1
|
Abiola T, Olukanni OD. Isolation, characterization and optimization of oleaginous Providencia vermicola as a feedstock for biodiesel production using Response Surface Methodology. Prep Biochem Biotechnol 2024; 54:1226-1242. [PMID: 38727011 DOI: 10.1080/10826068.2024.2344516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Oleaginous organisms accrue more than twenty percent of their biomass as lipids and hence are promising feedstocks for biodiesel production. In this study, lipid accumulating bacteria were isolated from diesel-contaminated soils and screened with Sudan black B stain. The most oleaginous was done using 16s rRNA gene sequencing. Lipid production was initially optimized based on media, nitrogen source, pH and temperature. Response surface methodology (RSM) was then employed for the enhancement of lipid weight and content. Obtained lipid was converted to biodiesel using direct transesterification, and both lipid and biodiesel were characterized using FTIR. A total of thirteen bacteria were isolated and the most prominent lipid producer was identified as Providencia vermicola with lab number BA6. Preliminary optimization studies revealed optimum lipid production when nutrient broth and acetic acid served as carbon source; KNO3 as nitrogen source, pH 7.0 and 30 °C. Optimization using RSM resulted in a 5.1% and 74.1% increase in the biomass and lipid content of BA6 respectively. FTIR analyses confirmed the presence of functional groups characteristic of lipids and biodiesel. P. vermicola is a novel oleaginous organism that represents a promising feedstock for biodiesel production.HIGHLIGHTSThe bacterium designated as BA6 identified as Providencia vermicola has the highest lipid contents of the oleaginous bacteria isolated.It accumulates lipids up to 47.73 % of its biomassThe percentage lipids accumulation increased to about 74 % when RSM was used.Providencia vermicola is being reported as an oleaginous organism for the first time.
Collapse
Affiliation(s)
- Temitope Abiola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| | - Olumide D Olukanni
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| |
Collapse
|
2
|
Şirin PA, Serdar S. Effects of nitrogen starvation on growth and biochemical composition of some microalgae species. Folia Microbiol (Praha) 2024; 69:889-902. [PMID: 38285280 DOI: 10.1007/s12223-024-01136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Nitrogen is one of the most important nutrient sources for the growth of microalgae. We studied the effects of nitrogen starvation on the growth responses, biochemical composition, and fatty acid profile of Dunaliella tertiolecta, Phaeodactylum tricornutum, and Nannochloropsis oculata. The lack of nitrogen caused changes in carbohydrate, protein, lipid, and fatty acid composition in all examined microalgae. The carbohydrate content increased 59% in D. tertiolecta, while the lipid level increased 139% in P. tricornutum under nitrogen stress conditions compared to the control groups. Nitrogen starvation increased the oligosaccharide and polysaccharide contents of D. tertiolecta 4.1-fold and 3.6-fold, respectively. Furthermore, triacylglycerol (TAG) levels in N. oculata and P. tricornutum increased 2.3-fold and 7.4-fold, respectively. The dramatic increase in the amount of TAG is important for the use of these microalgae as raw materials in biodiesel. Nitrogen starvation increased the amounts of oligosaccharides and polysaccharides of D. tertiolecta, while increased eicosapentaenoic acid (EPA) in N. oculata and docosahexaenoic acid (DHA) content in P. tricornutum. The amount of polyunsaturated fatty acids (PUFAs), EPA, DHA, oligosaccharides, and polysaccharides in microalgal species can be increased without using the too costly nitrogen source in the culture conditions, which can reduce the most costly of living feeding.
Collapse
Affiliation(s)
- Pınar Akdoğan Şirin
- Fatsa Faculty of Marine Science, Department of Fisheries Technology Engineering, Ordu University, 52400, Fatsa, Ordu, Turkey.
| | - Serpil Serdar
- Faculty of Fisheries, Department of Aquaculture, Ege University, 35030, Bornova, Izmir, Turkey
| |
Collapse
|
3
|
Hassane AMA, Eldiehy KSH, Saha D, Mohamed H, Mosa MA, Abouelela ME, Abo-Dahab NF, El-Shanawany ARA. Oleaginous fungi: a promising source of biofuels and nutraceuticals with enhanced lipid production strategies. Arch Microbiol 2024; 206:338. [PMID: 38955856 DOI: 10.1007/s00203-024-04054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Oleaginous fungi have attracted a great deal of interest for their potency to accumulate high amounts of lipids (more than 20% of biomass dry weight) and polyunsaturated fatty acids (PUFAs), which have a variety of industrial and biological applications. Lipids of plant and animal origin are related to some restrictions and thus lead to attention towards oleaginous microorganisms as reliable substitute resources. Lipids are traditionally biosynthesized intra-cellularly and involved in the building structure of a variety of cellular compartments. In oleaginous fungi, under certain conditions of elevated carbon ratio and decreased nitrogen in the growth medium, a change in metabolic pathway occurred by switching the whole central carbon metabolism to fatty acid anabolism, which subsequently resulted in high lipid accumulation. The present review illustrates the bio-lipid structure, fatty acid classes and biosynthesis within oleaginous fungi with certain key enzymes, and the advantages of oleaginous fungi over other lipid bio-sources. Qualitative and quantitative techniques for detecting the lipid accumulation capability of oleaginous microbes including visual, and analytical (convenient and non-convenient) were debated. Factors affecting lipid production, and different approaches followed to enhance the lipid content in oleaginous yeasts and fungi, including optimization, utilization of cost-effective wastes, co-culturing, as well as metabolic and genetic engineering, were discussed. A better understanding of the oleaginous fungi regarding screening, detection, and maximization of lipid content using different strategies could help to discover new potent oleaginous isolates, exploit and recycle low-cost wastes, and improve the efficiency of bio-lipids cumulation with biotechnological significance.
Collapse
Affiliation(s)
- Abdallah M A Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt.
| | - Khalifa S H Eldiehy
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | - Debanjan Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, P.O. Box 784028, Assam, India
| | - Hassan Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, P.O. Box 255000, Zibo, China
| | - Mohamed A Mosa
- Nanotechnology and Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, P.O. Box 12619, Giza, Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Nageh F Abo-Dahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | - Abdel-Rehim A El-Shanawany
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| |
Collapse
|
4
|
Akulava V, Tafintseva V, Blazhko U, Kohler A, Miamin U, Valentovich L, Shapaval V. Global biochemical profiling of fast-growing Antarctic bacteria isolated from meltwater ponds by high-throughput FTIR spectroscopy. PLoS One 2024; 19:e0303298. [PMID: 38885224 PMCID: PMC11182503 DOI: 10.1371/journal.pone.0303298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/22/2024] [Indexed: 06/20/2024] Open
Abstract
Fourier transform infrared (FTIR) spectroscopy is a biophysical technique used for non-destructive biochemical profiling of biological samples. It can provide comprehensive information about the total cellular biochemical profile of microbial cells. In this study, FTIR spectroscopy was used to perform biochemical characterization of twenty-nine bacterial strains isolated from the Antarctic meltwater ponds. The bacteria were grown on two forms of brain heart infusion (BHI) medium: agar at six different temperatures (4, 10, 18, 25, 30, and 37°C) and on broth at 18°C. Multivariate data analysis approaches such as principal component analysis (PCA) and correlation analysis were used to study the difference in biochemical profiles induced by the cultivation conditions. The observed results indicated a strong correlation between FTIR spectra and the phylogenetic relationships among the studied bacteria. The most accurate taxonomy-aligned clustering was achieved with bacteria cultivated on agar. Cultivation on two forms of BHI medium provided biochemically different bacterial biomass. The impact of temperature on the total cellular biochemical profile of the studied bacteria was species-specific, however, similarly for all bacteria, lipid spectral region was the least affected while polysaccharide region was the most affected by different temperatures. The biggest temperature-triggered changes of the cell chemistry were detected for bacteria with a wide temperature tolerance such Pseudomonas lundensis strains and Acinetobacter lwoffii BIM B-1558.
Collapse
Affiliation(s)
- Volha Akulava
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Uladzislau Blazhko
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | | | - Leonid Valentovich
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
5
|
Akulava V, Smirnova M, Byrtusova D, Zimmermann B, Ekeberg D, Kohler A, Blazhko U, Miamin U, Valentovich L, Shapaval V. Explorative characterization and taxonomy-aligned comparison of alterations in lipids and other biomolecules in Antarctic bacteria grown at different temperatures. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13232. [PMID: 38308519 PMCID: PMC10878007 DOI: 10.1111/1758-2229.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024]
Abstract
Temperature significantly impacts bacterial physiology, metabolism and cell chemistry. In this study, we analysed lipids and the total cellular biochemical profile of 74 fast-growing Antarctic bacteria grown at different temperatures. Fatty acid diversity and temperature-induced alterations aligned with bacterial classification-Gram-groups, phylum, genus and species. Total lipid content, varied from 4% to 19% of cell dry weight, was genus- and species-specific. Most bacteria increased lipid content at lower temperatures. The effect of temperature on the profile was complex and more species-specific, while some common for all bacteria responses were recorded. Gram-negative bacteria adjusted unsaturation and acyl chain length. Gram-positive bacteria adjusted methyl branching (anteiso-/iso-), chain length and unsaturation. Fourier transform infrared spectroscopy analysis revealed Gram-, genus- and species-specific changes in the total cellular biochemical profile triggered by temperature fluctuations. The most significant temperature-related alterations detected on all taxonomy levels were recorded for mixed region 1500-900 cm-1 , specifically the band at 1083 cm-1 related to phosphodiester groups mainly from phospholipids (for Gram-negative bacteria) and teichoic/lipoteichoic acids (for Gram-positive bacteria). Some changes in protein region were detected for a few genera, while the lipid region remained relatively stable despite the temperature fluctuations.
Collapse
Affiliation(s)
- Volha Akulava
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Margarita Smirnova
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Dana Byrtusova
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Boris Zimmermann
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Achim Kohler
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Uladzislau Blazhko
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | | | - Leonid Valentovich
- Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
| | - Volha Shapaval
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
6
|
Calarnou L, Vigouroux E, Thollas B, Le Grand F, Mounier J. Screening for the production of polyunsaturated fatty acids and cerebrosides in fungi. J Appl Microbiol 2024; 135:lxae030. [PMID: 38323436 DOI: 10.1093/jambio/lxae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
AIMS To investigate fatty acid, including polyunsaturated fatty acids (PUFA), and cerebroside production of a large diversity of fungi from the Ascomycota, Basidiomycota, and Mucoromycota phyla. METHODS AND RESULTS Seventy-nine fungal strains were grown in Kavadia medium using a microcultivation system, i.e. Duetz microtiter plates. Following cultivation, fatty acid and cerebroside contents were analyzed by gas chromatography-flame ionization detection (GC-FID) and high performance thin-layer chromatography (HPTLC), respectively. Mucoromycota fungi appeared as the most promising candidates for omega-6 PUFA production. The best omega-6 producer, including γ-linolenic acid (GLA, 18:3n-6), was Mucor fragilis UBOCC-A109196 with a concentration of 647 mg L-1 total omega-6 PUFA (representing 35% of total fatty acids) and 225 mg L-1 GLA (representing 12% of total fatty acids). Arachidonic acid concentration (20:4n-6) was the highest in Mortierella alpina UBOCC-A-112046, reaching 255 mg L-1 and 18.56% of total fatty acids. Interestingly, several fungal strains were shown to produce omega-7 monounsaturated fatty acids. Indeed, Torulaspora delbrueckii strains accumulated palmitoleic acid (16:1n-7) up to 20% of total fatty acids, reaching 114 mg L-1 in T. delbrueckii UBOCC-A-214128, while C. elegans UBOCC-A-102008 produced mainly paullinic acid (20:1n-7) with concentrations up to 100 mg L-1. Concerning cerebroside production, HPTLC appeared as a relevant approach for their detection and quantification. Promising candidates belonging to the Mucoromycota phylum were found, especially in the Absidia genus with A. spinosa UBOCC-A-101332 as the best producer (12.7 mg L-1). CONCLUSIONS The present study highlighted PUFA and cerebroside production in a large diversity of fungi and the fact that members of the Mucoromycota phylum are good producers of PUFA as well as cerebrosides.
