds ratio 1.050 per 1 SD increase in polygenic risk score [95% CI, 0.971-1.134]). The estimated heritability among common variants for AKI was 4.5% (SE = 4.5%) suggesting low heritability. CONCLUSION The findings of this study indicate that common genetic variation minimally contributes to postoperative AKI after noncardiac surgery, and likely has little clinical utility for identifying high-risk patients.
Collapse
Affiliation(s)
- Daniel B Larach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam Lewis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anita Pandit
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jing He
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anik Sinha
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Douville
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Healthcare Policy & Innovation, University of Michigan, Ann Arbor, MI, USA
| | - Michael Heung
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael R Mathis
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan D Mosley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan P Wanderer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sachin Kheterpal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Chad M Brummett
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Edward D Siew
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI (VIP-AKI), Tennessee Valley Health System, Nashville Veterans Affairs Hospital, Nashville, TN, USA
| | - Cassianne Robinson-Cohen
- Vanderbilt O'Brien Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Miklos D Kertai
- Division of Adult Cardiothoracic Anesthesiology, Department of Anesthesiology, Vanderbilt University Medical Center, 1211 21st Avenue South, Medical Arts Building, Office 526E, Nashville, TN, 37212, USA.
| |
Collapse
|
10
|
Abstract
Human genetics can inform the biology and epidemiology of coronavirus disease 2019 (COVID-19) by pinpointing causal mechanisms that explain why some individuals become more severely affected by the disease upon infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Large-scale genetic association studies, encompassing both rare and common genetic variants, have used different study designs and multiple disease phenotype definitions to identify several genomic regions associated with COVID-19. Along with a multitude of follow-up studies, these findings have increased our understanding of disease aetiology and provided routes for management of COVID-19. Important emergent opportunities include the clinical translatability of genetic risk prediction, the repurposing of existing drugs, exploration of variable host effects of different viral strains, study of inter-individual variability in vaccination response and understanding the long-term consequences of SARS-CoV-2 infection. Beyond the current pandemic, these transferrable opportunities are likely to affect the study of many infectious diseases.
Collapse
Affiliation(s)
- Mari E K Niemi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Broad Institute, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
- Broad Institute, Cambridge, MA, USA.
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Kerner G, Quintana-Murci L. The genetic and evolutionary determinants of COVID-19 susceptibility. Eur J Hum Genet 2022; 30:915-921. [PMID: 35760904 PMCID: PMC9244541 DOI: 10.1038/s41431-022-01141-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 06/16/2022] [Indexed: 02/08/2023] Open
Abstract
Devastating pandemics, such as that due to COVID-19, can provide strong testimony to our knowledge of the genetic and evolutionary determinants of infectious disease susceptibility and severity. One of the most remarkable aspects of such outbreaks is the stunning interindividual variability observed in the course of infection. In recent decades, enormous progress has been made in the field of the human genetics of infectious diseases, and an increasing number of human genetic factors have been reported to explain, to a great extent, the observed variability for a large number of infectious agents. However, our understanding of the cellular, molecular, and immunological mechanisms underlying such disparities between individuals and ethnic groups, remains very limited. Here, we discuss recent findings relating to human genetic predisposition to infectious disease, from an immunological or population genetic perspective, and show how these and other innovative approaches have been applied to deciphering the genetic basis of human susceptibility to COVID-19 and the severity of this disease. From an evolutionary perspective, we show how past demographic and selection events characterizing the history of our species, including admixture with archaic humans, such as Neanderthals, facilitated modern human adaptation to the threats imposed by ancient pathogens. In the context of emerging infectious diseases, these past episodes of genetic adaptation may contribute to some of the observed population differences in the outcome of SARS-CoV-2 infection and the severity of COVID-19 illness.
Collapse
Affiliation(s)
- Gaspard Kerner
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, F-75015, Paris, France
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, F-75015, Paris, France.
