1
|
Yu J, Zheng Y, Song C, Chen S. New insights into the roles of fungi and bacteria in the development of medicinal plant. J Adv Res 2024; 65:137-152. [PMID: 38092299 DOI: 10.1016/j.jare.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND The interaction between microorganisms and medicinal plants is a popular topic. Previous studies consistently reported that microorganisms were mainly considered pathogens or contaminants. However, with the development of microbial detection technology, it has been demonstrated that fungi and bacteria affect beneficially the medicinal plant production chain. AIM OF REVIEW Microorganisms greatly affect medicinal plants, with microbial biosynthesis a high regarded topic in medicinal plant-microbial interactions. However, it lacks a systematic review discussing this relationship. Current microbial detection technologies also have certain advantages and disadvantages, it is essential to compare the characteristics of various technologies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first illustrates the role of fungi and bacteria in various medicinal plant production procedures, discusses the development of microbial detection and identification technologies in recent years, and concludes with microbial biosynthesis of natural products. The relationship between fungi, bacteria, and medicinal plants is discussed comprehensively. We also propose a future research model and direction for further studies.
Collapse
Affiliation(s)
- Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Yixuan Zheng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China.
| |
Collapse
|
2
|
Zhang Y, Yu H, Ye L. From β-Carotene to Retinoids: A Review of Microbial Production of Vitamin A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20752-20762. [PMID: 39285668 DOI: 10.1021/acs.jafc.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Vitamin A (retinoids) is crucial for human health, with significant demand across the food, pharmaceutical, and animal feed industries. Currently, the market primarily relies on chemical synthesis and natural extraction methods, which face challenges such as low synthesis efficiency and complex extraction processes. Advances in synthetic biology have enabled vitamin A biosynthesis using microbial cell factories, offering a promising and sustainable solution to meet the increasing market demands. This review introduces the key enzymes involved in the biosynthesis of vitamin A from β-carotene, evaluates achievements in vitamin A production using various microbial hosts, and summarizes strategies for optimizing vitamin A biosynthesis. Additionally, we outline the remaining challenges and propose future directions for the biotechnological production of vitamin A.
Collapse
Affiliation(s)
- Yijun Zhang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Garavaglia M, McGregor C, Bommareddy RR, Irorere V, Arenas C, Robazza A, Minton NP, Kovacs K. Stable Platform for Mevalonate Bioproduction from CO 2. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:13486-13499. [PMID: 39268049 PMCID: PMC11388446 DOI: 10.1021/acssuschemeng.4c03561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Stable production of value-added products using a microbial chassis is pivotal for determining the industrial suitability of the engineered biocatalyst. Microbial cells often lose the multicopy expression plasmids during long-term cultivations. Owing to the advantages related to titers, yields, and productivities when using a multicopy expression system compared with genomic integrations, plasmid stability is essential for industrially relevant biobased processes. Cupriavidus necator H16, a facultative chemolithoautotrophic bacterium, has been successfully engineered to convert inorganic carbon obtained from CO2 fixation into value-added products. The application of this unique capability in the biotech industry has been hindered by C. necator H16 inability to stably maintain multicopy plasmids. In this study, we designed and tested plasmid addiction systems based on the complementation of essential genes. Among these, implementation of a plasmid addiction tool based on the complementation of mutants lacking RubisCO, which is essential for CO2 fixation, successfully stabilized a multicopy plasmid. Expressing the mevalonate pathway operon (MvaES) using this addiction system resulted in the production of ∼10 g/L mevalonate with carbon yields of ∼25%. The mevalonate titers and yields obtained here using CO2 are the highest achieved to date for the production of C6 compounds from C1 feedstocks.
Collapse
Affiliation(s)
- Marco Garavaglia
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Callum McGregor
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Better Dairy Limited, Unit J/K Bagel Factory, 24 White Post Lane, London E9 5SZ, U.K
| | - Rajesh Reddy Bommareddy
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST, U.K
| | - Victor Irorere
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- DSM-Firmenich, 250 Plainsboro Road, Plainsboro, New Jersey 08536, United States
| | - Christian Arenas
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Better Dairy Limited, Unit J/K Bagel Factory, 24 White Post Lane, London E9 5SZ, U.K
| | - Alberto Robazza
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- Karlsruhe Institute of Technology (KIT), PO Box 6980, Karlsruhe 76049, Germany
| | - Nigel Peter Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Katalin Kovacs
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K
- School of Pharmacy, University Park, The University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
4
|
Zhou D, Fei Z, Liu G, Jiang Y, Jiang W, Lin CSK, Zhang W, Xin F, Jiang M. The bioproduction of astaxanthin: A comprehensive review on the microbial synthesis and downstream extraction. Biotechnol Adv 2024; 74:108392. [PMID: 38825214 DOI: 10.1016/j.biotechadv.2024.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Astaxanthin is a valuable orange-red carotenoid with wide applications in agriculture, food, cosmetics, pharmaceuticals and nutraceuticals areas. At present, the biological synthesis of astaxanthin mainly relies on Haematococcus pluvialis and Xanthophyllomyces dendrorhous. With the rapid development of synthetic biology, more recombinant microbial hosts have been genetically constructed for astaxanthin production including Escherichia coli, Saccharomyces cerevisiae and Yarrowia lipolytica. As multiple genes (15) were involved in the astaxanthin synthesis, it is particularly important to adopt different strategies to balance the metabolic flow towards the astaxanthin synthesis. Furthermore, astaxanthin is a fat-soluble compound stored intracellularly, hence efficient extraction methods are also essential for the economical production of astaxanthin. Several efficient and green extraction methods of astaxanthin have been reported in recent years, including the superfluid extraction, ionic liquid extraction and microwave-assisted extraction. Accordingly, this review will comprehensively introduce the advances on the astaxanthin production and extraction by using different microbial hosts and strategies to improve the astaxanthin synthesis and extraction efficiency.
Collapse
Affiliation(s)
- Dawei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengyue Fei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Guannan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, 999077, Hong Kong
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
5
|
Wang J, Ma W, Ma W, Fang Z, Jiang Y, Jiang W, Kong X, Xin F, Zhang W, Jiang M. Strategies for the efficient biosynthesis of β-carotene through microbial fermentation. World J Microbiol Biotechnol 2024; 40:160. [PMID: 38607448 DOI: 10.1007/s11274-024-03955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
β-Carotene is an orange fat-soluble compound, which has been widely used in fields such as food, medicine and cosmetics owing to its anticancer, antioxidant and cardiovascular disease prevention properties. Currently, natural β-carotene is mainly extracted from plants and algae, which cannot meet the growing market demand, while chemical synthesis of β-carotene cannot satisfy the pursuit for natural products of consumers. The β-carotene production through microbial fermentation has become a promising alternative owing to its high efficiency and environmental friendliness. With the rapid development of synthetic biology and in-depth study on the synthesis pathway of β-carotene, microbial fermentation has shown promising applications in the β-carotene synthesis. Accordingly, this review aims to summarize the research progress and strategies of natural carotenoid producing strain and metabolic engineering strategies in the heterologous synthesis of β-carotene by engineered microorganisms. Moreover, it also summarizes the adoption of inexpensive carbon sources to synthesize β-carotene as well as proposes new strategies that can further improve the β-carotene production.
Collapse
Affiliation(s)
- Jingnan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wenqi Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Weixu Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Zhanyang Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Xiangping Kong
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, 210014, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| |
Collapse
|
6
|
Li T, Liu X, Xiang H, Zhu H, Lu X, Feng B. Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes. Molecules 2024; 29:1127. [PMID: 38474639 DOI: 10.3390/molecules29051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
Collapse
Affiliation(s)
- Tuo Li
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Ximeng Liu
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Haoyu Xiang
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Hehua Zhu
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Xuan Lu
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China
| |
Collapse
|
7
|
Raghavan I, Juman R, Wang ZQ. The non-mevalonate pathway requires a delicate balance of intermediates to maximize terpene production. Appl Microbiol Biotechnol 2024; 108:245. [PMID: 38421431 PMCID: PMC10904526 DOI: 10.1007/s00253-024-13077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Terpenes are valuable industrial chemicals whose demands are increasingly being met by bioengineering microbes such as E. coli. Although the bioengineering efforts commonly involve installing the mevalonate (MVA) pathway in E. coli for terpene production, the less studied methylerythritol phosphate (MEP) pathway is a more attractive target due to its higher energy efficiency and theoretical yield, despite its tight regulation. In this study, we integrated an additional copy of the entire MEP pathway into the E. coli genome for stable, marker-free terpene production. The genomically integrated strain produced more monoterpene geraniol than a plasmid-based system. The pathway genes' transcription was modulated using different promoters to produce geraniol as the reporter of the pathway flux. Pathway genes, including dxs, idi, and ispDF, expressed from a medium-strength promoter, led to the highest geraniol production. Quantifying the MEP pathway intermediates revealed that the highest geraniol producers had high levels of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), but moderate levels of the pathway intermediates upstream of these two building blocks. A principal component analysis demonstrated that 1-deoxy-D-xylulose 5-phosphate (DXP), the product of the first enzyme of the pathway, was critical for determining the geraniol titer, whereas MEP, the product of DXP reductoisomerase (Dxr or IspC), was the least essential. This work shows that an intricate balance of the MEP pathway intermediates determines the terpene yield in engineered E. coli. The genetically stable and intermediate-balanced strains created in this study will serve as a chassis for producing various terpenes. KEY POINTS: • Genome-integrated MEP pathway afforded higher strain stability • Genome-integrated MEP pathway produced more terpene than the plasmid-based system • High monoterpene production requires a fine balance of MEP pathway intermediates.