Collapse
Affiliation(s)
- Laurie Calarnou
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Estelle Vigouroux
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| | - Bertrand Thollas
- Polymaris Biotechnology, 160 rue Pierre Rivoalon, 29200 Brest, France
| | | | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
7
|
Dzurendova S, Olsen PM, Byrtusová D, Tafintseva V, Shapaval V, Horn SJ, Kohler A, Szotkowski M, Marova I, Zimmermann B. Raman spectroscopy online monitoring of biomass production, intracellular metabolites and carbon substrates during submerged fermentation of oleaginous and carotenogenic microorganisms. Microb Cell Fact 2023; 22:261. [PMID: 38110983 PMCID: PMC10729511 DOI: 10.1186/s12934-023-02268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/10/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Monitoring and control of both growth media and microbial biomass is extremely important for the development of economical bioprocesses. Unfortunately, process monitoring is still dependent on a limited number of standard parameters (pH, temperature, gasses etc.), while the critical process parameters, such as biomass, product and substrate concentrations, are rarely assessable in-line. Bioprocess optimization and monitoring will greatly benefit from advanced spectroscopy-based sensors that enable real-time monitoring and control. Here, Fourier transform (FT) Raman spectroscopy measurement via flow cell in a recirculatory loop, in combination with predictive data modeling, was assessed as a fast, low-cost, and highly sensitive process analytical technology (PAT) system for online monitoring of critical process parameters. To show the general applicability of the method, submerged fermentation was monitored using two different oleaginous and carotenogenic microorganisms grown on two different carbon substrates: glucose fermentation by yeast Rhodotorula toruloides and glycerol fermentation by marine thraustochytrid Schizochytrium sp. Additionally, the online FT-Raman spectroscopy approach was compared with two at-line spectroscopic methods, namely FT-Raman and FT-infrared spectroscopies in high throughput screening (HTS) setups. RESULTS The system can provide real-time concentration data on carbon substrate (glucose and glycerol) utilization, and production of biomass, carotenoid pigments, and lipids (triglycerides and free fatty acids). Robust multivariate regression models were developed and showed high level of correlation between the online FT-Raman spectral data and reference measurements, with coefficients of determination (R2) in the 0.94-0.99 and 0.89-0.99 range for all concentration parameters of Rhodotorula and Schizochytrium fermentation, respectively. The online FT-Raman spectroscopy approach was superior to the at-line methods since the obtained information was more comprehensive, timely and provided more precise concentration profiles. CONCLUSIONS The FT-Raman spectroscopy system with a flow measurement cell in a recirculatory loop, in combination with prediction models, can simultaneously provide real-time concentration data on carbon substrate utilization, and production of biomass, carotenoid pigments, and lipids. This data enables monitoring of dynamic behaviour of oleaginous and carotenogenic microorganisms, and thus can provide critical process parameters for process optimization and control. Overall, this study demonstrated the feasibility of using FT-Raman spectroscopy for online monitoring of fermentation processes.
Collapse
Affiliation(s)
- Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, P.O. Box 5003, 1432, Ås, Norway
| | - Pernille Margrethe Olsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, P.O. Box 5003, 1432, Ås, Norway
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, P.O. Box 5003, 1432, Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, P.O. Box 5003, 1432, Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, P.O. Box 5003, 1432, Ås, Norway
| | - Martin Szotkowski
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno, 61200, Czech Republic
| | - Ivana Marova
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Brno, 61200, Czech Republic
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
8
|
Hashem AH, Al-Askar AA, Saeb MR, Abd-Elsalam KA, El-Hawary AS, Hasanin MS. Sustainable biosynthesized bimetallic ZnO@SeO nanoparticles from pomegranate peel extracts: antibacterial, antifungal and anticancer activities. RSC Adv 2023; 13:22918-22927. [PMID: 37520090 PMCID: PMC10377119 DOI: 10.1039/d3ra03260d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Abstract
Sustainable bimetallic nanoparticles (NPs) have attracted particular attention in the past decade. However, the efficiency and environmental concerns are associated with their synthesis and properties optimization. We report herein biosynthesis of bimetallic ZnO@SeO NPs based on green and ecofriendly methods using pomegranate peel extract (PPE). Pyrochemical ultraviolet-visible (UV-vis), Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopy as well as TEM and EDX supported successful synthesis. Antibacterial, antifungal, and cytotoxic activities were indicative of biological worth of sustainable bimetallic ZnO@SeO NPs, exhibiting antibacterial activity compared to monometallic ZnO and SeO NPs. The values of Minimum Inhibitory Concentration (MIC) of bimetallic ZnO@SeO NPs toward E. coli, P. aeruginosa, B. subtilis and S. aureus were 3.9, 15.62, 3.9 and 7.81 μg ml-1, respectively. Likewise, a promising antifungal activity against Candida albicans, Aspergillus flavus, A. niger and A. fumigatus was achieved (MICs: 31.25, 1.95, 15.62 and 15.62 μg ml-1, respectively). The cytotoxicity results suggest that bimetallic ZnO@SeO NPs are non-toxic and biomedically safe, evidenced by in vitro anticancer activity against human liver carcinoma (Hep-G2) cell line (with a half-maximal inhibitory concentration (IC50) > 71 μg ml-1). The bimetallic ZnO@SeO NPs successfully biosynthesized using PPE showed a high potential for biomedical engineering.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University Cairo 11884 Egypt
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology Narutowicza 11/12 Gdańsk Poland
| | - Kamel A Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center Giza 12619 Egypt
| | - Ahmad S El-Hawary
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University Cairo 11884 Egypt
| | - Mohamed S Hasanin
- Cellulose & Paper Department, National Research Centre El-Buhouth St. Dokki 12622 Egypt
| |
Collapse
|
9
|
Olsen PM, Kósa G, Klüver M, Kohler A, Shapaval V, Horn SJ. Production of docosahexaenoic acid from spruce sugars using Aurantiochytrium limacinum. BIORESOURCE TECHNOLOGY 2023; 376:128827. [PMID: 36878374 DOI: 10.1016/j.biortech.2023.128827] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In this study lignocellulosic sugars from Norway spruce were used for production of docosahexaenoic acid (DHA) by the marine thraustochytrid Aurantiochytrium limacinum SR21. Enzymatically prepared spruce hydrolysate was combined with a complex nitrogen source and different amounts of salts. Shake flask batch cultivations revealed that addition of extra salts was not needed for optimal growth. Upscaling to fed-batch bioreactors yielded up to 55 g/L cell dry mass and a total fatty acid content of 44% (w/w) out of which 1/3 was DHA. Fourier transform infrared spectroscopy was successfully applied as a rapid method for monitoring lipid accumulation in A. limacinum SR21. Thus, this proof-of-principle study clearly demonstrates that crude spruce hydrolysates can be directly used as a novel and sustainable resource for production of DHA.
Collapse
Affiliation(s)
- Pernille Margrethe Olsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Gergely Kósa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Marianne Klüver
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway.
| |
Collapse
|
10
|
Hendrick N, Fraser D, Bennett R, Corazzata K, Adpressa DA, Makarov AA, Beeler A. High-throughput infrared spectroscopy for quantification of peptides in drug discovery. J Pharm Biomed Anal 2023; 229:115350. [PMID: 37001275 DOI: 10.1016/j.jpba.2023.115350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Peptides have gained an increasing importance in drug discovery as potential therapeutics. Discovery efforts toward finding new, efficacious peptide-based therapeutics have increased the throughput of peptide development, allowing the rapid generation of unique and pure peptide samples. However, high-throughput analysis of peptides may be still challenging and can encumber a high-throughput drug discovery campaign. We report herein a fit-for-purpose method to quantify peptide concentrations using high-throughput infrared spectroscopy (HT-IR). Through the development of this method, multiple critical method parameters were optimized including solvent composition, droplet deposition size, plate drying procedures, sample concentration, and internal standard. The relative absorbance of the amide region (1600-1750 cm-1) to the internal standard, K3Fe(CN)6 (2140 cm-1), was determined to be most effective at providing lowest interference for measuring peptide concentration. The best sample deposition was achieved by dissolving samples in a 50:50 v/v allyl alcohol/water mixture. The developed method was used on 96-well plates and analyzed at a rate of 22 min per plate. Calibration curves to measure sample concentration versus response relationship displayed sufficient linearity (R2 > 0.95). The repeatability and scope of detection was demonstrated with eighteen peptide samples that were measured with most values below 20% relative standard deviation. The linear dynamic range of the method was determined to be between 1 and 5 mg/mL. This developed HT-IR methodology could be a useful tool in peptide drug candidate lead identification and optimization processes.
Collapse
Affiliation(s)
| | - Douglas Fraser
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Raffeal Bennett
- Merck & Co. Inc., MRL, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | - Alexey A Makarov
- Merck & Co. Inc., MRL, 33 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Aaron Beeler
- Department of Chemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
11
|
Multiscale spectroscopic analysis of lipids in dimorphic and oleaginous Mucor circinelloides accommodate sustainable targeted lipid production. Fungal Biol Biotechnol 2023; 10:2. [PMID: 36647105 PMCID: PMC9843973 DOI: 10.1186/s40694-023-00148-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Oleaginous fungi have versatile metabolism and able to transform a wide range of substrates into lipids, accounting up to 20-70% of their total cell mass. Therefore, oleaginous fungi are considered as an alternative source of lipids. Oleaginous fungi can accumulate mainly acyl glycerides and free fatty acids which are localized in lipid droplets. Some of the oleaginous fungi possessing promising lipid productivity are dimorphic and can exhibit three cell forms, flat hyphae, swollen hyphae and yeast-like cells. To develop sustainable targeted fungal lipid production, deep understanding of lipogenesis and lipid droplet chemistry in these cell forms is needed at multiscale level. In this study, we explored the potential of infrared spectroscopy techniques for examining lipid droplet formation and accumulation in different cell forms of the dimorphic and oleaginous fungus Mucor circinelloides. RESULTS Both transmission- and reflectance-based spectroscopy techniques are shown to be well suited for studying bulk fungal biomass. Exploring single cells with infrared microspectroscopy reveals differences in chemical profiles and, consequently, lipogenesis process, for different cell forms. Yeast-like cells of M. circinelloides exhibited the highest absorbance intensities for lipid-associated peaks in comparison to hyphae-like cell forms. Lipid-to-protein ratio, which is commonly used in IR spectroscopy to estimate lipid yield was the lowest in flat hyphae. Swollen hyphae are mainly composed of lipids and characterized by more uniform distribution of lipid-to-protein concentration. Yeast-like cells seem to be comprised mostly of lipids having the largest lipid-to-protein ratio among all studied cell forms. With infrared nanospectroscopy, variations in the ratios between lipid fractions triglycerides and free fatty acids and clear evidence of heterogeneity within and between lipid droplets are illustrated for the first time. CONCLUSIONS Vibrational spectroscopy techniques can provide comprehensive information on lipogenesis in dimorphic and oleaginous fungi at the levels of the bulk of cells, single cells and single lipid droplets. Unicellular spectra showed that various cell forms of M. circinelloides differs in the total lipid content and profile of the accumulated lipids, where yeast-like cells are the fatty ones and, therefore, could be considered as preferable cell form for producing lipid-rich biomass. Spectra of single lipid droplets showed an indication of possible droplet-to-droplet and within-droplet heterogeneity.
