1
|
Ge S, Jia T, Shi J, Cao J, Sang S, Li J, Zhang B, Deng S. A cutting-edge 68Ga-labeled bicyclic peptide PET molecular probe for noninvasive assessment of Nectin4 expression. Bioorg Chem 2024; 152:107745. [PMID: 39213795 DOI: 10.1016/j.bioorg.2024.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The diagnosis and treatment of triple negative breast cancer (TNBC) are huge challenges due to the lack of identifiable molecular targets. The high expression of Nectin4 in a variety of tumors, including TNBC, is associated with the occurrence, invasion, progression and poor prognosis of tumors. Therefore, Nectin4 is an emerging biomarker for the diagnosis and treatment of TNBC. A PET imaging method to non-invasively quantify Nectin4 expression levels may aid in TNBC diagnosis and classification. In this study, a novel bicyclic peptide molecular probe [68Ga]Ga-DN68 was used to evaluate the expression of Nectin4 in tumors. The radiolabeling rate of [68Ga]Ga-DN68 was over 97 %, while maintaining more than 99 % radiochemical purity. In vitro experiments showed that [68Ga]Ga-DN68 could effectively target Nectin4 in tumor cells, and the cellular uptake of MC38-Nectin4 cells (Nectin4+) was significantly higher than that of MC38 cells (Nectin4-). Biodistribution and PET imaging studies consistently showed that [68Ga]Ga-DN68 was specifically accumulated in MC38-Nectin4 and MDA-MB-468 tumors, which was significantly higher than that of MC38. When co-injected with cold DN68, the specific accumulation could block the tumor uptake of MDA-MB-468. Notably, the signal-to-noise ratio at the tumor site gradually increased over time, reaching a peak at 1 h. These results strongly suggest that [68Ga]Ga-DN68 has broad application prospects as a PET tracer in TNBC imaging.
Collapse
Affiliation(s)
- Shushan Ge
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215006, China; Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang 621099, China.
| | - Tongtong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jinyu Shi
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jinming Cao
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shibiao Sang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jihui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang 621099, China.
| |
Collapse
|
2
|
Taylor C, Patterson KM, Friedman D, Bacot SM, Feldman GM, Wang T. Mechanistic Insights into the Successful Development of Combination Therapy of Enfortumab Vedotin and Pembrolizumab for the Treatment of Locally Advanced or Metastatic Urothelial Cancer. Cancers (Basel) 2024; 16:3071. [PMID: 39272928 PMCID: PMC11393896 DOI: 10.3390/cancers16173071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of an antibody backbone that recognizes and binds to a target antigen expressed on tumor cells and a small molecule chemotherapy payload that is conjugated to the antibody via a linker. ADCs are one of the most promising therapeutic modalities for the treatment of various cancers. However, many patients have developed resistance to this form of therapy. Extensive efforts have been dedicated to identifying an effective combination of ADCs with other types of anticancer therapies to potentially overcome this resistance. A recent clinical study demonstrated that a combination of the ADC enfortumab vedotin (EV) with the immune checkpoint inhibitor (ICI) pembrolizumab can achieve remarkable clinical efficacy as the first-line therapy for the treatment of locally advanced or metastatic urothelial carcinoma (la/mUC)-leading to the first approval of a combination therapy of an ADC with an ICI for the treatment of cancer patients. In this review, we highlight knowledge and understanding gained from the successful development of EV and the combination therapy of EV with ICI for the treatment of la/mUC. Using urothelial carcinoma as an example, we will focus on dissecting the underlying mechanisms necessary for the development of this type of combination therapy for a variety of cancers.
Collapse
Affiliation(s)
- Caroline Taylor
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Kamai M Patterson
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Devira Friedman
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Silvia M Bacot
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Gerald M Feldman
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tao Wang
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
3
|
Wan Q, Yuan H, Cai P, Liu Y, Yan T, Wang L, Zhou Z, Zhang W, Liu N. Effects of PEGylation on Imaging Contrast of 68Ga-Labeled Bicyclic Peptide PET Probes Targeting Nectin-4. Mol Pharm 2024; 21:4430-4440. [PMID: 39069891 DOI: 10.1021/acs.molpharmaceut.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Nectin cell adhesion molecule 4 (Nectin-4) is overexpressed in various malignant tumors and has emerged as a promising target for tumor imaging. Bicyclic peptides, known for their conformational rigidity, metabolic stability, and membrane permeability, are ideal tracers for positron emission tomography (PET) imaging. In this study, we evaluated the feasibility of visualizing Nectin-4-positive tumors using radiolabeled bicyclic peptide derivatives and optimized the pharmacokinetics of radiotracers by introducing PEG chains of different lengths. Five PEGylated radiotracers radiolabeled with 68Ga3+ exhibited high radiochemical purity and stability. As the chain length increased, the Log D values decreased from -2.32 ± 0.13 to -2.50 ± 0.16, indicating a gradual increase in the hydrophilicity of the radiotracers. In vitro cell-binding assay results showed that the PEGylated bicyclic peptide exhibits nanomolar affinity, and blocking experiments confirmed the specific binding of the tracers to the Nectin-4 receptor. In vivo PET imaging and biodistribution studies in SW780 and 5637 xenograft mice showed that [68Ga]Ga-NOTA-PEG12-BP demonstrated optimal pharmacokinetics, characterized by rapid and good tumor uptake, faster background clearance, and improved tumor-to-tissue contrast. Finally, compared with 18F-FDG, PET imaging, in vivo blocking assays of [68Ga]Ga-NOTA-PEG12-BP and histological staining confirmed that specific tumor uptake was mediated by Nectin-4 receptors. The results indicated that [68Ga]Ga-NOTA-PEG12-BP was a promising PET radiotracer for Nectin-4 targeting, with applications for clinical translation.
Collapse
Affiliation(s)
- Qiang Wan
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
| | - Hongmei Yuan
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
| | - Ping Cai
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yang Liu
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
| | - Ting Yan
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Li Wang
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
| | - Zhijun Zhou
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Luzhou 646000, Sichuan, China
| | - Wei Zhang
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Nan Liu
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
4
|
He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e671. [PMID: 39070179 PMCID: PMC11283588 DOI: 10.1002/mco2.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies' targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University Jiande Zhejiang China
| | - Xianghua Zeng
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Chunmei Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Enwen Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Yongsheng Li
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| |
Collapse
|
5
|
Li K, Zhou Y, Zang M, Jin X, Li X. Therapeutic prospects of nectin-4 in cancer: applications and value. Front Oncol 2024; 14:1354543. [PMID: 38606099 PMCID: PMC11007101 DOI: 10.3389/fonc.2024.1354543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Nectin-4 is a Ca2+-independent immunoglobulin-like protein that exhibits significantly elevated expression in malignant tumors while maintaining extremely low levels in healthy adult tissues. In recent years, overexpression of Nectin-4 has been implicated in tumor occurrence and development of various cancers, including breast cancer, urothelial cancer, and lung cancer. In 2019, the Food and Drug Administration approved enfortumab vedotin, the first antibody-drug conjugate targeting Nectin-4, for the treatment of urothelial carcinoma. This has emphasized the value of Nectin-4 in tumor targeted therapy and promoted the implementation of more clinical trials of enfortumab vedotin. In addition, many new drugs targeting Nectin-4 for the treatment of malignant tumors have entered clinical trials, with the aim of exploring potential new indications. However, the exact mechanisms by which Nectin-4 affects tumorigenesis and progression are still unclear, and the emergence of drug resistance and treatment-related adverse reactions poses challenges. This article reviews the diagnostic potential, prognostic significance, and molecular role of Nectin-4 in tumors, with a focus on clinical trials in the field of Nectin-4-related tumor treatment and the development of new drugs targeting Nectin-4.