Collapse
Affiliation(s)
- Indu Raghavan
- Department of Biological Sciences, University at Buffalo, the State University of New York, 653 Cooke Hall, Buffalo, New York, NY14260, USA
| | - Rosheena Juman
- Department of Biological Sciences, University at Buffalo, the State University of New York, 653 Cooke Hall, Buffalo, New York, NY14260, USA
| | - Zhen Q Wang
- Department of Biological Sciences, University at Buffalo, the State University of New York, 653 Cooke Hall, Buffalo, New York, NY14260, USA.
| |
Collapse
|
8
|
Yu L, Marchisio MA. Scaffold RNA engineering in type V CRISPR-Cas systems: a potent way to enhance gene expression in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 2024; 52:1483-1497. [PMID: 38142459 PMCID: PMC10853767 DOI: 10.1093/nar/gkad1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
New, orthogonal transcription factors in eukaryotic cells have been realized by engineering nuclease-deficient CRISPR-associated proteins and/or their guide RNAs. In this work, we present a new kind of orthogonal transcriptional activators, in Saccharomyces cerevisiae, made by turning type V CRISPR RNA into a scaffold RNA (ScRNA) able to recruit a variable number of VP64 activation domains. The activator arises from the complex between the synthetic ScRNA and DNase-deficient type V Cas proteins: dCas12e and denAsCas12a. The transcription activation achieved via the newly engineered dCas:ScRNA system is up to 4.7-fold higher than that obtained with the direct fusion of VP64 to Cas proteins. The new transcription factors have been proven to be functional in circuits such as Boolean gates, converters, multiplex-gene and metabolic-pathway activation. Our results extend the CRISPR-Cas-based technology with a new effective tool that only demands RNA engineering and improves the current design of transcription factors based on type V Cas proteins.
Collapse
Affiliation(s)
- Lifang Yu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, China
| |
Collapse
|
9
|
Fan J, Zhang Y, Li W, Li Z, Zhang D, Mo Q, Cao M, Yuan J. Multidimensional Optimization of Saccharomyces cerevisiae for Carotenoid Overproduction. BIODESIGN RESEARCH 2024; 6:0026. [PMID: 38213763 PMCID: PMC10777738 DOI: 10.34133/bdr.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Microbial synthesis of carotenoids is a highly desirable alternative to plant extraction and chemical synthesis. In this study, we investigated multidimensional strategies to improve the carotenoid synthesis in the industrial workhorse of Saccharomyces cerevisiae. First, we rewired the yeast central metabolism by optimizing non-oxidative glycolysis pathway for an improved acetyl-CoA supply. Second, we restricted the consumption of farnesyl pyrophosphate (FPP) by the down-regulation of squalene synthase using the PEST degron. Third, we further explored the human lipid binding/transfer protein saposin B (hSapB)-mediated metabolic sink for an enhanced storage of lipophilic carotenoids. Last, the copper-induced GAL expression system was engineered to function in the yeast-peptone-dextrose medium for an increased biomass accumulation. By combining the abovementioned strategies, the final engineered yeast produced 166.79 ± 10.43 mg/l β-carotene in shake flasks, which was nearly 5-fold improvement of the parental carotenoid-producing strain. Together, we envision that multidimensional strategies reported here might be applicable to other hosts for the future industrial development of carotenoid synthesis from renewable feedstocks.
Collapse
Affiliation(s)
- Jian Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Wenhao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Zhizhen Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Danli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Qiwen Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
| | - Mingfeng Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
- Key Laboratory for Synthetic Biotechnology of Xiamen City,
Xiamen University, Fujian 361005, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences,
Xiamen University, Fujian 361102, China
- Key Laboratory for Synthetic Biotechnology of Xiamen City,
Xiamen University, Fujian 361005, China
| |
Collapse
|
10
|
Kappachery S, AlHosani M, Khan TA, AlKharoossi SN, AlMansoori N, AlShehhi SAS, AlMansoori H, AlKarbi M, Sasi S, Karumannil S, Elangovan SK, Shah I, Gururani MA. Modulation of antioxidant defense and PSII components by exogenously applied acetate mitigates salinity stress in Avena sativa. Sci Rep 2024; 14:620. [PMID: 38182773 PMCID: PMC10770181 DOI: 10.1038/s41598-024-51302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024] Open
Abstract
Salinity stress has detrimental effects on various aspects of plant development. However, our understanding of strategies to mitigate these effects in crop plants remains limited. Recent research has shed light on the potential of sodium acetate as a mitigating component against salinity stress in several plant species. Here, we show the role of acetate sodium in counteracting the adverse effects on oat (Avena sativa) plants subjected to NaCl-induced salinity stress, including its impact on plant morphology, photosynthetic parameters, and gene expression related to photosynthesis and antioxidant capacity, ultimately leading to osmoprotection. The five-week experiment involved subjecting oat plants to four different conditions: water, salt (NaCl), sodium acetate, and a combination of salt and sodium acetate. The presence of NaCl significantly inhibited plant growth and root elongation, disrupted chlorophylls and carotenoids content, impaired chlorophyll fluorescence, and down-regulated genes associated with the plant antioxidant defense system. Furthermore, our findings reveal that when stressed plants were treated with sodium acetate, it partially reversed these adverse effects across all analyzed parameters. This reversal was particularly evident in the increased content of proline, thereby ensuring osmoprotection for oat plants, even under stressful conditions. These results provide compelling evidence regarding the positive impact of sodium acetate on various plant development parameters, with a particular focus on the enhancement of photosynthetic activity.
Collapse
Affiliation(s)
- Sajeesh Kappachery
- Department of Biology, College of Science, United Arab Emirates University, P.O.Box 15551, Al Ain, UAE
| | - Mohamed AlHosani
- Department of Biology, College of Science, United Arab Emirates University, P.O.Box 15551, Al Ain, UAE
| | - Tanveer Alam Khan
- Department of Biology, College of Science, United Arab Emirates University, P.O.Box 15551, Al Ain, UAE
| | - Sara Nouh AlKharoossi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O.Box 15551, Al Ain, UAE
| | - Nemah AlMansoori
- Department of Biology, College of Science, United Arab Emirates University, P.O.Box 15551, Al Ain, UAE
| | - Sara Ali Saeed AlShehhi
- Department of Biology, College of Science, United Arab Emirates University, P.O.Box 15551, Al Ain, UAE
| | - Hamda AlMansoori
- Department of Chemistry, College of Science, United Arab Emirates University, P.O.Box 15551, Al Ain, UAE
| | - Maha AlKarbi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O.Box 15551, Al Ain, UAE
| | - Shina Sasi
- Khalifa Center for Genetic Engineering and Biotechnology, College of Science, United Arab Emirates University, P.O.Box 15551, Al Ain, UAE
| | - Sameera Karumannil
- Department of Biology, College of Science, United Arab Emirates University, P.O.Box 15551, Al Ain, UAE
| | - Sampath Kumar Elangovan
- Department of Chemistry, College of Science, United Arab Emirates University, P.O.Box 15551, Al Ain, UAE
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University, P.O.Box 15551, Al Ain, UAE
| | - Mayank Anand Gururani
- Department of Biology, College of Science, United Arab Emirates University, P.O.Box 15551, Al Ain, UAE.
| |
Collapse
|
11
|
Cao K, Cui Y, Sun F, Zhang H, Fan J, Ge B, Cao Y, Wang X, Zhu X, Wei Z, Yao Q, Ma J, Wang Y, Meng C, Gao Z. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol Adv 2023; 68:108236. [PMID: 37586543 DOI: 10.1016/j.biotechadv.2023.108236] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Microalgae are microorganisms capable of producing bioactive compounds using photosynthesis. Microalgae contain a variety of high value-added natural pigments such as carotenoids, phycobilins, and chlorophylls. These pigments play an important role in many areas such as food, pharmaceuticals, and cosmetics. Natural pigments have a health value that is unmatched by synthetic pigments. However, the current commercial production of natural pigments from microalgae is not able to meet the growing market demand. The use of metabolic engineering and synthetic biological strategies to improve the production performance of microalgal cell factories is essential to promote the large-scale production of high-value pigments from microalgae. This paper reviews the health and economic values, the applications, and the synthesis pathways of microalgal pigments. Overall, this review aims to highlight the latest research progress in metabolic engineering and synthetic biology in constructing engineered strains of microalgae with high-value pigments and the application of CRISPR technology and multi-omics in this context. Finally, we conclude with a discussion on the bottlenecks and challenges of microalgal pigment production and their future development prospects.
Collapse
Affiliation(s)
- Kai Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yujiao Cao
- School of Foreign Languages, Shandong University of Technology, Zibo 255090, China
| | - Xiaodong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Zuoxi Wei
- School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jinju Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
12
|
Lee CY, Chen KW, Chiang CL, Kao HY, Yu HC, Lee HC, Chen WL. Improved production of β-carotene in light-powered Escherichia coli by co-expression of Gloeobacter rhodopsin expression. Microb Cell Fact 2023; 22:207. [PMID: 37817206 PMCID: PMC10563301 DOI: 10.1186/s12934-023-02212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Providing sufficient and usable energy for the cell factory has long been a heated issue in biosynthesis as solar energy has never been rooted out from the strategy for improvement, and turning Escherichia coli (E. coli) into a phototrophic host has multiple captivating qualities for biosynthesis. In this study, β-carotene was a stable compound for production in E. coli with the expression of four enzymes (CrtE, CrtB, CrtI, CrtY) for production due to its light-harvesting feature as an antenna pigment and as an antioxidant and important precursor for human health. The expression of Gloeobacter rhodopsin (GR) in microbial organisms was proved to have potential for application. RESULTS The expression of fusion protein, GR-GFP, in E. coli showed visible GFP signal under fluorescent microscopy, and its in vivo proton pumping activity signal can be detected in induced photocurrent by electrodes on the chip under intervals of illumination. To assess the phototrophic synthesis ability of the host strain compared to wild-type and vector control strain in chemostat batch with illumination, the expression of red fluorescent protein (RFP) as a target protein showed its yield improvement in protein assay and also reflected its early dominance in RFP fluorescence signal during the incubation, whereas the synthesis of β-carotene also showed yield increase by 1.36-fold and 2.32-fold compared with its wildtype and vector control strain. To investigate the effect of GR-GFP on E. coli, the growth of the host showed early rise into the exponential phase compared to the vector control strain and glucose turnover rate was elevated in increased glucose intake rate and upregulation of ATP-related genes in glycolysis (PtsG, Pgk, Pyk). CONCLUSION We reported the first-time potential application of GR in the form of fusion protein GR-GFP. Expression of GR-GFP in E. coli improved the production of β-carotene and RFP. Our work provides a strain of E. coli harboring phototrophic metabolism, thus paving path to a more sustainable and scalable production of biosynthesis.
