1
|
Wang S, Yang H. Low-molecular-weight heparin ameliorates intestinal barrier dysfunction in aged male rats via protection of tight junction proteins. Biogerontology 2024; 25:1039-1051. [PMID: 38970715 DOI: 10.1007/s10522-024-10118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
The intestinal barrier weakens and chronic gut inflammation occurs in old age, causing age-related illnesses. Recent research shows that low-molecular-weight heparin (LMWH), besides anticoagulation, also has anti-inflammatory and anti-apoptotic effects, protecting the intestinal barrier. This study aims to analyze the effect of LMWH on the intestinal barrier of old male rodents. This study assigned Sprague-Dawley male rats to four groups: young (3 months), young + LMWH, old (20 months), and old + LMWH. The LMWH groups received 1 mg/kg LMWH via subcutaneous injection for 7 days. Optical and transmission electron microscopy (TEM) were used to examine morphological changes in intestinal mucosa due to aging. Intestinal permeability was measured using fluorescein isothiocyanate (FITC)-dextran. ELISA kits were used to measure serum levels of IL-6 and IL-1β, while Quantitative RT-PCR detected their mRNA levels in intestinal tissues. Western blotting and immunohistochemistry (IHC) evaluated the tight junction (TJ) protein levels such as occludin, zonula occludens-1 (ZO-1), and claudin-2. Western blotting assessed the expression of the apoptosis marker cleaved caspase 3, while IHC was used to detect LGR5+ intestinal stem cells. The intestinal permeability of aged rats was significantly higher than that of young rats, indicating significant differences. With age, the protein levels of occludin and ZO-1 decreased significantly, while the level of claudin-2 increased significantly. Meanwhile, our study found that the levels of IL-1β and IL-6 increased significantly with age. LMWH intervention effectively alleviated age-related intestinal barrier dysfunction. In aged rats treated with LMWH, the expression of occludin and ZO-1 proteins in the intestine increased, while the expression of claudin-2 decreased. Furthermore, LMWH administration in aged rats resulted in a decrease in IL-1β and IL-6 levels. LMWH also reduced age-related cleaved caspase3 expression, but IHC showed no difference in LGR5+ intestinal stem cells between groups. Research suggests that LMWH could potentially be a favorable therapeutic choice for age-related diseases associated with intestinal barrier dysfunction, by protecting TJ proteins, reducing inflammation, and apoptosis.
Collapse
Affiliation(s)
- Shaojun Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Hong Yang
- Emergency Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Tang F, Zhao XL, Xu LY, Zhang JN, Ao H, Peng C. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome. Biomed Pharmacother 2024; 178:117180. [PMID: 39068853 DOI: 10.1016/j.biopha.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Sepsis and septic shock are critical medical conditions characterized by a systemic inflammatory response to infection, significantly contributing to global mortality rates. The progression to multiple organ dysfunction syndrome (MODS) represents the most severe complication of sepsis and markedly increases clinical mortality. Central to the pathophysiology of sepsis, endothelial cells play a crucial role in regulating microcirculation and maintaining barrier integrity across various organs and tissues. Recent studies have underscored the pivotal role of endothelial function in the development of sepsis-induced MODS. This review aims to provide a comprehensive overview of the pathophysiology of sepsis-induced MODS, with a specific focus on endothelial dysfunction. It also compiles compelling evidence regarding potential small molecules that could attenuate sepsis and subsequent multi-organ damage by modulating endothelial function. Thus, this review serves as an essential resource for clinical practitioners involved in the diagnosing, managing, and providing intensive care for sepsis and associated multi-organ injuries, emphasizing the importance of targeting endothelial cells to enhance outcomes of the patients.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Song Y, Wu Y, Ding F, Li S, Shen Y, Yang B, Tang X, Ren L, Deng L, Jin X, Yan Y. The Preventive and Therapeutic Effects of Acute and Severe Inflammatory Disorders with Heparin and Heparinoid. Biomolecules 2024; 14:1078. [PMID: 39334845 PMCID: PMC11430252 DOI: 10.3390/biom14091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Systematic inflammatory response syndrome (SIRS) and the accompanying sepsis pose a huge threat to human health worldwide. Heparin is a part of the standard supportive care for the disease. However, the molecular mechanism is not fully understood yet, and the potential signaling pathways that play key roles have not yet been elucidated. In this paper, the main findings regarding the molecular mechanisms associated with the beneficial effects of heparin, including inhibiting HMGB-1-driven inflammation reactions, histone-induced toxicity, thrombo-inflammatory response control and the new emerging mechanisms are concluded. To set up the link between the preclinical research and the clinical effects, the outcomes of the clinical trials are summarized. Then, the structure and function relationship of heparin is discussed. By providing an updated analysis of the above results, the paper highlights the feasibility of heparin as a possible alternative for sepsis prophylaxis and therapy.
Collapse
Affiliation(s)
- Ying Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Fangfang Ding
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Li
- Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518118, China
| | - Yaojia Shen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Bingyan Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinran Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lige Ren
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Lirong Deng
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Xuewen Jin
- Shenzhen Hepalink Pharmaceutical Group Co., Ltd., Shenzhen 518057, China
| | - Yishu Yan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Fujita Y, Kadota T, Kaneko R, Hirano Y, Fujimoto S, Watanabe N, Kizawa R, Ohtsuka T, Kuwano K, Ochiya T, Araya J. Mitigation of acute lung injury by human bronchial epithelial cell-derived extracellular vesicles via ANXA1-mediated FPR signaling. Commun Biol 2024; 7:514. [PMID: 38710749 PMCID: PMC11074269 DOI: 10.1038/s42003-024-06197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Acute lung injury (ALI) is characterized by respiratory failure resulting from the disruption of the epithelial and endothelial barriers as well as immune system. In this study, we evaluated the therapeutic potential of airway epithelial cell-derived extracellular vesicles (EVs) in maintaining lung homeostasis. We isolated human bronchial epithelial cell-derived EVs (HBEC-EVs), which endogenously express various immune-related surface markers and investigated their immunomodulatory potential in ALI. In ALI cellular models, HBEC-EVs demonstrated immunosuppressive effects by reducing the secretion of proinflammatory cytokines in both THP-1 macrophages and HBECs. Mechanistically, these effects were partially ascribed to nine of the top 10 miRNAs enriched in HBEC-EVs, governing toll-like receptor-NF-κB signaling pathways. Proteomic analysis revealed the presence of proteins in HBEC-EVs involved in WNT and NF-κB signaling pathways, pivotal in inflammation regulation. ANXA1, a constituent of HBEC-EVs, interacts with formyl peptide receptor (FPR)2, eliciting anti-inflammatory responses by suppressing NF-κB signaling in inflamed epithelium, including type II alveolar epithelial cells. In a mouse model of ALI, intratracheal administration of HBEC-EVs reduced lung injury, inflammatory cell infiltration, and cytokine levels. Collectively, these findings suggest the therapeutic potential of HBEC-EVs, through their miRNAs and ANXA1 cargo, in mitigating lung injury and inflammation in ALI patients.
Collapse
Affiliation(s)
- Yu Fujita
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
- Division of Next-Generation Drug Development, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan.
- Center for Exosome Medical Research, The Jikei University School of Medicine, Tokyo, Japan.
| | - Tsukasa Kadota
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Reika Kaneko
- Division of Next-Generation Drug Development, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuta Hirano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shota Fujimoto
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Naoaki Watanabe
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryusuke Kizawa
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
- Division of Next-Generation Drug Development, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Ohtsuka
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Cao Y, Li F, Sun Z, Liu J, Liu J, Yang Q, Ge P, Luo Y, Chen H. Regulation of Microtubule Stability in Pulmonary Microvascular Endothelial Cells in Rats with Severe Acute Pancreatitis: Qingyi Decoction is a Potential CDK5 Inhibitor. J Inflamm Res 2024; 17:2513-2530. [PMID: 38699595 PMCID: PMC11063490 DOI: 10.2147/jir.s451755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Purpose Explore the therapeutic effects and regulatory mechanism of Qingyi Decoction (QYD) on severe acute pancreatitis (SAP) associated acute lung injury (ALI). Methods We identified the constituents absorbed into the blood of QYD based on a network pharmacological strategy. The differentially expressed genes from the GEO database were screened to identify the critical targets of QYD treatment of SAP-ALI. The SAP-ALI rat model was constructed.Some methods were used to evaluate the efficacy and mechanism of QYD in treating SAP-ALI. LPS-stimulated pulmonary microvascular endothelial cell injury simulated the SAP-induced pulmonary endothelial injury model. We further observed the therapeutic effect of QYD and CDK5 plasmid transfection on endothelial cell injury. Results 18 constituents were absorbed into the blood, and 764 targets were identified from QYD, 25 of which were considered core targets for treating SAP-ALI. CDK5 was identified as the most critical gene. The results of differential expression analysis showed that the mRNA expression level of CDK5 in the blood of SAP patients was significantly up-regulated compared with that of healthy people. Animal experiments have demonstrated that QYD can alleviate pancreatic and lung injury inflammatory response and reduce the upregulation of CDK5 in lung tissue. QYD or CDK5 inhibitors could decrease the expression of NFAT5 and GEF-H1, and increase the expression of ACE-tub in SAP rat lung tissue. Cell experiments proved that QYD could inhibit the expression of TNF-α and IL-6 induced by LPS. Immunofluorescence results suggested that QYD could alleviate the cytoskeleton damage of endothelial cells, and the mechanism might be related to the inhibition of CDK5-mediated activation of NFAT5, GEF-H1, and ACE-tub. Conclusion CDK5 has been identified as a critical target for pulmonary endothelial injury of SAP-ALI. QYD may partially alleviate microtubule disassembly by targeting the CDK5/NFAT5/GEF-H1 signaling pathway, thus relieving SAP-induced pulmonary microvascular endothelial cell injury.