Collapse
|
12
|
Sonochemical synthesis and characterization of aluminum tungsten oxide nanoparticle and study its impact on the growth of microalga. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Submerged Fermentation of Animal Fat By-Products by Oleaginous Filamentous Fungi for the Production of Unsaturated Single Cell Oil. FERMENTATION 2021. [DOI: 10.3390/fermentation7040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Animal waste fats were explored as a fermentation substrate for the production of high-value unsaturated single cell oil (SCO) using oleaginous fungi, Mucor circinelloides and Mortierella alpina. Both strains showed good growth and lipid accumulation when using animal fat as a single carbon source. The biomass concentration of 16.7 ± 2.2 gDCW/L and lipid content of 54.1%wt (of dry cell weight) were obtained for Mucor circinelloides in shake flask experiments, surpassing the biomass yield achieved in batch and fed-batch fermentation. In contrast, Mortierella alpina gave the highest biomass concentration (8.3 ± 0.3 gDCW/L) and lipid content (55.8%wt) in fed-batch fermentation. Fat grown Mortierella alpina was able to produce arachidonic acid (ARA), and the highest ARA content of 23.8%wt (of total lipid weight) was in fed-batch fermentation. Gamma-linolenic acid (GLA) was produced by both fungal strains. At the end of fed-batch fermentation, the GLA yields obtained for Mucor circinelloides and Mortierella alpina were 4.51%wt and 2.77%wt (of total lipid weight), respectively. This study demonstrates the production of unsaturated SCO-rich fungal biomass from animal fat by fermentation.
Collapse
|
14
|
The Ground-Based BIOMEX Experiment Verification Tests for Life Detection on Mars. Life (Basel) 2021; 11:life11111212. [PMID: 34833088 PMCID: PMC8619271 DOI: 10.3390/life11111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023] Open
Abstract
The success of an astrobiological search for life campaign on Mars, or other planetary bodies in the Solar System, relies on the detectability of past or present microbial life traces, namely, biosignatures. Spectroscopic methods require little or no sample preparation, can be repeated almost endlessly, and can be performed in contact or even remotely. Such methods are therefore ideally suited to use for the detection of biosignatures, which can be confirmed with supporting instrumentation. Here, we discuss the use of Raman and Fourier Transform Infrared (FT-IR) spectroscopies for the detection and characterization of biosignatures from colonies of the fungus Cryomyces antarcticus, grown on Martian analogues and exposed to increasing doses of UV irradiation under dried conditions. The results report significant UV-induced DNA damage, but the non-exceeding of thresholds for allowing DNA amplification and detection, while the spectral properties of the fungal melanin remained unaltered, and pigment detection and identification was achieved via complementary analytical techniques. Finally, this work found that fungal cell wall compounds, likely chitin, were not degraded, and were still detectable even after high UV irradiation doses. The implications for the preservation and detection of biosignatures in extraterrestrial environments are discussed.
Collapse
|
15
|
Kavitha E, Devaraj Stephen L, Brishti FH, Karthikeyan S. Two-trace two-dimensional (2T2D) correlation infrared spectral analysis of Spirulina platensis and its commercial food products coupled with chemometric analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Starch Rich Chlorella vulgaris: High-Throughput Screening and Up-Scale for Tailored Biomass Production. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of microalgal starch has been studied in biorefinery frameworks to produce bioethanol or bioplastics, however, these products are currently not economically viable. Using starch-rich biomass as an ingredient in food applications is a novel way to create more value while expanding the product portfolio of the microalgal industry. Optimization of starch production in the food-approved species Chlorella vulgaris was the main objective of this study. High-throughput screening of biomass composition in response to multiple stressors was performed with FTIR spectroscopy. Nitrogen starvation was identified as an important factor for starch accumulation. Moreover, further studies were performed to assess the role of light distribution, investigating the role of photon supply rates in flat panel photobioreactors. Starch-rich biomass with up to 30% starch was achieved in cultures with low inoculation density (0.1 g L−1) and high irradiation (1800 µmol m−2 s−1). A final large-scale experiment was performed in 25 L tubular reactors, achieving a maximum of 44% starch in the biomass after 12 h in nitrogen starved conditions.
Collapse
|
17
|
Tsai NC, Hsu TS, Kuo SC, Kao CT, Hung TH, Lin DG, Yeh CS, Chu CC, Lin JS, Lin HH, Ko CY, Chang TH, Su JC, Lin YCJ. Large-scale data analysis for robotic yeast one-hybrid platforms and multi-disciplinary studies using GateMultiplex. BMC Biol 2021; 19:214. [PMID: 34560855 PMCID: PMC8461970 DOI: 10.1186/s12915-021-01140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yeast one-hybrid (Y1H) is a common technique for identifying DNA-protein interactions, and robotic platforms have been developed for high-throughput analyses to unravel the gene regulatory networks in many organisms. Use of these high-throughput techniques has led to the generation of increasingly large datasets, and several software packages have been developed to analyze such data. We previously established the currently most efficient Y1H system, meiosis-directed Y1H; however, the available software tools were not designed for processing the additional parameters suggested by meiosis-directed Y1H to avoid false positives and required programming skills for operation. RESULTS We developed a new tool named GateMultiplex with high computing performance using C++. GateMultiplex incorporated a graphical user interface (GUI), which allows the operation without any programming skills. Flexible parameter options were designed for multiple experimental purposes to enable the application of GateMultiplex even beyond Y1H platforms. We further demonstrated the data analysis from other three fields using GateMultiplex, the identification of lead compounds in preclinical cancer drug discovery, the crop line selection in precision agriculture, and the ocean pollution detection from deep-sea fishery. CONCLUSIONS The user-friendly GUI, fast C++ computing speed, flexible parameter setting, and applicability of GateMultiplex facilitate the feasibility of large-scale data analysis in life science fields.
Collapse
Affiliation(s)
- Ni-Chiao Tsai
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Tzu-Shu Hsu
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Shang-Che Kuo
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Chung-Ting Kao
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Tzu-Huan Hung
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Da-Gin Lin
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Chung-Shu Yeh
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Chen Chu
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Jeng-Shane Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsin-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Chia-Ying Ko
- Department of Life Sciences and Institute of Fisheries Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Tien-Hsien Chang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Jung-Chen Su
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Ying-Chung Jimmy Lin
- Department of Life Science and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.
| |
Collapse
|
18
|
Dzurendová S, Shapaval V, Tafintseva V, Kohler A, Byrtusová D, Szotkowski M, Márová I, Zimmermann B. Assessment of Biotechnologically Important Filamentous Fungal Biomass by Fourier Transform Raman Spectroscopy. Int J Mol Sci 2021; 22:6710. [PMID: 34201486 PMCID: PMC8269384 DOI: 10.3390/ijms22136710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Oleaginous filamentous fungi can accumulate large amount of cellular lipids and biopolymers and pigments and potentially serve as a major source of biochemicals for food, feed, chemical, pharmaceutical, and transport industries. We assessed suitability of Fourier transform (FT) Raman spectroscopy for screening and process monitoring of filamentous fungi in biotechnology. Six Mucoromycota strains were cultivated in microbioreactors under six growth conditions (three phosphate concentrations in the presence and absence of calcium). FT-Raman and FT-infrared (FTIR) spectroscopic data was assessed in respect to reference analyses of lipids, phosphorus, and carotenoids by using principal component analysis (PCA), multiblock or consensus PCA, partial least square regression (PLSR), and analysis of spectral variation due to different design factors by an ANOVA model. All main chemical biomass constituents were detected by FT-Raman spectroscopy, including lipids, proteins, cell wall carbohydrates, and polyphosphates, and carotenoids. FT-Raman spectra clearly show the effect of growth conditions on fungal biomass. PLSR models with high coefficients of determination (0.83-0.94) and low error (approximately 8%) for quantitative determination of total lipids, phosphates, and carotenoids were established. FT-Raman spectroscopy showed great potential for chemical analysis of biomass of oleaginous filamentous fungi. The study demonstrates that FT-Raman and FTIR spectroscopies provide complementary information on main fungal biomass constituents.
Collapse
Affiliation(s)
- Simona Dzurendová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| | - Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic; (M.S.); (I.M.)
| | - Martin Szotkowski
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic; (M.S.); (I.M.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic; (M.S.); (I.M.)
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (S.D.); (V.S.); (V.T.); (A.K.); (D.B.)
| |
Collapse
|
19
|
Szotkowski M, Holub J, Šimanský S, Hubačová K, Sikorová P, Mariničová V, Němcová A, Márová I. Bioreactor Co-Cultivation of High Lipid and Carotenoid Producing Yeast Rhodotorula kratochvilovae and Several Microalgae under Stress. Microorganisms 2021; 9:microorganisms9061160. [PMID: 34071194 PMCID: PMC8228999 DOI: 10.3390/microorganisms9061160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
The co-cultivation of red yeasts and microalgae works with the idea of the natural transport of gases. The microalgae produce oxygen, which stimulates yeast growth, while CO2 produced by yeast is beneficial for algae growth. Both microorganisms can then produce lipids. The present pilot study aimed to evaluate the ability of selected microalgae and carotenogenic yeast strains to grow and metabolize in co-culture. The effect of media composition on growth and metabolic activity of red yeast strains was assessed simultaneously with microalgae mixotrophy. Cultivation was transferred from small-scale co-cultivation in Erlenmeyer flasks to aerated bottles with different inoculation ratios and, finally, to a 3L bioreactor. Among red yeasts, the strain R. kratochvilovae CCY 20-2-26 was selected because of the highest biomass production on BBM medium. Glycerol is a more suitable carbon source in the BBM medium and urea was proposed as a compromise. From the tested microalgae, Desmodesmus sp. were found as the most suitable for co-cultivations with R. kratochvilovae. In all co-cultures, linear biomass growth was found (144 h), and the yield was in the range of 8.78–11.12 g/L of dry biomass. Lipids increased to a final value of 29.62–31.61%. The FA profile was quite stable with the UFA portion at about 80%. Around 1.98–2.49 mg/g CDW of carotenoids with torularhodine as the major pigment were produced, ubiquinone production reached 5.41–6.09 mg/g, and ergosterol yield was 6.69 mg/g. Chlorophyll production was very low at 2.11 mg/g. Pilot experiments have confirmed that carotenogenic yeasts and microalgae are capable of symbiotic co-existence with a positive impact om biomass growth and lipid metabolites yields.