- Collège de France, Chair of Human Genomics and Evolution, F-75005, Paris, France.
| |
Collapse
|
12
|
Kim JS, Dashti HS, Huang T, Cade BE, Podolanczuk AJ, O’Hearn DJ, Hoffman EA, Wang H, Blaikley J, Barr RG, Redline S. Associations of sleep duration and sleep-wake rhythm with lung parenchymal abnormalities on computed tomography: The MESA study. J Sleep Res 2022; 31:e13475. [PMID: 34498326 PMCID: PMC8891036 DOI: 10.1111/jsr.13475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Impairment of the circadian rhythm promotes lung inflammation and fibrosis in pre-clinical models. We aimed to examine whether short and/or long sleep duration and other markers of sleep-wake patterns are associated with a greater burden of lung parenchymal abnormalities on computed tomography among adults. We cross-sectionally examined associations of sleep duration captured by actigraphy with interstitial lung abnormalities (n = 1111) and high attenuation areas (n = 1416) on computed tomography scan in the Multi-Ethnic Study of Atherosclerosis at Exam 5 (2010-2013). We adjusted for potential confounders in logistic and linear regression models for interstitial lung abnormalities and high attenuation area, respectively. High attenuation area models were also adjusted for study site, lung volume imaged, radiation dose and stratified by body mass index. Secondary exposures were self-reported sleep duration, sleep fragmentation index, sleep midpoint and chronotype. The mean age of those with longer sleep duration (≥ 8 hr) was 70 years and the prevalence of interstitial lung abnormalities was 14%. Increasing actigraphy-based sleep duration among participants with ≥ 8 hr of sleep was associated with a higher adjusted odds of interstitial lung abnormalities (odds ratio of 2.66 per 1-hr increment, 95% confidence interval 1.42-4.99). Longer sleep duration and higher sleep fragmentation index were associated with greater high attenuation area on computed tomography among participants with a body mass index < 25 kg m-2 (p-value for interaction < 0.02). Self-reported sleep duration, later sleep midpoint and evening chronotype were not associated with outcomes. Actigraphy-based longer sleep duration and sleep fragmentation were associated with a greater burden of lung abnormalities on computed tomography scan.
Collapse
Affiliation(s)
- John S. Kim
- Department of Medicine, University of Virginia School of
Medicine, Charlottesville, VA, USA
- Department of Medicine, Columbia University Irving Medical
Center, New York, NY, USA
| | - Hassan S. Dashti
- Center for Genomic Medicine and Department of Anesthesia,
Critical Care, and Pain Medicine, Center for Genomic Medicine, Massachusetts General
Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad
Institute, Cambridge, MA, USA
| | - Tianyi Huang
- Channing Division of Network Medicine, Brigham and
Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston,
MA, USA
| | - Brian E. Cade
- Program in Medical and Population Genetics, Broad
Institute, Cambridge, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston,
MA, USA
- Division of Sleep and Circadian Disorders, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Anna J. Podolanczuk
- Division of Pulmonary and Critical Care Medicine, Weill
Cornell Medical Center, New York, NY, USA
| | - Daniel J. O’Hearn
- Department of Medicine, University of Virginia School of
Medicine, Charlottesville, VA, USA
| | - Eric A. Hoffman
- Departments of Radiology, Medicine, and Biomedical
Engineering, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Heming Wang
- Program in Medical and Population Genetics, Broad
Institute, Cambridge, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston,
MA, USA
- Division of Sleep and Circadian Disorders, Brigham and
Women’s Hospital, Boston, MA, USA
| | - John Blaikley
- Faculty of Biology, Medicine and Health, The University
of Manchester, Manchester, United Kingdom
- Manchester University National Health Service Foundation
Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - R. Graham Barr
- Department of Medicine, Columbia University Irving Medical
Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public
Health, New York, NY, USA
| | - Susan Redline
- Channing Division of Network Medicine, Brigham and
Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston,
MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine,
Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
13
|
Smatti MK, Alkhatib HA, Al Thani AA, Yassine HM. Will Host Genetics Affect the Response to SARS-CoV-2 Vaccines? Historical Precedents. Front Med (Lausanne) 2022; 9:802312. [PMID: 35360730 PMCID: PMC8962369 DOI: 10.3389/fmed.2022.802312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
Recent progress in genomics and bioinformatics technologies have allowed for the emergence of immunogenomics field. This intersection of immunology and genetics has broadened our understanding of how the immune system responds to infection and vaccination. While the immunogenetic basis of the huge clinical variability in response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently being extensively studied, the host genetic determinants of SARS-CoV-2 vaccines remain largely unknown. Previous reports evidenced that vaccines may not protect all populations or individuals equally, due to multiple host- and vaccine-specific factors. Several studies on vaccine response to measles, rubella, hepatitis B, smallpox, and influenza highlighted the contribution of genetic mutations or polymorphisms in modulating the innate and adaptive immunity following vaccination. Specifically, genetic variants in genes encoding virus receptors, antigen presentation, cytokine production, or related to immune cells activation and differentiation could influence how an individual responds to vaccination. Although such knowledge could be utilized to generate personalized vaccine strategies to optimize the vaccine response, studies in this filed are still scarce. Here, we briefly summarize the scientific literature related to the immunogenetic determinants of vaccine-induced immunity, highlighting the possible role of host genetics in response to SARS-CoV-2 vaccines as well.