Collapse
Affiliation(s)
- Yinan Cao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Fan Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhenxuan Sun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116044, People’s Republic of China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
6
|
Sun Y, Ding R, Sun H, Liang Y, Ma X. Efficacy and safety of heparin for sepsis-induced disseminated intravascular coagulation (HepSIC): study protocol for a multicenter randomized controlled trial. Trials 2024; 25:4. [PMID: 38167115 PMCID: PMC10759642 DOI: 10.1186/s13063-023-07853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Disseminated intravascular coagulation (DIC) occurs in 30-50% of septic patients and contributes to high mortality in the intensive care unit (ICU). However, there are few proven interventions for coagulation disorder management in sepsis. Experimental and clinical data have demonstrated that sepsis could benefit from unfractionated heparin (UFH) treatment. To date, there are no large multicenter trials to determine the safety and efficacy of UFH in septic patients with suspected DIC. METHODS A multicenter, double-blinded, placebo-controlled randomized trial is designed to recruit 600 patients who met sepsis 3.0 criteria and suspected DIC. Participants will be randomized (1:1) to receive UFH or saline via continuous intravenous administration for 7 days within 6 h of enrolment. The primary outcome is ICU mortality. The secondary outcome includes 28-day all-cause mortality, the improvement of Sequential Organ Failure Assessment scores, and the incidence of major hemorrhage. Investigators, participants, and statisticians will be blinded to the allocation. DISCUSSION The HepSIC trial is to evaluate the efficacy and safety of UFH on sepsis-related DIC across different areas of China. The small dosage of UFH administration would offer a new potential approach for treating sepsis-related coagulation disorders. ETHICS AND DISSEMINATION Ethical approval was granted by all the ethics committees of 20 participant centers. Results will be disseminated via peer-reviewed publications and presented at conferences. TRIAL REGISTRATION ClinicalTrials.gov NCT02654561. Registered on 13 January 2016.
Collapse
Affiliation(s)
- Yini Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Renyu Ding
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hao Sun
- Department of Clinical Epidemiology and Evidence-based Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingjian Liang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaochun Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Yu J, Zhao B, Pi Q, Zhou G, Cheng Z, Qu C, Wang X, Kong L, Luo S, Du D, Guo Y. Deficiency of S100A8/A9 attenuates pulmonary microvascular leakage in septic mice. Respir Res 2023; 24:288. [PMID: 37978525 PMCID: PMC10655323 DOI: 10.1186/s12931-023-02594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND We have reported a positive correlation between S100 calcium-binding protein (S100) A8/S100A9 and sepsis-induced lung damage before. However, limited knowledge exists concerning the biological role of S100A8/A9 in pulmonary vascular endothelial barrier dysfunction, as well as the diagnostic value of S100A8/A9 in sepsis. METHODS Sepsis was induced in C57BL/6J mice and S100A9-knockout (KO) mice through the cecal ligation and puncture (CLP). Pulmonary vascular leakage was determined by measuring extravasated Evans blue (EB). Reverse transcription polymerase chain reaction and the histological score were used to evaluate inflammation and lung injury, respectively. Recombinant S100A8/A9 (rhS100A8/A9) was used to identify the effects of S100A8/A9 on endothelial barrier dysfunction in human umbilical vein endothelial cells (HUVECs). Additionally, the diagnostic value of S100A8/A9 in sepsis was assessed using receiver operating characteristic. RESULTS S100A8/A9 expression was up-regulated in the lungs of CLP-operated mice. S100A9 KO significantly reversed CLP-induced hypothermia and hypotension, resulting in an improved survival rate. S100A9 KO also decreased the inflammatory response, EB leakage, and histological scores in the lungs of CLP-operated mice. Occludin and VE-cadherin expressions were decreased in the lungs of CLP-operated mice; However, S100A9 KO attenuated this decrease. Moreover, CLP-induced signal transducer and activator of transcription 3 (STAT3) and p38/extracellular signal-regulated kinase (ERK) signalling activation and apoptosis were mitigated by S100A9 KO in lungs. In addition, rhS100A8/A9 administration significantly decreased occludin and VE-cadherin expressions, increased the phosphorylated (p)-ERK/ERK, p-p38/p38, and B-cell leukaemia/lymphoma 2 protein (Bcl-2)-associated X protein/Bcl-2 ratios in HUVECs. CONCLUSION The present study demonstrated S100A8/A9 aggravated sepsis-induced pulmonary inflammation, vascular permeability, and lung injury. This was achieved, at least partially, by activating the P38/STAT3/ERK signalling pathways. Moreover, S100A8/A9 showed the potential as a biomarker for sepsis diagnosis.
Collapse
Affiliation(s)
- Jiang Yu
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Boying Zhao
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, 400010, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400010, China
| | - Qiangzhong Pi
- Department of Respiratory Medicine, Southwest Hospital, Army Military Medical University, Chongqing, P.R. China
| | - Guoxiang Zhou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Cheng
- Department of Cardiology, Chongqing University three Gorges Hospital, Chongqing, 404199, China
| | - Can Qu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, 400010, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400010, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dingyuan Du
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, 400010, China.
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400010, China.
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Vidaurre MDPH, Osborn BK, Lowak KD, McDonald MM, Wang YWW, Pa V, Richter JR, Xu Y, Arnold K, Liu J, Cardenas JC. A 3- O-sulfated heparan sulfate dodecasaccharide (12-mer) suppresses thromboinflammation and attenuates early organ injury following trauma and hemorrhagic shock. Front Immunol 2023; 14:1158457. [PMID: 37122735 PMCID: PMC10140401 DOI: 10.3389/fimmu.2023.1158457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Dysregulated inflammation and coagulation are underlying mechanisms driving organ injury after trauma and hemorrhagic shock. Heparan sulfates, cell surface glycosaminoglycans abundantly expressed on the endothelial surface, regulate a variety of cellular processes. Endothelial heparan sulfate containing a rare 3-O-sulfate modification on a glucosamine residue is anticoagulant and anti-inflammatory through high-affinity antithrombin binding and sequestering of circulating damage-associated molecular pattern molecules. Our goal was to evaluate therapeutic potential of a synthetic 3-O-sulfated heparan sulfate dodecasaccharide (12-mer, or dekaparin) to attenuate thromboinflammation and prevent organ injury. Methods Male Sprague-Dawley rats were pre-treated subcutaneously with vehicle (saline) or dekaparin (2 mg/kg) and subjected to a trauma/hemorrhagic shock model through laparotomy, gut distention, and fixed-pressure hemorrhage. Vehicle and dekaparin-treated rats were resuscitated with Lactated Ringer's solution (LR) and compared to vehicle-treated fresh-frozen-plasma-(FFP)-resuscitated rats. Serial blood samples were collected at baseline, after induction of shock, and 3 hours after fluid resuscitation to measure hemodynamic and metabolic shock indicators, inflammatory mediators, and thrombin-antithrombin complex formation. Lungs and kidneys were processed for organ injury scoring and immunohistochemical analysis to quantify presence of neutrophils. Results Induction of trauma and hemorrhagic shock resulted in significant increases in thrombin-antithrombin complex, inflammatory markers, and lung and kidney injury scores. Compared to vehicle, dekaparin treatment did not affect induction, severity, or recovery of shock as indicated by hemodynamics, metabolic indicators of shock (lactate and base excess), or metrics of bleeding, including overall blood loss, resuscitation volume, or hematocrit. While LR-vehicle-resuscitated rodents exhibited increased lung and kidney injury, administration of dekaparin significantly reduced organ injury scores and was similar to organ protection conferred by FFP resuscitation. This was associated with a significant reduction in neutrophil infiltration in lungs and kidneys and reduced lung fibrin deposition among dekaparin-treated rats compared to vehicle. No differences in organ injury, neutrophil infiltrates, or fibrin staining between dekaparin and FFP groups were observed. Finally, dekaparin treatment attenuated induction of thrombin-antithrombin complex and inflammatory mediators in plasma following trauma and hemorrhagic shock. Conclusion Anti-thromboinflammatory properties of a synthetic 3-O-sulfated heparan sulfate 12-mer, dekaparin, could provide therapeutic benefit for mitigating organ injury following major trauma and hemorrhagic shock.
Collapse
Affiliation(s)
- Maria del Pilar Huby Vidaurre
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Baron K. Osborn
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kaylie D. Lowak
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Michelle M. McDonald
- Department of Pathology and Laboratory Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yao-Wei W. Wang
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Veda Pa
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jillian R. Richter
- Department of Surgery, Division of Trauma and Acute Care Surgery, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yongmei Xu
- Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katelyn Arnold
- Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jian Liu
- Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jessica C. Cardenas
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
9
|
Protective Effects of Atractylodis lancea Rhizoma on Lipopolysaccharide-Induced Acute Lung Injury via TLR4/NF-κB and Keap1/Nrf2 Signaling Pathways In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms232416134. [PMID: 36555773 PMCID: PMC9781712 DOI: 10.3390/ijms232416134] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Acute lung injury (ALI) is a syndrome caused by an excessive inflammatory response characterized by intractable hypoxemia both inside and outside the lung, for which effective therapeutic drugs are lacking. Atractylodis rhizoma, a traditional Chinese medicine, has excellent anti-inflammatory and antiviral properties in addition to protecting the integrity of the cellular barrier. However, few studies of Atractylodis rhizoma for the treatment of ALI have been published, and its mechanism of action remains unclear. In the present study, the chemical composition of the ethanolic extract of Atractylodis rhizoma (EEAR) was initially clarified by high performance liquid chromatography (HPLC), after which it was studied in vivo using a lipopolysaccharide (LPS)-induced ALI rat model. Treatment with EEAR significantly reduced the lung wet/dry (W/D) ratio, neutrophil infiltration, and malondialdehyde (MDA) and myeloperoxidase (MPO) formation, and enhanced superoxide dismutase (SOD) and glutathione (GSH) depletion in rats with ALI, thereby improving lung barrier function and effectively reducing lung injury. In addition, EEAR significantly reduced histopathological changes, decreased the expression of inflammatory factors (such as tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), inducible nitric oxide synthase (INOS), and cyclooxygenase-2 (COX-2)), and inhibited the activation of the NF-κB signaling pathway, thus reducing inflammation. In addition, EEAR was found to also reduce oxidative stress in ALI by upregulating the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins heme oxygenase-1 (HO-1) and NADPH quinone acceptor oxidoreductase 1 (NQO-1). EEAR also reduced LPS-induced inflammatory factor expression in THP-1 cells in vitro by inhibition of the NF-κB signaling pathway, and reduced damage from lipopolysaccharide (LPS)-induced oxidative stress in THP-1 cells by promoting the expression of Nrf2 and its downstream targets HO-1 and NQO-1, the molecular mechanism of which was consistent with in vivo observations. Therefore, we conclude that EEAR attenuates oxidative stress and inflammatory responses via TLR4/NF-κB and Keap1/Nrf2 signaling pathways to alleviate LPS-induced ALI, suggesting that Atractylodis rhizoma is a potential drug candidate for the treatment of ALI.