Collapse
Affiliation(s)
- Chao-Yu Lee
- Institute of Molecular Medicine and Bioengineering, Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Kai-Wen Chen
- Institute of Molecular Medicine and Bioengineering, Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chih-Lu Chiang
- Department of Civil Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hsuan-Yu Kao
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Civil Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hao-Cheng Yu
- Institute of Molecular Medicine and Bioengineering, Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hsiao-Ching Lee
- Institute of Molecular Medicine and Bioengineering, Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Wen-Liang Chen
- Institute of Molecular Medicine and Bioengineering, Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
| |
Collapse
|
13
|
Bezold F, Scheffer J, Wendering P, Razaghi-Moghadam Z, Trauth J, Pook B, Nußhär H, Hasenjäger S, Nikoloski Z, Essen LO, Taxis C. Optogenetic control of Cdc48 for dynamic metabolic engineering in yeast. Metab Eng 2023; 79:97-107. [PMID: 37422133 DOI: 10.1016/j.ymben.2023.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Dynamic metabolic engineering is a strategy to switch key metabolic pathways in microbial cell factories from biomass generation to accumulation of target products. Here, we demonstrate that optogenetic intervention in the cell cycle of budding yeast can be used to increase production of valuable chemicals, such as the terpenoid β-carotene or the nucleoside analog cordycepin. We achieved optogenetic cell-cycle arrest in the G2/M phase by controlling activity of the ubiquitin-proteasome system hub Cdc48. To analyze the metabolic capacities in the cell cycle arrested yeast strain, we studied their proteomes by timsTOF mass spectrometry. This revealed widespread, but highly distinct abundance changes of metabolic key enzymes. Integration of the proteomics data in protein-constrained metabolic models demonstrated modulation of fluxes directly associated with terpenoid production as well as metabolic subsystems involved in protein biosynthesis, cell wall synthesis, and cofactor biosynthesis. These results demonstrate that optogenetically triggered cell cycle intervention is an option to increase the yields of compounds synthesized in a cellular factory by reallocation of metabolic resources.
Collapse
Affiliation(s)
- Filipp Bezold
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Johannes Scheffer
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Philipp Wendering
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Zahra Razaghi-Moghadam
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Jonathan Trauth
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Bastian Pook
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Hagen Nußhär
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Sophia Hasenjäger
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany.
| | - Christof Taxis
- Department of Biology/Genetics, Philipps-University Marburg, 35032, Marburg, Germany; School of Science and Technology, University Siegen, 57076, Siegen, Germany.
| |
Collapse
|
14
|
Huang D, Liu C, Su M, Zeng Z, Wang C, Hu Z, Lou S, Li H. Enhancement of β-carotene content in Chlamydomonas reinhardtii by expressing bacterium-driven lycopene β-cyclase. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:127. [PMID: 37573357 PMCID: PMC10423417 DOI: 10.1186/s13068-023-02377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
β-Carotene is one of the economically important carotenoids, having functions as the antioxidant to remove harmful free radicals and as the precursor for vitamin A and other high-valued xanthophyll such as zeaxanthin and astaxanthin. Lycopene cyclase plays an important role in the branching of β-carotene and α-carotene. Aiming to develop the microalgae with enhanced β-carotene productivity, the CrtY gene from bacterium Pantoea agglomerans was integrated into Chlamydomonas reinhardtii. The lycopene-producing E. coli harboring CrtY gene produced 1.59 times of β-carotene than that harboring DsLcyb1 from Dunaliella salina (a microalga with abundant β-carotene), confirming the superior activity of CrtY on β-carotene biosynthesis. According to the pigment analysis by HPLC, in microalgal transformants that were confirmed by molecular analysis, the expression of CrtY significantly increased β-carotene content from 12.48 mg/g to 30.65 mg/g (dry weight), which is about 2.45-fold changes. It is noted that three out of five transformants have statistically significant higher amount of lutein, even though the increment was 20% in maximum. Besides, no growth defect was observed in the transformants. This is the first report of functional expression of prokaryotic gene in eukaryotic microalgae, which will widen the gene pool targeting carotenoids biosynthesis using microalgae as the factory and thereby provide more opportunity for high-valued products engineering in microalgae.
Collapse
Affiliation(s)
- Danqiong Huang
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chenglong Liu
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Mingshan Su
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhiyong Zeng
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chaogang Wang
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Sulin Lou
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| | - Hui Li
- Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| |
Collapse
|
15
|
Madhavan A, Arun KB, Alex D, Anoopkumar AN, Emmanual S, Chaturvedi P, Varjani S, Tiwari A, Kumar V, Reshmy R, Awasthi MK, Binod P, Aneesh EM, Sindhu R. Microbial production of nutraceuticals: Metabolic engineering interventions in phenolic compounds, poly unsaturated fatty acids and carotenoids synthesis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2092-2104. [PMID: 37273565 PMCID: PMC10232702 DOI: 10.1007/s13197-022-05482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 06/06/2023]
Abstract
Nutraceuticals have attained substantial attention due to their health-boosting or disease-prevention characteristics. Growing awareness about the potential of nutraceuticals for the prevention and management of diseases affecting human has led to an increase in the market value of nutraceuticals in several billion dollars. Nevertheless, limitations in supply and isolation complications from plants, animals or fungi, limit the large-scale production of nutraceuticals. Microbial engineering at metabolic level has been proved as an environment friendly substitute for the chemical synthesis of nutraceuticals. Extensively used microbial systems such as E. coli and S. cerevisiae have been modified as versatile cell factories for the synthesis of diverse nutraceuticals. This review describes current interventions in metabolic engineering for synthesising some of the therapeutically important nutraceuticals (phenolic compounds, polyunsaturated fatty acids and carotenoids). We focus on the interventions in enhancing product yield through engineering at gene level or pathway level.
Collapse
Affiliation(s)
- Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014 India
| | - K. B. Arun
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014 India
| | - Deepthy Alex
- Department of Biotechnology, Mar Ivanios College, Trivandrum, Kerala 695015 India
| | - A. N. Anoopkumar
- Department of Zoology, Centre for Research in Emerging Tropical Diseases (CRET‑D), University of Calicut, Malappuram, Kerala India
| | - Shibitha Emmanual
- Department of Zoology, St. Joseph’s College, Thrissur, Kerala 680121 India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226001 India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10 A, Gandhinagar, Gujarat 382010 India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Noida, 201301 India
| | - Vinod Kumar
- Fermentation Technology Division, CSIR- Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, J & K 180001 India
| | - R. Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur, Kerala 689122 India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695019 India
| | - Embalil Mathachan Aneesh
- Department of Zoology, Centre for Research in Emerging Tropical Diseases (CRET‑D), University of Calicut, Malappuram, Kerala India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, Kerala 691505 India
| |
Collapse
|
16
|
Barone GD, Cernava T, Ullmann J, Liu J, Lio E, Germann AT, Nakielski A, Russo DA, Chavkin T, Knufmann K, Tripodi F, Coccetti P, Secundo F, Fu P, Pfleger B, Axmann IM, Lindblad P. Recent developments in the production and utilization of photosynthetic microorganisms for food applications. Heliyon 2023; 9:e14708. [PMID: 37151658 PMCID: PMC10161259 DOI: 10.1016/j.heliyon.2023.e14708] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
The growing use of photosynthetic microorganisms for food and food-related applications is driving related biotechnology research forward. Increasing consumer acceptance, high sustainability, demand of eco-friendly sources for food, and considerable global economic concern are among the main factors to enhance the focus on the novel foods. In the cases of not toxic strains, photosynthetic microorganisms not only provide a source of sustainable nutrients but are also potentially healthy. Several published studies showed that microalgae are sources of accessible protein and fatty acids. More than 400 manuscripts were published per year in the last 4 years. Furthermore, industrial approaches utilizing these microorganisms are resulting in new jobs and services. This is in line with the global strategy for bioeconomy that aims to support sustainable development of bio-based sectors. Despite the recognized potential of the microalgal biomass value chain, significant knowledge gaps still exist especially regarding their optimized production and utilization. This review highlights the potential of microalgae and cyanobacteria for food and food-related applications as well as their market size. The chosen topics also include advanced production as mixed microbial communities, production of high-value biomolecules, photoproduction of terpenoid flavoring compounds, their utilization for sustainable agriculture, application as source of nutrients in space, and a comparison with heterotrophic microorganisms like yeast to better evaluate their advantages over existing nutrient sources. This comprehensive assessment should stimulate further interest in this highly relevant research topic.