Collapse
|
20
|
Dzurendova S, Zimmermann B, Kohler A, Reitzel K, Nielsen UG, Dupuy--Galet BX, Leivers S, Horn SJ, Shapaval V. Calcium Affects Polyphosphate and Lipid Accumulation in Mucoromycota Fungi. J Fungi (Basel) 2021; 7:jof7040300. [PMID: 33920847 PMCID: PMC8071181 DOI: 10.3390/jof7040300] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Calcium controls important processes in fungal metabolism, such as hyphae growth, cell wall synthesis, and stress tolerance. Recently, it was reported that calcium affects polyphosphate and lipid accumulation in fungi. The purpose of this study was to assess the effect of calcium on the accumulation of lipids and polyphosphate for six oleaginous Mucoromycota fungi grown under different phosphorus/pH conditions. A Duetz microtiter plate system (Duetz MTPS) was used for the cultivation. The compositional profile of the microbial biomass was recorded using Fourier-transform infrared spectroscopy, the high throughput screening extension (FTIR-HTS). Lipid content and fatty acid profiles were determined using gas chromatography (GC). Cellular phosphorus was determined using assay-based UV-Vis spectroscopy, and accumulated phosphates were characterized using solid-state 31P nuclear magnetic resonance spectroscopy. Glucose consumption was estimated by FTIR-attenuated total reflection (FTIR-ATR). Overall, the data indicated that calcium availability enhances polyphosphate accumulation in Mucoromycota fungi, while calcium deficiency increases lipid production, especially under acidic conditions (pH 2-3) caused by the phosphorus limitation. In addition, it was observed that under acidic conditions, calcium deficiency leads to increase in carotenoid production. It can be concluded that calcium availability can be used as an optimization parameter in fungal fermentation processes to enhance the production of lipids or polyphosphates.
Collapse
Affiliation(s)
- Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
- Correspondence: or
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
| | - Kasper Reitzel
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Ulla Gro Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Benjamin Xavier Dupuy--Galet
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
| | - Shaun Leivers
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Christian Magnus Falsens vei 1, 1433 Ås, Norway; (S.L.); (S.J.H.)
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Christian Magnus Falsens vei 1, 1433 Ås, Norway; (S.L.); (S.J.H.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
| |
Collapse
|
21
|
Langseter AM, Dzurendova S, Shapaval V, Kohler A, Ekeberg D, Zimmermann B. Evaluation and optimisation of direct transesterification methods for the assessment of lipid accumulation in oleaginous filamentous fungi. Microb Cell Fact 2021; 20:59. [PMID: 33658027 PMCID: PMC7931520 DOI: 10.1186/s12934-021-01542-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Background Oleaginous filamentous fungi can accumulate large amount of cellular lipids and potentially serve as a major source of oleochemicals for food, feed, chemical, pharmaceutical, and transport industries. Transesterification of microbial oils is an essential step in microbial lipid production at both laboratory and industrial scale. Direct transesterification can considerably reduce costs, increase sample throughput and improve lipid yields (in particular fatty acid methyl esters, FAMEs). There is a need for the assessment of the direct transesterification methods on a biomass of filamentous fungi due to their unique properties, specifically resilient cell wall and wide range of lipid content and composition. In this study we have evaluated and optimised three common direct transesterification methods and assessed their suitability for processing of fungal biomass. Results The methods, based on hydrochloric acid (Lewis method), sulphuric acid (Wahlen method), and acetyl chloride (Lepage method), were evaluated on six different strains of Mucoromycota fungi by using different internal standards for gas chromatography measurements. Moreover, Fourier transform infrared (FTIR) spectroscopy was used for the detection of residual lipids in the biomass after the transesterification reaction/extraction, while transesterification efficiency was evaluated by nuclear magnetic resonance spectroscopy. The results show that the majority of lipids, in particular triglycerides, were extracted for all methods, though several methods had substandard transesterification yields. Lewis method, optimised with respect to solvent to co-solvent ratio and reaction time, as well as Lepage method, offer precise estimate of FAME-based lipids in fungal biomass. Conclusions The results show that Lepage and Lewis methods are suitable for lipid analysis of oleaginous filamentous fungi. The significant difference in lipid yields results, obtained by optimised and standard Lewis methods, indicates that some of the previously reported lipid yields for oleaginous filamentous fungi must be corrected upwards. The study demonstrates value of biomass monitoring by FTIR, importance of optimal solvent to co-solvent ratio, as well as careful selection and implementation of internal standards for gas chromatography.
Collapse
Affiliation(s)
- Anne Marie Langseter
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway.
| |
Collapse
|
22
|
Saif FA, Yaseen SA, Alameen AS, Mane SB, Undre PB. Identification and characterization of Aspergillus species of fruit rot fungi using microscopy, FT-IR, Raman and UV-Vis spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119010. [PMID: 33035886 DOI: 10.1016/j.saa.2020.119010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 05/11/2023]
Abstract
During the investigation of fungal isolation from fruit, the major genera were Aspergillus, Penicillium, cladosporium, Alternaria, fusarium, Colletotrichum were found. Among them Aspergillus (15 species) was found major dominant on different fruits. Fifteen different Aspergillus species viz. Aspergillus brasiliensis, Aspergillus phoenicis, Aspergillus carbonarius, four Aspergillus flavus, Aspergillus acidus, two Aspergillus awamori, Aspergillus aculeatus, Aspergillus eucalypticola, Aspergillus oryzae and two Aspergillus Spp. have been differentiate and identify using morphology (microscopic technique), Fourier Transforms Infrared spectroscopy (FTIR), Raman Spectroscopy (RS) and UV-visible spectrophotometry (UV-vis). The fungal mass in powder form was used in present study. In FTIR the finger print region is important for the characterization of Aspergillus because this region is unique and contains peaks indicating the presence of DNA. From the results were found Fourier transform infrared (FTIR) technique and Raman spectroscopy a useful tool, sensitive, fast, economical, accurate, not require sample preparation and successfully used to identify fungi.
Collapse
Affiliation(s)
- F A Saif
- Microwave Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India
| | - S A Yaseen
- Microwave Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India
| | - A S Alameen
- Microwave Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India
| | - S B Mane
- Microbical Cultural Laboratory, Department of Botany, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India
| | - P B Undre
- Microwave Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India.
| |
Collapse
|
23
|
Ali SS, Al-Tohamy R, Koutra E, El-Naggar AH, Kornaros M, Sun J. Valorizing lignin-like dyes and textile dyeing wastewater by a newly constructed lipid-producing and lignin modifying oleaginous yeast consortium valued for biodiesel and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123575. [PMID: 32791477 DOI: 10.1016/j.jhazmat.2020.123575] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 05/07/2023]
Abstract
Construction of a multipurpose yeast consortium suitable for lipid production, textile dye/effluent removal and lignin valorization is critical for both biorefinery and bioremediation. Therefore, a novel oleaginous consortium, designated as OYC-Y.BC.SH has been developed using three yeast cultures viz. Yarrowia sp. SSA1642, Barnettozyma californica SSA1518 and Sterigmatomyces halophilus SSA1511. The OYC-Y.BC.SH was able to grow on different carbon sources and accumulate lipids, with its highest lipid productivity (1.56 g/L/day) and lipase activity (170.3 U/mL) exhibited in xylose. The total saturated fatty acid content was 36.09 %, while the mono-unsaturated and poly-unsaturated fatty acids were 45.44 and 18.30 %, respectively, making OYC-Y.BC.SH valuable for biodiesel production. The OYC-Y.BC.SH showed its highest decolorization efficiency of Red HE3B dye (above 82 %) in presence of sorghum husk as agricultural co-substrate, suggesting its feasibility for simultaneous lignin valorization. The significant higher performance of OYC-Y.BC.SH on decolorizing the real dyeing effluent sample at pH 8.0 suggests its potential and suitability for degrading most of the wastewater textile effluents. Clearly, toxicological studies underline the additional advantage of using OYC-Y.BC.SH for bioremediation of industrial dyeing effluents in terms of decolorization and detoxification. A possible mechanism of Red HE3B biodegradation and ATP synthesis was also proposed.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Amal H El-Naggar
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
24
|
Mhlongo SI, Ezeokoli OT, Roopnarain A, Ndaba B, Sekoai PT, Habimana O, Pohl CH. The Potential of Single-Cell Oils Derived From Filamentous Fungi as Alternative Feedstock Sources for Biodiesel Production. Front Microbiol 2021; 12:637381. [PMID: 33584636 PMCID: PMC7876240 DOI: 10.3389/fmicb.2021.637381] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial lipids, also known as single-cell oils (SCOs), are highly attractive feedstocks for biodiesel production due to their fast production rates, minimal labor requirements, independence from seasonal and climatic changes, and ease of scale-up for industrial processing. Among the SCO producers, the less explored filamentous fungi (molds) exhibit desirable features such as a repertoire of hydrolyzing enzymes and a unique pellet morphology that facilitates downstream harvesting. Although several oleaginous filamentous fungi have been identified and explored for SCO production, high production costs and technical difficulties still make the process less attractive compared to conventional lipid sources for biodiesel production. This review aims to highlight the ability of filamentous fungi to hydrolyze various organic wastes for SCO production and explore current strategies to enhance the efficiency and cost-effectiveness of the SCO production and recovery process. The review also highlights the mechanisms and components governing lipogenic pathways, which can inform the rational designs of processing conditions and metabolic engineering efforts for increasing the quality and accumulation of lipids in filamentous fungi. Furthermore, we describe other process integration strategies such as the co-production with hydrogen using advanced fermentation processes as a step toward a biorefinery process. These innovative approaches allow for integrating upstream and downstream processing units, thus resulting in an efficient and cost-effective method of simultaneous SCO production and utilization for biodiesel production.
Collapse
Affiliation(s)
- Sizwe I. Mhlongo
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, Medical School, University of KwaZulu-Natal, Durban, South Africa
| | - Obinna T. Ezeokoli
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Ashira Roopnarain
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Pretoria, South Africa
| | - Busiswa Ndaba
- Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Pretoria, South Africa
| | - Patrick T. Sekoai
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Olivier Habimana
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Carolina H. Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
25
|
Slaný O, Klempová T, Shapaval V, Zimmermann B, Kohler A, Čertík M. Animal Fat as a Substrate for Production of n-6 Fatty Acids by Fungal Solid-State Fermentation. Microorganisms 2021; 9:170. [PMID: 33466747 PMCID: PMC7830168 DOI: 10.3390/microorganisms9010170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/03/2022] Open
Abstract
The method of solid-state fermentation (SSF) represents a powerful technology for the fortification of animal-based by-products. Oleaginous Zygomycetes fungi are efficient microbial cell factories used in SSF to valorize a wide range of waste and rest cereal materials. The application of this fermentation technique for utilization and biotransformation of animal-based materials represents a distinguished step in their treatment. In this study, for the first time, the strain Umbelopsis isabellina CCF2412 was used for the bioconversion of animal fat by-products to the fermented bioproducts enriched with n-6 polyunsaturated fatty acids, mainly γ-linolenic acid (GLA). Bioconversion of both cereals and the animal fat by-product resulted in the production of fermented bioproducts enriched with not just GLA (maximal yield was 6.4 mg GLA/g of fermented bioproduct), but also with high yields of glucosamine. Moreover, the fermentation on the cornmeal matrix led to obtaining bioproduct enriched with β-carotene. An increased amount of β-carotene content improved the antioxidant stability of obtained fermented bioproducts. Furthermore, the application of Fourier-transform infrared spectroscopy for rapid analysis and characterization of the biochemical profile of obtained SSF bioproducts was also studied.