Collapse
|
10
|
Hu Q, Zhang S, Yang Y, Yao JQ, Tang WF, Lyon CJ, Hu TY, Wan MH. Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Mil Med Res 2022; 9:61. [PMID: 36316787 PMCID: PMC9623953 DOI: 10.1186/s40779-022-00417-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common life-threatening lung diseases associated with acute and severe inflammation. Both have high mortality rates, and despite decades of research on clinical ALI/ARDS, there are no effective therapeutic strategies. Disruption of alveolar-capillary barrier integrity or activation of inflammatory responses leads to lung inflammation and injury. Recently, studies on the role of extracellular vesicles (EVs) in regulating normal and pathophysiologic cell activities, including inflammation and injury responses, have attracted attention. Injured and dysfunctional cells often secrete EVs into serum or bronchoalveolar lavage fluid with altered cargoes, which can be used to diagnose and predict the development of ALI/ARDS. EVs secreted by mesenchymal stem cells can also attenuate inflammatory reactions associated with cell dysfunction and injury to preserve or restore cell function, and thereby promote cell proliferation and tissue regeneration. This review focuses on the roles of EVs in the pathogenesis of pulmonary inflammation, particularly ALI/ARDS.
Collapse
Affiliation(s)
- Qian Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yue Yang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jia-Qi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wen-Fu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Christopher J Lyon
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
| | - Tony Ye Hu
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA. .,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Mei-Hua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China. .,West China Hospital (Airport) of Sichuan University, Chengdu, 610299, China.
| |
Collapse
|
11
|
Shen J, Ma X. miR‑374a‑5p alleviates sepsis‑induced acute lung injury by targeting ZEB1 via the p38 MAPK pathway. Exp Ther Med 2022; 24:564. [PMID: 35978929 PMCID: PMC9366279 DOI: 10.3892/etm.2022.11501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/19/2022] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of microRNA (miR)-374a-5p on sepsis-induced acute lung injury (ALI) and the associated mechanism. Lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMVECs) were used to construct the cellular model of sepsis. A luciferase reporter assay was performed to confirm the association between miR-374a-5p and zinc finger E-box binding homeobox 1 (ZEB1). Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to assess the relative expression of miR-374a-5p, ZEB1 and apoptosis-related proteins. Cell viability and apoptosis were determined by Cell Counting Kit-8 assay and flow cytometry, respectively. Enzyme-linked immunosorbent assays were used to evaluate inflammatory cytokines. The results revealed that miR-374a-5p was downregulated in sepsis patients and LPS-treated HPMVECs. Upregulation of miR-374a-5p alleviated LPS-triggered cell injury in HPMVECs, as evidenced by restoration of cell viability, and inhibition of apoptosis and the production of proinflammatory cytokines. In addition, ZEB1 was revealed to be a downstream target of miR-374a-5p, and overexpression of ZEB1 could reverse the anti-apoptotic and anti-inflammatory effects of miR-374a-5p on an LPS-induced sepsis cell model. Moreover, miR-374a-5p-induced protective effects involved the p38 MAPK signaling pathway. Collectively, miR-374a-5p exerted a protective role in sepsis-induced ALI by regulating the ZEB1-mediated p38 MAPK signaling pathway, providing a potential target for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Jia Shen
- Department of Intensive Care Unit, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750002, P.R. China
| | - Xiaojun Ma
- Department of Orthopedics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
12
|
Cui P, Tang Z, Zhan Q, Deng C, Lai Y, Zhu F, Xin H, Li R, Chen A, Tong Y. In vitro and vivo study of tranilast protects from acute respiratory distress syndrome and early pulmonary fibrosis induced by smoke inhalation. Burns 2022; 48:880-895. [PMID: 35410697 DOI: 10.1016/j.burns.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tranilast (N-[3',4'-dimethoxycinnamoyl]-anthranilic acid) is an analog of a tryptophan metabolite. It was identified with anti-inflammatory and antifibrotic activities, and used in the treatment of a variety of diseases, such as anti - allergy, bronchial asthma, and hypertrophic scars. As a drug with few adverse reactions, tranilast has attracted great attention, but its application is limited due to the uncertainty of dosages and mechanisms. In this study, the protection effects of different doses of tranilast on smoke inhalation mediated lung injury on rats, and on the damage of three kinds of lung cells in vitro were investigated. METHOD In vivo, Sprague-Dawley rats were randomly divided into sham group, smoke group (rats were exposed to pine sawdust smoke three times, each time for 5 min), different doses of tranilast treatment group (doses were 100 mg/kg, 200 mg/kg and 300 mg/kg, ip.) and placebo group. After 1, 3 and 7 days, pulmonary function, pathologic injury by HE staining, cytokines and oxidative stress level by kits were determined. At 7days, lung fibrosis was assessed by Masson's trichrome staining and the level of hydroxyproline (HYP). In vitro, three kinds of lung cells from normal rats were isolated: type II alveolar epithelial cells (AT-II), pulmonary microvascular endothelial cells (PMVECs) and pulmonary fibroblasts (PFs). To investigate the potential effects of tranilast on cell proliferation, cell cycle and cytokine production of three kinds of lung cells exposed to smoke. RESULTS Compared with smoke group and placebo group, tranilast treatment significantly reduced histopathological changes (such as pulmonary hemorrhage, edema and inflammatory cell infiltration, etc.), significantly reduced histopathological score (p < 0.05), increased arterial oxygen partial pressure, and decreased the levels of IL-1β, TNF-α, TGF-β1 (p < 0.05), oxidative stress and the expression of nuclear transcription factor κB (NF-κB) smoke exposed rats (p < 0.01). In particular, the effect of 200 mg/kg dose was more prominent. In vitro, smoke induced AT-II and PMVECs apoptosis, improved PFs proliferation (p < 0.01), activity of SOD and decreased the content of MDA (p < 0.01). However, tranilast seems to be turning this trend well. The inflammatory factor IL-11β, TNF-α and TGF-β1, and the expression of NF-κB were significantly lower in the tranilast treatment than in the smoke group (p < 0.01). CONCLUSION This study indicates that tranilast had a protective effect on acute respiratory distress syndrome and early pulmonary fibrosis of rats in vivo. In addition, tranilast promotes proliferation of AT-II and PMVECs but inhibits PFs proliferation, down-regulates secretion of inflammatory cytokines and alleviates oxidative stress of AT-II, PMVECs and PFs after smoke stimuli in vitro.
Collapse
Affiliation(s)
- Pei Cui
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Zhiping Tang
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Qiu Zhan
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Chunjiang Deng
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Yanhua Lai
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Fujun Zhu
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Haiming Xin
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Rongsheng Li
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Anning Chen
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China
| | - Yalin Tong
- Department of Burns, Plastic and Wound Repair Surgery, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China; Animal Laboratory, The 924th Hospital of the Joint Logistics Support Force of Chinese PLA, Guilin 541002, China.
| |
Collapse
|
13
|
Therapeutic Validation of GEF-H1 Using a De Novo Designed Inhibitor in Models of Retinal Disease. Cells 2022; 11:cells11111733. [PMID: 35681428 PMCID: PMC9179336 DOI: 10.3390/cells11111733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 02/05/2023] Open
Abstract
Inflammation and fibrosis are important components of diseases that contribute to the malfunction of epithelia and endothelia. The Rho guanine nucleotide exchange factor (GEF) GEF-H1/ARHGEF-2 is induced in disease and stimulates inflammatory and fibrotic processes, cell migration, and metastasis. Here, we have generated peptide inhibitors to block the function of GEF-H1. Inhibitors were designed using a structural in silico approach or by isolating an inhibitory sequence from the autoregulatory C-terminal domain. Candidate inhibitors were tested for their ability to block RhoA/GEF-H1 binding in vitro, and their potency and specificity in cell-based assays. Successful inhibitors were then evaluated in models of TGFβ-induced fibrosis, LPS-stimulated endothelial cell-cell junction disruption, and cell migration. Finally, the most potent inhibitor was successfully tested in an experimental retinal disease mouse model, in which it inhibited blood vessel leakage and ameliorated retinal inflammation when treatment was initiated after disease diagnosis. Thus, an antagonist that blocks GEF-H1 signaling effectively inhibits disease features in in vitro and in vivo disease models, demonstrating that GEF-H1 is an effective therapeutic target and establishing a new therapeutic approach.
Collapse
|
14
|
Han J, Liu X, Wang L. Dexmedetomidine protects against acute lung injury in mice via the DUSP1/MAPK/NF-κB axis by inhibiting miR-152-3p. Pulm Pharmacol Ther 2022:102131. [PMID: 35551994 DOI: 10.1016/j.pupt.2022.102131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/07/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Acute lung injury (ALI) is a debilitating condition in clinics. Dexmedetomidine (Dex) is known for its anti-apoptotic and anti-inflammatory properties. This study attempted to investigate the protective mechanism of Dex in ALI mice. METHODS Mice were pretreated with Dex before model establishment by tracheal injection of lipopolysaccharide (LPS). Pulmonary function indexes and wet-to-dry (W/D) ratio were measured. Pulmonary pathological changes were observed through HE staining, CD31+-positive mouse pulmonary microvascular endothelial cells (MPMVECs) were counted through immunofluorescence staining, and apoptosis was detected through TUNEL staining. miR-152-3p mimic, sh-DUSP1, or p38 MAPK inhibitor was delivered into MPMVECs, followed by combined treatment of Dex and LPS. miR-152-3p expression, apoptosis, levels of apoptosis- and MAPK/NF-κB pathway-associated proteins, and inflammatory factors were measured through RT-qPCR, flow cytometry, Western blot, and ELISA. The binding relationship of miR-152-3p and DUSP1 was verified through bioinformatics software and dual-luciferase assay. ALI mouse model was established after injection of miR-152-3p antagomir. RESULTS Dex improved ALI mouse pulmonary function and mitigated injury in mice and MPMVECs. miR-125-3p overexpression or sh-DUSP1 partially abolished the protection of Dex on MPMVECs. miR-152-3p targeted DUSP1. sh-DUSP1 partially averted the protection of Dex on MPMVECs. Dex inhibited the activation of the MAPK/NF-κB pathway in MPMVECs mediated by LPS, which was partially reversed by sh-DUSP1. The p38 MAPK inhibitor SB203580 antagonized the protective effect of Dex on MPMVECs mediated by sh-DUSP1. Similarly, downregulation of miR-152-3p mitigated ALI via the DUSP1/MAPK/NF-κB axis in vivo. CONCLUSION Dex relieved ALI in mice via the DUSP1/MAPK/NF-κB axis by down-regulating miR-152-3p.