Collapse
Affiliation(s)
- Maria K. Smatti
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | - Hadi M. Yassine
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Kim MN, Hong JY, Kim EG, Lee JW, Lee SY, Kim KW, Shim HS, Lee CG, Elias JA, Lee YJ, Sohn MH. A Novel Regulatory Role of ALCAM in the Pathogenesis of Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 66:415-427. [DOI: 10.1165/rcmb.2020-0581oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mi Na Kim
- Yonsei University College of Medicine, 37991, Pediatrics, Seodaemun-gu, Korea (the Republic of)
| | - Jung Yeon Hong
- Yonsei University College of Medicine, 37991, Seodaemun-gu, Korea (the Republic of)
| | - Eun Gyul Kim
- Yonsei University College of Medicine, Pediatrics, Seoul, Korea (the Republic of)
| | - Jae Woo Lee
- Yonsei University College of Medicine, 37991, Seodaemun-gu, Korea (the Republic of)
| | - Soo Yeon Lee
- Yonsei University College of Medicine, 37991, Department of Pediatrics, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Severance Hospital, Seoul, Korea (the Republic of)
| | - Kyung Won Kim
- Yonsei University College of Medicine, Pediatrics, Seoul, Korea (the Republic of)
| | - Hyo Sup Shim
- Yonsei University College of Medicine, 37991, Seoul, Korea (the Republic of)
| | - Chun Geun Lee
- Brown University, 6752, Molecular Microbiology and Immunology, Providence, Rhode Island, United States
| | - Jack A. Elias
- Brown University, Medicine and Biologic Science, Providence, Rhode Island, United States
| | - Yong Ju Lee
- Yonsei University College of Medicine, 37991, Pediatrics, Yongin-si, Gyeonggi-do , Korea (the Republic of)
| | - Myung Hyun Sohn
- Yonsei University College of Medicine, 37991, Pediatrics, Seoul, Korea (the Republic of)
| |
Collapse
|
15
|
D'Antonio M, Nguyen JP, Arthur TD, Matsui H, D'Antonio-Chronowska A, Frazer KA. SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues. Cell Rep 2021; 37:110020. [PMID: 34762851 PMCID: PMC8563343 DOI: 10.1016/j.celrep.2021.110020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023] Open
Abstract
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types.
Collapse
Affiliation(s)
- Matteo D'Antonio
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jennifer P Nguyen
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Timothy D Arthur
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hiroko Matsui
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | | | | | - Kelly A Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Axelsson GT, Gudmundsson G. Interstitial lung abnormalities - current knowledge and future directions. Eur Clin Respir J 2021; 8:1994178. [PMID: 34745461 PMCID: PMC8567914 DOI: 10.1080/20018525.2021.1994178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Efforts to grasp the significance of radiologic changes similar to interstitial lung disease (ILD) in undiagnosed individuals have intensified in the recent decade. The term interstitial lung abnormalities (ILA) is an emerging definition of such changes, defined by visual examination of computed tomography scans. Substantial insights have been made in the origins and clinical consequences of these changes, as well as automated measures of early lung fibrosis, which will likely lead to increased recognition of early fibrotic lung changes among clinicians and researchers alike. Interstitial lung abnormalities have an estimated prevalence of 7–10% in elderly populations. They correlate with many ILD risk factors, both epidemiologic and genetic. Additionally, histopathological similarities with IPF exist in those with ILA. While no established blood biomarker of ILA exists, several have been suggested. Distinct imaging patterns indicating advanced fibrosis correlate with worse clinical outcomes. ILA are also linked with adverse clinical outcomes such as increased mortality and risk of lung cancer. Progression of ILA has been noted in a significant portion of those with ILA and is associated with many of the same features as ILD, including advanced fibrosis. Those with ILA progression are at risk of accelerated FVC decline and increased mortality. Radiologic changes resembling ILD have also been attained by automated measures. Such measures associate with some, but not all the same factors as ILA. ILA and similar radiologic changes are in many ways analogous to ILD and likely represent a precursor of ILD in some cases. While warranting an evaluation for ILD, they are associated with poor clinical outcomes beyond possible ILD development and thus are by themselves a significant finding. Among the present objectives of this field are the stratification of patients with regards to progression and the discovery of biomarkers with predictive value for clinical outcomes.