Collapse
Affiliation(s)
- Kaiyue Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yujing Zhou
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Maolin Zang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Jin
- Imaging Center, Jinan Third People’s Hospital, Jinan, Shandong, China
| | - Xin Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Tanaka Y, Ito T, Murata M, Tanegashima K, Kaku-Ito Y, Nakahara T. NECTIN4-targeted antibody-drug conjugate is a potential therapeutic option for extramammary Paget disease. Exp Dermatol 2024; 33:e15049. [PMID: 38509717 DOI: 10.1111/exd.15049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/22/2024]
Abstract
Extramammary Paget disease (EMPD) is a rare skin cancer mainly found in areas rich in apocrine sweat glands. Since the effective treatments for advanced and/or metastasized EMPD are limited, there is an urgent need to develop novel therapeutic approaches. Nectin cell adhesion molecule 4 (NECTIN4) is highly expressed in cancers and considered to be a promising therapeutic target. NECTIN4 is also expressed in EMPD, but its role and the efficacy of NECTIN4-targeted therapy in EMPD remain unclear. This study investigated the potential of NECTIN4 as a novel therapeutic target for EMPD. NECTIN4 expression was immunohistochemically analysed in EMPD patients' primary (118 samples) and metastatic (21 samples) lesions. Using an EMPD cell line, KS-EMPD-1, the effects of NECTIN4 inhibition on cell proliferation and migration were investigated. NECTIN4 was expressed in primary and metastatic EMPD lesions, and the H-score of NECTIN4 staining was significantly higher in metastatic lesions than in primary ones. Knockdown of NECTIN4 significantly inhibited cell proliferation and affected cell migration. The cytotoxic effects of NECTIN4-targeted antibody-drug conjugate (ADC) were further evaluated, revealing a significant decrease in EMPD cell viability. In conclusion, NECTIN4 is a potential therapeutic target and NECTIN4-targeted ADC is promising as a therapeutic option for EMPD.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maho Murata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Tanegashima
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Kaku-Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Liu C, Ji J, Li C. Cucurbitacin B Inhibits the Malignancy of Esophageal Carcinoma through the KIF20A/JAK/STAT3 Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:275-289. [PMID: 38291583 DOI: 10.1142/s0192415x24500125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
This study intends to explore the effects of Cucurbitacin B (CuB) and KIF20A on esophageal carcinoma (ESCA). Data were downloaded from the Cancer Genome Atlas (TCGA) database. The expression properties of KIF20A have been confirmed by GEPIA and ualcan from TCGA. The expression of KIF20A was determined using western blotting in ECA109 and KYSE150 cells after transfection with KIF20A, KIF20A siRNA, or numerical control siRNA (si-NC). Then, different concentrations of CuB were used to treat ECA109 and KYSE150 cells. CCK-8 and colony formation assays were used to measure cell viability, and a Transwell assay was utilized to assess cell migration and invasion ability. N-cadherin, E-cadherin, snail, p-Janus kinase 2 (JAK2), JAK2, p-signal transducer and activator of transcription 3 (STAT3), and STAT3 expression levels were evaluated using western blot. KIF20A was higher expressed in ESCA than in normal cells, and its overexpression was associated with squamous cell carcinoma, TNM stage, and lymph nodal metastasis of ESCA patients. In ECA109 and KYSE150 cells, increased KIF20A facilitated cell proliferation, migration, and invasion, whereas the knockdown of KIF20A can reverse these effects with N-cadherin. Snail expression diminished and E-cadherin increased. Similarly, CuB treatment could inhibit cell proliferation, migration, and invasion concentration dependently. Furthermore, KIF20A accelerated the expression of p-JAK2 and p-STAT3, while the application of CuB inhibited KIF20A expression and attenuated the activation of the JAK/STAT3 pathway. These findings revealed that CuB could inhibit the growth, migration, and invasion of ESCA through downregulating the KIF20A/JAK/STAT3 signaling pathway, and CuB could serve as an essential medicine for therapeutic intervention.
Collapse
Affiliation(s)
- Chao Liu
- Department of Thoracic Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu 223001, P. R. China
| | - Jian Ji
- Department of Thoracic Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu 223001, P. R. China
| | - Chenglin Li
- Department of Thoracic Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu 223001, P. R. China
| |
Collapse
|
8
|
Liu CH, Leu SJ, Lee CH, Lin CY, Wang WC, Tsai BY, Lee YC, Chen CL, Yang YY, Lin LT. Production and characterization of single-chain variable fragment antibodies targeting the breast cancer tumor marker nectin-4. Front Immunol 2024; 14:1292019. [PMID: 38288120 PMCID: PMC10822971 DOI: 10.3389/fimmu.2023.1292019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
Background Nectin-4 is a novel biomarker overexpressed in various types of cancer, including breast cancer, in which it has been associated with poor prognosis. Current literature suggests that nectin-4 has a role in cancer progression and may have prognostic and therapeutic implications. The present study aims to produce nectin-4-specific single-chain variable fragment (scFv) antibodies and evaluate their applications in breast cancer cell lines and clinical specimens. Methods We generated recombinant nectin-4 ectodomain fragments as immunogens to immunize chickens and the chickens' immunoglobulin genes were amplified for construction of anti-nectin-4 scFv libraries using phage display. The binding capacities of the selected clones were evaluated with the recombinant nectin-4 fragments, breast cancer cell lines, and paraffin-embedded tissue sections using various laboratory approaches. The binding affinity and in silico docking profile were also characterized. Results We have selected two clones (S21 and L4) from the libraries with superior binding capacity. S21 yielded higher signals when used as the primry antibody for western blot analysis and flow cytometry, whereas clone L4 generated cleaner and stronger signals in immunofluorescence and immunohistochemistry staining. In addition, both scFvs could diminish attachment-free cell aggregation of nectin-4-positive breast cancer cells. As results from ELISA indicated that L4 bound more efficiently to fixed nectin-4 ectodomain, molecular docking analysis was further performed and demonstrated that L4 possesses multiple polar contacts with nectin-4 and diversity in interacting residues. Conclusion Overall, the nectin-4-specific scFvs could recognize nectin-4 expressed by breast cancer cells and have the merit of being further explored for potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sy-Jye Leu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yuan Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chu Wang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University and Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Nanamiya T, Takane K, Yamaguchi K, Okawara Y, Arakawa M, Saku A, Ikenoue T, Fujiyuki T, Yoneda M, Kai C, Furukawa Y. Expression of PVRL4, a molecular target for cancer treatment, is transcriptionally regulated by FOS. Oncol Rep 2024; 51:17. [PMID: 38063270 PMCID: PMC10739986 DOI: 10.3892/or.2023.8676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/04/2023] [Indexed: 12/18/2023] Open
Abstract
PVRL4 (or nectin‑4) is a promising therapeutic target since its upregulated expression is found in a wide range of human cancer types. Enfortumab vedotin, an antibody‑drug conjugate targeting PVRL4, is clinically used for the treatment of urothelial bladder cancer. In addition, rMV‑SLAMblind, a genetically engineered oncolytic measles virus, can infect cancer cells and induce apoptosis through interaction with PVRL4. Although PVRL4 transcript levels are elevated in breast, lung and ovarian cancer, the mechanisms of its upregulation have not yet been uncovered. To clarify the regulatory mechanisms of elevated PVRL4 expression in breast cancer cells, Assay for Transposase‑Accessible Chromatin‑sequencing and chromatin immunoprecipitation‑sequencing (ChIP‑seq) data were used to search for its regulatory regions. Using breast cancer cells, an enhancer region was ultimately identified. Additional analyses, including ChIP and reporter assays, demonstrated that FOS interacted with the PVRL4 enhancer region, and that alterations of the FOS‑binding motifs in the enhancer region decreased reporter activity. Consistent with these data, exogenous expression of FOS enhanced the reporter activity and PVRL4 expression in breast cancer cells. Furthermore, RNA‑seq analysis using breast cancer cells treated with PVRL4 small interfering RNA revealed its possible involvement in the cytokine response and immune system. These data suggested that FOS was involved, at least partly, in the regulation of PVRL4 expression in breast cancer cells, and that elevated PVRL4 expression may regulate the response of cancer cells to cytokines and the immune system.
Collapse
Affiliation(s)
- Tomoyuki Nanamiya
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kiyoko Takane
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yuya Okawara
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Mariko Arakawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Akari Saku
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoko Fujiyuki
- Division of Virus Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Misako Yoneda
- Division of Virological Medicine, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Chieko Kai
- Division of Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
10
|
Tamura K, Fujiyuki T, Moritoh K, Akimoto H, Iizuka K, Sato H, Asano K, Yoneda M, Kai C. Anti-tumor activity of a recombinant measles virus against canine lung cancer cells. Sci Rep 2023; 13:18168. [PMID: 37875555 PMCID: PMC10597997 DOI: 10.1038/s41598-023-42305-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/07/2023] [Indexed: 10/26/2023] Open
Abstract
Canine primary lung cancer with metastasis has a poor prognosis with no effective treatment. We previously generated a recombinant measles virus (MV) that lost binding affinity to a principal receptor, SLAM, to eliminate its virulence as a new cancer treatment strategy. The virus, rMV-SLAMblind, targets nectin-4, recently listed as a tumor marker, and exerts antitumor activity against nectin-4-positive canine mammary cancer and urinary bladder transitional cell carcinoma cells. However, the effectivity of rMV-SLAMblind for other types of canine cancers is still unknown. Here we evaluated the antitumor effect of rMV-SLAMblind to canine lung cancer. Nectin-4 is expressed on three canine lung cancer cell lines (CLAC, AZACL1, AZACL2) and rMV-SLAMblind was able to infect these cell lines. CLAC cells showed reduced cell viability after virus infection. In the CLAC xenograft nude mouse model, intratumoral administration of rMV-SLAMblind significantly suppressed tumor growth. In rMV-SLAMblind-treated mice, natural killer cells were activated, and Cxcl10 and Il12a levels were significantly increased in comparison with levels in the control group. In addition, the depletion of NK cells reduced the anti-tumor effect. To understand difference in efficacy among canine lung cancer cell lines, we compared virus growth and gene expression pattern after virus treatment in the three canine lung cancer cell lines; virus growth was highest in CLAC cells compared with the other cell lines and the induction of interferon (IFN)-beta and IFN-stimulated genes was at lower levels in CLAC cells. These results suggested that rMV-SLAMblind exhibits oncolytic effect against some canine lung cancer cells and the cellular response after the virus infection may influence its efficacy.