Collapse
Affiliation(s)
- Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- Corresponding author.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Jörg Ullmann
- Roquette Klötze GmbH & Co. KG, Lockstedter Chaussee 1, D-38486, Klötze, Germany
| | - Jing Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228, PR China
| | - Elia Lio
- Institute of Chemical Sciences and Technologies (SCITEC) “Giulio Natta” Italian National Research Council (CNR), via Mario Bianco 9, 20131, Milan, Italy
| | - Anna T. Germann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Andreas Nakielski
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - David A. Russo
- Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Lessingstr. 8, D-07743, Jena, Germany
| | - Ted Chavkin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Francesco Secundo
- Institute of Chemical Sciences and Technologies (SCITEC) “Giulio Natta” Italian National Research Council (CNR), via Mario Bianco 9, 20131, Milan, Italy
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228, PR China
| | - Brian Pfleger
- Knufmann GmbH, Bergstraße 23, D-38486, Klötze, Germany
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40001, Düsseldorf, Germany
- Corresponding author. Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry–Ångström, Uppsala University, Box 523, SE-75120, Uppsala, Sweden
| |
Collapse
|
17
|
Bacterial Pigments and Their Multifaceted Roles in Contemporary Biotechnology and Pharmacological Applications. Microorganisms 2023; 11:microorganisms11030614. [PMID: 36985186 PMCID: PMC10053885 DOI: 10.3390/microorganisms11030614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/05/2023] Open
Abstract
Synthetic dyes and colourants have been the mainstay of the pigment industry for decades. Researchers are eager to find a more environment friendly and non-toxic substitute because these synthetic dyes have a negative impact on the environment and people’s health. Microbial pigments might be an alternative to synthetic pigments. Microbial pigments are categorized as secondary metabolites and are mainly produced due to impaired metabolism under stressful conditions. These pigments have vibrant shades and possess nutritional and therapeutic properties compared to synthetic pigment. Microbial pigments are now widely used within the pharmaceuticals, food, paints, and textile industries. The pharmaceutical industries currently use bacterial pigments as a medicine alternative for cancer and many other bacterial infections. Their growing popularity is a result of their low cost, biodegradable, non-carcinogenic, and environmentally beneficial attributes. This audit article has made an effort to take an in-depth look into the existing uses of bacterial pigments in the food and pharmaceutical industries and project their potential future applications.
Collapse
|
18
|
Takekana M, Yoshida T, Yoshida E, Ono S, Horie S, Vavricka CJ, Hiratani M, Tsuge K, Ishii J, Hayakawa Y, Kondo A, Hasunuma T. Online SFE-SFC-MS/MS colony screening: A high-throughput approach for optimizing (-)-limonene production. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123588. [PMID: 36587464 DOI: 10.1016/j.jchromb.2022.123588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Conventional analysis of microbial bioproducers requires the extraction of metabolites from liquid cultures, where the culturing steps are time consuming and greatly limit throughput. To break through this barrier, the current study aims to directly evaluate microbial bioproduction colonies by way of supercritical fluid extraction-supercritical fluid chromatography-triple quadrupole mass spectrometry (SFE-SFC-MS/MS). The online SFE-SFC-MS/MS system offers great potential for high-throughput analysis due to automated metabolite extraction without any need for pretreatment. This is the first report of SFE-SFC-MS/MS as a method for direct colony screening, as demonstrated in the high-throughput screening of (-)-limonene bioproducers. Compared with conventional analysis, the SFE-SFC-MS/MS system enables faster and more convenient screening of highly productive strains.
Collapse
Affiliation(s)
- Musashi Takekana
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takanobu Yoshida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Erika Yoshida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Research Institute for Bioscience Products & Fine Chemicals. Ajinomoto Co., Inc. Kanagawa, Japan
| | - Sumika Ono
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | | | - Christopher J Vavricka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Moe Hiratani
- Research Institute for Bioscience Products & Fine Chemicals. Ajinomoto Co., Inc. Kanagawa, Japan
| | - Kenji Tsuge
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Engineering Biology Research Center, Kobe University, Kobe, Japan
| | | | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan; Engineering Biology Research Center, Kobe University, Kobe, Japan.
| |
Collapse
|
19
|
Rapid Gene Target Tracking for Enhancing β-Carotene Production Using Flow Cytometry-Based High-Throughput Screening in Yarrowia lipolytica. Appl Environ Microbiol 2022; 88:e0114922. [PMID: 36094200 PMCID: PMC9552598 DOI: 10.1128/aem.01149-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-Carotene is a provitamin A precursor and an important antioxidant that is used widely in the aquaculture, food, cosmetic, and pharmaceutical industries. Oleaginous Yarrowia lipolytica has been demonstrated as a competitive producer microorganism for the production of hydrophobic β-carotene through rational engineering strategies. However, the limited understanding of the complexity of the metabolic network between carotenoid biosynthesis and other cellular processes has hampered further advancement. Genome-scale mutagenesis and high-throughput screening of mutagenesis libraries have been extensively employed in gene mining or in the identification of key targets associated with particular phenotypes. In this study, we developed a fluorescence-activated cell-sorting approach for the effective high-throughput screening of high-β-carotene-producing strains. Using this approach, millions of mutants were screened rapidly, and new gene targets involved in lipid metabolism, sterol metabolism, signal transduction, and stress response were identified. The disruption of the genes affecting fatty acid oxidation, lipid composition, and sterol transcriptional regulation (4CL-8, GCS, and YIsterTF) increased β-carotene significantly. By engineering these targets in a high-β-carotene production, a strain that produced 9.4 g/L β-carotene was constructed. Here, we used a flow cytometry approach to improve screening efficiency and eliminate the interference of intermediate metabolites. The targets obtained in this study can be used in studies focusing on metabolic engineering in the future for improving carotenoid production. IMPORTANCE β-Carotene is a high-value-added product that is widely used in the aquaculture, food, cosmetic, and pharmaceutical industries. In our previous study, Yarrowia lipolytica has been engineered extensively to produce β-carotene. To further improve its production, high-throughput screening and the identification of new beneficial gene targets are required. Herein, we developed a fluorescence-activated cell-sorting approach for the effective high-throughput screening of high-β-carotene-producing strains. Using this approach, millions of mutants were screened rapidly, and new gene targets involved in lipid metabolism, sterol metabolism, signal transduction, and stress response were identified. The disruption of the genes affecting fatty acid oxidation, lipid composition, and sterol transcriptional regulation (4CL-8, GCS, and YIsterTF) increased β-carotene significantly. By engineering these targets in a high-β-carotene production, a strain that produced 9.4 g/L β-carotene was constructed.
Collapse
|
20
|
Johnston ML, Bonett EM, DeColli AA, Freel Meyers CL. Antibacterial Target DXP Synthase Catalyzes the Cleavage of d-Xylulose 5-Phosphate: a Study of Ketose Phosphate Binding and Ketol Transfer Reaction. Biochemistry 2022; 61:1810-1823. [PMID: 35998648 PMCID: PMC9531112 DOI: 10.1021/acs.biochem.2c00274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate (d-GAP) in a thiamin diphosphate (ThDP)-dependent manner. In addition to its role in isoprenoid biosynthesis, DXP is required for ThDP and pyridoxal phosphate biosynthesis. Due to its function as a branch-point enzyme and its demonstrated substrate and catalytic promiscuity, we hypothesize that DXPS could be key for bacterial adaptation in the dynamic metabolic landscape during infection. Prior work in the Freel Meyers laboratory has illustrated that DXPS displays relaxed specificity toward donor and acceptor substrates and varies acceptor specificity according to the donor used. We have reported that DXPS forms dihydroxyethyl (DHE)ThDP from ketoacid or aldehyde donor substrates via decarboxylation and deprotonation, respectively. Here, we tested other DHE donors and found that DXPS cleaves d-xylulose 5-phosphate (X5P) at C2-C3, producing DHEThDP through a third mechanism involving d-GAP elimination. We interrogated DXPS-catalyzed reactions using X5P as a donor substrate and illustrated (1) production of a semi-stable enzyme-bound intermediate and (2) O2, H+, and d-erythrose 4-phosphate act as acceptor substrates, highlighting a new transketolase-like activity of DXPS. Furthermore, we examined X5P binding to DXPS and suggest that the d-GAP binding pocket plays a crucial role in X5P binding and turnover. Overall, this study reveals a ketose-cleavage reaction catalyzed by DXPS, highlighting the remarkable flexibility for donor substrate usage by DXPS compared to other C-C bond-forming enzymes.
Collapse
Affiliation(s)
- Melanie L. Johnston
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eucolona M. Bonett
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
Chaillou S, Stamou PE, Torres LL, Riesco AB, Hazelton W, Pinheiro VB. Directed evolution of colE1 plasmid replication compatibility: a fast tractable tunable model for investigating biological orthogonality. Nucleic Acids Res 2022; 50:9568-9579. [PMID: 36018798 PMCID: PMC9458437 DOI: 10.1093/nar/gkac682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
Plasmids of the ColE1 family are among the most frequently used in molecular biology. They were adopted early for many biotechnology applications, and as models to study plasmid biology. Their mechanism of replication is well understood, involving specific interactions between a plasmid encoded sense-antisense gene pair (RNAI and RNAII). Due to such mechanism, two plasmids with the same origin cannot be stably maintained in cells-a process known as incompatibility. While mutations in RNAI and RNAII can make colE1 more compatible, there has been no systematic effort to engineer new compatible colE1 origins, which could bypass technical design constraints for multi-plasmid applications. Here, we show that by diversifying loop regions in RNAI (and RNAII), it is possible to select new viable colE1 origins compatible with the wild-type one. We demonstrate that sequence divergence is not sufficient to enable compatibility and pairwise interactions are not an accurate guide for higher order interactions. We identify potential principles to engineer plasmid copy number independently from other regulatory strategies and we propose plasmid compatibility as a tractable model to study biological orthogonality.