Collapse
Affiliation(s)
- Ondrej Slaný
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (T.K.); (M.Č.)
| | - Tatiana Klempová
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (T.K.); (M.Č.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway; (V.S.); (B.Z.); (A.K.)
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway; (V.S.); (B.Z.); (A.K.)
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway; (V.S.); (B.Z.); (A.K.)
| | - Milan Čertík
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (T.K.); (M.Č.)
| |
Collapse
|
26
|
Smirnova M, Miamin U, Kohler A, Valentovich L, Akhremchuk A, Sidarenka A, Dolgikh A, Shapaval V. Isolation and characterization of fast-growing green snow bacteria from coastal East Antarctica. Microbiologyopen 2021; 10:e1152. [PMID: 33377317 PMCID: PMC7887010 DOI: 10.1002/mbo3.1152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022] Open
Abstract
Snow microorganisms play a significant role in climate change and affecting the snow melting rate in the Arctic and Antarctic regions. While research on algae inhabiting green and red snow has been performed extensively, bacteria dwelling in this biotope have been studied to a much lesser extent. In this study, we performed 16S rRNA gene amplicon sequencing of two green snow samples collected from the coastal area of the eastern part of Antarctica and conducted genotypic and phenotypic profiling of 45 fast-growing bacteria isolated from these samples. 16S rRNA gene amplicon sequencing of two green snow samples showed that bacteria inhabiting these samples are mostly represented by families Burkholderiaceae (46.31%), Flavobacteriaceae (22.98%), and Pseudomonadaceae (17.66%). Identification of 45 fast-growing bacteria isolated from green snow was performed using 16S rRNA gene sequencing. We demonstrated that they belong to the phyla Actinobacteria and Proteobacteria, and are represented by the genera Arthrobacter, Cryobacterium, Leifsonia, Salinibacterium, Paeniglutamicibacter, Rhodococcus, Polaromonas, Pseudomonas, and Psychrobacter. Nearly all bacterial isolates exhibited various growth temperatures from 4°C to 25°C, and some isolates were characterized by a high level of enzymatic activity. Phenotyping using Fourier transform infrared (FTIR) spectroscopy revealed a possible accumulation of intracellular polymer polyhydroxyalkanoates (PHA) or lipids in some isolates. The bacteria showed different lipids/PHA and protein profiles. It was shown that lipid/PHA and protein spectral regions are the most discriminative for differentiating the isolates.
Collapse
Affiliation(s)
- Margarita Smirnova
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | | | - Achim Kohler
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| | - Leonid Valentovich
- Faculty of BiologyBelarusian State UniversityMinskBelarus
- Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
| | - Artur Akhremchuk
- Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
| | - Anastasiya Sidarenka
- Faculty of BiologyBelarusian State UniversityMinskBelarus
- Institute of MicrobiologyNational Academy of Sciences of BelarusMinskBelarus
| | - Andrey Dolgikh
- Institute of GeographyRussian Academy of SciencesMoscowRussia
| | - Volha Shapaval
- Faculty of Science and TechnologyNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
27
|
Fungal Biorefineries for Biofuel Production for Sustainable Future Energy Systems. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Magnussen EA, Solheim JH, Blazhko U, Tafintseva V, Tøndel K, Liland KH, Dzurendova S, Shapaval V, Sandt C, Borondics F, Kohler A. Deep convolutional neural network recovers pure absorbance spectra from highly scatter-distorted spectra of cells. JOURNAL OF BIOPHOTONICS 2020; 13:e202000204. [PMID: 32844585 DOI: 10.1002/jbio.202000204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Infrared spectroscopy of cells and tissues is prone to Mie scattering distortions, which grossly obscure the relevant chemical signals. The state-of-the-art Mie extinction extended multiplicative signal correction (ME-EMSC) algorithm is a powerful tool for the recovery of pure absorbance spectra from highly scatter-distorted spectra. However, the algorithm is computationally expensive and the correction of large infrared imaging datasets requires weeks of computations. In this paper, we present a deep convolutional descattering autoencoder (DSAE) which was trained on a set of ME-EMSC corrected infrared spectra and which can massively reduce the computation time for scatter correction. Since the raw spectra showed large variability in chemical features, different reference spectra matching the chemical signals of the spectra were used to initialize the ME-EMSC algorithm, which is beneficial for the quality of the correction and the speed of the algorithm. One DSAE was trained on the spectra, which were corrected with different reference spectra and validated on independent test data. The DSAE outperformed the ME-EMSC correction in terms of speed, robustness, and noise levels. We confirm that the same chemical information is contained in the DSAE corrected spectra as in the spectra corrected with ME-EMSC.
Collapse
Affiliation(s)
| | | | - Uladzislau Blazhko
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Kristin Tøndel
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Kristian Hovde Liland
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
29
|
Hassanpour M, Hosseini Tafreshi SA, Amiri O, Hamadanian M, Salavati-Niasari M. Toxic effects of Fe 2WO 6 nanoparticles towards microalga Dunaliella salina: Sonochemical synthesis nanoparticles and investigate its impact on the growth. CHEMOSPHERE 2020; 258:127348. [PMID: 32540542 DOI: 10.1016/j.chemosphere.2020.127348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
In this work, Fe2WO6 nanoparticles were synthesized by the ultrasound-assisted precipitation method. Various conditions were applied, including the change of the pH factor and reaction time for the synthesis of nanoparticles. After confirming the synthesis of the nanoparticles by various analyzes and evaluating their size and morphology, one of the conditions for the synthesis of the nanoparticles were selected as the optimum condition. The samples were added to the growth medium of a well-known microalga, Dunaliella salina at three concentrations of 20, 40 and 80 ppm to evaluate the effect of nanoparticles on biological systems. After 10 days different biological parameters were measured and compared with those of the control sample. According to the results, at concentration of 20 ppm the number of cells, the amount of chlorophyll a, and b, and biomass increased compared to the control samples. The Carotenoid level was higher in the treatment with 40 ppm of nanoparticles than that in the control samples. Compared to the control sample, the level of lipid peroxidation and the ratio of carbohydrate to amide II showed to be higher under 80 ppm treatment of particles. According to HCA analysis, both the evaluated parameters and concentrations of nanoparticles were divided into two general categories. Overall results showed that the effect of Fe2WO6 nanoparticles on microalgae could be a dose-dependent phenomenon, so that the addition of 20 ppm nanoparticles in the culture media helped the growth and the physiological status of algae. On the other hand, the application of a higher concentration of nanoparticles negatively affects algal biology. The results showed that the algae could be successfully used to precise screen of various nanoparticles in terms of safety especially in aquatic environments and also biotechnological applications.
Collapse
Affiliation(s)
- Mohammad Hassanpour
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Iran
| | | | - Omid Amiri
- Department of Chemistry, College of Science, University of Raparin, Rania, Kurdistan Region, Iraq
| | - Masood Hamadanian
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Iran.
| |
Collapse
|
30
|
Metal and Phosphate Ions Show Remarkable Influence on the Biomass Production and Lipid Accumulation in Oleaginous Mucor circinelloides. J Fungi (Basel) 2020; 6:jof6040260. [PMID: 33143254 PMCID: PMC7711463 DOI: 10.3390/jof6040260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
The biomass of Mucor circinelloides, a dimorphic oleaginous filamentous fungus, has a significant nutritional value and can be used for single cell oil production. Metal ions are micronutrients supporting fungal growth and metabolic activity of cellular processes. We investigated the effect of 140 different substrates, with varying amounts of metal and phosphate ions concentration, on the growth, cell chemistry, lipid accumulation, and lipid profile of M. circinelloides. A high-throughput set-up consisting of a Duetz microcultivation system coupled to Fourier transform infrared spectroscopy was utilized. Lipids were extracted by a modified Lewis method and analyzed using gas chromatography. It was observed that Mg and Zn ions were essential for the growth and metabolic activity of M. circinelloides. An increase in Fe ion concentration inhibited fungal growth, while higher concentrations of Cu, Co, and Zn ions enhanced the growth and lipid accumulation. Lack of Ca and Cu ions, as well as higher amounts of Zn and Mn ions, enhanced lipid accumulation in M. circinelloides. Generally, the fatty acid profile of M. circinelloides lipids was quite consistent, irrespective of media composition. Increasing the amount of Ca ions enhanced polyphosphates accumulation, while lack of it showed fall in polyphosphate.
Collapse
|
31
|
Dzurendova S, Zimmermann B, Tafintseva V, Kohler A, Ekeberg D, Shapaval V. The influence of phosphorus source and the nature of nitrogen substrate on the biomass production and lipid accumulation in oleaginous Mucoromycota fungi. Appl Microbiol Biotechnol 2020; 104:8065-8076. [PMID: 32789746 PMCID: PMC7447667 DOI: 10.1007/s00253-020-10821-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022]
Abstract
Abstract Oleaginous filamentous fungi grown under the nitrogen limitation, accumulate high amounts of lipids in the form of triacylglycerides (TAGs) with fatty acid profiles similar to plant and fish oils. In this study, we investigate the effect of six phosphorus source concentrations combined with two types of nitrogen substrate (yeast extract and ammonium sulphate), on the biomass formation, lipid production, and fatty acid profile for nine oleaginous Mucoromycota fungi. The analysis of fatty acid profiles was performed by gas chromatography with flame ionization detector (GC-FID) and the lipid yield was estimated gravimetrically. Yeast extract could be used as both nitrogen and phosphorus source, without additional inorganic phosphorus supplementation. The use of inorganic nitrogen source (ammonium sulphate) requires strain-specific optimization of phosphorus source amount to obtain optimal lipid production regarding quantity and fatty acid profiles. Lipid production was decreased in ammonium sulphate-based media when phosphorus source was limited in all strains except for Rhizopus stolonifer. High phosphorus source concentration inhibited the growth of Mortierella fungi. The biomass (22 g/L) and lipid (14 g/L) yield of Umbelopsis vinacea was the highest among all the tested strains. Key points • The strain specific P requirements of Mucoromycota depend on the nature of N source. • Yeast extract leads to consistent biomass and lipid yield and fatty acids profiles. • Umbelopsis vinacea showed the highest biomass (22 g/L) and lipid (14 g/L) yield. • High P source amounts inhibit the growth of Mortierella fungi. Electronic supplementary material The online version of this article (10.1007/s00253-020-10821-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Droebakveien 31, 1430, Aas, Norway.