Collapse
Affiliation(s)
- Kei Tamura
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Tomoko Fujiyuki
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kanako Moritoh
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hayato Akimoto
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Keigo Iizuka
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kazushi Asano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
11
|
Ganguli N, Kumari P, Dash S, Samanta D. Molecular and structural basis of TIGIT: Nectin-4 interaction, a recently discovered pathway crucial for cancer immunotherapy. Biochem Biophys Res Commun 2023; 677:31-37. [PMID: 37542773 DOI: 10.1016/j.bbrc.2023.07.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
TIGIT (T cell immunoglobulin and ITIM domain) is an inhibitory receptor expressed on T and NK cells that interact with cell surface glycoprotein belonging to the nectin and nectin-like family of cell adhesion molecules, particularly nectin-2 and nectin-like 5 (PVR). Nectin-4 has been recently identified as a novel ligand for TIGIT and the interaction among them inhibits NK cell cytotoxicity. In this study, biophysical experiments were conducted to decipher the mechanism of this novel interaction, followed by structure-guided mutagenesis studies to map the nectin-4 binding interface on TIGIT. Using surface plasmon resonance, we deduced that TIGIT recognizes the membrane distal ectodomain of nectin-4 and the interaction is weaker than the well-characterized TIGIT: nectin-2 interaction. Deciphering the molecular basis of this newly identified interaction between TIGIT and nectin-4 will provide us important insight into the manipulation of this inhibitory signaling pathway, especially targeting cancer cells overexpressing nectin-4 that evade the immune surveillance of the body.
Collapse
Affiliation(s)
- Namrata Ganguli
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Puja Kumari
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Sagarika Dash
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
12
|
Duan X, Xia L, Zhang Z, Ren Y, Pomper MG, Rowe SP, Li X, Li N, Zhang N, Zhu H, Yang Z, Sheng X, Yang X. First-in-Human Study of the Radioligand 68Ga-N188 Targeting Nectin-4 for PET/CT Imaging of Advanced Urothelial Carcinoma. Clin Cancer Res 2023; 29:3395-3407. [PMID: 37093191 DOI: 10.1158/1078-0432.ccr-23-0609] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE Nectin-4 is an emerging biomarker for cancer diagnosis and therapy. Recently, enfortumab vedotin (EV) was approved by the FDA as the first nectin-4 targeting antibody-drug conjugate for treating advanced urothelial carcinoma (UC). A PET imaging method to noninvasively quantify nectin-4 expression level would potentially help to select patients most likely to respond to EV and predict the response. EXPERIMENTAL DESIGN In this study, we designed a bicyclic peptide-based nectin-4 targeting radiotracer 68Ga-N188. Initially, we performed preclinical evaluations of 68Ga-N188 in UC cell lines and xenograft mouse models. Next, we performed the translational study in healthy volunteers and a pilot cohort of patients with advanced UC on uEXPLORER total-body PET/CT. RESULTS In the preclinical study, 68Ga-N188 showed high affinity to nectin-4, specific uptake in a nectin-4(+) xenograft mouse model, and suitable pharmacokinetic and safety profiles. In the translational study, 2 healthy volunteers and 14 patients with advanced UC were enrolled. The pharmacokinetic profile was determined for 68Ga-N188, and the nectin-4 relative expression level in different organs was quantitatively imaged. CONCLUSIONS A clear correlation between PET SUV value and nectin-4 expression was observed, supporting the application of 68Ga-N188 PET as a companion diagnostic tool for optimizing treatments that target nectin-4. See related commentary by Jiang et al., p. 3259.
Collapse
Affiliation(s)
- Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Lei Xia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Administration (NMPA), Beijing, China
| | - Zhuochen Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yanan Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Administration (NMPA), Beijing, China
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Administration (NMPA), Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Administration (NMPA), Beijing, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
- Key Laboratory for Research and Evaluation of Radiopharmaceuticals, National Medical Products Administration (NMPA), Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University Health Science Center, Beijing, China
- Yunnan Baiyao Group, Kunming, China
| |
Collapse
|
13
|
Alameddine R, Mallea P, Shahab F, Zakharia Y. Antibody Drug Conjugates in Bladder Cancer: Current Milestones and Future Perspectives. Curr Treat Options Oncol 2023; 24:1167-1182. [PMID: 37403009 DOI: 10.1007/s11864-023-01114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/06/2023]
Abstract
OPINION STATEMENT Over the last several years, the treatment landscape of urothelial carcinoma has witnessed an unprecedented expansion of therapeutic options including checkpoint inhibitors, tyrosine kinase inhibitors, and antibody drug conjugates (ADC). Early trial data has shown that ADCs are safer and potentially effective treatment options in advanced bladder cancer as well as in the early disease. In particular, enfortumab-vedotin (EV) has shown promising results with a recent cohort of a clinical trial demonstrating that EV is effective as neoadjuvant monotherapy as well as in combination with pembrolizumab in metastatic setting. Similar promising results have been shown by other classes of ADC in other trials including sacituzumab-govitecan (SG) and oportuzumab monatox (OM). ADCs are likely to become a mainstay treatment option in the urothelial carcinoma playbook as either a monotherapy or combination therapy. The cost of the drug presents a real challenge, but further trial data may justify the use of the drug as mainstay treatment.
Collapse
Affiliation(s)
- Raafat Alameddine
- Division of Hematology Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Patrick Mallea
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Farhan Shahab
- Department of Emergency Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Yousef Zakharia
- Division of Hematology Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
14
|
Zhou L, Gan L, Liu Z. Expression and prognostic value of AIM1L in esophageal squamous cell carcinoma. Medicine (Baltimore) 2023; 102:e34677. [PMID: 37653730 PMCID: PMC10470706 DOI: 10.1097/md.0000000000034677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Absent in melanoma 1-like (AIM1L), also known as crystalline beta gamma domain containing 2. The relationship between AIM1L and tumors has not been fully investigated, and the biological function of AIM1L in different tumors is unknown, so we bioinformatically explored a possible relationship between AIM1L and esophageal squamous cell carcinoma (ESCC). METHODS AIM1L mRNA expression was detected by the Gene Expression Omnibus database (GSE20347, GSE161533, and GSE53625), and protein level expression was detected by immunohistochemistry. The correlation between AIM1L expression and clinical pathological characteristics was evaluated by the Wilcoxon signed rank test or chi-square test. Kaplan-Meier analysis and Cox proportional risk regression model were used to determine the prognostic value of AIM1L in ESCC patients and establish and verify a nomogram. Find genes highly related to the expression of AIM1L, conduct GO and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and conduct GSEA analysis on the gene set. The "CIBERSORT" R package was used to explore the relationship between AIM1L and immune infiltration, and the "OncoPredict" R package was used to explore the relationship between AIM1L and drug sensitivity. RESULTS Compared with the matched adjacent non-cancer tissues, the expression of AIM1L was down-regulated in ESCC tissues, and correlated with tumor grade. Kaplan-Meier survival analysis and Cox analysis showed that the low expression of AIM1L was related to the poor prognosis of ESCC patients. Enrichment analysis explained the possible function of AIM1L, GSEA determined the highly correlated signal pathway of AIM1L low expression phenotype, immune infiltration analysis determined that AIM1L was related to activated NK cells and macrophage M2, and drug sensitivity analysis determined that the low expression of AIM1L might be related to EGFR targeted drug resistance. CONCLUSION AIM1L may be a candidate tumor suppressor gene for ESCC and an independent molecular biomarker for the prognosis of ESCC patients.
Collapse
Affiliation(s)
- Lu Zhou
- Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lanlan Gan
- Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongwen Liu
- Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Klekowski J, Zielińska D, Hofman A, Zajdel N, Gajdzis P, Chabowski M. Clinical Significance of Nectins in HCC and Other Solid Malignant Tumors: Implications for Prognosis and New Treatment Opportunities-A Systematic Review. Cancers (Basel) 2023; 15:3983. [PMID: 37568798 PMCID: PMC10416819 DOI: 10.3390/cancers15153983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The nectin family comprises four proteins, nectin-1 to -4, which act as cell adhesion molecules. Nectins have various regulatory functions in the immune system and can be upregulated or decreased in different tumors. The literature research was conducted manually by the authors using the PubMed database by searching articles published before 2023 with the combination of several nectin-related keywords. A total of 43 studies were included in the main section of the review. Nectins-1-3 have different expressions in tumors. Both the loss of expression and overexpression could be negative prognostic factors. Nectin-4 is the best characterized and the most consistently overexpressed in various tumors, which generally correlates with a worse prognosis. New treatments based on targeting nectin-4 are currently being developed. Enfortumab vedotin is a potent antibody-drug conjugate approved for use in therapy against urothelial carcinoma. Few reports focus on hepatocellular carcinoma, which leaves room for further studies comparing the utility of nectins with commonly used markers.