Collapse
Affiliation(s)
- Jieran Han
- Department of Anesthesiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiao Liu
- Department of Anesthesiology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Ling Wang
- Department of Anesthesiology, 989 Hospital of JOINT Logistic Support Force of PLA, Luoyang, 471031, China.
| |
Collapse
|
15
|
Liuzzo G, Patrono C. Therapeutic-dose heparin should integrate the standard of care of moderately ill patients with COVID-19 admitted to hospital. Eur Heart J 2022; 43:365-366. [PMID: 35134889 PMCID: PMC8690272 DOI: 10.1093/eurheartj/ehab812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Giovanna Liuzzo
- Department of Cardiovascular and Pulmonary Sciences, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University School of Medicine, Largo A. Gemelli, 8, Rome 00168, Italy
| | - Carlo Patrono
- Department of Pharmacology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Catholic University School of Medicine, Largo A. Gemelli, 8, Rome 00168, Italy
| |
Collapse
|
16
|
Fu S, Yu S, Wang L, Ma X, Li X. Unfractionated heparin improves the clinical efficacy in adult sepsis patients: a systematic review and meta-analysis. BMC Anesthesiol 2022; 22:28. [PMID: 35062871 PMCID: PMC8777179 DOI: 10.1186/s12871-021-01545-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/10/2021] [Indexed: 12/29/2022] Open
Abstract
Background The anticoagulant treatment and clinical efficacy of heparin in sepsis remains controversial. We conducted a meta-analysis to estimate the clinical efficacy of unfractionated heparin (UFH) in adult septic patients. Method A systematic review of Medline, Cochrane Library, PubMed, Embase, WEIPU database, CNKI database, WANFANG database was performed from inception to January 2021. We included Randomized controlled trials (RCTs) and the main outcome was 28 d mortality. Data analysis was performed with Review Manager (RevMan) version 5.3 software. The meta-analysis included 2617 patients from 15 RCTs. Results Comparing to control group, UFH could reduce 28 d mortality (RR: 0.82; 95% CI: 0.72 to 0.94) especially for patient with Acute Physiology and Chronic Health Evaluation II (APACHE II) > 15, (RR: 0.83; 95% CI: 0.72 to 0.96). In UFH group, the platelet (PLT) (MD: 9.18; 95% CI: 0.68 to 17.68) was higher, the activated partial thromboplastin time (APTT) was shorter (MD: -8.01; 95% CI: − 13.84 to − 2.18) and the prothrombin time (PT) results (P > 0.05) failed to reach statistical significance. UFH decreased multiple organ dysfunction syndrome (MODS) incidence (RR: 0.61; 95% CI: 0.45 to 0.84), length of stay (LOS) in ICU (MD: -4.94; 95% CI: − 6.89 to − 2.99) and ventilation time (MD: -3.01; 95% CI: − 4.0 to − 2.02). And UFH had no adverse impact on bleeding (RR: 1.10; 95% CI: 0.54 to 2.23). Conclusion This meta-analysis suggests that UFH may reduce 28 d mortality and improve the clinical efficacy in sepsis patients without bleeding adverse effect. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-021-01545-w.
Collapse
|
17
|
Karki P, Birukova AA. Microtubules as Major Regulators of Endothelial Function: Implication for Lung Injury. Front Physiol 2021; 12:758313. [PMID: 34777018 PMCID: PMC8582326 DOI: 10.3389/fphys.2021.758313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Endothelial dysfunction has been attributed as one of the major complications in COVID-19 patients, a global pandemic that has already caused over 4 million deaths worldwide. The dysfunction of endothelial barrier is characterized by an increase in endothelial permeability and inflammatory responses, and has even broader implications in the pathogenesis of acute respiratory syndromes such as ARDS, sepsis and chronic illnesses represented by pulmonary arterial hypertension and interstitial lung disease. The structural integrity of endothelial barrier is maintained by cytoskeleton elements, cell-substrate focal adhesion and adhesive cell junctions. Agonist-mediated changes in endothelial permeability are directly associated with reorganization of actomyosin cytoskeleton leading to cell contraction and opening of intercellular gaps or enhancement of cortical actin cytoskeleton associated with strengthening of endothelial barrier. The role of actin cytoskeleton remodeling in endothelial barrier regulation has taken the central stage, but the impact of microtubules in this process remains less explored and under-appreciated. This review will summarize the current knowledge on the crosstalk between microtubules dynamics and actin cytoskeleton remodeling, describe the signaling mechanisms mediating this crosstalk, discuss epigenetic regulation of microtubules stability and its nexus with endothelial barrier maintenance, and overview a role of microtubules in targeted delivery of signaling molecules regulating endothelial permeability and inflammation.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Wang Y, Kuang X, Yin Y, Han N, Chang L, Wang H, Hou Y, Li H, Li Z, Liu Y, Hao Y, Wei Y, Wang X, Jia Z. Tongxinluo prevents chronic obstructive pulmonary disease complicated with atherosclerosis by inhibiting ferroptosis and protecting against pulmonary microvascular barrier dysfunction. Biomed Pharmacother 2021; 145:112367. [PMID: 34740097 DOI: 10.1016/j.biopha.2021.112367] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular comorbidities are pervasive in chronic obstructive pulmonary disease (COPD) and often result in serious adverse cardiovascular events. Tongxinluo (TXL) has been clinically verified to treat atherosclerosis (AS), improve lung function and alleviate dyspnoea. The present study aimed to explore the effect of lung microvascular barrier dysfunction on AS in COPD and the potential pulmonary protective mechanisms of TXL in COPD complicated with AS. COPD complicated with AS was induced in mice by cigarette smoke (CS) exposure and high-fat diet (HFD) feeding. The mice were treated with atorvastatin (ATO), TXL or combination therapy (ATO+TXL) for 20 weeks. Pulmonary function, lung pathology, serum lipid levels, atherosclerotic plaque area and indicators of barrier function, oxidative stress and ferroptosis in lung tissue were evaluated. In vitro, human pulmonary microvascular endothelial cells (HPMECs) were pretreated with TXL for 4 h and then incubated with cigarette smoke extract (CSE) and homocysteine (Hcy) for 36 h to induce barrier dysfunction. Then the indicators of barrier function, oxidative stress and ferroptosis were measured. The results demonstrate that CS aggravated dyslipidaemia, atherosclerotic plaque formation, pulmonary function decline, pathological injury, barrier dysfunction, oxidative stress and ferroptosis in the HFD-fed mice. However, these abnormalities were partially reversed by ATO and TXL. Similar results were observed in vitro. In conclusion, pulmonary microvascular barrier dysfunction plays an important role by which COPD affects the progression of AS, and ferroptosis may be involved. Moreover, TXL delays the progression of AS and reduces cardiovascular events by protecting the pulmonary microvascular barrier and inhibiting ferroptosis.
Collapse
Affiliation(s)
- Yafen Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050090, Hebei, China
| | - Xiangnan Kuang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050090, Hebei, China
| | - Yujie Yin
- Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang 050035, China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Liping Chang
- Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang 050035, China
| | - Hongtao Wang
- Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang 050035, China
| | - Yunlong Hou
- Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang 050035, China
| | - Huixin Li
- Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang 050035, China
| | - Zhen Li
- Graduate School, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yuanjie Hao
- Graduate School, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yaru Wei
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050090, Hebei, China
| | - Xiaoqi Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050090, Hebei, China
| | - Zhenhua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050090, Hebei, China; Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang 050035, China; Department of Cardiology, Affiliated Yiling Hospital of Hebei University of Chinese Medicine, Shijiazhuang 050091, Hebei, China
| |
Collapse
|
19
|
Elyaspour Z, Zibaeenezhad MJ, Razmkhah M, Razeghian-Jahromi I. Is It All About Endothelial Dysfunction and Thrombosis Formation? The Secret of COVID-19. Clin Appl Thromb Hemost 2021; 27:10760296211042940. [PMID: 34693754 PMCID: PMC8543709 DOI: 10.1177/10760296211042940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The world is in a hard battle against COVID-19. Endothelial cells are among the most critical targets of SARS-CoV-2. Dysfunction of endothelium leads to vascular injury following by coagulopathies and thrombotic conditions in the vital organs increasing the risk of life-threatening events. Growing evidences revealed that endothelial dysfunction and consequent thrombotic conditions are associated with the severity of outcomes. It is not yet fully clear that these devastating sequels originate directly from the virus or a side effect of virus-induced cytokine storm. Due to endothelial dysfunction, plasma levels of some biomarkers are changed and relevant clinical manifestations appear as well. Stabilization of endothelial integrity and supporting its function are among the promising therapeutic strategies. Other than respiratory, COVID-19 could be called a systemic vascular disease and this aspect should be scrutinized in more detail in order to reduce related mortality. In the present investigation, the effects of COVID-19 on endothelial function and thrombosis formation are discussed. In this regard, critical players, laboratory findings, clinical manifestation, and suggestive therapies are presented.