Collapse
Affiliation(s)
| | | | - Leticia L Torres
- University College London, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ana B Riesco
- University College London, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Warren Hazelton
- University College London, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Vitor B Pinheiro
- To whom correspondence should be addressed. Tel: +32 16 330 257;
| |
Collapse
|
22
|
Park SY, Eun H, Lee MH, Lee SY. Metabolic engineering of Escherichia coli with electron channelling for the production of natural products. Nat Catal 2022. [DOI: 10.1038/s41929-022-00820-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Li W, Cui L, Mai J, Shi TQ, Lin L, Zhang ZG, Ledesma-Amaro R, Dong W, Ji XJ. Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9246-9261. [PMID: 35854404 DOI: 10.1021/acs.jafc.2c03917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Terpenes are a large class of secondary metabolites with diverse structures and functions that are commonly used as valuable raw materials in food, cosmetics, and medicine. With the development of metabolic engineering and emerging synthetic biology tools, these important terpene compounds can be sustainably produced using different microbial chassis. Currently, yeasts such as Saccharomyces cerevisiae and Yarrowia lipolytica have received extensive attention as potential hosts for the production of terpenes due to their clear genetic background and endogenous mevalonate pathway. In this review, we summarize the natural terpene biosynthesis pathways and various engineering strategies, including enzyme engineering, pathway engineering, and cellular engineering, to further improve the terpene productivity and strain stability in these two widely used yeasts. In addition, the future prospects of yeast-based terpene production are discussed in light of the current progress, challenges, and trends in this field. Finally, guidelines for future studies are also emphasized.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Liuwei Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jie Mai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhi-Gang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
24
|
Chen X, Shang C, Zhang H, Sun C, Zhang G, Liu L, Li C, Li A, Du P. Effects of Alkali Stress on the Growth and Menaquinone-7 Metabolism of Bacillus subtilis natto. Front Microbiol 2022; 13:899802. [PMID: 35572665 PMCID: PMC9096614 DOI: 10.3389/fmicb.2022.899802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
Menaquinone-7 (MK-7) is an important vitamin K2, synthesized from the menaquinone parent ring and seven isoprene side chains. Presently, the synthesis of MK-7 stimulated by environmental stress primarily focuses on oxygen stress, while the effect of alkali stress is rarely studied. Therefore, this study researched the effects of alkali stress on the fermentation performance and gene expression of Bacillus subtilis natto. The organism’s growth characteristics, biomass, sporogenesis, MK-7 biosynthesis, and gene expression were analyzed. After a pH 8.5 stress adaptation treatment for 0.5 h and subsequent fermentation at pH 8.5, which promoted the growth of the strain and inhibited the spore formation rate. In addition, biomass was significantly increased (P < 0.05). The conversion rate of glycerol to MK-7 was 1.68 times higher than that of the control group, and the yield of MK-7 increased to 2.10 times. Transcriptomic analysis showed that the MK-7 high-yielding strain had enhanced carbon source utilization, increased glycerol and pyruvate metabolism, enhanced the Embden-Meyerhof pathway (EMP), tricarboxylic acid (TCA) circulation flux, and terpenoid biosynthesis pathway, and promoted the accumulation of acetyl-CoA, the side-chain precursor of isoprene. At the same time, the up-regulation of transketolase increased the metabolic flux of the pentose phosphate (HMP) pathway, which was conducive to the accumulation of D-erythrose 4-phosphate, the precursor of the menadione parent ring. This study’s results contribute to a better understanding of the effects of environmental stress on MK-7 fermentation by Bacillus subtilis natto and the molecular regulatory mechanism of MK-7 biosynthesis.
Collapse
Affiliation(s)
- Xiaoqian Chen
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chao Shang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Huimin Zhang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Cuicui Sun
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Libo Liu
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China.,Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Aili Li
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China.,Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Peng Du
- Key Laboratory of Dairy Science, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
25
|
Singh RV, Sambyal K. An overview of β-carotene production: Current status and future prospects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Hussain MH, Mohsin MZ, Zaman WQ, Yu J, Zhao X, Wei Y, Zhuang Y, Mohsin A, Guo M. Multiscale engineering of microbial cell factories: A step forward towards sustainable natural products industry. Synth Syst Biotechnol 2022; 7:586-601. [PMID: 35155840 PMCID: PMC8816652 DOI: 10.1016/j.synbio.2021.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Microbial cell factories (bacteria and fungi) are the leading producers of beneficial natural products such as lycopene, carotene, herbal medicine, and biodiesel etc. These microorganisms are considered efficient due to their effective bioprocessing strategy (monoculture- and consortial-based approach) under distinct processing conditions. Meanwhile, the advancement in genetic and process optimization techniques leads to enhanced biosynthesis of natural products that are known functional ingredients with numerous applications in the food, cosmetic and medical industries. Natural consortia and monoculture thrive in nature in a small proportion, such as wastewater, food products, and soils. In similitude to natural consortia, it is possible to engineer artificial microbial consortia and program their behaviours via synthetic biology tools. Therefore, this review summarizes the optimization of genetic and physicochemical parameters of the microbial system for improved production of natural products. Also, this review presents a brief history of natural consortium and describes the functional properties of monocultures. This review focuses on synthetic biology tools that enable new approaches to design synthetic consortia; and highlights the syntropic interactions that determine the performance and stability of synthetic consortia. In particular, the effect of processing conditions and advanced genetic techniques to improve the productibility of both monoculture and consortial based systems have been greatly emphasized. In this context, possible strategies are also discussed to give an insight into microbial engineering for improved production of natural products in the future. In summary, it is concluded that the coupling of genomic modifications with optimum physicochemical factors would be promising for producing a robust microbial cell factory that shall contribute to the increased production of natural products.
Collapse
Affiliation(s)
- Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Waqas Qamar Zaman
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Junxiong Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xueli Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yanlong Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Corresponding author. East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, PR China.
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Corresponding author. P.O. box 329#, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, PR China.
| |
Collapse
|
27
|
Srivastava AK, Srivastava R, Bharati AP, Singh AK, Sharma A, Das S, Tiwari PK, Srivastava AK, Chakdar H, Kashyap PL, Saxena AK. Analysis of Biosynthetic Gene Clusters, Secretory, and Antimicrobial Peptides Reveals Environmental Suitability of Exiguobacterium profundum PHM11. Front Microbiol 2022; 12:785458. [PMID: 35185816 PMCID: PMC8851196 DOI: 10.3389/fmicb.2021.785458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Halotolerant bacteria produce a wide range of bioactive compounds with important applications in agriculture for abiotic stress amelioration and plant growth promotion. In the present study, 17 biosynthetic gene clusters (BGCs) were identified in Exiguobacterium profundum PHM11 belonging to saccharides, desmotamide, pseudaminic acid, dipeptide aldehydes, and terpene biosynthetic pathways representing approximately one-sixth of genomes. The terpene biosynthetic pathway was conserved in Exiguobacterium spp. while the E. profundum PHM11 genome confirms the presence of the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway for the isopentenyl diphosphate (IPP) synthesis. Further, 2,877 signal peptides (SPs) were identified using the PrediSi server, out of which 592 proteins were prophesied for the secretion having a transmembrane helix (TMH). In addition, antimicrobial peptides (AMPs) were also identified using BAGEL4. The transcriptome analysis of PHM11 under salt stress reveals the differential expression of putative secretion and transporter genes having SPs and TMH. Priming of the rice, wheat and maize seeds with PHM11 under salt stress led to improvement in the root length, root diameters, surface area, number of links and forks, and shoot length. The study shows that the presence of BGCs, SPs, and secretion proteins constituting TMH and AMPs provides superior competitiveness in the environment and make E. profundum PHM11 a suitable candidate for plant growth promotion under salt stress.
Collapse
Affiliation(s)
- Alok Kumar Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
- Alok Kumar Srivastava,
| | - Ruchi Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Akhilendra Pratap Bharati
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Alok Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Anjney Sharma
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Sudipta Das
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Praveen Kumar Tiwari
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Anchal Kumar Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Hillol Chakdar
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Prem Lal Kashyap
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, India
- *Correspondence: Prem Lal Kashyap, ;
| | - Anil Kumar Saxena
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
28
|
Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: a state-of-the-art review. BIORESOUR BIOPROCESS 2022; 9:8. [PMID: 38647847 PMCID: PMC10992905 DOI: 10.1186/s40643-022-00497-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In current years, natural pigments are facing a fast-growing global market due to the increase of people's awareness of health and the discovery of novel pharmacological effects of various natural pigments, e.g., carotenoids, flavonoids, and curcuminoids. However, the traditional production approaches are source-dependent and generally subject to the low contents of target pigment compounds. In order to scale-up industrial production, many efforts have been devoted to increasing pigment production from natural producers, via development of both in vitro plant cell/tissue culture systems, as well as optimization of microbial cultivation approaches. Moreover, synthetic biology has opened the door for heterologous biosynthesis of pigments via design and re-construction of novel biological modules as well as biological systems in bio-platforms. In this review, the innovative methods and strategies for optimization and engineering of both native and heterologous producers of natural pigments are comprehensively summarized. Current progress in the production of several representative high-value natural pigments is also presented; and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - WeiNing Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
29
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
30
|
Liu M, Zhang J, Ye J, Qi Q, Hou J. Morphological and Metabolic Engineering of Yarrowia lipolytica to Increase β-Carotene Production. ACS Synth Biol 2021; 10:3551-3560. [PMID: 34762415 DOI: 10.1021/acssynbio.1c00480] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oleaginous yeast Yarrowia lipolytica represents an environmentally friendly platform cell factory for β-carotene production. However, Y. lipolytica is a dimorphic species that can undergo a yeast-to-mycelium transition when exposed to stress. The mycelial form is unfavorable for industrial fermentation. In this study, β-carotene-producing Y. lipolytica strains were constructed via the integration of multiple copies of 13 genes related to the β-carotene biosynthesis pathway. The β-carotene content increased by 11.7-fold compared with the start strain T1. As the β-carotene content increased, the oval-shaped yeast form was gradually replaced by hyphae, implying that the accumulation of β-carotene in Y. lipolytica induces a morphological transition. To relieve this metabolic stress, the strains were morphologically engineered by deleting CLA4 and MHY1 genes to convert the mycelium back to the yeast form, which further increased the β-carotene production by 139%. In fed-batch fermentation, the engineered strain produced 7.6 g/L and 159 mg/g DCW β-carotene, which is the highest titer and content reported to date. The morphological engineering strategy developed here may be useful for enhancing chemical synthesis in dimorphic yeasts.