Collapse
Affiliation(s)
- Jakub Klekowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | - Dorota Zielińska
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| | - Adriana Hofman
- Student Research Club No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.H.); (N.Z.)
| | - Natalia Zajdel
- Student Research Club No 180, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (A.H.); (N.Z.)
| | - Paweł Gajdzis
- Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Pathomorphology, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Teaching Hospital, 50-981 Wroclaw, Poland;
| |
Collapse
|
16
|
Todaro B, Ottalagana E, Luin S, Santi M. Targeting Peptides: The New Generation of Targeted Drug Delivery Systems. Pharmaceutics 2023; 15:1648. [PMID: 37376097 DOI: 10.3390/pharmaceutics15061648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peptides can act as targeting molecules, analogously to oligonucleotide aptamers and antibodies. They are particularly efficient in terms of production and stability in physiological environments; in recent years, they have been increasingly studied as targeting agents for several diseases, from tumors to central nervous system disorders, also thanks to the ability of some of them to cross the blood-brain barrier. In this review, we will describe the techniques employed for their experimental and in silico design, as well as their possible applications. We will also discuss advancements in their formulation and chemical modifications that make them even more stable and effective. Finally, we will discuss how their use could effectively help to overcome various physiological problems and improve existing treatments.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Elisa Ottalagana
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Melissa Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
17
|
Vannini A, Parenti F, Forghieri C, Barboni C, Zaghini A, Campadelli-Fiume G, Gianni T. Innovative retargeted oncolytic herpesvirus against nectin4-positive cancers. Front Mol Biosci 2023; 10:1149973. [PMID: 37251078 PMCID: PMC10213976 DOI: 10.3389/fmolb.2023.1149973] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Nectin4 is a recently discovered tumor associated antigen expressed in cancers that constitute relevant unmet clinical needs, including the undruggable triple negative breast cancer, pancreatic ductal carcinoma, bladder/urothelial cancer, cervical cancer, lung carcinoma and melanoma. So far, only one nectin4-specific drug-Enfortumab Vedotin-has been approved and the clinical trials that test novel therapeutics are only five. Here we engineered R-421, an innovative retargeted onco-immunotherapeutic herpesvirus highly specific for nectin4 and unable to infect through the natural herpes receptors, nectin1 or herpesvirus entry mediator. In vitro, R-421 infected and killed human nectin4-positive malignant cells and spared normal cells, e.g., human fibroblasts. Importantly from a safety viewpoint, R-421 failed to infect malignant cells that do not harbor nectin4 gene amplification/overexpression, whose expression level was moderate-to-low. In essence, there was a net threshold value below which cells were spared from infection, irrespective of whether they were malignant or normal; the only cells that R-421 targeted were the malignant overexpressing ones. In vivo, R-421 decreased or abolished the growth of murine tumors made transgenic for human nectin4 and conferred sensitivity to immune checkpoint inhibitors in combination therapies. Its efficacy was augmented by the cyclophosphamide immunomodulator and decreased by depletion of CD8-positive lymphocytes, arguing that it was in part T cell-mediated. R-421 elicited in-situ vaccination that protected from distant challenge tumors. This study provides proof-of-principle specificity and efficacy data justifying nectin4-retargeted onco-immunotherapeutic herpesvirus as an innovative approach against a number of difficult-to-drug clinical indications.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Federico Parenti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Cristina Forghieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Catia Barboni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Tatiana Gianni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Zheng P, Xiao W, Zhang J, Zheng X, Jiang J. The role of AIM2 in human hepatocellular carcinoma and its clinical significance. Pathol Res Pract 2023; 245:154454. [PMID: 37060822 DOI: 10.1016/j.prp.2023.154454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND AIM2 (absent in melanoma 2) was first discovered as the gene which was not expressed in melanoma cells. It is established that the AIM2 inflammasome function as the double-stranded DNA (dsDNA) sensor, and it plays a crucial role in infectious disorders and cancer. Little is known about the AIM2 expression pattern and its clinical significance in human hepatocellular carcinoma (HCC), understating how AIM2 altered the HCC cells is of high clinical interest. METHODS Immunohistochemistry was performed to investigate the AIM2 expression in HCC tissues. Then we constructed the ectopic AIM2-expressed HCC cell line by lentiviral transduction. Biological functional assays were used to analyze the clinical significance of AIM2. RESULTS AIM2 expression was significantly decreased in human HCC tissues compared with adjacent normal tissues, and the overall survival of HCC patients with higher AIM2 expression was significantly better. Ectopic expression of AIM2 in HCC cells significantly inhibited migration and promoted apoptosis. Furthermore, our study revealed that the notch signaling pathway could be involved in the regulation of AIM2 in the cellular network in HCC cells. AIM2 delayed the tumor progression and correlated with immune cell infiltration. CONCLUSION In this study, we suggested AIM2 played an inhibitory role in regulating the growth and metastasis of HCC, which supported the notion that AIM2 could serve as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Panpan Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Wenlu Xiao
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou 213003, China; Institute of Cell Therapy, Soochow University, Changzhou 213003, China.
| |
Collapse
|
19
|
Dekanić A, Babarović E, Kučan Brlić P, Knežić M, Savić Vuković A, Mazor M, Jonjić N. The Prognostic Significance of Nectin-2 and Nectin-4 expression in glial tumors. Pathol Res Pract 2023; 244:154416. [PMID: 36989846 DOI: 10.1016/j.prp.2023.154416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Glial tumors are the most frequent neoplasms of the central nervous system in adults and despite recent advances in diagnosis and treatment of the disease, the prognosis of glioma is poor. Therefore, there is a great need to identify new prognostic factors and potential immunotherapeutic targets. Members of the Nectin family of proteins are gaining significant attention as possible diagnostic and immunotherapeutic targets in many solid tumors, but they have not been extensively investigated in glial tumors. The aim of the present study was to evaluate the expression of Nectin-2 and Nectin-4 in glial tumors of different grades, and to assess their prognostic value. The results showed heterogeneous expression of Nectin-2 and Nectin-4 in tumor cells and neuropil, with significantly higher Nectin-2 expression compared to Nectin-4, but without differences among tumor grades. In addition, the expression of Nectin-2 and Nectin-4 was associated with shorter survival times in patients with grade II/III gliomas. These results suggest that Nectin-2 and Nectin-4 expression may be used as an independent prognostic indicator for patients with II/III gliomas. This study contributes to the development of personalized care for patients with glioma and provides a basis for further research on nectin-based immunotherapy for brain tumors.
Collapse
Affiliation(s)
- Andrea Dekanić
- Clinical Department of Pathology and Cytology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Emina Babarović
- Clinical Department of Pathology and Cytology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Paola Kučan Brlić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Matija Knežić
- Clinical Department of Pathology and Cytology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Anita Savić Vuković
- Clinical Department of Pathology and Cytology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Marija Mazor
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Nives Jonjić
- Clinical Department of Pathology and Cytology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia.
| |
Collapse
|
20
|
Nectin-4: a Tumor Cell Target and Status of Inhibitor Development. Curr Oncol Rep 2023; 25:181-188. [PMID: 36696077 DOI: 10.1007/s11912-023-01360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW This study aims to gather the current state of the literature about anti-Nectin-4 innovative associations in solid tumors and to investigate underlying resistance mechanisms. RECENT FINDINGS Antibody-drug conjugate (ADC) targeting Nectin-4 efficacy gained attention and offers a promising association with other antineoplastic drugs especially in urothelial carcinoma. The heterogeneity of Nectin-4 expression across the molecular subtypes was highlighted especially in urothelial cancers. A unique study using preclinical models demonstrated an upregulation of P-gp expression, which may explain the anti-Nectin-4 resistance mechanisms. Further studies are urgently needed to understand anti-Nectin-4 sensitivity and resistance phenomenon. The growing therapeutic associations of enfortumab vedotin offer optimistic opportunities in management and treatment of wide range of solid tumors including rare aggressive malignancies.