Collapse
Affiliation(s)
- Zahra Elyaspour
- 48435Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- 48435Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Razeghian-Jahromi
- 48435Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Sholzberg M, Tang GH, Rahhal H, AlHamzah M, Kreuziger LB, Áinle FN, Alomran F, Alayed K, Alsheef M, AlSumait F, Pompilio CE, Sperlich C, Tangri S, Tang T, Jaksa P, Suryanarayan D, Almarshoodi M, Castellucci LA, James PD, Lillicrap D, Carrier M, Beckett A, Colovos C, Jayakar J, Arsenault MP, Wu C, Doyon K, Andreou ER, Dounaevskaia V, Tseng EK, Lim G, Fralick M, Middeldorp S, Lee AYY, Zuo F, da Costa BR, Thorpe KE, Negri EM, Cushman M, Jüni P. Effectiveness of therapeutic heparin versus prophylactic heparin on death, mechanical ventilation, or intensive care unit admission in moderately ill patients with covid-19 admitted to hospital: RAPID randomised clinical trial. BMJ 2021; 375:n2400. [PMID: 34649864 PMCID: PMC8515466 DOI: 10.1136/bmj.n2400] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate the effects of therapeutic heparin compared with prophylactic heparin among moderately ill patients with covid-19 admitted to hospital wards. DESIGN Randomised controlled, adaptive, open label clinical trial. SETTING 28 hospitals in Brazil, Canada, Ireland, Saudi Arabia, United Arab Emirates, and US. PARTICIPANTS 465 adults admitted to hospital wards with covid-19 and increased D-dimer levels were recruited between 29 May 2020 and 12 April 2021 and were randomly assigned to therapeutic dose heparin (n=228) or prophylactic dose heparin (n=237). INTERVENTIONS Therapeutic dose or prophylactic dose heparin (low molecular weight or unfractionated heparin), to be continued until hospital discharge, day 28, or death. MAIN OUTCOME MEASURES The primary outcome was a composite of death, invasive mechanical ventilation, non-invasive mechanical ventilation, or admission to an intensive care unit, assessed up to 28 days. The secondary outcomes included all cause death, the composite of all cause death or any mechanical ventilation, and venous thromboembolism. Safety outcomes included major bleeding. Outcomes were blindly adjudicated. RESULTS The mean age of participants was 60 years; 264 (56.8%) were men and the mean body mass index was 30.3 kg/m2. At 28 days, the primary composite outcome had occurred in 37/228 patients (16.2%) assigned to therapeutic heparin and 52/237 (21.9%) assigned to prophylactic heparin (odds ratio 0.69, 95% confidence interval 0.43 to 1.10; P=0.12). Deaths occurred in four patients (1.8%) assigned to therapeutic heparin and 18 patients (7.6%) assigned to prophylactic heparin (0.22, 0.07 to 0.65; P=0.006). The composite of all cause death or any mechanical ventilation occurred in 23 patients (10.1%) assigned to therapeutic heparin and 38 (16.0%) assigned to prophylactic heparin (0.59, 0.34 to 1.02; P=0.06). Venous thromboembolism occurred in two patients (0.9%) assigned to therapeutic heparin and six (2.5%) assigned to prophylactic heparin (0.34, 0.07 to 1.71; P=0.19). Major bleeding occurred in two patients (0.9%) assigned to therapeutic heparin and four (1.7%) assigned to prophylactic heparin (0.52, 0.09 to 2.85; P=0.69). CONCLUSIONS In moderately ill patients with covid-19 and increased D-dimer levels admitted to hospital wards, therapeutic heparin was not significantly associated with a reduction in the primary outcome but the odds of death at 28 days was decreased. The risk of major bleeding appeared low in this trial. TRIAL REGISTRATION ClinicalTrials.gov NCT04362085.
Collapse
Affiliation(s)
- Michelle Sholzberg
- Departments of Medicine, and Laboratory Medicine and Pathobiology, St Michael's Hospital, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, ON, Canada
| | - Grace H Tang
- Haematology-Oncology Clinical Research Group, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Hassan Rahhal
- Internal Medicine Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), University of São Paulo, São Paulo, Brazil
| | - Musaad AlHamzah
- Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Division of Vascular Surgery, King Saud University Medical City, Riyadh, Saudi Arabia
| | | | - Fionnuala Ní Áinle
- Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Irish Network for Venous Thromboembolism Research, Dublin, Ireland
| | - Faris Alomran
- Department of Vascular Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khalid Alayed
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alsheef
- Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fahad AlSumait
- Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Carlos Eduardo Pompilio
- Internal Medicine Department, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), University of São Paulo, São Paulo, Brazil
| | - Catherine Sperlich
- Charles-Lemoyne Hospital, CISSS of Montérégie-Centre, University of Sherbrooke, Greenfield Park, QC, Canada
| | - Sabrena Tangri
- Department of Medicine, William Osler Health System, Brampton, ON, Canada
| | - Terence Tang
- Institute for Better Health, Trillium Health Partners, Department of Medicine, University of Toronto, ON, Canada
| | - Peter Jaksa
- St Joseph's Health Centre, Unity Health Toronto, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Deepa Suryanarayan
- Department of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | | | - Lana A Castellucci
- Department of Medicine, Ottawa Hospital Research Institute at the University of Ottawa, Ottawa, ON, Canada
| | - Paula D James
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Marc Carrier
- Department of Medicine, Ottawa Hospital Research Institute at the University of Ottawa, Ottawa, ON, Canada
| | - Andrew Beckett
- St Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Canadian Forces Health Services, Ottawa, Ontario, Canada
| | - Christos Colovos
- Division of Acute Care Surgery, Department of Surgery, University of Vermont Medical Center, VT, USA
- University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Jai Jayakar
- Southlake Regional Health Centre, University of Toronto, Newmarket, ON, Canada
| | | | - Cynthia Wu
- Division of Haematology, University of Alberta Hospital, University of Alberta, Edmonton, AB, Canada
| | - Karine Doyon
- Hospital of the Sacred Heart of Montreal, University of Montréal, Montréal, QC, Canada
| | | | - Vera Dounaevskaia
- Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Eric K Tseng
- St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Gloria Lim
- St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Michael Fralick
- General Internal Medicine, Sinai Health, University of Toronto, Toronto, ON, Canada
| | - Saskia Middeldorp
- Department of Internal Medicine and Radboud Institute of Health Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Agnes Y Y Lee
- Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Fei Zuo
- Applied Health Research Centre, St Michael's Hospital, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, ON, Canada
| | - Bruno R da Costa
- Applied Health Research Centre, St Michael's Hospital, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, ON, Canada
- Institute of Primary Health Care, University of Bern, Bern, Switzerland
| | - Kevin E Thorpe
- Applied Health Research Centre, St Michael's Hospital, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Elnara Márcia Negri
- Laboratory of Medical Investigation (LIM-59), Cellular Biology, Department of Pathology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Mary Cushman
- Departments of Medicine and Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, University of Vermont Medical Center, Burlington, VT, USA
| | - Peter Jüni
- Applied Health Research Centre, St Michael's Hospital, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, ON, Canada
- Departments of Medicine and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
The Disruption of the Endothelial Barrier Contributes to Acute Lung Injury Induced by Coxsackievirus A2 Infection in Mice. Int J Mol Sci 2021; 22:ijms22189895. [PMID: 34576058 PMCID: PMC8467819 DOI: 10.3390/ijms22189895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Sporadic occurrences and outbreaks of hand, foot, and mouth disease (HFMD) caused by Coxsackievirus A2 (CVA2) have frequently reported worldwide recently, which pose a great challenge to public health. Epidemiological studies have suggested that the main cause of death in critical patients is pulmonary edema. However, the pathogenesis of this underlying comorbidity remains unclear. In this study, we utilized the 5-day-old BALB/c mouse model of lethal CVA2 infection to evaluate lung damage. We found that the permeability of lung microvascular was significantly increased after CVA2 infection. We also observed the direct infection and apoptosis of lung endothelial cells as well as the destruction of tight junctions between endothelial cells. CVA2 infection led to the degradation of tight junction proteins (e.g., ZO-1, claudin-5, and occludin). The gene transcription levels of von Willebrand factor (vWF), endothelin (ET), thrombomodulin (THBD), granular membrane protein 140 (GMP140), and intercellular cell adhesion molecule-1 (ICAM-1) related to endothelial dysfunction were all significantly increased. Additionally, CVA2 infection induced the increased expression of inflammatory cytokines (IL-6, IL-1β, and MCP-1) and the activation of p38 mitogen-activated protein kinase (MAPK). In conclusion, the disruption of the endothelial barrier contributes to acute lung injury induced by CVA2 infection; targeting p38-MAPK signaling may provide a therapeutic approach for pulmonary edema in critical infections of HFMD.
Collapse
|
22
|
Ren Y, Li L, Wang MM, Cao LP, Sun ZR, Yang ZZ, Zhang W, Zhang P, Nie SN. Pravastatin attenuates sepsis-induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of Cav-1/eNOS pathway. Int Immunopharmacol 2021; 100:108077. [PMID: 34464887 DOI: 10.1016/j.intimp.2021.108077] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Disruption of alveolar endothelial barrier caused by inflammation drives the progression of septic acute lung injury (ALI). Pravastatin, an inhibitor of HMG Co-A reductase, has potent anti-inflammatory effects. In the present study, we aim to explore the beneficial role of pravastatin in sepsis-induced ALI and its related mechanisms. METHODS A septic ALI model was established by cecal ligation and puncture (CLP) in mice. The pulmonary microvascular endothelial cells (PMVECs) were challenged with lipopolysaccharide (LPS). The pathological changes in lung tissues were examined by HE staining. The pulmonary microvascular permeability was determined by lung wet-to-dry (W/D) weight ratio and Evans blue staining. The total protein concentration in bronchoalveolar lavage fluid (BALF) was detected by BCA assay. The levels of TNF-α, IL-1β, and IL-6 were assessed by qRT-PCR and ELISA. Apoptosis was determined by flow cytometry and TUNEL. Western blotting was performed for detection of target protein levels. The expression of VE-Cadherin in lung tissues was evaluated by immunohistochemical staining. RESULTS Pravastatin improved survival rate, attenuated lung pathological changes and reduced pulmonary microvascular permeability in septic mice. In addition, pravastatin restrained sepsis-induced inflammatory response and apoptosis in the lung tissues and PMVECs. Moreover, pravastatin up-regulated the levels of junction proteins ZO-1, JAM-C, and VE-Cadherin. Finally, pravastatin suppressed inflammation, apoptosis and enhanced the expression of junction proteins via regulating Cav-1/eNOS signaling pathway in LPS-exposed PMVECs. CONCLUSION Pravastatin ameliorates sepsis-induced ALI through improving alveolar endothelial barrier disruption via modulating Cav-1/eNOS pathway, which may be an effective candidate for treating septic ALI.