Collapse
Affiliation(s)
- Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao 266237, P. R. China
| | - Jin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao 266237, P. R. China
| | - Jingrun Ye
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao 266237, P. R. China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao 266237, P. R. China
| |
Collapse
|
31
|
Narang PK, Dey J, Mahapatra SR, Roy R, Kushwaha GS, Misra N, Suar M, Raina V. Genome-based identification and comparative analysis of enzymes for carotenoid biosynthesis in microalgae. World J Microbiol Biotechnol 2021; 38:8. [PMID: 34837551 DOI: 10.1007/s11274-021-03188-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Microalgae are potential feedstocks for the commercial production of carotenoids, however, the metabolic pathways for carotenoid biosynthesis across algal lineage are largely unexplored. This work is the first to provide a comprehensive survey of genes and enzymes associated with the less studied methylerythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate pathway as well as the carotenoid biosynthetic pathway in microalgae through bioinformatics and comparative genomics approach. Candidate genes/enzymes were subsequently analyzed across 22 microalgae species of lineages Chlorophyta, Rhodophyta, Heterokonta, Haptophyta, Cryptophyta, and known Arabidopsis homologs in order to study the evolutional divergence in terms of sequence-structure properties. A total of 403 enzymes playing a vital role in carotene, lutein, zeaxanthin, violaxanthin, canthaxanthin, and astaxanthin were unraveled. Of these, 85 were hypothetical proteins whose biological roles are not yet experimentally characterized. Putative functions to these hypothetical proteins were successfully assigned through a comprehensive investigation of the protein family, motifs, intrinsic physicochemical features, subcellular localization, pathway analysis, etc. Furthermore, these enzymes were categorized into major classes as per the conserved domain and gene ontology. Functional signature sequences were also identified which were observed conserved across microalgal genomes. Additionally, the structural modeling and active site architecture of three vital enzymes, DXR, PSY, and ZDS catalyzing the vital rate-limiting steps in Dunaliella salina were achieved. The enzymes were confirmed to be stereochemically reliable and stable as revealed during molecular dynamics simulation of 100 ns. The detailed functional information about individual vital enzymes will certainly help to design genetically modified algal strains with enhanced carotenoid contents.
Collapse
Affiliation(s)
- Parminder Kaur Narang
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.,SGTB Khalsa College, Delhi University, New Delhi, 110007, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Riya Roy
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Gajraj Singh Kushwaha
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.,Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India. .,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
32
|
Applying a ‘Metabolic Funnel’ for Phenol Production in Escherichia coli. FERMENTATION 2021. [DOI: 10.3390/fermentation7040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phenol is an important petrochemical that is conventionally used as a precursor for synthesizing an array of plastics and fine chemicals. As an emerging alternative to its traditional petrochemical production, multiple enzyme pathways have been engineered to date to enable its renewable biosynthesis from biomass feedstocks, each incorporating unique enzyme chemistries and intermediate molecules. Leveraging all three of the unique phenol biosynthesis pathways reported to date, a series of synthetic ‘metabolic funnels’ was engineered, each with the goal of maximizing net precursor assimilation and flux towards phenol via the parallel co-expression of multiple distinct pathways within the same Escherichia coli host. By constructing and evaluating all possible binary and tertiary pathway combinations, one ‘funnel’ was ultimately identified, which supported enhanced phenol production relative to all three individual pathways by 16 to 69%. Further host engineering to increase endogenous precursor availability then allowed for 26% greater phenol production, reaching a final titer of 554 ± 19 mg/L and 28.8 ± 0.34 mg/g yield on glucose. Lastly, using a diphasic culture including dibutyl phthalate for in situ phenol extraction, final titers were further increased to a maximum of 812 ± 145 mg/L at a yield of 40.6 ± 7.2 mg/g. The demonstrated ‘funneling’ pathway holds similar promise in support of phenol production by other, non-E. coli hosts, while this general approach can be readily extended towards a diversity of other value-added bioproducts of interest.
Collapse
|
33
|
Xie F, Niu S, Lin X, Pei S, Jiang L, Tian Y, Zhang G. Description of Microbacterium luteum sp. nov., Microbacterium cremeum sp. nov., and Microbacterium atlanticum sp. nov., three novel C50 carotenoid producing bacteria. J Microbiol 2021; 59:886-897. [PMID: 34491524 DOI: 10.1007/s12275-021-1186-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Abstract
We have identified three Microbacterium strains, A18JL200T, NY27T, and WY121T, that produce C50 carotenoids. Taxonomy shows they represent three novel species. These strains shared < 98.5% 16S rRNA gene sequence identity with each other and were closely related to Microbacterium aquimaris JCM 15625T, Microbacterium yannicii JCM 18959T, Microbacterium ureisolvens CFH S00084T, and Microbacterium hibisci CCTCC AB 2016180T. Digital DNA-DNA hybridization (dDDH) values and average nucleotide identity (ANI) showed differences among the three strains and from their closest relatives, with values ranging from 20.4% to 34.6% and 75.5% to 87.6%, respectively. These values are below the threshold for species discrimination. Both morphology and physiology also differed from those of phylogenetically related Microbacterium species, supporting that they are indeed novel species. These strains produce C50 carotenoids (mainly decaprenoxanthin). Among the three novel species, A18JL200T had the highest total yield in carotenoids (6.1 mg/L or 1.2 mg/g dry cell weight). Unusual dual isoprenoid biosynthetic pathways (methylerythritol phosphate and mevalonate pathways) were annotated for strain A18JL200T. In summary, we found strains of the genus Microbacterium that are potential producers of C50 carotenoids, but their genome has to be investigated further.
Collapse
Affiliation(s)
- Fuquan Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, P. R. China.,Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, P. R. China
| | - Siwen Niu
- Engineering Innovation Center for the Development and Utilization of Marine Bioresources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, P. R. China
| | - Xihuang Lin
- Analysis and Test Center, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, P. R. China
| | - Shengxiang Pei
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, P. R. China
| | - Li Jiang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, P. R. China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, P. R. China
| | - Gaiyun Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, P. R. China.
| |
Collapse
|
34
|
Evolution-aided engineering of plant specialized metabolism. ABIOTECH 2021; 2:240-263. [PMID: 36303885 PMCID: PMC9590541 DOI: 10.1007/s42994-021-00052-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
The evolution of new traits in living organisms occurs via the processes of mutation, recombination, genetic drift, and selection. These processes that have resulted in the immense biological diversity on our planet are also being employed in metabolic engineering to optimize enzymes and pathways, create new-to-nature reactions, and synthesize complex natural products in heterologous systems. In this review, we discuss two evolution-aided strategies for metabolic engineering-directed evolution, which improves upon existing genetic templates using the evolutionary process, and combinatorial pathway reconstruction, which brings together genes evolved in different organisms into a single heterologous host. We discuss the general principles of these strategies, describe the technologies involved and the molecular traits they influence, provide examples of their use, and discuss the roadblocks that need to be addressed for their wider adoption. A better understanding of these strategies can provide an impetus to research on gene function discovery and biochemical evolution, which is foundational for improved metabolic engineering. These evolution-aided approaches thus have a substantial potential for improving our understanding of plant metabolism in general, for enhancing the production of plant metabolites, and in sustainable agriculture.
Collapse
|
35
|
Gupta D, Sharma G, Saraswat P, Ranjan R. Synthetic Biology in Plants, a Boon for Coming Decades. Mol Biotechnol 2021; 63:1138-1154. [PMID: 34420149 DOI: 10.1007/s12033-021-00386-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/16/2021] [Indexed: 02/01/2023]
Abstract
Recently an enormous expansion of knowledge is seen in various disciplines of science. This surge of information has given rise to concept of interdisciplinary fields, which has resulted in emergence of newer research domains, one of them is 'Synthetic Biology' (SynBio). It captures basics from core biology and integrates it with concepts from the other areas of study such as chemical, electrical, and computational sciences. The essence of synthetic biology is to rewire, re-program, and re-create natural biological pathways, which are carried through genetic circuits. A genetic circuit is a functional assembly of basic biological entities (DNA, RNA, proteins), created using typical design, built, and test cycles. These circuits allow scientists to engineer nearly all biological systems for various useful purposes. The development of sophisticated molecular tools, techniques, genomic programs, and ease of nucleic acid synthesis have further fueled several innovative application of synthetic biology in areas like molecular medicines, pharmaceuticals, biofuels, drug discovery, metabolomics, developing plant biosensors, utilization of prokaryotic systems for metabolite production, and CRISPR/Cas9 in the crop improvement. These applications have largely been dominated by utilization of prokaryotic systems. However, newer researches have indicated positive growth of SynBio for the eukaryotic systems as well. This paper explores advances of synthetic biology in the plant field by elaborating on its core components and potential applications. Here, we have given a comprehensive idea of designing, development, and utilization of synthetic biology in the improvement of the present research state of plant system.
Collapse
Affiliation(s)
- Dipinte Gupta
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Gauri Sharma
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Pooja Saraswat
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Rajiv Ranjan
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India.
| |
Collapse
|
36
|
Zhang G, Wang H, Zhang Z, Verstrepen KJ, Wang Q, Dai Z. Metabolic engineering of Yarrowia lipolytica for terpenoids production: advances and perspectives. Crit Rev Biotechnol 2021; 42:618-633. [PMID: 34325575 DOI: 10.1080/07388551.2021.1947183] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Terpenoids are a large family of natural products with diversified structures and functions that are widely used in the food, pharmaceutical, cosmetic, and agricultural fields. However, the traditional methods of terpenoids production such as plant extraction and chemical synthesis are inefficient due to the complex processes, high energy consumption, and low yields. With progress in metabolic engineering and synthetic biology, microbial cell factories provide an interesting alternative for the sustainable production of terpenoids. The non-conventional yeast, Yarrowia lipolytica, is a promising host for terpenoid biosynthesis due to its inherent mevalonate pathway, high fluxes of acetyl-CoA and NADPH, and the naturally hydrophobic microenvironment. In this review, we highlight progress in the engineering of Y. lipolytica as terpenoid biomanufacturing factories, describing the different terpenoid biosynthetic pathways and summarizing various metabolic engineering strategies, including progress in genetic manipulation, dynamic regulation, organelle engineering, and terpene synthase variants.