Collapse
|
21
|
Stabenau KA, Samuels TL, Lam TK, Mathison AJ, Wells C, Altman KW, Battle MA, Johnston N. Pepsinogen/Proton Pump Co-Expression in Barrett's Esophageal Cells Induces Cancer-Associated Changes. Laryngoscope 2023; 133:59-69. [PMID: 35315085 DOI: 10.1002/lary.30109] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/02/2023]
Abstract
EDUCATIONAL OBJECTIVE At the conclusion of this presentation, participants should better understand the carcinogenic potential of pepsin and proton pump expression in Barrett's esophagus. OBJECTIVE Barrett's esophagus (BE) is a well-known risk factor for esophageal adenocarcinoma (EAC). Gastric H+ /K+ ATPase proton pump and pepsin expression has been demonstrated in some cases of BE; however, the contribution of local pepsin and proton pump expression to carcinogenesis is unknown. In this study, RNA sequencing was used to examine global transcriptomic changes in a BE cell line ectopically expressing pepsinogen and/or gastric H+ /K+ ATPase proton pumps. STUDY DESIGN In vitro translational. METHODS BAR-T, a human BE cell line devoid of expression of pepsinogen or proton pumps, was transduced by lentivirus-encoding pepsinogen (PGA5) and/or gastric proton pump subunits (ATP4A, ATP4B). Changes relative to the parental line were assessed by RNA sequencing. RESULTS Top canonical pathways associated with protein-coding genes differentially expressed in pepsinogen and/or proton pump expressing BAR-T cells included those involved in the tumor microenvironment and epithelial-mesenchymal transition. Top upstream regulators of coding transcripts included TGFB1 and ERBB2, which are associated with the pathogenesis and prognosis of BE and EAC. Top upstream regulators of noncoding transcripts included p300-CBP, I-BET-151, and CD93, which have previously described associations with EAC or carcinogenesis. The top associated disease of both coding and noncoding transcripts was cancer. CONCLUSIONS These data support the carcinogenic potential of pepsin and proton pump expression in BE and reveal molecular pathways affected by their expression. Further study is warranted to investigate the role of these pathways in carcinogenesis associated with BE. LEVEL OF EVIDENCE NA Laryngoscope, 133:59-69, 2023.
Collapse
Affiliation(s)
- Kaleigh A Stabenau
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Tina L Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Tina K Lam
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Clive Wells
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kenneth W Altman
- Department of Otolaryngology, Geisinger Health System, Danville, California, USA
| | - Michele A Battle
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
22
|
Liu R, Zhao K, Wang K, Zhang L, Ma W, Qiu Z, Wang W. Prognostic value of nectin-4 in human cancers: A meta-analysis. Front Oncol 2023; 13:1081655. [PMID: 36937394 PMCID: PMC10020226 DOI: 10.3389/fonc.2023.1081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Background Many reports have described that abnormal nectin-4 expression may be used as a prognostic marker in many tumors. However, these studies failed to reach a consensus. Here, we performed a meta-analysis to comprehensively evaluate the prognostic value of nectin-4 in cancers. Methods Relevant studies were identified through a comprehensive search of PubMed, EMBASE and Web of science until August 31, 2022. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were used to evaluate the relationship between nectin-4 expression and overall survival (OS) and disease-free survival/progression-free survival/relapse-free survival (DFS/PFS/RFS). Odds ratios (ORs) with 95% CIs were applied to assess the relationship between nectin-4 expression and clinicopathologic features. Subgroup analysis was performed to explore the sources of heterogeneity. Sensitivity analysis and funnel plot were used to test the reliability of the results. All data analyses were performed using STATA version 12.0 software. Results Fifteen articles involving 2245 patients were included in the meta-analysis. The pooled analysis showed that high nectin-4 expression was significantly associated with poor OS (HR: 1.75, 95% CI: 1.35-2.28). There was no relationship between high nectin-4 expression and DFS/PFS/RFS (HR: 178, 95% CI: 0.78-4.08).Subgroup analyses revealed that that high nectin-4 expression mainly presented adverse OS in esophageal cancer (EC) (HR: 1.78, 95% CI: 1.30-2.44) and gastric cancer (GC) (HR: 1.92, 95% CI: 1.43-2.58). We also found that high nectin-4 expression was associated with tumor diameter (big vs small) (OR: 1.96, 95% CI: 1.02-3.75), tumor stage (III-IV vs I-II) (OR: 2.04, 95% CI: 1.01-4.12) and invasion depth (T3+T4 vs T2+T1) (OR: 3.95, 95% CI: 2.06-7.57). Conclusions Nectin-4 can be used as an effective prognostic indicator for specific cancers.
Collapse
|
23
|
Kobecki J, Gajdzis P, Mazur G, Chabowski M. Nectins and Nectin-like Molecules in Colorectal Cancer: Role in Diagnostics, Prognostic Values, and Emerging Treatment Options: A Literature Review. Diagnostics (Basel) 2022; 12:3076. [PMID: 36553083 PMCID: PMC9777592 DOI: 10.3390/diagnostics12123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
In 2020, colorectal cancer was the third most common type of cancer worldwide with a clearly visible increase in the number of cases each year. With relatively high mortality rates and an uncertain prognosis, colorectal cancer is a serious health problem. There is an urgent need to investigate its specific mechanism of carcinogenesis and progression in order to develop new strategies of action against this cancer. Nectins and Nectin-like molecules are cell adhesion molecules that take part in a plethora of essential processes in healthy tissues as well as mediating substantial actions for tumor initiation and evolution. Our understanding of their role and a viable application of this in anti-cancer therapy has rapidly improved in recent years. This review summarizes the current data on the role nectins and Nectin-like molecules play in colorectal cancer.
Collapse
Affiliation(s)
- Jakub Kobecki
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| | - Paweł Gajdzis
- Department of Pathomorphology, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Department of Clinical Pathology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska Street, 50-556 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Teaching Hospital, 5 Weigla Street, 50-981 Wroclaw, Poland
- Division of Anaesthesiological and Surgical Nursing, Department of Nursing and Obstetrics, Faculty of Health Science, Wroclaw Medical University, 5 Bartla Street, 51-618 Wroclaw, Poland
| |
Collapse
|
24
|
Rigby M, Bennett G, Chen L, Mudd GE, Harrison H, Beswick PJ, Van Rietschoten K, Watcham SM, Scott HS, Brown AN, Park PU, Campbell C, Haines E, Lahdenranta J, Skynner MJ, Jeffrey P, Keen N, Lee K. BT8009; A Nectin-4 Targeting Bicycle Toxin Conjugate for Treatment of Solid Tumors. Mol Cancer Ther 2022; 21:1747-1756. [PMID: 36112771 PMCID: PMC9940631 DOI: 10.1158/1535-7163.mct-21-0875] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 01/12/2023]
Abstract
Multiple tumor types overexpress Nectin-4 and the antibody-drug conjugate (ADC), enfortumab vedotin (EV) shows striking efficacy in clinical trials for metastatic urothelial cancer, which expresses high levels of Nectin-4, validating Nectin-4 as a clinical target for toxin delivery in this indication. Despite excellent data in urothelial cancer, little efficacy data are reported for EV in other Nectin-4 expressing tumors and EV therapy can produce significant toxicities in many patients, frequently leading to discontinuation of treatment. Thus, additional approaches to this target with the potential to extend utility and reduce toxicity are warranted. We describe the preclinical development of BT8009, a "Bicycle Toxin Conjugate" (BTC) consisting of a Nectin-4-binding bicyclic peptide, a cleavable linker system and the cell penetrant toxin mono-methylauristatin E (MMAE). BT8009 shows significant antitumor activity in preclinical tumor models, across a variety of cancer indications and is well tolerated in preclinical safety studies. In several models, it shows superior or equivalent antitumor activity to an EV analog. As a small hydrophilic peptide-based drug BT8009 rapidly diffuses from the systemic circulation, through tissues to penetrate the tumor and target tumor cells. It is renally eliminated from the circulation, with a half-life of 1-2 hours in rat and non-human primate. These physical and PK characteristics differentiate BT8009 from ADCs and may provide benefit in terms of tumor penetration and reduced systemic exposure. BT8009 is currently in a Phase 1/2 multicenter clinical trial across the US, Canada, and Europe, enrolling patients with advanced solid tumors associated with Nectin-4 expression.
Collapse
Affiliation(s)
- Michael Rigby
- Bicycle TX Ltd., Cambridge, United Kingdom.,Corresponding Author: Michael Rigby, Bicycle TX Ltd., Blocks A & B, Portway Building, Granta Park, Cambridge, CB21 6GP, UK. Phone: 44-012-2326-1512; E-mail:
| | | | | | | | - Helen Harrison
- Amphista Therapeutics, The Cori Building, Cambridge, United Kingdom
| | | | | | - Sophie M. Watcham
- Kymab Ltd., The Bennet Building, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | - Nicholas Keen
- Bicycle Therapeutics, Inc., Lexington, Massachusetts
| | - Kevin Lee
- Bicycle TX Ltd., Cambridge, United Kingdom
| |
Collapse
|
25
|
Mudd GE, Scott H, Chen L, van Rietschoten K, Ivanova-Berndt G, Dzionek K, Brown A, Watcham S, White L, Park PU, Jeffrey P, Rigby M, Beswick P. Discovery of BT8009: A Nectin-4 Targeting Bicycle Toxin Conjugate for the Treatment of Cancer. J Med Chem 2022; 65:14337-14347. [PMID: 36204777 PMCID: PMC9661471 DOI: 10.1021/acs.jmedchem.2c00065] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Bicycle toxin conjugates
(BTCs) are a promising new class
of molecules
for targeted delivery of toxin payloads into tumors. Herein we describe
the discovery of BT8009, a Nectin-4 targeting BTC currently under
clinical evaluation. Nectin-4 is overexpressed in multiple tumor types
and is a clinically validated target for selective delivery of cytotoxic
payloads. A Nectin-4 targeting bicyclic peptide was identified by
phage display, which showed highly selective binding for Nectin-4
but suffered from low plasma stability and poor physicochemical properties.