Collapse
Affiliation(s)
- Yi Ren
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Liang Li
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Meng-Meng Wang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Li-Ping Cao
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Zhao-Rui Sun
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Zhi-Zhou Yang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Peng Zhang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Shi-Nan Nie
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China.
| |
Collapse
|
23
|
Microtubule associated protein 4 (MAP4) phosphorylation reduces cardiac microvascular density through NLRP3-related pyroptosis. Cell Death Discov 2021; 7:213. [PMID: 34381021 PMCID: PMC8358013 DOI: 10.1038/s41420-021-00606-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/11/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
Phosphorylation of MAP4 (p-MAP4) causes cardiac remodeling, with the cardiac microvascular endothelium being considered a vital mediator of this process. In the current study, we investigated the mechanism underlying p-MAP4 influences on cardiac microvascular density. We firstly confirmed elevated MAP4 phosphorylation in the myocardium of MAP4 knock-in (KI) mice. When compared with the corresponding control group, we detected the decreased expression of CD31, CD34, VEGFA, VEGFR2, ANG2, and TIE2 in the myocardium of MAP4 KI mice, accompanied by a reduced plasma concentration of VEGF. Moreover, we observed apoptosis and mitochondrial disruption in the cardiac microvascular endothelium of MAP4 KI animals. Consistently, we noted a decreased cardiac microvascular density, measured by CD31 and lectin staining, in MAP4 KI mice. To explore the underlying mechanism, we targeted the NLRP3-related pyroptosis and found increased expression of the corresponding proteins, including NLRP3, ASC, mature IL-1β, IL-18, and GSDMD-N in the myocardium of MAP4 KI mice. Furthermore, we utilized a MAP4 (Glu) adenovirus to mimic cellular p-MAP4. After incubating HUVECs with MAP4 (Glu) adenovirus, the angiogenic ability was inhibited, and NLRP3-related pyroptosis were significantly activated. Moreover, both cytotoxicity and PI signal were upregulated by the MAP4 (Glu) adenovirus. Finally, NLRP3 inflammasome blockage alleviated the inhibited angiogenic ability induced by MAP4 (Glu) adenovirus. These results demonstrated that p-MAP4 reduced cardiac microvascular density by activating NLRP3-related pyroptosis in both young and aged mice. We thus managed to provide clues explaining MAP4 phosphorylation-induced cardiac remodeling and enriched current knowledge regarding the role of MAP4.
Collapse
|
24
|
Gong X, Zhu L, Liu J, Li C, Xu Z, Liu J, Zhang H. MIR3142HG promotes lipopolysaccharide-induced acute lung injury by regulating miR-450b-5p/HMGB1 axis. Mol Cell Biochem 2021; 476:4205-4215. [PMID: 34338955 DOI: 10.1007/s11010-021-04209-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
The present study aimed to evaluate the potential roles of MIR3142HG, a novel long non-coding RNA (lncRNA) in lipopolysaccharide (LPS)-induced acute lung injury (ALI). ALI was simulated by the treatment of LPS in human pulmonary microvascular endothelial cells (HPMECs). The expression of MIR3142HG, miR-450b-5p and high-mobility group box 1 (HMGB1) was determined by real-time PCR and western blotting. Functional analysis was performed through the assessment of cell viability, apoptosis and the production of proinflammatory cytokines. The interactions among MIR3142HG, miR-450b-5p and HMGB1 were analyzed by bioinformatics methods, dual-luciferase reporter and RNA pull-down assays. Using gain- and loss-of-function approaches, the in vitro functions of MIR3142HG and miR-450b-5p were subsequently assessed. MIR3142HG expression was upregulated, while miR-450b-5p was decreased in LPS-treated HPMECs. MIR3142HG knockdown protected against ALI induced by LPS through alleviating the apoptosis and inflammation of HPMECs. MIR3142HG impaired miR-450b-5p-mediated inhibition of HMGB1. Besides, the effects of MIR3142HG silencing could be alleviated by miR-4262 inhibition or HMGB1 overexpression. MIR3142HG mediated LPS-induced injury of HPMECs by targeting miR-450b-5p/HMGB1, suggesting that MIR3142HG might serve as a therapeutic potential for the treatment of ALI.
Collapse
Affiliation(s)
- Xiaolei Gong
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No.1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China
| | - Limin Zhu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No.1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China.
| | - Jinlong Liu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No.1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Chunxiang Li
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No.1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China
| | - Zhuoming Xu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No.1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China
| | - Jinfen Liu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No.1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China
| | - Haibo Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No.1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China
| |
Collapse
|
25
|
Dai Y, Liu J, Zhang X, Min X, Wu J, Du S, Li T, Liu L, Ding Z. HSPA12A improves endothelial integrity to attenuate lung injury during endotoxemia through activating ERKs and Akt-dependent signaling. Int Immunopharmacol 2021; 99:107987. [PMID: 34343936 DOI: 10.1016/j.intimp.2021.107987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Acute lung injury (ALI) is a critical manifestation of sepsis/septic shock. Disruption of endothelial barrier function is critical for ALI pathogenesis; however, the regulation of endothelial barrier integrity remains largely unclear. Heat shock protein A12A (HSPA12A) is an atypical member of HSP70 family. We have recently demonstrated that hepatocyte HSPA12A attenuated the bacteria endotoxin (lipopolysaccharide, LPS)-induced liver injury. However, the role of HSPA12A in endothelial barrier function and ALI is unknown. Here in this study, HSPA12A showed upregulation in lungs of mice during bacteria endotoxin (lipopolysaccharide, LPS)-induced lung injury in vivo and in primary human umbilical vein endothelial cells (HUVECs) during LPS-induced barrier disruption in vitro. Knockout of HSPA12A in mice exacerbated LPS-induced ALI. Intriguingly, overexpression of HSPA12A in HUVECs attenuated the LPS-induced endothelial hyperpermeability. In line with this, HSPA12A overexpression increased VE-cadherin and decreased VEGF expression following LPS treatment in HUVECs. Also, knockout of HSPA12A enhanced the LPS-evoked pulmonary endothelial cell apoptosis in mice whereas overexpression of HSPA12A inhibited the LPS-induced death of HUVECs. The levels of ERKs and Akt phosphorylation in HUVECs were promoted by HSPA12A overexpression when cells exposed to LPS. Importantly, inhibition of either ERKs or Akt diminished the HSPA12A-induced protection from LPS-induced endothelial hyperpermeability and death. Taken together, these findings indicated that HSPA12A is a novel regulator of endothelial barrier function through both ERKs and Akt-mediated signaling. HSPA12A might represent a viable strategy for the pulmonary protection against endotoxemia challenge.
Collapse
Affiliation(s)
- Yuan Dai
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiali Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinxu Min
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Wu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuya Du
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tingting Li
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
26
|
Sholzberg M, Tang GH, Rahhal H, AlHamzah M, Kreuziger LB, Ní Áinle F, Alomran F, Alayed K, Alsheef M, AlSumait F, Pompilio CE, Sperlich C, Tangri S, Tang T, Jaksa P, Suryanarayan D, Almarshoodi M, Castellucci L, James PD, Lillicrap D, Carrier M, Beckett A, Colovos C, Jayakar J, Arsenault MP, Wu C, Doyon K, Andreou ER, Dounaevskaia V, Tseng EK, Lim G, Fralick M, Middeldorp S, Lee AYY, Zuo F, da Costa BR, Thorpe KE, Negri EM, Cushman M, Jüni P. Heparin for Moderately Ill Patients with Covid-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34268513 DOI: 10.1101/2021.07.08.21259351] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Heparin, in addition to its anticoagulant properties, has anti-inflammatory and potential anti-viral effects, and may improve endothelial function in patients with Covid-19. Early initiation of therapeutic heparin could decrease the thrombo-inflammatory process, and reduce the risk of critical illness or death. Methods We randomly assigned moderately ill hospitalized ward patients admitted for Covid-19 with elevated D-dimer level to therapeutic or prophylactic heparin. The primary outcome was a composite of death, invasive mechanical ventilation, non-invasive mechanical ventilation or ICU admission. Safety outcomes included major bleeding. Analysis was by intention-to-treat. Results At 28 days, the primary composite outcome occurred in 37 of 228 patients (16.2%) assigned to therapeutic heparin, and 52 of 237 patients (21.9%) assigned to prophylactic heparin (odds ratio, 0.69; 95% confidence interval [CI], 0.43 to 1.10; p=0.12). Four patients (1.8%) assigned to therapeutic heparin died compared with 18 patients (7.6%) assigned to prophylactic heparin (odds ratio, 0.22; 95%-CI, 0.07 to 0.65). The composite of all-cause mortality or any mechanical ventilation occurred in 23 (10.1%) in the therapeutic heparin group and 38 (16.0%) in the prophylactic heparin group (odds ratio, 0.59; 95%-CI, 0.34 to 1.02). Major bleeding occurred in 2 patients (0.9%) with therapeutic heparin and 4 patients (1.7%) with prophylactic heparin (odds ratio, 0.52; 95%-CI, 0.09 to 2.85). Conclusions In moderately ill ward patients with Covid-19 and elevated D-dimer level, therapeutic heparin did not significantly reduce the primary outcome but decreased the odds of death at 28 days. Trial registration numbers: NCT04362085 ; NCT04444700.
Collapse
|
27
|
Unfractionated Heparin Improves the Intestinal Microcirculation in a Canine Septic Shock Model. Mediators Inflamm 2021; 2021:9985397. [PMID: 34257522 PMCID: PMC8245220 DOI: 10.1155/2021/9985397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Background Alterations of microcirculation are associated with organ hypoperfusion and high mortality in septic shock. This study is aimed at investigating the effects of unfractionated heparin (UFH) on intestinal microcirculatory perfusion and systemic circulation in a septic shock model. Methods Twenty-four beagle dogs were randomly allocated into four groups: (a) sham group: healthy controls, (b) shock group: septic shock induced by Escherichia coli, (c) basic therapy group: septic shock animals treated with antibiotics and 10 ml/kg/h saline, and (d) heparin group: septic shock animals treated with basic therapy plus UFH. Hemodynamic variables were measured within 24 h after E. coli administration. The intestinal microcirculation was simultaneously investigated with a sidestream dark-field imaging technique. Additionally, the function of vital organs was evaluated at 12 h postadministration (T12). Results E. coli induced a progressive septic shock in which the mean arterial pressure (MAP) decreased and lactate levels sharply increased, accompanied by deteriorated microvessel perfusion. While basic therapy partially improved the microvascular flow index and the perfused microvessel density in the jejunal villi, UFH significantly restored major microcirculation variables at T12. Physiological variables, including MAP, urine output, and lactate levels, were improved by UFH, whereas some hemodynamic indices were not affected by UFH. With respect to organ function, UFH increased the platelet count and decreased the creatinine level. Conclusions UFH improves microcirculatory perfusion of the small intestine independently of the changes in systemic hemodynamic variables in a canine model of septic shock, thereby improving coagulation and renal function.