Collapse
Affiliation(s)
- Ge Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Huan Wang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Kevin J Verstrepen
- TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China.,VIB-KU Leuven Center for Microbiology and KU Leuven Laboratory for Genetics and Genomics, Department M2S, Leuven, Belgium
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zongjie Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
37
|
Milne N, Tramontin LRR, Borodina I. A teaching protocol demonstrating the use of EasyClone and CRISPR/Cas9 for metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica. FEMS Yeast Res 2021; 20:5574399. [PMID: 31556952 PMCID: PMC8260333 DOI: 10.1093/femsyr/foz062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/19/2019] [Indexed: 11/14/2022] Open
Abstract
We present a teaching protocol suitable for demonstrating the use of EasyClone and CRISPR/Cas9 for metabolic engineering of industrially relevant yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, using β-carotene production as a case study. The protocol details all steps required to generate DNA parts, transform and genotype yeast, and perform a phenotypic screen to determine β-carotene production. The protocol is intended to be used as an instruction manual for a two-week practical course aimed at M.Sc. and Ph.D. students. The protocol details all necessary steps for students to engineer yeast to produce β-carotene and serves as a practical introduction to the principles of metabolic engineering including the concepts of boosting native precursor supply and alleviating rate-limiting steps. It also highlights key differences in the metabolism and heterologous production capacity of two industrially relevant yeast species. The protocol is divided into daily experiments covering a two-week period and provides detailed instructions for every step meaning this protocol can be used 'as is' for a teaching course or as a case study for how yeast can be engineered to produce value-added molecules.
Collapse
Affiliation(s)
- N Milne
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - L R R Tramontin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - I Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
38
|
Hage-Hülsmann J, Klaus O, Linke K, Troost K, Gora L, Hilgers F, Wirtz A, Santiago-Schübel B, Loeschcke A, Jaeger KE, Drepper T. Production of C20, C30 and C40 terpenes in the engineered phototrophic bacterium Rhodobacter capsulatus. J Biotechnol 2021; 338:20-30. [PMID: 34237394 DOI: 10.1016/j.jbiotec.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Terpenes constitute one of the largest groups of secondary metabolites that are used, for example, as food-additives, fragrances or pharmaceuticals. Due to the formation of an intracytoplasmic membrane system and an efficient intrinsic tetraterpene pathway, the phototrophic α-proteobacterium Rhodobacter capsulatus offers favorable properties for the production of hydrophobic terpenes. However, research efforts have largely focused on sesquiterpene production. Recently, we have developed modular tools allowing to engineer the biosynthesis of terpene precursors. These tools were now applied to boost the biosynthesis of the diterpene casbene, the triterpene squalene and the tetraterpene β-carotene in R. capsulatus SB1003. Selected enzymes of the intrinsic isoprenoid pathway and the heterologous mevalonate (MVA) pathway were co-expressed together with the respective terpene synthases in various combinations. Remarkably, co-expression of genes ispA, idi and dxs enhanced the synthesis of casbene and β-carotene. In contrast, co-expression of precursor biosynthetic genes with the squalene synthase from Arabidopsis thaliana reduced squalene titers. Therefore, we further employed four alternative pro- and eukaryotic squalene synthases. Here, the synthase from Methylococcus capsulatus enabled highest product levels of 90 mg/L squalene upon co-expression with ispA. In summary, we demonstrate the applicability of R. capsulatus for the heterologous production of diverse terpene classes and provide relevant insights for further development of such platforms.
Collapse
Affiliation(s)
- Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Germany.
| | - Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| | - Karl Linke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| | - Katrin Troost
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| | - Lukas Gora
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.
| | - Astrid Wirtz
- Institute of Bio- and Geosciences IBG-1, Forschungszentrum Jülich, Jülich, Germany.
| | - Beatrix Santiago-Schübel
- Central Division of Analytical Chemistry ZEA-3: Analytik/Biospec, Forschungszentrum Jülich, Jülich, Germany.
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Institute of Bio- and Geosciences IBG-1, Forschungszentrum Jülich, Jülich, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
39
|
|
40
|
Chuon K, Kim SY, Meas S, Shim JG, Cho SG, Kang KW, Kim JH, Cho HS, Jung KH. Assembly of Natively Synthesized Dual Chromophores Into Functional Actinorhodopsin. Front Microbiol 2021; 12:652328. [PMID: 33995310 PMCID: PMC8113403 DOI: 10.3389/fmicb.2021.652328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Microbial rhodopsin is a simple solar energy-capturing molecule compared to the complex photosynthesis apparatus. Light-driven proton pumping across the cell membrane is a crucial mechanism underlying microbial energy production. Actinobacteria is one of the highly abundant bacterial phyla in freshwater habitats, and members of this lineage are considered to boost heterotrophic growth via phototrophy, as indicated by the presence of actino-opsin (ActR) genes in their genome. However, it is difficult to validate their function under laboratory settings because Actinobacteria are not consistently cultivable. Based on the published genome sequence of Candidatus aquiluna sp. strain IMCC13023, actinorhodopsin from the strain (ActR-13023) was isolated and characterized in this study. Notably, ActR-13023 assembled with natively synthesized carotenoid/retinal (used as a dual chromophore) and functioned as a light-driven outward proton pump. The ActR-13023 gene and putative genes involved in the chromophore (retinal/carotenoid) biosynthetic pathway were detected in the genome, indicating the functional expression ActR-13023 under natural conditions for the utilization of solar energy for proton translocation. Heterologous expressed ActR-13023 exhibited maximum absorption at 565 nm with practical proton pumping ability. Purified ActR-13023 could be reconstituted with actinobacterial carotenoids for additional light-harvesting. The existence of actinorhodopsin and its chromophore synthesis machinery in Actinobacteria indicates the inherent photo-energy conversion function of this microorganism. The assembly of ActR-13023 to its synthesized chromophores validated the microbial community's importance in the energy cycle.
Collapse
Affiliation(s)
- Kimleng Chuon
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - So Young Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| | - Seanghun Meas
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Shin-Gyu Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Kun-Wook Kang
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Ji-Hyun Kim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Hyun-Suk Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| |
Collapse
|
41
|
Abstract
Colorants find social and commercial applications in cosmetics, food, pharmaceuticals, textiles, and other industrial sectors. Among the available options, chemically synthesized colorants are popular due to their low-cost and flexible production modes, but health and environmental concerns have encouraged the valorization of biopigments that are natural and ecofriendly. Among natural biopigment producers, microorganisms are noteworthy for their all-seasonal production of stable and low-cost pigments with high-yield titers. Fungi are paramount sources of natural pigments. They occupy diverse ecological niches with adaptive metabolisms and biocatalytic pathways, making them entities with an industrial interest. Industrially important biopigments like carotenoids, melanins, riboflavins, azaphilones, and quinones produced by filamentous fungi are described within the context of this review. Most recent information about fungal pigment characteristics, biochemical production routes and pathways, potential applications, limitations, and future research perspectives are described.
Collapse
Affiliation(s)
- Haritha Meruvu
- Department of Chemical Engineering, Andhra University College of Engineering - AU North Campus, Andhra University, Visakhapatnam, India.,Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.,Department of Bioengineering, Faculty of Engineering and Natural Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Estrada Municipal do Campinho, Lorena/SP, Brazil
| |
Collapse
|
42
|
Kim J, Hoang Nguyen Tran P, Lee SM. Current Challenges and Opportunities in Non-native Chemical Production by Engineered Yeasts. Front Bioeng Biotechnol 2021; 8:594061. [PMID: 33381497 PMCID: PMC7767886 DOI: 10.3389/fbioe.2020.594061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Yeasts are promising industrial hosts for sustainable production of fuels and chemicals. Apart from efficient bioethanol production, yeasts have recently demonstrated their potential for biodiesel production from renewable resources. The fuel-oriented product profiles of yeasts are now expanding to include non-native chemicals with the advances in synthetic biology. In this review, current challenges and opportunities in yeast engineering for sustainable production of non-native chemicals will be discussed, with a focus on the comparative evaluation of a bioethanol-producing Saccharomyces cerevisiae strain and a biodiesel-producing Yarrowia lipolytica strain. Synthetic pathways diverging from the distinctive cellular metabolism of these yeasts guide future directions for product-specific engineering strategies for the sustainable production of non-native chemicals on an industrial scale.
Collapse
Affiliation(s)
- Jiwon Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Biotechnology, Korea University, Seoul, South Korea
| | - Phuong Hoang Nguyen Tran
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea.,Green School, Korea University, Seoul, South Korea
| |
Collapse
|
43
|
Godara A, Kao KC. Adaptive laboratory evolution for growth coupled microbial production. World J Microbiol Biotechnol 2020; 36:175. [DOI: 10.1007/s11274-020-02946-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022]
|
44
|
Lv PJ, Qiang S, Liu L, Hu CY, Meng YH. Dissolved-oxygen feedback control fermentation for enhancing β-carotene in engineered Yarrowia lipolytica. Sci Rep 2020; 10:17114. [PMID: 33051539 PMCID: PMC7555900 DOI: 10.1038/s41598-020-74074-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023] Open
Abstract
The DO-stat fed-batch fermentation was carried out to explore the volumetric productivity of β-carotene in engineered Yarrowia lipolytica C11 strain. Using DO-stat fed-batch fermentation, we achieved 94 g/L biomass and 2.01 g/L β-carotene. Both biomass and β-carotene were about 1.28-fold higher than that in fed-batch fermentation. The ATP, NADP+/NADPH, and gene expression levels of tHMG, GGS1, carRA, and carB were promoted as compared to that in fed-batch fermentation. As for as the kinetic parameters in DO-stat fed-batch fermentation, μm', Yx/s', and Yp/s' was 0.527, 0.353, and 0.158, respectively. The μm' was elevated 4.66-fold than that in fed-batch fermentation. These data illustrate that more dissolved oxygen increased the biomass. The Yx/s' and Yp/s' were increased 1.15 and 22.57-fold, which suggest that the DO-stat fed-batch fermentation reduced the Crabtree effect and improved the utilization rate of glucose. Therefore, DO-stat fed-batch fermentation is a promising strategy in the industrialized production of β-carotene.