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Droebakveien 31, 1430, Aas, Norway
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, Droebakveien 31, 1430, Aas, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Droebakveien 31, 1430, Aas, Norway
| | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Christian Magnus Falsens vei 1, 1433, Aas, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Droebakveien 31, 1430, Aas, Norway
| |
Collapse
|
32
|
Tamminen A, Happonen P, Barth D, Holmström S, Wiebe MG. High throughput, small scale methods to characterise the growth of marine fungi. PLoS One 2020; 15:e0236822. [PMID: 32764772 PMCID: PMC7413501 DOI: 10.1371/journal.pone.0236822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022] Open
Abstract
Various marine fungi have been shown to produce interesting, bioactive compounds, but scaling up the production of these compounds can be challenging, particularly because little is generally known about how the producing organisms grow. Here we assessed the suitability of using 100-well BioScreen plates or 96-well plates incubated in a robot hotel to cultivate eight filamentous marine fungi, six sporulating and two non-sporulating, to obtain data on growth and substrate (glucose, xylose, galactose or glycerol) utilisation in a high throughput manner. All eight fungi grew in both cultivation systems, but growth was more variable and with more noise in the data in the Cytomat plate hotel than in the BioScreen. Specific growth rates between 0.01 (no added substrate) and 0.07 h-1 were measured for strains growing in the BioScreen and between 0.01 and 0.27 h-1 for strains in the plate hotel. Three strains, Dendryphiella salina LF304, Penicillium chrysogenum KF657 and Penicillium pinophilum LF458, consistently had higher specific growth rates on glucose and xylose in the plate hotel than in the BioScreen, but otherwise results were similar in the two systems. However, because of the noise in data from the plate hotel, the data obtained from it could only be used to distinguish between substrates which did or did not support growth, whereas data from BioScreen also provided information on substrate preference. Glucose was the preferred substrate for all strains, followed by xylose and galactose. Five strains also grew on glycerol. Therefore it was important to minimise the amount of glycerol introduced with the inoculum to avoid misinterpreting the results for growth on poor substrates. We concluded that both systems could provide physiological data with filamentous fungi, provided sufficient replicates are included in the measurements.
Collapse
Affiliation(s)
- Anu Tamminen
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Petrus Happonen
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Dorothee Barth
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Sami Holmström
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Marilyn G. Wiebe
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
- * E-mail:
| |
Collapse
|
33
|
Li Q, Shi S, Dong Y, Yu X. Characterisation of amylose and amylopectin with various moisture contents after frying process: effect of starch–lipid complex formation. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Qi Li
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling712100Shaanxi China
| | - Shaoxia Shi
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling712100Shaanxi China
| | - Yaoyao Dong
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling712100Shaanxi China
| | - Xiuzhu Yu
- College of Food Science and Engineering Northwest A&F University 22 Xinong Road Yangling712100Shaanxi China
| |
Collapse
|
34
|
Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast. Microorganisms 2020; 8:microorganisms8071034. [PMID: 32668638 PMCID: PMC7409317 DOI: 10.3390/microorganisms8071034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022] Open
Abstract
Beta (β)-glucans are polysaccharides composed of D-glucose monomers. Nowadays, β-glucans are gaining attention due to their attractive immunomodulatory biological activities, which can be utilized in pharmaceutical or food supplementation industries. Some carotenogenic Basidiomycetes yeasts, previously explored for lipid and carotenoid coproduction, could potentially coproduce a significant amount of β-glucans. In the present study, we screened eleven Basidiomycetes for the coproduction of lipids and β-glucans. We examined the effect of four different C/N ratios and eight different osmolarity conditions on the coproduction of lipids and β-glucans. A high-throughput screening approach employing microcultivation in microtiter plates, Fourier Transform Infrared (FTIR) spectroscopy and reference analysis was utilized in the study. Yeast strains C. infirmominiatum CCY 17-18-4 and R. kratochvilovae CCY 20-2-26 were identified as the best coproducers of lipids and β-glucans. In addition, C. infirmominiatum CCY 17-18-4, R. kratochvilovae CCY 20-2-26 and P. rhodozyma CCY 77-1-1 were identified as the best alternative producers of β-glucans. Increased C/N ratio led to increased biomass, lipid and β-glucans production for several yeast strains. Increased osmolarity had a negative effect on biomass and lipid production while the β-glucan production was positively affected.
Collapse
|
35
|
Dzurendova S, Zimmermann B, Kohler A, Tafintseva V, Slany O, Certik M, Shapaval V. Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi. PLoS One 2020; 15:e0234870. [PMID: 32569317 PMCID: PMC7307774 DOI: 10.1371/journal.pone.0234870] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
Mucoromycota fungi possess a versatile metabolism and can utilize various substrates for production of industrially important products, such as lipids, chitin/chitosan, polyphosphates, pigments, alcohols and organic acids. However, as far as commercialisation is concerned, establishing industrial biotechnological processes based on Mucoromycota fungi is still challenging due to the high production costs compared to the final product value. Therefore, the development of co-production concept is highly desired since more than one valuable product could be produced at the time and the process has a potentially higher viability. To develop such biotechnological strategy, we applied a high throughput approach consisting of micro-titre cultivation and FTIR spectroscopy. This approach allows single-step biochemical fingerprinting of either fungal biomass or growth media without tedious extraction of metabolites. The influence of two types of nitrogen sources and different levels of inorganic phosphorus on the co-production of lipids, chitin/chitosan and polyphosphates for nine different oleaginous Mucoromycota fungi was evaluated. FTIR analysis of biochemical composition of Mucoromycota fungi and biomass yield showed that variation in inorganic phosphorus had higher effect when inorganic nitrogen source-ammonium sulphate-was used. It was observed that: (1) Umbelopsis vinacea reached almost double biomass yield compared to other strains when yeast extract was used as nitrogen source while phosphorus limitation had little effect on the biomass yield; (2) Mucor circinelloides, Rhizopus stolonifer, Amylomyces rouxii, Absidia glauca and Lichtheimia corymbifera overproduced chitin/chitosan under the low pH caused by the limitation of inorganic phosphorus; (3) Mucor circinelloides, Amylomyces rouxii, Rhizopus stolonifer and Absidia glauca were able to store polyphosphates in addition to lipids when high concentration of inorganic phosphorus was used; (4) the biomass and lipid yield of high-value lipid producers Mortierella alpina and Mortierella hyalina were significantly increased when high concentrations of inorganic phosphorus were combined with ammonium sulphate, while the same amount of inorganic phosphorus combined with yeast extract showed negative impact on the growth and lipid accumulation. FTIR spectroscopy revealed the co-production potential of several oleaginous Mucoromycota fungi forming lipids, chitin/chitosan and polyphosphates in a single cultivation process.
Collapse
Affiliation(s)
- Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- * E-mail: ,
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Ondrej Slany
- Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Milan Certik
- Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava, Slovakia
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
36
|
Kenđel A, Zimmermann B. Chemical Analysis of Pollen by FT-Raman and FTIR Spectroscopies. FRONTIERS IN PLANT SCIENCE 2020; 11:352. [PMID: 32296453 PMCID: PMC7136416 DOI: 10.3389/fpls.2020.00352] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/10/2020] [Indexed: 05/13/2023]
Abstract
Pollen studies are important for the assessment of present and past environment, including biodiversity, sexual reproduction of plants and plant-pollinator interactions, monitoring of aeroallergens, and impact of climate and pollution on wild communities and cultivated crops. Although information on chemical composition of pollen is of importance in all of those research areas, pollen chemistry has been rarely measured due to complex and time-consuming analyses. Vibrational spectroscopies, coupled with multivariate data analysis, have shown great potential for rapid chemical characterization, identification and classification of pollen. This study, comprising 219 species from all principal taxa of seed plants, has demonstrated that high-quality Raman spectra of pollen can be obtained by Fourier transform (FT) Raman spectroscopy. In combination with Fourier transform infrared spectroscopy (FTIR), FT-Raman spectroscopy is obtaining comprehensive information on pollen chemistry. Presence of all the main biochemical constituents of pollen, such as proteins, lipids, carbohydrates, carotenoids and sporopollenins, have been identified and detected in the spectra, and the study shows approaches to measure relative and absolute content of these constituents. The results show that FT-Raman spectroscopy has clear advantage over standard dispersive Raman measurements, in particular for measurement of pollen samples with high pigment content. FT-Raman spectra are strongly biased toward chemical composition of pollen wall constituents, namely sporopollenins and pigments. This makes Raman spectra complementary to FTIR spectra, which over-represent chemical constituents of the grain interior, such as lipids and carbohydrates. The results show a large variability in pollen chemistry for families, genera and even congeneric species, revealing wide range of reproductive strategies, from storage of nutrients to variation in carotenoids and phenylpropanoids. The information on pollen's chemical patterns for major plant taxa should be of outstanding value for various studies in plant biology and ecology, including aerobiology, palaeoecology, forensics, community ecology, plant-pollinator interactions, and climate effects on plants.
Collapse
Affiliation(s)
- Adriana Kenđel
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
37
|
Tafintseva V, Shapaval V, Smirnova M, Kohler A. Extended multiplicative signal correction for FTIR spectral quality test and pre-processing of infrared imaging data. JOURNAL OF BIOPHOTONICS 2020; 13:e201960112. [PMID: 31793214 DOI: 10.1002/jbio.201960112] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 05/28/2023]
Abstract
Spectral quality control is an important step in the analysis of infrared spectral data, however, often neglected in scientific literature. A frequently used quality test that was originally developed for infrared spectra of bacteria is provided by OPUS software from Bruker Optik GmbH. In this study, the OPUS quality test is applied to a large number of spectra of bacteria, yeasts and moulds and hyperspectral images of microorganisms. It is shown that the use of strict thresholds for parameters of the OPUS quality test leads to discarding too many spectra. A strategy for optimizing parameters thresholds of the OPUS quality test is provided and a novel approach for spectral quality testing based on extended multiplicative signal correction (EMSC) is suggested. For all the data sets considered in our study, the EMSC quality test is shown to be the best among different alternatives of OPUS quality test provided.
Collapse
Affiliation(s)
- Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Margarita Smirnova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biology, Belarusian State University, Minsk, Belarus
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
38
|
The Biofungicide Activity of Some Plant Essential Oils for the Cleaner Production of Model Linen Fibers Similar to Those Used in Ancient Egyptian Mummification. Processes (Basel) 2020. [DOI: 10.3390/pr8010079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, the essential oils (EOs) from Eriocephalus africanus leaf, Vitex agnus-castus leaf and fruit, Cymbopogon citratus leaf, and Rosmarinus officinalis leaf were used as antifungal agents against isolated Aspergillus flavus, Cladosporium cladosporioides, and Penicillium chrysogenum from an ancient Egyptian child’s mummy. The isolated fungi were used to colonize the samples of linen fibers. The best oil was used as a novel natural product for the cleaner production of model linen fibers similar to those used in ancient Egyptian mummification. Standard and original linen fibers were compared with the infected Linen samples using Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses. The FTIR revealed the changes in the molecular structure of the cellulose, hemicellulose, and lignin of the infected linen fibers. The cellulose crystallinity indices decreased to 64.61%, 52.69%, and 54.63% in the linen inoculated with A. flavus, C. cladosporioides, and P. chrysogenum compared to the control sample (72.08%), thereby affecting the chemical properties of the cellulose. The mycelia inhibition percentages of the three fungi reached 100% after the leaf EO from V. agnus-castus was applied, followed by C. citratus. The V. agnus-castus leaf EO applied at contraptions of 250, 500, 50, 1000, and 2000 µL/mL showed 100% inhibition for A. flavus and P. chrysogenum and reached 100% against C. cladosporioides at concentrations of 500, 750, 1000, and 2000 µL/mL. C. citratus leaf essential oil applied at concentrations of 500, 750, 1000, and 2000 µL/mL showed 100% inhibition to the growth of A. flavus and C. cladosporioides and reached 100% inhibition against the growth of P. chrysogenum at concentrations of 750, 1000 and 2000 µL/mL. This inhibition could be related to the main compounds of caryophyllene (23.13%), eucalyptol (20.59%), sabinene (β-thujene) (12.2%), γ-elemene (9%), and β-farnesene (6.14%) identified in V. agnus-castus leaf EO or due to the main compounds of β-citral (43.63%) and geranial (41.51%), as identified in the leaf EO of C. citratus by GC/MS. The morphological changes in the hyphae of the fungi were observed via SEM examination, where V. agnus-castus leaf EO, the best active oil, showed potent inhibition to fungi grown on the model linen fiber. In this way, the morphology and the structure of the hyphae were effectively changed. Our findings prove that the designed model linen fiber treated with V. agnus-castus leaf EO is able to preserve wrapping fibres and represents a novel natural alternative for effective fungicidal treatment.