Collapse
Affiliation(s)
- Gisli Thor Axelsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Icelandic Heart Association, Kopavogur, Iceland
| | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Respiratory Medicine and Sleep, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
17
|
Velavan TP, Pallerla SR, Rüter J, Augustin Y, Kremsner PG, Krishna S, Meyer CG. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine 2021; 72:103629. [PMID: 34655949 PMCID: PMC8512556 DOI: 10.1016/j.ebiom.2021.103629] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) poses an unprecedented challenge to humanity. SARS-CoV-2 infections range from asymptomatic to severe courses of COVID-19 with acute respiratory distress syndrome (ARDS), multiorgan involvement and death. Risk factors for disease severity include older age, male sex, increased BMI and pre-existing comorbidities. Ethnicity is also relevant to COVID-19 susceptibility and severity. Host genetic predisposition to COVID-19 is now increasingly recognized and whole genome and candidate gene association studies regarding COVID-19 susceptibility have been performed. Several common and rare variants in genes related to inflammation or immune responses have been identified. We summarize research on COVID-19 host genetics and compile genetic variants associated with susceptibility to COVID-19 and disease severity. We discuss candidate genes that should be investigated further to understand such associations and provide insights relevant to pathogenesis, risk classification, therapy response, precision medicine, and drug repurposing.
Collapse
Affiliation(s)
- Thirumalaisamy P Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.
| | - Srinivas Reddy Pallerla
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Jule Rüter
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany
| | - Yolanda Augustin
- Institute of Infection and Immunity, St George's University of London, United Kingdom
| | - Peter G Kremsner
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Centre de Recherches Médicales de Lambaréné (CERMEL), Gabon
| | - Sanjeev Krishna
- Institute of Infection and Immunity, St George's University of London, United Kingdom; Centre de Recherches Médicales de Lambaréné (CERMEL), Gabon
| | - Christian G Meyer
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, Tübingen 72074, Germany; Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam; Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
18
|
D’Antonio M, Arthur TD, Nguyen JP, Matsui H, D’Antonio-Chronowska A, Frazer KA. Insights into genetic factors contributing to variability in SARS-CoV-2 susceptibility and COVID-19 disease severity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.05.10.21256423. [PMID: 34013287 PMCID: PMC8132261 DOI: 10.1101/2021.05.10.21256423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we applied colocalization to compare summary statistics for 16 GWASs from the COVID-19 Host Genetics Initiative to investigate similarities and differences in their genetic signals. We identified 9 loci associated with susceptibility (one with two independent GWAS signals; one with an ethnicity-specific signal), 14 associated with severity (one with two independent GWAS signals; two with ethnicity-specific signals) and one harboring two discrepant GWAS signals (one for susceptibility; one for severity). Utilizing colocalization we also identified 45 GTEx tissues that had eQTL(s) for 18 genes strongly associated with GWAS signals in eleven loci (1-4 genes per locus). Some of these genes showed tissue-specific altered expression and others showed altered expression in up to 41 different tissue types. Our study provides insights into the complex molecular mechanisms underlying inherited predispositions to COVID-19-disease phenotypes.