Collapse
|
28
|
Karki P, Ke Y, Zhang CO, Li Y, Tian Y, Son S, Yoshimura A, Kaibuchi K, Birukov KG, Birukova AA. SOCS3-microtubule interaction via CLIP-170 and CLASP2 is critical for modulation of endothelial inflammation and lung injury. J Biol Chem 2021; 296:100239. [PMID: 33372035 PMCID: PMC7949054 DOI: 10.1074/jbc.ra120.014232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Proinflammatory cytokines such as IL-6 induce endothelial cell (EC) barrier disruption and trigger an inflammatory response in part by activating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. The protein suppressor of cytokine signaling-3 (SOCS3) is a negative regulator of JAK-STAT, but its role in modulation of lung EC barrier dysfunction caused by bacterial pathogens has not been investigated. Using human lung ECs and EC-specific SOCS3 knockout mice, we tested the hypothesis that SOCS3 confers microtubule (MT)-mediated protection against endothelial dysfunction. SOCS3 knockdown in cultured ECs or EC-specific SOCS3 knockout in mice resulted in exacerbated lung injury characterized by increased permeability and inflammation in response to IL-6 or heat-killed Staphylococcus aureus (HKSA). Ectopic expression of SOCS3 attenuated HKSA-induced EC dysfunction, and this effect required assembled MTs. SOCS3 was enriched in the MT fractions, and treatment with HKSA disrupted SOCS3-MT association. We discovered that-in addition to its known partners gp130 and JAK2-SOCS3 interacts with MT plus-end binding proteins CLIP-170 and CLASP2 via its N-terminal domain. The resulting SOCS3-CLIP-170/CLASP2 complex was essential for maximal SOCS3 anti-inflammatory effects. Both IL-6 and HKSA promoted MT disassembly and disrupted SOCS3 interaction with CLIP-170 and CLASP2. Moreover, knockdown of CLIP-170 or CLASP2 impaired SOCS3-JAK2 interaction and abolished the anti-inflammatory effects of SOCS3. Together, these findings demonstrate for the first time an interaction between SOCS3 and CLIP-170/CLASP2 and reveal that this interaction is essential to the protective effects of SOCS3 in lung endothelium.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chen-Ou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yue Li
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yufeng Tian
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sophia Son
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University, Tokyo, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University, Nagoya, Japan
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
29
|
Maiuolo J, Mollace R, Gliozzi M, Musolino V, Carresi C, Paone S, Scicchitano M, Macrì R, Nucera S, Bosco F, Scarano F, Zito MC, Ruga S, Tavernese A, Mollace V. The Contribution of Endothelial Dysfunction in Systemic Injury Subsequent to SARS-Cov-2 Infection. Int J Mol Sci 2020; 21:E9309. [PMID: 33291346 PMCID: PMC7730352 DOI: 10.3390/ijms21239309] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) infection is associated, alongside with lung infection and respiratory disease, to cardiovascular dysfunction that occurs at any stage of the disease. This includes ischemic heart disease, arrhythmias, and cardiomyopathies. The common pathophysiological link between SARS-CoV-2 infection and the cardiovascular events is represented by coagulation abnormalities and disruption of factors released by endothelial cells, which contribute in maintaining the blood vessels into an anti-thrombotic state. Thus, early alteration of the functionality of endothelial cells, which may be found soon after SARS-CoV-2 infection, seems to represent the major target of a SARS CoV-2 disease state and accounts for the systemic vascular dysfunction that leads to a detrimental effect in terms of hospitalization and death accompanying the disease. In particular, the molecular interaction of SARS-CoV-2 with the ACE2 receptor located in the endothelial cell surface, either at the pulmonary and systemic level, leads to early impairment of endothelial function, which, in turn, is followed by vascular inflammation and thrombosis of peripheral blood vessels. This highlights systemic hypoxia and further aggravates the vicious circle that compromises the development of the disease, leading to irreversible tissue damage and death of people with SARS CoV-2 infection. The review aims to assess some recent advances to define the crucial role of endothelial dysfunction in the pathogenesis of vascular complications accompanying SARS-CoV-2 infection. In particular, the molecular mechanisms associated with the interaction of SARS CoV-2 with the ACE2 receptor located on the endothelial cells are highlighted to support its role in compromising endothelial cell functionality. Finally, the consequences of endothelial dysfunction in enhancing pro-inflammatory and pro-thrombotic effects of SARS-CoV-2 infection are assessed in order to identify early therapeutic interventions able to reduce the impact of the disease in high-risk patients.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
- Department of Medicine, Chair of Cardiology, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Sara Paone
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
| | - Roberta Macrì
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
| | - Annamaria Tavernese
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
- Department of Medicine, Chair of Cardiology, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (J.M.); (R.M.); (M.G.); (V.M.); (C.C.); (S.P.); (M.S.); (R.M.); (S.N.); (F.B.); (F.S.); (M.C.Z.); (S.R.); (A.T.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele Pisana, 00163 Roma, Italy
| |
Collapse
|
30
|
Karki P, Birukov KG, Birukova AA. Extracellular histones in lung dysfunction: a new biomarker and therapeutic target? Pulm Circ 2020; 10:2045894020965357. [PMID: 33240489 PMCID: PMC7675882 DOI: 10.1177/2045894020965357] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular histones released from injured or dying cells following trauma and other
severe insults can act as potent damage-associated molecular patterns. In fact, elevated
levels of histones are present in human circulation in hyperinflammatory states such as
acute respiratory distress syndrome and sepsis. The molecular mechanisms owing to
histone-induced pathologies are at the very beginning of elucidating. However,
neutralization of histones with antibodies, histone-binding or histone-degrading proteins,
and heparan sulfates have shown promising therapeutic effects in pre-clinical acute
respiratory distress syndrome and sepsis models. Various cell types undergoing necrosis
and apoptosis or activated neutrophils forming neutrophil extracellular traps have been
implicated in excessive release of histones which further augments tissue injury and may
culminate in multiple organ failure. At the molecular level, an uncontrolled inflammatory
cascade has been considered as the major event; however, histone-activated coagulation and
thrombosis represent additional pathologic events reflecting coagulopathy. Furthermore,
epigenetic regulation and chemical modifications of circulating histones appear to be
critically important in their biological functions as evidenced by increased cytotoxicity
associated with citrullinated histone. Herein, we will briefly review the current
knowledge on the role of histones in acute respiratory distress syndrome and sepsis, and
discuss the future potential of anti-histone therapy for treatment of these
life-threatening disorders.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Unfractionated heparin attenuates endothelial barrier dysfunction via the phosphatidylinositol-3 kinase/serine/threonine kinase/nuclear factor kappa-B pathway. Chin Med J (Engl) 2020; 133:1815-1823. [PMID: 32649510 PMCID: PMC7470014 DOI: 10.1097/cm9.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Vascular endothelial dysfunction is considered a key pathophysiologic process for the development of acute lung injury. In this study, we aimed at investigating the effects of unfractionated heparin (UFH) on the lipopolysaccharide (LPS)-induced changes of vascular endothelial-cadherin (VE-cadherin) and the potential underlying mechanisms. Methods Male C57BL/6 J mice were randomized into three groups: vehicle, LPS, and LPS + UFH groups. Intraperitoneal injection of 30 mg/kg LPS was used to induce sepsis. Mice in the LPS + UFH group received subcutaneous injection of 8 U UFH 0.5 h before LPS injection. The lung tissue of the mice was collected for assessing lung injury by measuring the lung wet/dry (W/D) weight ratio and observing histological changes. Human pulmonary microvascular endothelial cells (HPMECs) were cultured and used to analyze the effects of UFH on LPS- or tumor necrosis factor-alpha (TNF-α)-induced vascular hyperpermeability, membrane expression of VE-cadherin, p120-catenin, and phosphorylated myosin light chain (p-MLC), and F-actin remodeling, and on the LPS-induced activation of the phosphatidylinositol-3 kinase (PI3K)/serine/threonine kinase (Akt)/nuclear factor kappa-B (NF-κB) signaling pathway. Results In vivo, UFH pretreatment significantly attenuated LPS-induced pulmonary histopathological changes (neutrophil infiltration and erythrocyte effusion, alveolus pulmonis collapse, and thicker septum), decreased the lung W/D, and increased protein concentration (LPS vs. LPS + UFH: 0.57 ± 0.04 vs. 0.32 ± 0.04 mg/mL, P = 0.0092), total cell count (LPS vs. LPS + UFH: 9.57 ± 1.23 vs. 3.65 ± 0.78 × 105/mL, P = 0.0155), polymorphonuclear neutrophil percentage (LPS vs. LPS + UFH: 88.05% ± 2.88% vs. 22.20% ± 3.92%, P = 0.0002), and TNF-α (460.33 ± 23.48 vs. 189.33 ± 14.19 pg/mL, P = 0.0006) in the bronchoalveolar lavage fluid. In vitro, UFH pre-treatment prevented the LPS-induced decrease in the membrane expression of VE-cadherin (LPS vs. LPS + UFH: 0.368 ± 0.044 vs. 0.716 ± 0.064, P = 0.0114) and p120-catenin (LPS vs. LPS + UFH: 0.208 ± 0.018 vs. 0.924 ± 0.092, P = 0.0016), and the LPS-induced increase in the expression of p-MLC (LPS vs. LPS + UFH: 0.972 ± 0.092 vs. 0.293 ± 0.025, P = 0.0021). Furthermore, UFH attenuated LPS- and TNF-α-induced hyperpermeability of HPMECs (LPS vs. LPS + UFH: 8.90 ± 0.66 vs. 15.84 ± 1.09 Ω·cm2, P = 0.0056; TNF-α vs. TNF-α + UFH: 11.28 ± 0.64 vs. 18.15 ± 0.98 Ω·cm2, P = 0.0042) and F-actin remodeling (LPS vs. LPS + UFH: 56.25 ± 1.51 vs. 39.70 ± 1.98, P = 0.0027; TNF-α vs. TNF-α + UFH: 55.42 ± 1.42 vs. 36.51 ± 1.20, P = 0.0005) in vitro. Additionally, UFH decreased the phosphorylation of Akt (LPS vs. LPS + UFH: 0.977 ± 0.081 vs. 0.466 ± 0.035, P = 0.0045) and I kappa B Kinase (IKK) (LPS vs. LPS + UFH: 1.023 ± 0.070 vs. 0.578 ± 0.044, P = 0.0060), and the nuclear translocation of NF-κB (LPS vs. LPS + UFH: 1.003 ± 0.077 vs. 0.503 ± 0.065, P = 0.0078) in HPMECs, which was similar to the effect of the PI3K inhibitor, wortmannin. Conclusions The protective effect of UFH against LPS-induced pulmonary endothelial barrier dysfunction involves VE-cadherin stabilization and PI3K/Akt/NF-κB signaling.