Collapse
|
39
|
Deng H, Bai Y, Fan TP, Zheng X, Cai Y. Advanced strategy for metabolite exploration in filamentous fungi. Crit Rev Biotechnol 2020; 40:180-198. [PMID: 31906740 DOI: 10.1080/07388551.2019.1709798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Filamentous fungi comprise an abundance of gene clusters that encode high-value metabolites, whereas affluent gene clusters remain silent during laboratory conditions. Complex cellular metabolism further limits these metabolite yields. Therefore, diverse strategies such as genetic engineering and chemical mutagenesis have been developed to activate these cryptic pathways and improve metabolite productivity. However, lower efficiencies of gene modifications and screen tools delayed the above processes. To address the above issues, this review describes an alternative design-construction evaluation optimization (DCEO) approach. The DCEO tool provides theoretical and practical principles to identify potential pathways, modify endogenous pathways, integrate exogenous pathways, and exploit novel pathways for their diverse metabolites and desirable productivities. This DCEO method also offers different tactics to balance the cellular metabolisms, facilitate the genetic engineering, and exploit the scalable metabolites in filamentous fungi.
Collapse
Affiliation(s)
- Huaxiang Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Center for Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
40
|
Study of Metabolic Adaptation of Red Yeasts to Waste Animal Fat Substrate. Microorganisms 2019; 7:microorganisms7110578. [PMID: 31752339 PMCID: PMC6920810 DOI: 10.3390/microorganisms7110578] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 02/05/2023] Open
Abstract
Carotenogenic yeasts are non-conventional oleaginous microorganisms capable of utilizing various waste substrates. In this work, four red yeast strains (Rhodotorula, Cystofilobasidium, and Sporobolomyces sp.) were cultivated in media containing crude, emulsified, and enzymatically hydrolyzed animal waste fat, compared with glucose and glycerol, as single C-sources. Cell morphology (cryo-SEM (cryo-scanning electron microscopy), TEM (transmission electron microscopy)), production of biomass, lipase, biosurfactants, lipids (gas chromatography/flame ionization detection, GC/FID) carotenoids, ubiquinone, and ergosterol (high performance liquid chromatography, HPLC/PDA) in yeast cells was studied depending on the medium composition, the C source, and the carbon/nitrogen (C/N) ratio. All studied strains are able to utilize solid and processed fat. Biomass production at C/N = 13 was higher on emulsified/hydrolyzed fat than on glucose/glycerol. The production of lipids and lipidic metabolites was enhanced for several times on fat; the highest yields of carotenoids (24.8 mg/L) and lipids (54.5%/CDW (cell dry weight)) were found in S. pararoseus. Simultaneous induction of lipase and biosurfactants was observed on crude fat substrate. An increased C/N ratio (13-100) led to higher biomass production in fat media. The production of total lipids increased in all strains to C/N = 50. Oppositely, the production of carotenoids, ubiquinone, and ergosterol dramatically decreased with increased C/N in all strains. Compounds accumulated in stressed red yeasts have a great application potential and can be produced efficiently during the valorization of animal waste fat under the biorefinery concept.
Collapse
|
41
|
Rasskazov IL, Singh R, Carney PS, Bhargava R. Extended Multiplicative Signal Correction for Infrared Microspectroscopy of Heterogeneous Samples with Cylindrical Domains. APPLIED SPECTROSCOPY 2019; 73:859-869. [PMID: 31149835 DOI: 10.1177/0003702819844528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Optical scattering corrections are invoked to computationally distinguish between scattering and absorption contributions to recorded data in infrared (IR) microscopy, with a goal to obtain an absorption spectrum that is relatively free of the effects of sample morphology. Here, we present a modification of the extended multiplicative signal correction (EMSC) approach that allows for spectral recovery from fibers and cylindrical domains in heterogeneous samples. The developed theoretical approach is based on exact Mie theory for infinite cylinders. Although rigorous Mie theory implies utilization of comprehensive and time-consuming calculations, we propose to change the workflow of the original EMSC algorithm to minimize extensive calculations for each recorded spectrum at each iteration step. This makes the modified EMSC approach practical for routine use. First, we tested our approach using synthetic data derived from a rigorous model of scattering from cylinders in an IR microscope. Second, we applied the approach to Fourier transform IR (FT-IR) microspectroscopy data recorded from filamentous fungal and cellulose samples with pronounced fiber-like shapes. While the corrected spectra show greatly reduced baseline offsets and consistency, strongly absorbing regions of the spectrum require further refinement. The modified EMSC algorithm broadly mitigates the effects of scattering, offering a practical approach to more consistent and accurate spectra from cylindrical objects or heterogeneous samples with cylindrical domains.
Collapse
Affiliation(s)
- Ilia L Rasskazov
- 1 The Institute of Optics, University of Rochester, Rochester, NY, USA
| | - Rajveer Singh
- 2 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- 3 Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - P Scott Carney
- 1 The Institute of Optics, University of Rochester, Rochester, NY, USA
| | - Rohit Bhargava
- 2 Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- 4 Departments of Bioengineering, Electrical & Computer Engineering, Chemistry, Chemical and Biomolecular Engineering, and Mechanical Science and Engineering, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
42
|
Chmielarz M, Sampels S, Blomqvist J, Brandenburg J, Wende F, Sandgren M, Passoth V. FT-NIR: a tool for rapid intracellular lipid quantification in oleaginous yeasts. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:169. [PMID: 31297157 PMCID: PMC6599325 DOI: 10.1186/s13068-019-1513-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/21/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Lipid extraction for quantification of fat content in oleaginous yeasts often requires strong acids and harmful organic solvents; it is laborious and time-consuming. Therefore, in most cases just endpoint measurements of lipid accumulation are performed and kinetics of intracellular lipid accumulation is difficult to follow. To address this, we created a prediction model using Fourier-transform near-infrared (FT-NIR) spectroscopy. This method allows to measure lipid content in yeast. METHODS The FT-NIR calibration sets were constructed from spectra of freeze-dried cells of the oleaginous yeasts Rhodotorula toruloides CBS 14, Lipomyces starkeyi CBS 1807 and Yarrowia lipolytica CBS 6114. The yeast cells were obtained from different cultivation conditions. Freeze-dried cell pellets were scanned using FT-NIR in the Multi Purpose Analyser (MPA) from Bruker. The obtained spectra were assigned corresponding to total fat content, obtained from lipid extraction using a modified Folch method. Quantification models using partial least squares (PLS) regression were built, and the calibration sets were validated on independently cultivated samples. The R. toruloides model was additionally tested on Rhodotorula babjevae DBVPG 8058 and Rhodotorula glutinis CBS 2387. RESULTS The R 2 of the FT-NIR model for R. toruloides was 98%, and the root mean square error of cross-validation (RMSECV) was 1.53. The model was validated using a separate set of R. toruloides samples with a root mean square error of prediction (RMSEP) of 3.21. The R 2 of the Lipomyces model was 96%, with RMSECV 2.4 and RMSEP 3.8. The R 2 of the mixed model, including all tested yeast strains, was 90.5%, with RMSECV 2.76 and RMSEP 3.22, respectively. The models were verified by predicting the total fat content in newly cultivated and freeze-dried samples. Additionally, the kinetics of lipid accumulation of a culture were followed and compared with standard lipid extraction methods. CONCLUSIONS Using FT-NIR spectroscopy, we have developed a faster, less laborious and non-destructive quantification of yeast intracellular lipid content compared to methods using lipid extraction.
Collapse
Affiliation(s)
- Mikołaj Chmielarz
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| | - Sabine Sampels
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| | - Johanna Blomqvist
- Faculty of Science and Technology, Norwegian University of Life Sciences: NMBU, P.O.Box 5003, 1432 Ås, Norway
| | - Jule Brandenburg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| | - Frida Wende
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| |
Collapse
|
43
|
Christensen D, Rüther A, Kochan K, Pérez-Guaita D, Wood B. Whole-Organism Analysis by Vibrational Spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:89-108. [PMID: 30978292 DOI: 10.1146/annurev-anchem-061318-115117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vibrational spectroscopy has contributed to the understanding of biological materials for many years. As the technology has advanced, the technique has been brought to bear on the analysis of whole organisms. Here, we discuss advanced and recently developed infrared and Raman spectroscopic instrumentation to whole-organism analysis. We highlight many of the recent contributions made in this relatively new area of spectroscopy, particularly addressing organisms associated with disease with emphasis on diagnosis and treatment. The application of vibrational spectroscopic techniques to entire organisms is still in its infancy, but new developments in imaging and chemometric processing will likely expand in the field in the near future.
Collapse
Affiliation(s)
- Dale Christensen
- School of Chemistry, Monash University, Victoria 3800, Australia;
| | - Anja Rüther
- School of Chemistry, Monash University, Victoria 3800, Australia;
| | - Kamila Kochan
- School of Chemistry, Monash University, Victoria 3800, Australia;
| | | | - Bayden Wood
- School of Chemistry, Monash University, Victoria 3800, Australia;
| |
Collapse
|
44
|
Shapaval V, Brandenburg J, Blomqvist J, Tafintseva V, Passoth V, Sandgren M, Kohler A. Biochemical profiling, prediction of total lipid content and fatty acid profile in oleaginous yeasts by FTIR spectroscopy. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:140. [PMID: 31178928 PMCID: PMC6551905 DOI: 10.1186/s13068-019-1481-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/29/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Oleaginous yeasts are considered as a potential lipid source for food, feed and biofuel production. In order to make the yeast-based lipid production environmentally and economically sustainable, there is a need for screening studies in order to find the best yeast lipid producers on different substrates, and to optimize cultivation conditions. Since the target parameter of such screening studies are lipid amounts and profiles, an analytical technique that is able to perform lipid analyses rapidly, reproducible and with high precision is highly desirable. The main objective of this study was to establish the non-invasive high-throughput Fourier transform infrared (FTIR) spectroscopy analysis for the prediction of lipid content and profile in oleaginous yeasts. RESULTS High-throughput FTIR spectroscopy allowed characterizing the total biochemical profile of oleaginous yeasts and enabled us to identify strains and substrate(s) providing the highest total lipid content. Some of the yeast strains grown under nitrogen-limiting conditions with glucose/xylose/mixture of glucose and xylose as carbon sources were accumulating lipids with a high proportion of free fatty acids. FTIR spectra were used to predict gravimetric and gas chromatography data by establishing multivariate calibration models. Coefficients of determination (R 2) for calibration models were obtained in a range between 0.62 and 0.92 for predicting lipid content. When using an independent test set, R 2 values between 0.53 and 0.79 were achieved for predicting fatty acid profile. The best spectral region(s) for the prediction of total lipid content was 3100-2800 cm-1 combined with 1800-700 cm-1, and for prediction of summed saturated (SAT), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids: 3100-2800 cm-1, 3100-2800 cm-1 combined with 1700-1715 cm-1 and 3100-2800 cm-1 combined with 1800-1715 cm-1, respectively. The highest lipid accumulation was observed for strains Rhodotorula babjevae DBVPG 8058 on glucose and mixture of glucose and xylose and Lipomyces starkeyi CBS 2512 on xylose. CONCLUSIONS Applying FTIR spectroscopy combined with multivariate data analysis allows performing rapid, non-invasive, reproducible and precise quantitative predictions of total lipid content and lipid profile. It allows also detecting different lipid fractions as triacylglycerols (TAGs) and free fatty acids and evaluating the total biochemical profile of cells. Several yeast strains with high lipid accumulation were identified.