Collapse
Affiliation(s)
- Matteo D’Antonio
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Timothy D. Arthur
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jennifer P. Nguyen
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hiroko Matsui
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | | | - Kelly A. Frazer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
19
|
Epstein Shochet G, Israeli-Shani L, Kains I, Wand O, Shitrit D. MiR-608 overexpression in idiopathic pulmonary fibrosis (IPF). BMC Pulm Med 2021; 21:1. [PMID: 33402146 PMCID: PMC7786457 DOI: 10.1186/s12890-020-01377-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease that causes scarring of the lungs. The disease is associated with the usual interstitial pneumonia pattern, which was not yet fully recapitulated by an animal model. Therefore, the disease is considered ‘human specific’. miRNA-608 is a primate specific miRNA with many potential targets, such CdC42 and Interlukin-6 (IL-6) that were previously implicated in IPF pathology.
Objective To test miR-608 expression and its targets in IPF patient samples. Methods RNA was extracted from Formalin fixed paraffin embedded tissue sections (N = 18). miRNA-608 and Cdc42 and IL-6 levels were analyzed by qPCR. Acetylcholinesterase (AChE) is another target of miRNA-608. Its’ rs17228616 allele has a single-nucleotide polymorphism causing weakened miR-608 interaction (C2098A). Thus, DNA was extracted from whole blood samples from 56 subjects with fibrosing interstitial lung disease and this region was sequenced for assessment of rs17228616 allele polymorphism. Results miR-608 is significantly overexpressed in IPF samples in comparison with controls (p < 0.05). Cdc42 and IL-6 levels were lower in the IPF patient samples compared with control samples (p < 0.001 and p < 0.05, respectively). The frequency of the rs17228616 minor A-allele was 17/56 (30.4%) with all patients being heterozygous. This result is significant vs. the published Israeli cohort of healthy individuals, which reported 17% prevalence of this allele in healthy control volunteers (p = 0.01, OR = 2.1, CI 95% [1.19–3.9]). Conclusion miR-608 is overexpressed in IPF patients. While the exact mechanism remains to be discovered, it could potentially promote fibrotic disease.
Collapse
Affiliation(s)
- Gali Epstein Shochet
- Pulmonary Department, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Lilach Israeli-Shani
- Pulmonary Department, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Isabelle Kains
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ori Wand
- Pulmonary Department, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel
| | - David Shitrit
- Pulmonary Department, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Abstract
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3-7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
Collapse
|
21
|
Abstract
Diabetes mellitus (DM) is a complication of chronic pancreatitis (CP). Whether pancreatogenic diabetes associated with CP-DM represents a discrete pathophysiologic entity from type 2 DM (T2DM) remains uncertain. Addressing this question is needed for development of specific measures to manage CP-DM. We approached this question from a unique standpoint, hypothesizing that if CP-DM and T2DM are separate disorders, they should be genetically distinct. To test this hypothesis, we sought to determine whether a genetic risk score (GRS) based on validated single nucleotide polymorphisms for T2DM could distinguish between groups with CP-DM and T2DM.
Collapse
|
22
|
Zhang J, Zou C, Zhou C, Luo Y, He Q, Sun Y, Zhou J, Ke Z. A Novel Linc00308/D21S2088E Intergenic Region ALK Fusion and Its Enduring Clinical Responses to Crizotinib. J Thorac Oncol 2020; 15:1073-1077. [DOI: 10.1016/j.jtho.2020.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/25/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
|
23
|
Hobbs BD, Putman RK, Araki T, Nishino M, Gudmundsson G, Gudnason V, Eiriksdottir G, Zilhao Nogueira NR, Dupuis J, Xu H, O'Connor GT, Manichaikul A, Nguyen J, Podolanczuk AJ, Madahar P, Rotter JI, Lederer DJ, Barr RG, Rich SS, Ampleford EJ, Ortega VE, Peters SP, O'Neal WK, Newell JD, Bleecker ER, Meyers DA, Allen RJ, Oldham JM, Ma SF, Noth I, Jenkins RG, Maher TM, Hubbard RB, Wain LV, Fingerlin TE, Schwartz DA, Washko GR, Rosas IO, Silverman EK, Hatabu H, Cho MH, Hunninghake GM. Overlap of Genetic Risk between Interstitial Lung Abnormalities and Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2019; 200:1402-1413. [PMID: 31339356 PMCID: PMC6884045 DOI: 10.1164/rccm.201903-0511oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022] Open
Abstract