Collapse
|
32
|
Bermejo-Martin JF, Almansa R, Torres A, González-Rivera M, Kelvin DJ. COVID-19 as a cardiovascular disease: the potential role of chronic endothelial dysfunction. Cardiovasc Res 2020; 116:e132-e133. [PMID: 32420587 PMCID: PMC7314234 DOI: 10.1093/cvr/cvaa140] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Jesús F Bermejo-Martin
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
- Hospital Universitario Río Hortega de Valladolid. Calle Dulzaina, 2, 47012 Valladolid, Spain
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain
| | - Raquel Almansa
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
- Hospital Universitario Río Hortega de Valladolid. Calle Dulzaina, 2, 47012 Valladolid, Spain
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain
| | - Antoni Torres
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain
- Department of Pneumology, Institut Clinic del Tórax, Hospital Clinic of Barcelona – Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB) – SGR 911 – Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Milagros González-Rivera
- Biochemistry Service. Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - David J Kelvin
- Department of Microbiology and Immunology, Canadian Centre for Vaccinology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
- Laboratory of Immunity Shantou University Medical College, 22 Xinling Rd, Jinping, Shantou, Guangdong, China
| |
Collapse
|
33
|
Zhao J, Xuan NX, Cui W, Tian BP. Neurogenic pulmonary edema following acute stroke: The progress and perspective. Biomed Pharmacother 2020; 130:110478. [PMID: 32739737 DOI: 10.1016/j.biopha.2020.110478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Neurogenic pulmonary edema (NPE) following acute stroke is an acute respiratory distress syndrome (ARDS) with clinical characteristics that include acute onset, apparent pulmonary interstitial fluid infiltration and rapid resolution. The pathological process of NPE centers on sympathetic stimulation and fulminant release of catecholamines, which cause contraction of resistance vessels. Elevated systemic resistance forces fluid into pulmonary circulation, while pulmonary circulation overload induces pulmonary capillary pressure that elevates, and in turn damages the alveolar capillary barrier. Damage to the alveolar capillary barrier leads to pulmonary ventilation disorder, blood perfusion disorder and oxygenation disorder. Eventually, NPE will cause post-stroke patients' prognosis to further deteriorate. At present, we lack specific biological diagnostic indicators and a meticulously unified diagnostic criterion, and this results in a situation in which many patients are not recognized quickly and/or diagnosed accurately. There are no drugs that are effective against NPE. Therefore, understanding how to diagnose NPE early by identifying the risk factors and how to apply appropriate treatment to avoid a deteriorating prognosis are important scientific goals. We will elaborate the progress of NPE after acute stroke in terms of its pathophysiological mechanisms, etiology, epidemiology, clinical diagnosis and early prediction, comprehensive treatment strategies, and novel drug development. We also propose our own thinking and prospects regarding NPE.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Nan-Xia Xuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Bao-Ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
34
|
徐 明, 李 晓, 马 晨, 吕 玉, 马 晓, 马 晓. [Effect of human placental mesenchymal stem cells transplantation on pulmonary vascular endothelial permeability and lung injury repair in mice with acute lung injury]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:387-392. [PMID: 32174088 PMCID: PMC8171659 DOI: 10.7507/1002-1892.201909070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effects of human placental mesenchymal stem cells (hPMSCs) transplantation on pulmonary vascular endothelial permeability and lung injury repair in mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). METHODS The hPMSCs were isolated from the human placental tissue by enzyme digestion and passaged. The cell phenotype of the 3rd generation hPMSCs was detected by flow cytometry. Twenty-four 6-week-old healthy male C57BL/6 mice were randomly divided into 3 groups ( n=8). The mice were instilled with LPS in the airway to prepare an ALI model in the ALI model group and the hPMSCs treatment group, and with saline in the control group. At 12 hours after LPS infusion, the mice were injected with 3rd generation hPMSCs via the tail vein in hPMSCs treatment group and with saline in the ALI model group and the control group. At 24 hours after injection, the lung tissues of all mice were taken. The pathological changes were observed by HE staining. The wet/dry mass ratio (W/D) of lung tissue was measured. The Evans blue leak test was used to detect the pulmonary vascular endothelial permea bility in mice. The expression of lung tissue permeability-related protein (VE-cadherin) was detected by Western blot. RESULTS Flow cytometry examination showed that the isolated cells had typical MSCs phenotypic characteristics. Mice in each group survived. The alveolar structure of the ALI model group significantly collapsed, a large number of inflammatory cells infiltrated, and local alveolar hemorrhage occurred; while the alveolar structure collapse of the hPMSCs treatment group significantly improved, inflammatory cells infiltration significantly reduced, and a few red blood cells were in the interstitial lung. W/D and exudation volume of Evans blue stain were significantly higher in the ALI model group than in the control group and the hPMSCs treatment group ( P<0.05), in the hPMSCs treatment group than in the control group ( P<0.05). The relative protein expression of VE-cadherin was significantly lower in the ALI model group than in the control group and the hPMSCs treatment group ( P<0.05), and in the hPMSCs treatment group than in the control group ( P<0.05). CONCLUSION Intravenous injection of hPMSCs can effectively reduce the increased pulmonary vascular endothelial permeability mediated by LPS, relieve the degree of lung tissue damage, and play a therapeutic role in ALI mice.
Collapse
Affiliation(s)
- 明均 徐
- 宁夏医科大学临床医学院(银川 750003)Clinical Medical College of Ningxia Medical University, Yinchuan Ningxia, 750003, P.R.China
- 宁夏人类干细胞研究所(银川 750004)Institute for Ningxia Human Stem Cell Research, Yinchuan Ningxia, 750004, P.R.China
| | - 晓国 李
- 宁夏医科大学临床医学院(银川 750003)Clinical Medical College of Ningxia Medical University, Yinchuan Ningxia, 750003, P.R.China
- 宁夏人类干细胞研究所(银川 750004)Institute for Ningxia Human Stem Cell Research, Yinchuan Ningxia, 750004, P.R.China
| | - 晨 马
- 宁夏医科大学临床医学院(银川 750003)Clinical Medical College of Ningxia Medical University, Yinchuan Ningxia, 750003, P.R.China
- 宁夏人类干细胞研究所(银川 750004)Institute for Ningxia Human Stem Cell Research, Yinchuan Ningxia, 750004, P.R.China
| | - 玉珍 吕
- 宁夏医科大学临床医学院(银川 750003)Clinical Medical College of Ningxia Medical University, Yinchuan Ningxia, 750003, P.R.China
- 宁夏人类干细胞研究所(银川 750004)Institute for Ningxia Human Stem Cell Research, Yinchuan Ningxia, 750004, P.R.China
| | - 晓娜 马
- 宁夏医科大学临床医学院(银川 750003)Clinical Medical College of Ningxia Medical University, Yinchuan Ningxia, 750003, P.R.China
| | - 晓薇 马
- 宁夏医科大学临床医学院(银川 750003)Clinical Medical College of Ningxia Medical University, Yinchuan Ningxia, 750003, P.R.China
| |
Collapse
|
35
|
Suppressive Effects of GSS on Lipopolysaccharide-Induced Endothelial Cell Injury and ALI via TNF- α and IL-6. Mediators Inflamm 2019; 2019:4251394. [PMID: 32082076 PMCID: PMC7012263 DOI: 10.1155/2019/4251394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/01/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Background. Under septic conditions, LPS induced lung vascular endothelial cell (EC) injury, and the release of inflammatory mediator launches and aggravates acute lung injury (ALI). There are no effective therapeutic options for ALI. Genistein-3'-sodium sulfonate (GSS) is a derivative of native soy isoflavone, which exhibits neuroprotective effects via its antiapoptosis property. However, whether GSS protect against sepsis-induced EC injury and release of inflammatory mediators has not been determined. In this study, we found that GSS not only downregulated the levels of TNF-α and IL-6 in the lung and serum of mice in vivo but also inhibited the expression and secretion of TNF-α and IL-6 in ECs. Importantly, we also found that GSS blocked LPS-induced TNF-α and IL-6 expression in ECs via the Myd88/NF-κB signaling pathway. Taken together, our results demonstrated that GSS might be a promising candidate for sepsis-induced ALI via its regulating effects on inflammatory response in lung ECs.
Collapse
|
36
|
Li T, Liu L, Wang X. [Sepsis impairs aggregation of nicotinic acetylcholine receptors on murine skeletal muscle cell membranes by inhibiting AKT/GSK3β phosphorylation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1337-1343. [PMID: 31852639 DOI: 10.12122/j.issn.1673-4254.2019.11.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To investigate the role of the protein-serine-threonine kinase (AKT)/glycogen synthase kinase 3β (GSK3β) signaling pathway in nicotinic acetylcholine receptors (nAChRs) aggregation disorder on skeletal muscle cell membranes induced by sepsis. METHODS Mouse C2C12 myoblasts were differentiated into myotubes by horse serum, and then C2C12 myotubes were randomly divided into four groups: the Sham group treated with serum from sham-operated mice, the Sepsis group treated with serum from septic mice, the Sepsis+D group treated with serum from septic mice and dimethyl sulfoxide (DMSO), the Sepsis+SB group treated with serum from septic mice and GSK3β inhibitor SB216763. Agrin was added into the cell culture to induce nAChRs aggregation before the treatment. After serum treatment for 5.5 h, the myotubes were examined for nAChRs clusters using Alexa Fluor 594-conjugated α-bungarotoxin (α- BTX). The expression levels of AKT, GSK3β and CLIP- associated protein 2 (CLASP2) and the phosphorylation of AKT, GSK3β were examined with Western blotting. The phosphorylation of CLASP2 and the interaction between CLASP2 and α-tubulin were detected with co-immunoprecipitation (Co-IP) assay. RESULTS Compared with the serum from sham-operated mice, the serum from septic mice caused significant reduction in the area and density of nAChRs clusters on C2C12 myotubes, lowered the levels of phosphorylated AKT (p-AKT) and phosphorylated GSK3β (p-GSK3β), increased the expression of phosphorylated CLASP2 (p-CLASP2), and obviously reduced the binding between CLASP2 and α-tubulin. Compared with DMSO, SB216763 significantly increased the area and density of nAChRs clusters on C2C12 myotubes treated with serum from septic mice, decreased the expression of p-CLASP2, and enhanced the interaction between CLASP2 and α-tubulin. CONCLUSIONS Septic mouse serum impairs nAChRs aggregation on C2C12 myotubes possibly by suppressing AKT/GSK3β phosphorylation to cause reduced interaction between CLASP2 and α-tubulin.
Collapse
Affiliation(s)
- Tianmei Li
- Department of Anesthesiology, First Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Li Liu
- Department of Anesthesiology, First Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaobin Wang
- Department of Anesthesiology, First Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
37
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|