Multiparameter chemical optimization involving introduction of non-natural
amino acids resulted in a lead Bicycle that demonstrated high affinity
for Nectin-4, good stability in biological matrices, and a much-improved
physicochemical profile. The optimized Bicycle was conjugated to the
cytotoxin Monomethyl auristatin E via a cleavable linker to give the
targeted drug conjugate BT8009, which demonstrates potent anticancer
activity in in vivo rodent models.
Collapse
Affiliation(s)
- Gemma E Mudd
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Heather Scott
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Liuhong Chen
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | | | | | - Katarzyna Dzionek
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Amy Brown
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Sophie Watcham
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Lewi White
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Peter U Park
- Bicycle Therapeutics, Inc., 4 Hartwell Place, Lexington 02421-3122, Massachusetts, United States
| | - Phil Jeffrey
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Mike Rigby
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Paul Beswick
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
26
|
Zschäbitz S, Mikuteit M, Stöhr C, Herrmann E, Polifka I, Agaimy A, Trojan L, Ströbel P, Becker F, Wülfing C, Barth P, Stöckle M, Staehler M, Stief C, Haferkamp A, Hohenfellner M, Duensing S, Macher-Göppinger S, Wullich B, Noldus J, Brenner W, Roos FC, Walter B, Otto W, Burger M, Schrader AJ, Hartmann A, Erlmeier F, Steffens S. Expression of nectin-4 in papillary renal cell carcinoma. Discov Oncol 2022; 13:90. [PMID: 36136143 PMCID: PMC9500133 DOI: 10.1007/s12672-022-00558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Nectin-4 contributes to tumor proliferation, lymphangiogenesis and angiogenesis in malignant tumors and is an emerging target in tumor therapy. In renal cell carcinoma (RCC) VEGF-directed tyrosine kinase inhibitors and checkpoint inhibitors are currently treatments of choice. Enfortumab vedotin-ejf (EV) is an antibody drug conjugate that targets Nectin-4. The aim of our study was to investigate the expression of Nectin-4 in a large cohort of papillary RCC specimens. PATIENTS AND METHODS Specimens were derived from the PANZAR consortium (Erlangen, Heidelberg, Herne, Homburg, Mainz, Mannheim, Marburg, Muenster, LMU Munich, TU Munich, and Regensburg). Clinical data and tissue samples from n = 190 and n = 107 patients with type 1 and 2 pRCC, respectively, were available. Expression of Nectin-4 was determined by immunohistochemistry (IHC). RESULTS In total, Nectin-4 staining was moderately or strongly positive in of 92 (48.4%) of type 1 and 39 (36.4%) type 2 of pRCC cases. No associations between Nectin-4 expression and age at diagnosis, gender, grading, and TNM stage was found. 5 year overall survival rate was not statistically different in patients with Nectin-4 negative versus Nectin-4 positive tumors for the overall cohort and the pRCC type 2 subgroup, but higher in patient with Nectin-4 positive pRCC type 1 tumors compared to Nectin-4 negative tumors (81.3% vs. 67.8%, p = 0.042). CONCLUSION Nectin-4 could not be confirmed as a prognostic marker in pRCC in general. Due to its high abundance on pRCC specimens Nectin-4 is an interesting target for therapeutical approaches e.g. with EV. Clinical trials are warranted to elucidate its role in the pRCC treatment landscape.
Collapse
Affiliation(s)
- Stefanie Zschäbitz
- Dept. of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marie Mikuteit
- Department of Rheumatology and Immunology, Hanover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Dean’s Office – Curriculum Development, Hanover Medical School, 30625 Hannover, Germany
| | - Christine Stöhr
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Edwin Herrmann
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
- Present Address: Institute of Urology, Prosper-Hospital GmbH, 45659 Recklinghausen, Germany
| | - Iris Polifka
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Lutz Trojan
- Department of Urology, University Hospital Göttingen, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Hospital Göttingen, 37075 Göttingen, Germany
| | - Frank Becker
- Department of Urology and Pediatric Urology, University of Saarland (UKS), 66421 Homburg, Germany
- Present Address: Urological Group and Clinic Derouet/Pönicke/Becker, Boxberg Centre, 66538 Neunkirchen, Germany
| | - Christian Wülfing
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
- Present Address: Department of Urology, Asklepios Clinics Altona, 22763 Hamburg, Germany
| | - Peter Barth
- Department of Urology, University of Marburg, 35037 Marburg, Germany
- Present Address: Institute of Pathology/Gerhard-Domagk Institute, University Hospital Muenster, 48149 Muenster, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, University of Saarland (UKS), 66421 Homburg, Germany
| | - Michael Staehler
- Department of Urology, University Hospital Munich, 81337 Munich, Germany
| | - Christian Stief
- Department of Urology, University Hospital Munich, 81337 Munich, Germany
| | - Axel Haferkamp
- Department of Urology, University Hospital Mainz, 55131 Mainz, Germany
- Present Address: Department of Urology and Pediatric Urology, University Hospital Mainz, 55131 Mainz, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Duensing
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, 44625 Herne, Germany
| | - Walburgis Brenner
- Department of Urology, University Hospital Mainz, 55131 Mainz, Germany
- Present Address: Department of Gynecology, University of Mainz, 55131 Mainz, Germany
| | - Frederik C. Roos
- Department of Urology, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Walter
- Department of Urology and Pediatric Urology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Present Address: Department of Urology, Kreiskliniken Altötting-Burghausen, 84489 Burghausen, Germany
| | - Wolfgang Otto
- Department of Urology, Caritas St. Josef and University, 93053 Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, Caritas St. Josef and University, 93053 Regensburg, Germany
| | - Andres Jan Schrader
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
- Present Address: Department of Rheumatology and Immunology, Medical School Hannover, 30625 Hannover, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Franziska Erlmeier
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Sandra Steffens
- Department of Rheumatology and Immunology, Hanover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Dean’s Office – Curriculum Development, Hanover Medical School, 30625 Hannover, Germany
- Present Address: Department of Rheumatology and Immunology, Hanover Medical School, 30625 Hannover, Germany
| |
Collapse
|
27
|
Thongsom S, Aksorn N, Petsri K, Roytrakul S, Sriratanasak N, Wattanathana W, Chanvorachote P. Analysis of Protein-Protein Interactions Identifies NECTIN2 as a Target of N,N-Bis (5-Ethyl-2-hydroxybenzyl) Methylamine for Inhibition of Lung Cancer Metastasis. Cancer Genomics Proteomics 2022; 19:624-635. [PMID: 35985690 PMCID: PMC9353721 DOI: 10.21873/cgp.20347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Metastasis negatively affects the survival of lung cancer patients, however, relatively few compounds have potential in metastasis suppression. This study investigated the molecular targets of N,N-bis (5-ethyl-2-hydroxybenzyl) methylamine (EMD) for metastatic inhibition. MATERIALS AND METHODS Proteins were analyzed by proteomic and bioinformatic analyses. Protein-protein interaction (PPI) networks were created with the Search Tool for the Retrieval of Interacting Genes. The Kyoto Encyclopedia of Genes and Genomes database and hub genes were used to determine dominant pathways. Immunofluorescence and western blot analyses validated the proteomic results and investigated signaling pathways in NCI-H23 lung cancer cells. RESULTS A total of 1,751 proteins were common to the control, EMD and N,N-bis(5-methoxy-2-hydroxybenzyl) methylamine (MeMD) groups; 1,980 different proteins were categorized using metastatic capacity category and analyzed for unique proteins affected by EMD. Fifteen proteins were associated with cell adhesion and six with cell migration. Nectin cell adhesion molecule 2 (NECTIN2) was expressed in the control and MeMD-treated groups but not the EMD-treated group, suggesting NECTIN2 as an EMD target. PPI network showed association of NECTIN2 with proteins regulating cancer metastasis. Kyoto Encyclopedia of Genes and Genomes pathways revealed that NECTIN2 is an upstream target of cytoskeletal regulation via SRC signaling. Western blot and immunofluorescence analyses confirmed that EMD suppressed NECTIN2, and its downstream targets, including p-SRC (Y146 and Y527) and the epithelial-to-mesenchymal transition markers tight junction protein 1, vimentin, β-catenin, snail family transcriptional repressor 1 (SNAI1), and SNAI2, while increasing E-cadherin. CONCLUSION EMD suppressed NECTIN2-induced activation of EMT signaling. These data support the development of EMD to prevent metastasis of lung cancer.