Collapse
Affiliation(s)
- Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Science, P.O. Box 5003, 1432 Ås, Norway
| | - Jule Brandenburg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7015, 75007 Uppsala, Sweden
| | - Johanna Blomqvist
- Faculty of Science and Technology, Norwegian University of Life Science, P.O. Box 5003, 1432 Ås, Norway
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7015, 75007 Uppsala, Sweden
| | - Valeria Tafintseva
- Faculty of Science and Technology, Norwegian University of Life Science, P.O. Box 5003, 1432 Ås, Norway
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7015, 75007 Uppsala, Sweden
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7015, 75007 Uppsala, Sweden
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Science, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
45
|
An Overview of Current Pretreatment Methods Used to Improve Lipid Extraction from Oleaginous Micro-Organisms. Molecules 2018; 23:molecules23071562. [PMID: 29958398 PMCID: PMC6100488 DOI: 10.3390/molecules23071562] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Microbial oils, obtained from oleaginous microorganisms are an emerging source of commercially valuable chemicals ranging from pharmaceuticals to the petroleum industry. In petroleum biorefineries, the microbial biomass has become a sustainable source of renewable biofuels. Biodiesel is mainly produced from oils obtained from oleaginous microorganisms involving various upstream and downstream processes, such as cultivation, harvesting, lipid extraction, and transesterification. Among them, lipid extraction is a crucial step for the process and it represents an important bottleneck for the commercial scale production of biodiesel. Lipids are synthesized in the cellular compartment of oleaginous microorganisms in the form of lipid droplets, so it is necessary to disrupt the cells prior to lipid extraction in order to improve the extraction yields. Various mechanical, chemical and physicochemical pretreatment methods are employed to disintegrate the cellular membrane of oleaginous microorganisms. The objective of the present review article is to evaluate the various pretreatment methods for efficient lipid extraction from the oleaginous cellular biomass available to date, as well as to discuss their advantages and disadvantages, including their effect on the lipid yield. The discussed mechanical pretreatment methods are oil expeller, bead milling, ultrasonication, microwave, high-speed and high-pressure homogenizer, laser, autoclaving, pulsed electric field, and non-mechanical methods, such as enzymatic treatment, including various emerging cell disruption techniques.
Collapse
|
46
|
Kosa G, Vuoristo KS, Horn SJ, Zimmermann B, Afseth NK, Kohler A, Shapaval V. Assessment of the scalability of a microtiter plate system for screening of oleaginous microorganisms. Appl Microbiol Biotechnol 2018; 102:4915-4925. [PMID: 29644428 PMCID: PMC5954000 DOI: 10.1007/s00253-018-8920-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/19/2018] [Accepted: 03/07/2018] [Indexed: 12/01/2022]
Abstract
Recent developments in molecular biology and metabolic engineering have resulted in a large increase in the number of strains that need to be tested, positioning high-throughput screening of microorganisms as an important step in bioprocess development. Scalability is crucial for performing reliable screening of microorganisms. Most of the scalability studies from microplate screening systems to controlled stirred-tank bioreactors have been performed so far with unicellular microorganisms. We have compared cultivation of industrially relevant oleaginous filamentous fungi and microalga in a Duetz-microtiter plate system to benchtop and pre-pilot bioreactors. Maximal glucose consumption rate, biomass concentration, lipid content of the biomass, biomass, and lipid yield values showed good scalability for Mucor circinelloides (less than 20% differences) and Mortierella alpina (less than 30% differences) filamentous fungi. Maximal glucose consumption and biomass production rates were identical for Crypthecodinium cohnii in microtiter plate and benchtop bioreactor. Most likely due to shear stress sensitivity of this microalga in stirred bioreactor, biomass concentration and lipid content of biomass were significantly higher in the microtiter plate system than in the benchtop bioreactor. Still, fermentation results obtained in the Duetz-microtiter plate system for Crypthecodinium cohnii are encouraging compared to what has been reported in literature. Good reproducibility (coefficient of variation less than 15% for biomass growth, glucose consumption, lipid content, and pH) were achieved in the Duetz-microtiter plate system for Mucor circinelloides and Crypthecodinium cohnii. Mortierella alpina cultivation reproducibility might be improved with inoculation optimization. In conclusion, we have presented suitability of the Duetz-microtiter plate system for the reproducible, scalable, and cost-efficient high-throughput screening of oleaginous microorganisms.
Collapse
Affiliation(s)
- Gergely Kosa
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway.
| | - Kiira S Vuoristo
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | | | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432, Ås, Norway
| |
Collapse
|
47
|
Single Cell Oils (SCOs) of Oleaginous Filamentous Fungi as a Renewable Feedstock: A Biodiesel Biorefinery Approach. Fungal Biol 2018. [DOI: 10.1007/978-3-319-90379-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Kosa G, Zimmermann B, Kohler A, Ekeberg D, Afseth NK, Mounier J, Shapaval V. High-throughput screening of Mucoromycota fungi for production of low- and high-value lipids. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:66. [PMID: 29563969 PMCID: PMC5851148 DOI: 10.1186/s13068-018-1070-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/07/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Mucoromycota fungi are important producers of low- and high-value lipids. Mortierella alpina is used for arachidonic acid production at industrial scale. In addition, oleaginous Mucoromycota fungi are promising candidates for biodiesel production. A critical step in the development of such biotechnological applications is the selection of suitable strains for lipid production. The aim of the present study was to use the Duetz-microtiter plate system combined with Fourier transform infrared (FTIR) spectroscopy for high-throughput screening of the potential of 100 Mucoromycota strains to produce low- and high-value lipids. RESULTS With this reproducible, high-throughput method, we found several promising strains for high-value omega-6 polyunsaturated fatty acid (PUFA) and biodiesel production purposes. Gamma-linolenic acid content was the highest in Mucor fragilis UBOCC-A-109196 (24.5% of total fatty acids), and Cunninghamella echinulata VKM F-470 (24.0%). For the first time, we observed concomitant gamma-linolenic acid and alpha-linolenic acid (up to 13.0%) production in psychrophilic Mucor flavus strains. Arachidonic acid was present the highest amount in M. alpina ATCC 32222 (41.1% of total fatty acids). Low cultivation temperature (15 °C) activated the temperature sensitive ∆17 desaturase enzyme in Mortierella spp., resulting in eicosapentaenoic acid production with up to 11.0% of total fatty acids in M. humilis VKM F-1494. Cunninghamella blakesleeana CCM-705, Umbelopsis vinacea CCM F-539 and UBOCC-A-101347 showed very good growth (23-26 g/L) and lipid production (7.0-8.3 g/L) with high palmitic and oleic acid, and low PUFA content, which makes them attractive candidates for biodiesel production. Absidia glauca CCM 451 had the highest total lipid content (47.2% of biomass) of all tested strains. We also demonstrated the potential of FTIR spectroscopy for high-throughput screening of total lipid content of oleaginous fungi. CONCLUSIONS The use of Duetz-microtiter plate system combined with FTIR spectroscopy and multivariate analysis, is a feasible approach for high-throughput screening of lipid production in Mucoromycota fungi. Several promising strains have been identified by this method for the production of high-value PUFA and biodiesel.
Collapse
Affiliation(s)
- Gergely Kosa
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | | | - Jerome Mounier
- Université de Brest, EA3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest Iroise, 29280 Plouzané, France
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
49
|
Ninety six well microtiter plate as microbioreactors for production of itaconic acid by six Aspergillus terreus strains. J Microbiol Methods 2018; 144:53-59. [DOI: 10.1016/j.mimet.2017.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022]
|
50
|
Kosa G, Shapaval V, Kohler A, Zimmermann B. FTIR spectroscopy as a unified method for simultaneous analysis of intra- and extracellular metabolites in high-throughput screening of microbial bioprocesses. Microb Cell Fact 2017; 16:195. [PMID: 29132358 PMCID: PMC5683213 DOI: 10.1186/s12934-017-0817-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Analyses of substrate and metabolites are often bottleneck activities in high-throughput screening of microbial bioprocesses. We have assessed Fourier transform infrared spectroscopy (FTIR), in combination with high throughput micro-bioreactors and multivariate statistical analyses, for analysis of metabolites in high-throughput screening of microbial bioprocesses. In our previous study, we have demonstrated that high-throughput (HTS) FTIR can be used for estimating content and composition of intracellular metabolites, namely triglyceride accumulation in oleaginous filamentous fungi. As a continuation of that research, in the present study HTS FTIR was evaluated as a unified method for simultaneous quantification of intra- and extracellular metabolites and substrate consumption. As a proof of concept, a high-throughput microcultivation of oleaginous filamentous fungi was conducted in order to monitor production of citric acid (extracellular metabolite) and triglyceride lipids (intracellular metabolites), as well as consumption of glucose in the cultivation medium. RESULTS HTS FTIR analyses of supernatant samples was compared with an attenuated total reflection (ATR) FTIR, which is an established method for bioprocess monitoring. Glucose and citric acid content of growth media was quantified by high performance liquid chromatography (HPLC). Partial least square regression (PLSR) between HPLC glucose and citric acid data and the corresponding FTIR spectral data was used to set up calibration models. PLSR results for HTS measurements were very similar to the results obtained with ATR methodology, with high coefficients of determination (0.91-0.98) and low error values (4.9-8.6%) for both glucose and citric acid estimates. CONCLUSIONS The study has demonstrated that intra- and extracellular metabolites, as well as nutrients in the cultivation medium, can be monitored by a unified approach by HTS FTIR. The proof-of-concept study has validated that HTS FTIR, in combination with Duetz microtiter plate system and chemometrics, can be used for high throughput screening of microbial bioprocesses. It can be anticipated that the approach, demonstrated here on single-cell oil production by filamentous fungi, can find general application in screening studies of microbial bioprocesses, such as production of single-cell proteins, biopolymers, polysaccharides, carboxylic acids, and other type of metabolites.
Collapse
Affiliation(s)
- Gergely Kosa
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
- Nofima AS, Osloveien 1, 1430 Ås, Norway
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Postbox 5003, 1432 Ås, Norway
| |
Collapse
|