Rationale: Interstitial lung abnormalities (ILAs) are associated with the highest genetic risk locus for idiopathic pulmonary fibrosis (IPF); however, the extent to which there are unique associations among individuals with ILAs or additional overlap with IPF is not known.Objectives: To perform a genome-wide association study (GWAS) of ILAs.Methods: ILAs and a subpleural-predominant subtype were assessed on chest computed tomography (CT) scans in the AGES (Age Gene/Environment Susceptibility), COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]), Framingham Heart, ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points), MESA (Multi-Ethnic Study of Atherosclerosis), and SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) studies. We performed a GWAS of ILAs in each cohort and combined the results using a meta-analysis. We assessed for overlapping associations in independent GWASs of IPF.Measurements and Main Results: Genome-wide genotyping data were available for 1,699 individuals with ILAs and 10,274 control subjects. The MUC5B (mucin 5B) promoter variant rs35705950 was significantly associated with both ILAs (P = 2.6 × 10-27) and subpleural ILAs (P = 1.6 × 10-29). We discovered novel genome-wide associations near IPO11 (rs6886640, P = 3.8 × 10-8) and FCF1P3 (rs73199442, P = 4.8 × 10-8) with ILAs, and near HTRE1 (rs7744971, P = 4.2 × 10-8) with subpleural-predominant ILAs. These novel associations were not associated with IPF. Among 12 previously reported IPF GWAS loci, five (DPP9, DSP, FAM13A, IVD, and MUC5B) were significantly associated (P < 0.05/12) with ILAs.Conclusions: In a GWAS of ILAs in six studies, we confirmed the association with a MUC5B promoter variant and found strong evidence for an effect of previously described IPF loci; however, novel ILA associations were not associated with IPF. These findings highlight common genetically driven biologic pathways between ILAs and IPF, and also suggest distinct ones.
Collapse
Affiliation(s)
- Brian D Hobbs
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine
| | | | - Tetsuro Araki
- Department of Radiology, and
- Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, and
- Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | | | | | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- NHLBI Framingham Heart Study, Framingham, Massachusetts
| | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - George T O'Connor
- NHLBI Framingham Heart Study, Framingham, Massachusetts
- Pulmonary Center, Department of Medicine, Boston University, Boston, Massachusetts
| | - Ani Manichaikul
- Center for Public Health Genomics
- Department of Public Health Sciences, and
| | | | | | - Purnema Madahar
- Department of Medicine, College of Physicians and Surgeons, and
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, and
- Division of Genomic Outcomes, Department of Pediatrics and
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, California
| | - David J Lederer
- Department of Medicine, College of Physicians and Surgeons, and
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - R Graham Barr
- Department of Medicine, College of Physicians and Surgeons, and
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Stephen S Rich
- Center for Public Health Genomics
- Department of Public Health Sciences, and
| | - Elizabeth J Ampleford
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Victor E Ortega
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Stephen P Peters
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Wanda K O'Neal
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John D Newell
- Division of Cardiovascular and Pulmonary Imaging, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Radiology, University of Washington, Seattle, Washington
| | - Eugene R Bleecker
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Deborah A Meyers
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Richard J Allen
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Justin M Oldham
- Department of Internal Medicine, University of California Davis, Davis, California
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - R Gisli Jenkins
- National Institute for Health Research, Biomedical Research Centre, Respiratory Research Unit, School of Medicine, and
| | - Toby M Maher
- National Institute for Health Research, Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
- Fibrosis Research Group, Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Richard B Hubbard
- National Institute for Health Research, Biomedical Research Centre, Respiratory Research Unit, School of Medicine, and
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Louise V Wain
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado; and
- Department of Biostatistics and Informatics
| | - David A Schwartz
- Department of Biostatistics and Informatics
- Department of Medicine, School of Medicine, and
- Department of Immunology, School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine
- Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine
| | - Edwin K Silverman
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine
| | - Hiroto Hatabu
- Department of Radiology, and
- Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael H Cho
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine
| | - Gary M Hunninghake
- Division of Pulmonary and Critical Care Medicine
- Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
24
|
Huang Y, Wang L, Mao Y, Nan G. Long Noncoding RNA-H19 Contributes to Atherosclerosis and Induces Ischemic Stroke via the Upregulation of Acid Phosphatase 5. Front Neurol 2019; 10:32. [PMID: 30778327 PMCID: PMC6369351 DOI: 10.3389/fneur.2019.00032] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: Atherosclerosis is closely associated with ischemic stroke, and long noncoding RNA-H19 (lncRNA-H19) might be a potential target for treating atherosclerosis. The present study aimed to investigate the function of lncRNA-H19 in atherosclerosis and to explore a novel therapeutic strategy for ischemic stroke. Methods: Differentially expressed genes (DEGs) in atherosclerosis were screened by searching public database. In combination with the lncRNA-H19-knockout database, potential lncRNA-H19-mediated gene was retrieved and their relationship was identified. In order to assess the detailed regulatory mechanism of lncRNA-H19, we used a lentivirus packaging system to upregulate Acp5 (Acid phosphatase 5) expression in vascular smooth muscle cells (VSMC) and human umbilical vein endothelial cells (HUVECs). The expression of ACP5 was determined by Western Blot, and evaluations of cell proliferation and apoptosis were detected. An ischemic stroke mouse model was established. Atherosclerosis was measured by using plaque area size. The effects H19 on the expression of ACP5 were explored by the overexpression or silence of H19. Results: H19 and ACP5 were associated with Acute Stroke Treatment (TOAST) subtypes of atherosclerotic patients. The target prediction program and dual-luciferase reporter confirmed ACP5 as a direct target of H19. Lentivirus-mediated H19-forced expression upregulated ACP5 protein levels, promoted cell proliferation and suppressed the apoptosis. The plaque area size was larger in ischemic models than controls. The overexpression or silence of H19 increased or reduced the plaque size. The overexpression or silence of H19 resulted in the expression or inhibition of ACP5. Conclusion: IncRNA-H19 promoting ACP5 protein expression contributed to atherosclerosis and increased the risk of ischemic stroke.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liping Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ying Mao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Iwasawa T, Iwao Y, Takemura T, Okudela K, Gotoh T, Baba T, Ogura T, Oba MS. Extraction of the subpleural lung region from computed tomography images to detect interstitial lung disease. Jpn J Radiol 2017; 35:681-688. [PMID: 28936704 DOI: 10.1007/s11604-017-0683-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE To quantify lesions in the subpleural lung region (SubPL) on computed tomography (CT) images and to evaluate whether they are useful for detecting interstitial lung disease (ILD). MATERIALS AND METHODS The subjects were 40 patients with idiopathic pulmonary fibrosis (IPF) diagnosed by multidisciplinary methods and 35 age-matched patients without ILDs. The lungs and SubPL were extracted from CT images using a Gaussian histogram normalized correlation system and evaluated for the mean CT attenuation value (CTmean) and the percentage of high attenuation area (%HAA), exceeding -700 Hounsfield units. The H pattern was defined as a honeycomb appearance and/or fibrosis with traction bronchiectasis, and the H-pattern volume ratios for the whole lung and the 2-mm-wide SubPL were measured. The utility of the SubPL for detecting ILD was evaluated by receiver operating characteristic (ROC) analysis. RESULTS The areas under the ROC curves (AUCs) of CTmean and %HAA for the SubPL were greater than those for the whole lung. The AUCs for the whole lung and the SubPL were 0.990 and 0.994, respectively, for H-pattern volume; 0.875 and 0.994, respectively, for CTmean; and 0.965 and 0.991, respectively, for %HAA. CONCLUSION The SubPL extraction method may be helpful for distinguishing patients with ILD from those without ILD.
Collapse
Affiliation(s)
- Tae Iwasawa
- Department of Radiology, Kanagawa Cardiovascular and Respiratory Center, 6-16-1, Tomioka-higashi, Kanazawa-ku, Yokohama, 236-8651, Japan.
| | - Yuma Iwao
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tamiko Takemura
- Department of Pathology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Koji Okudela
- Department of Pathology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Toshiyuki Gotoh
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Tomohisa Baba
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Kanagawa, Japan
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Kanagawa, Japan
| | - Mari S Oba
- Department of Biostatistics and Epidemiology, Toho University School of Medicine, Yokohama, Japan
| |
Collapse
|