Collapse
Affiliation(s)
- Peng Jun Lv
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, 710119, P.R. China
| | - Shan Qiang
- Xian Healthful Biotechnology Co., Ltd., Hang Tuo Road, Changan, Xi'an, 710100, People's Republic of China
| | - Liang Liu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, 710119, P.R. China
| | - Ching Yuan Hu
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, 710119, P.R. China
| | - Yong Hong Meng
- Engineering Research Center of High Value Utilization of Western China Fruit Resources, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Changan, Xian, 710119, P.R. China.
| |
Collapse
|
45
|
De novo biosynthesis of linalool from glucose in engineered Escherichia coli. Enzyme Microb Technol 2020; 140:109614. [DOI: 10.1016/j.enzmictec.2020.109614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022]
|
46
|
Nguyen AD, Kim D, Lee EY. Unlocking the biosynthesis of sesquiterpenoids from methane via the methylerythritol phosphate pathway in methanotrophic bacteria, using α-humulene as a model compound. Metab Eng 2020; 61:69-78. [PMID: 32387228 DOI: 10.1016/j.ymben.2020.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/21/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022]
Abstract
Isoprenoids are an abundant and diverse class of natural products with various applications in the pharmaceutical, cosmetics and biofuel industries. A methanotroph-based biorefinery is an attractive scenario for the production of a variety of value-added compounds from methane, because methane is a promising alternative feedstock for industrial biomanufacturing. In this study, we metabolically engineered Methylotuvimicrobium alcaliphilum 20Z for de novo synthesis of a sesquiterpenoid from methane, using α-humulene as a model compound, via optimization of the native methylerythritol phosphate (MEP) pathway. Expression of codon-optimized α-humulene synthase from Zingiber zerumbet in M. alcaliphilum 20Z resulted in an initial yield of 0.04 mg/g dry cell weight. Overexpressing key enzymes (IspA, IspG, and Dxs) for debottlenecking of the MEP pathway increased α-humulene production 5.2-fold compared with the initial strain. Subsequently, redirecting the carbon flux through the Embden-Meyerhof-Parnas pathway resulted in an additional 3-fold increase in α-humulene production. Additionally, a genome-scale model using flux scanning based on enforced objective flux method was used to identify potential overexpression targets to increase flux towards isoprenoid production. Several target reactions from cofactor synthesis pathways were probed and evaluated for their effects on α-humulene synthesis, resulting in α-humulene yield up to 0.75 mg/g DCW with 18.8-fold enhancement from initial yield. This study first demonstrates production of a sesquiterpenoid from methane using methanotrophs as the biocatalyst and proposes potential strategies to enhance production of sesquiterpenoid and related isoprenoid products in engineered methanotrophic bacteria.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea.
| |
Collapse
|
47
|
Maj A, Dziewit L, Drewniak L, Garstka M, Krucon T, Piatkowska K, Gieczewska K, Czarnecki J, Furmanczyk E, Lasek R, Baj J, Bartosik D. In vivo creation of plasmid pCRT01 and its use for the construction of carotenoid-producing Paracoccus spp. strains that grow efficiently on industrial wastes. Microb Cell Fact 2020; 19:141. [PMID: 32660485 PMCID: PMC7359593 DOI: 10.1186/s12934-020-01396-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background Carotenoids are natural tetraterpene pigments widely utilized in the food, pharmaceutical and cosmetic industries. Currently, chemical synthesis of these compounds outperforms their production in Escherichia coli or yeast due to the limited efficiency of the latter. The use of natural microbial carotenoid producers, such as bacteria of the genus Paracoccus (Alphaproteobacteria), may help to optimize this process. In order to couple the ability to synthesize these pigments with the metabolic versatility of this genus, we explored the possibility of introducing carotenoid synthesis genes into strains capable of efficient growth on simple low-cost media. Results We constructed two carotenoid-producing strains of Paracoccus carrying a new plasmid, pCRT01, which contains the carotenoid synthesis gene locus crt from Paracoccus marcusii OS22. The plasmid was created in vivo via illegitimate recombination between crt-carrying vector pABW1 and a natural “paracoccal” plasmid pAMI2. Consequently, the obtained fusion replicon is stably maintained in the bacterial population without the need for antibiotic selection. The introduction of pCRT01 into fast-growing “colorless” strains of Paracoccus aminophilus and Paracoccus kondratievae converted them into efficient producers of a range of both carotenes and xanthophylls. The exact profile of the produced pigments was dependent on the strain genetic background. To reduce the cost of carotenoid production in this system, we tested the growth and pigment synthesis efficiency of the two strains on various simple media, including raw industrial effluent (coal-fired power plant flue gas desulfurization wastewater) supplemented with molasses, an industrial by-product rich in sucrose. Conclusions We demonstrated a new approach for the construction of carotenoid-producing bacterial strains which relies on a single plasmid-mediated transfer of a pigment synthesis gene locus between Paracoccus strains. This strategy facilitates screening for producer strains in terms of synthesis efficiency, pigment profile and ability to grow on low-cost industrial waste-based media, which should increase the cost-effectiveness of microbial production of carotenoids.
Collapse
Affiliation(s)
- Anna Maj
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Lukasz Drewniak
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Krucon
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katarzyna Piatkowska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katarzyna Gieczewska
- Department of Plant Anatomy and Cytology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jakub Czarnecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.,Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Ewa Furmanczyk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.,Department of Plant Protection from Pests, Research Institute of Horticulture, Skierniewice, Poland
| | - Robert Lasek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jadwiga Baj
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
48
|
Yang D, Park SY, Park YS, Eun H, Lee SY. Metabolic Engineering of Escherichia coli for Natural Product Biosynthesis. Trends Biotechnol 2020; 38:745-765. [DOI: 10.1016/j.tibtech.2019.11.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
|
49
|
Wu Y, Yan P, Li Y, Liu X, Wang Z, Chen T, Zhao X. Enhancing β-Carotene Production in Escherichia coli by Perturbing Central Carbon Metabolism and Improving the NADPH Supply. Front Bioeng Biotechnol 2020; 8:585. [PMID: 32582683 PMCID: PMC7296177 DOI: 10.3389/fbioe.2020.00585] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023] Open
Abstract
Beta (β)-carotene (C40H56; a provitamin) is a particularly important carotenoid for human health. Many studies have focused on engineering Escherichia coli as an efficient heterologous producer of β-carotene. Moreover, several strains with potential for use in the industrial production of this provitamin have already been constructed via different metabolic engineering strategies. In this study, we aimed to improve the β-carotene-producing capacity of our previously engineered E. coli strain ZF43ΔgdhA through further gene deletion and metabolic pathway manipulations. Deletion of the zwf gene increased the resultant strain's β-carotene production and content by 5.1 and 32.5%, respectively, relative to the values of strain ZF43ΔgdhA, but decreased the biomass by 26.2%. Deletion of the ptsHIcrr operon further increased the β-carotene production titer from 122.0 to 197.4 mg/L, but the provitamin content was decreased. Subsequently, comparative transcriptomic analysis was used to explore the dynamic transcriptional responses of the strains to the blockade of the pentose phosphate pathway and inactivation of the phosphotransferase system. Lastly, based on the analyses of comparative transcriptome and reduction cofactor, several strategies to increase the NADPH supply were evaluated for enhancement of the β-carotene content. The combination of yjgB gene deletion and nadK overexpression led to increased β-carotene production and content. The best strain, ECW4/p5C-nadK, produced 266.4 mg/L of β-carotene in flask culture and 2,579.1 mg/L in a 5-L bioreactor. The latter value is the highest reported from production via the methylerythritol phosphate pathway in E. coli. Although the strategies applied is routine in this study, the combinations reported were first implemented, are simple but efficient and will be helpful for the production of many other natural products, especially isoprenoids. Importantly, we demonstrated that the use of the methylerythritol phosphate pathway alone for efficient β-carotene biosynthesis could be achieved via appropriate modifications of the cell metabolic functions.
Collapse
Affiliation(s)
- Yuanqing Wu
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Panpan Yan
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yang Li
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- College of Life Science, Shihezi University, Shihezi, China
| | - Xuewei Liu
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhiwen Wang
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tao Chen
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xueming Zhao
- Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
50
|
Li C, Swofford CA, Sinskey AJ. Modular engineering for microbial production of carotenoids. Metab Eng Commun 2020; 10:e00118. [PMID: 31908924 PMCID: PMC6938962 DOI: 10.1016/j.mec.2019.e00118] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
There is an increasing demand for carotenoids due to their applications in the food, flavor, pharmaceutical and feed industries, however, the extraction and synthesis of these compounds can be expensive and technically challenging. Microbial production of carotenoids provides an attractive alternative to the negative environmental impacts and cost of chemical synthesis or direct extraction from plants. Metabolic engineering and synthetic biology approaches have been widely utilized to reconstruct and optimize pathways for carotenoid overproduction in microorganisms. This review summarizes the current advances in microbial engineering for carotenoid production and divides the carotenoid biosynthesis building blocks into four distinct metabolic modules: 1) central carbon metabolism, 2) cofactor metabolism, 3) isoprene supplement metabolism and 4) carotenoid biosynthesis. These four modules focus on redirecting carbon flux and optimizing cofactor supplements for isoprene precursors needed for carotenoid synthesis. Future perspectives are also discussed to provide insights into microbial engineering principles for overproduction of carotenoids.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Charles A. Swofford
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Anthony J. Sinskey
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| |
Collapse
|