Collapse
Affiliation(s)
- Sunisa Thongsom
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nithikoon Aksorn
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Korrakod Petsri
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nicharat Sriratanasak
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Worawat Wattanathana
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand;
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
28
|
Kuzevanova A, Apanovich N, Mansorunov D, Korotaeva A, Karpukhin A. The Features of Checkpoint Receptor—Ligand Interaction in Cancer and the Therapeutic Effectiveness of Their Inhibition. Biomedicines 2022; 10:biomedicines10092081. [PMID: 36140182 PMCID: PMC9495440 DOI: 10.3390/biomedicines10092081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
To date, certain problems have been identified in cancer immunotherapy using the inhibition of immune checkpoints (ICs). Despite the excellent effect of cancer therapy in some cases when blocking the PD-L1 (programmed death-ligand 1) ligand and the immune cell receptors PD-1 (programmed cell death protein 1) and CTLA4 (cytotoxic T-lymphocyte-associated protein 4) with antibodies, the proportion of patients responding to such therapy is still far from desirable. This situation has stimulated the exploration of additional receptors and ligands as targets for immunotherapy. In our article, based on the analysis of the available data, the TIM-3 (T-cell immunoglobulin and mucin domain-3), LAG-3 (lymphocyte-activation gene 3), TIGIT (T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains), VISTA (V-domain Ig suppressor of T-cell activation), and BTLA (B- and T-lymphocyte attenuator) receptors and their ligands are comprehensively considered. Data on the relationship between receptor expression and the clinical characteristics of tumors are presented and are analyzed together with the results of preclinical and clinical studies on the therapeutic efficacy of their blocking. Such a comprehensive analysis makes it possible to assess the prospects of receptors of this series as targets for anticancer therapy. The expression of the LAG-3 receptor shows the most unambiguous relationship with the clinical characteristics of cancer. Its inhibition is the most effective of the analyzed series in terms of the antitumor response. The expression of TIGIT and BTLA correlates well with clinical characteristics and demonstrates antitumor efficacy in preclinical and clinical studies, which indicates their high promise as targets for anticancer therapy. At the same time, the relationship of VISTA and TIM-3 expression with the clinical characteristics of the tumor is contradictory, and the results on the antitumor effectiveness of their inhibition are inconsistent.
Collapse
|
29
|
Liu Y, Li G, Zhang Y, Li L, Zhang Y, Huang X, Wei X, Zhou P, Liu M, Zhao G, Feng J, Wang G. Nectin-4 promotes osteosarcoma progression and metastasis through activating PI3K/AKT/NF-κB signaling by down-regulation of miR-520c-3p. Cancer Cell Int 2022; 22:252. [PMID: 35953862 PMCID: PMC9367085 DOI: 10.1186/s12935-022-02669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/28/2022] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Nectin-4 is specifically up-regulated in various tumors, exert crucial effects on tumor occurrence and development. Nevertheless, the role and molecular mechanism of Nectin-4 in osteosarcoma (OS) are rarely studied. METHODS The expression of Nectin-4 and its relationship with clinical characteristics of OS were investigated using OS clinical tissues, tissue microarrays, TCGA, and GEO databases. Moreover, the effect of Nectin-4 on cell growth and mobility was detected by CCK-8, colony formation, transwell, and wound-healing assays. The RT-qPCR, Western blotting, and luciferase reporter assays were performed to explore molecular mechanisms through which Nectin-4 mediates the expression of miR-520c-3p, thus modulating PI3K/AKT/NF-κB signaling. In vivo mice models constructed by subcutaneous transplantation and tail vein injection were used to validate the functional roles of Nectin-4 and miR-520c-3p. RESULTS Nectin-4 displayed a higher expression in OS tumor tissues compared with normal tissues, and its overexpression was positively associated with tumor stage and metastasis in OS patients. Functionally, Nectin-4 enhanced OS cells growth and mobility in vitro. Mechanistically, Nectin-4 down-regulated the levels of miR-520c-3p that directly targeted AKT-1 and P65, thus leading to the stimulation of PI3K/AKT/NF-κB signaling. In addition, the expression of miR-520c-3p was apparently lower in OS tissues than in normal tissues, and its low expression was significantly related to tumor metastasis. Furthermore, ectopic expression of miR-520c-3p markedly blocked the effect of Nectin-4 on OS cell growth and mobility. Knockdown of Nectin-4 could suppress the tumorigenesis and metastasis in vivo, which could be remarkably reversed by miR-520c-3p silencing. CONCLUSIONS Nectin-4 as an oncogene can promote OS progression and metastasis by activating PI3K/AKT/NF-κB signaling via down-regulation of miR-520c-3p, which could represent a novel avenue for identifying a potential therapeutic target for improving patient outcomes.
Collapse
Affiliation(s)
- Yongheng Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Guanghao Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yan Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lili Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanting Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoyu Huang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xianfu Wei
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peng Zhou
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Ming Liu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Gang Zhao
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jinyan Feng
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, People's Republic of China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
30
|
Upadhyaya P, Kristensson J, Lahdenranta J, Repash E, Ma J, Kublin J, Mudd GE, Luus L, Jeffrey P, Hurov K, McDonnell K, Keen N. Discovery and Optimization of a Synthetic Class of Nectin-4-Targeted CD137 Agonists for Immuno-oncology. J Med Chem 2022; 65:9858-9872. [PMID: 35819182 PMCID: PMC9340768 DOI: 10.1021/acs.jmedchem.2c00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
CD137 (4-1BB) is a co-stimulatory receptor on immune
cells and
Nectin-4 is a cell adhesion molecule that is overexpressed in multiple
tumor types. Using a series of poly(ethylene glycol) (PEG)-based linkers,
synthetic bicyclic peptides targeting CD137 were conjugated to Bicycles targeting Nectin-4. The resulting bispecific molecules
were potent CD137 agonists that require the presence of both Nectin-4-expressing
tumor cells and CD137-expressing immune cells for activity. A multipronged
approach was taken to optimize these Bicycle tumor-targeted
immune cell agonists by exploring the impact of chemical configuration,
binding affinity, and pharmacokinetics on CD137 agonism and antitumor
activity. This effort resulted in the discovery of BT7480, which elicited
robust CD137 agonism and maximum antitumor activity in syngeneic mouse
models. A tumor-targeted approach to CD137 agonism using low-molecular-weight,
short-acting molecules with high tumor penetration is a yet unexplored
path in the clinic, where emerging data suggest that persistent target
engagement, characteristic of biologics, may lead to suboptimal immune
response.
Collapse
Affiliation(s)
- Punit Upadhyaya
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Julia Kristensson
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Johanna Lahdenranta
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Elizabeth Repash
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Jun Ma
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Jessica Kublin
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Gemma E Mudd
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Lia Luus
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Phil Jeffrey
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Kristen Hurov
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Kevin McDonnell
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Nicholas Keen
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| |
Collapse
|
31
|
Shao F, Pan Z, Long Y, Zhu Z, Wang K, Ji H, Zhu K, Song W, Song Y, Song X, Gai Y, Liu Q, Qin C, Jiang D, Zhu J, Lan X. Nectin-4-targeted immunoSPECT/CT imaging and photothermal therapy of triple-negative breast cancer. J Nanobiotechnology 2022; 20:243. [PMID: 35614462 PMCID: PMC9131648 DOI: 10.1186/s12951-022-01444-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is more prone to distant metastasis and visceral recurrence in comparison to other breast cancer subtypes, and is related to dismal prognosis. Nevertheless, TNBC has an undesirable response to targeted therapies. Therefore, to tackle the huge challenges in the diagnosis and treatment of TNBC, Nectin-4 was selected as a theranostic target because it was recently found to be highly expressed in TNBC. We developed anti-Nectin-4 monoclonal antibody (mAbNectin-4)-based theranostic pair, 99mTc-HYNIC-mAbNectin-4 and mAbNectin-4-ICG. 99mTc-HYNIC-mAbNectin-4 was applied to conduct immuno-single photon emission computed tomography (SPECT) for TNBC diagnosis and classification, and mAbNectin-4-ICG to mediate photothermal therapy (PTT) for relieving TNBC tumor growth. METHODS Nectin-4 expression levels of breast cancer cells (MDA-MB-468: TNBC cells; and MCF-7, non-TNBC cells) were proved by western blot, flow cytometry, and immunofluorescence imagning. Cell uptake assays, SPECT imaging, and biodistribution were performed to evaluate Nectin-4 targeting of 99mTc-HYNIC-mAbNectin-4. A photothermal agent (PTA) mAbNectin-4-ICG was generated and characterized. In vitro photothermal therapy (PTT) mediated by mAbNectin-4-ICG was conducted under an 808 nm laser. Fluorescence (FL) imaging was performed for mAbNectin-4-ICG mapping in vivo. In vivo PTT treatment effects on TNBC tumors and corresponding systematic toxicity were evaluated. RESULTS Nectin-4 is overexpressed in MDA-MB-468 TNBC cells, which could specifically uptake 99mTc-HYNIC-mAbNectin-4 with high targeting in vitro. The corresponding immunoSPECT imaging demonstrated exceptional performance in TNBC diagnosis and molecular classification. mAbNectin-4-ICG exhibited favourable biocompatibility, photothermal effects, and Nectin-4 targeting. FL imaging mapped biodistribution of mAbNectin-4-ICG with excellent tumor-targeting and retention in vivo. Moreover, mAbNectin-4-ICG-mediated PTT provided advanced TNBC tumor destruction efficiency with low systematic toxicity. CONCLUSION mAbNectin-4-based radioimmunoimaging provides visualization tools for the stratification and diagnosis for TNBC, and the corresponding mAbNectin-4-mediated PTT shows a powerful anti-tumor effect. Our findings demonstrate that this Nectin-4 targeting strategy offers a simple theranostic platform for TNBC.
Collapse
Affiliation(s)
- Fuqiang Shao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Department of Nuclear Medicine, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong, 643000, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Zhidi Pan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Kun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Ke Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Jecho Laboratories, Inc., Frederick, MD, 21704, USA.
- Jecho Biopharmaceuticals Co., Ltd., Tianjin, 300467, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China.
| |
Collapse
|
32
|
Hashimoto H, Tanaka Y, Murata M, Ito T. Nectin-4: a Novel Therapeutic Target for Skin Cancers. Curr Treat Options Oncol 2022; 23:578-593. [PMID: 35312963 DOI: 10.1007/s11864-022-00940-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Nectin-4 is a tumor-associated antigen that is highly expressed on various cancer cells, and it has been further proposed to have roles in tumor development and propagation ranging from cellular proliferation to motility and invasion. Nectin-4 blockade reduces tumor proliferation and induces apoptosis in several malignancies. Nectin-4 has been used as a potential target in antibody-drug conjugate (ADC) development. Enfortumab vedotin, an ADC against Nectin-4, has demonstrated efficacy against solid tumor malignancies. Enfortumab vedotin has received US Food and Drug Administration approval for treating urothelial cancer. Furthermore, the efficacy of ADCs against Nectin-4 against solid tumors other than urothelial cancer has been demonstrated in preclinical studies, and clinical trials examining the effects of enfortumab vedotin are ongoing. Recently, Nectin-4 was reported to be highly expressed in several skin cancers, including malignant melanoma, cutaneous squamous cell carcinoma, and extramammary Paget's disease, and involved in tumor progression and survival in retrospective studies. Nectin-4-targeted therapies and ADCs against Nectin-4 could therefore be novel therapeutic options for skin cancers. This review highlights current knowledge on Nectin-4 in malignant tumors, the efficacy of enfortumab vedotin in clinical trials, and the prospects of Nectin-4-targeted agents against skin cancers.
Collapse
Affiliation(s)
- Hiroki Hashimoto
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Maho Murata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
33
|
Bouleftour W, Guillot A, Magné N. The Anti-Nectin 4: A Promising Tumor Cells Target. A Systematic Review. Mol Cancer Ther 2022; 21:493-501. [PMID: 35131876 DOI: 10.1158/1535-7163.mct-21-0846] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/17/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
The nectin cell adhesion protein 4 (Nectin-4) is overexpressed in multiple human malignancies. Such aberrant expression is correlated with cancer progression and poor prognostic. Nectin-4 has emerged as a potential biomarker and promising targeted therapy. This review aimed to gather the current state of the literature about Nectin-4 relevance in preclinical tumor models and to summarize its clinical relevance regarding cancer. A systematic assessment of literature articles was performed by searching in PUBMED (MEDLINE) from the database inception to May 2021, following PRISMA guidelines. Preclinical models unanimously demonstrated membrane and cytoplasmic location of the Nectin-4. Furthermore, Nectin-4 was overexpressed whatever the location of the solid tumors. Interestingly, a heterogeneity of Nectin-4 expression has been highlighted in bladder urothelial carcinoma. High serum Nectin-4 level was correlated with treatment efficiency and disease progression. Finally, generated Anti-drug-Conjugated targeting Nectin-4 induced cell death in multiple tumor cell lines. Nectin-4 emerge as a promising target for anti-cancer drugs development because of its central role in tumorigenesis, and lymphangiogenesis. Enfortumab vedotin targeting Nectin-4 demonstrated encouraging results and should be extended to other types of solid tumors.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Medical oncology department, Institut de cancérologie de la loire
| | | | | |
Collapse
|
34
|
Altered secretome by diesel exhaust particles and lipopolysaccharide in primary human nasal epithelium. J Allergy Clin Immunol 2022; 149:2126-2138. [DOI: 10.1016/j.jaci.2021.12.793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022]
|
35
|
Hurov K, Lahdenranta J, Upadhyaya P, Haines E, Cohen H, Repash E, Kanakia D, Ma J, Kristensson J, You F, Campbell C, Witty D, Kelly M, Blakemore S, Jeffrey P, McDonnell K, Brandish P, Keen N. BT7480, a novel fully synthetic Bicycle tumor-targeted immune cell agonist™ ( Bicycle TICA™) induces tumor localized CD137 agonism. J Immunother Cancer 2021; 9:jitc-2021-002883. [PMID: 34725211 PMCID: PMC8562524 DOI: 10.1136/jitc-2021-002883] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Background CD137 (4-1BB) is an immune costimulatory receptor with high therapeutic potential in cancer. We are creating tumor target-dependent CD137 agonists using a novel chemical approach based on fully synthetic constrained bicyclic peptide (Bicycle®) technology. Nectin-4 is overexpressed in multiple human cancers that may benefit from CD137 agonism. To this end, we have developed BT7480, a novel, first-in-class, Nectin-4/CD137 Bicycle tumor-targeted immune cell agonist™ (Bicycle TICA™). Methods Nectin-4 and CD137 co-expression analyses in primary human cancer samples was performed. Chemical conjugation of two CD137 Bicycles to a Nectin-4 Bicycle led to BT7480, which was then evaluated using a suite of in vitro and in vivo assays to characterize its pharmacology and mechanism of action. Results Transcriptional profiling revealed that Nectin-4 and CD137 were co-expressed in a variety of human cancers with high unmet need and spatial proteomic imaging found CD137-expressing immune cells were deeply penetrant within the tumor near Nectin-4-expressing cancer cells. BT7480 binds potently, specifically, and simultaneously to Nectin-4 and CD137. In co-cultures of human peripheral blood mononuclear cells and tumor cells, this co-ligation causes robust Nectin-4-dependent CD137 agonism that is more potent than an anti-CD137 antibody agonist. Treatment of immunocompetent mice bearing Nectin-4-expressing tumors with BT7480 elicited a profound reprogramming of the tumor immune microenvironment including an early and rapid myeloid cell activation that precedes T cell infiltration and upregulation of cytotoxicity-related genes. BT7480 induces complete tumor regressions and resistance to tumor re-challenge. Importantly, antitumor activity is not dependent on continuous high drug levels in the plasma since a once weekly dosing cycle provides maximum antitumor activity despite minimal drug remaining in the plasma after day 2. BT7480 appears well tolerated in both rats and non-human primates at doses far greater than those expected to be clinically relevant, including absence of the hepatic toxicity observed with non-targeted CD137 agonists. Conclusion BT7480 is a highly potent Nectin-4-dependent CD137 agonist that produces complete regressions and antitumor immunity with only intermittent drug exposure in syngeneic mouse tumor models and is well tolerated in preclinical safety species. This work supports the clinical investigation of BT7480 for the treatment of cancer in humans.
Collapse
Affiliation(s)
- Kristen Hurov
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | | | - Punit Upadhyaya
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Eric Haines
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Heather Cohen
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Elizabeth Repash
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Drasti Kanakia
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Jun Ma
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Julia Kristensson
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Fanglei You
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Carly Campbell
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - David Witty
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Mike Kelly
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Stephen Blakemore
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Phil Jeffrey
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Kevin McDonnell
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Philip Brandish
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Nicholas Keen
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| |
Collapse
|
36
|
Liu Y, Han X, Li L, Zhang Y, Huang X, Li G, Xu C, Yin M, Zhou P, Shi F, Liu X, Zhang Y, Wang G. Role of Nectin‑4 protein in cancer (Review). Int J Oncol 2021; 59:93. [PMID: 34664682 DOI: 10.3892/ijo.2021.5273] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/30/2021] [Indexed: 11/06/2022] Open
Abstract
The Nectin cell adhesion molecule (Nectin) family members are Ca2+‑independent immunoglobulin‑like cellular adhesion molecules (including Nectins 1‑4), involved in cell adhesion via homophilic/heterophilic interplay. In addition, the Nectin family plays a significant role in enhancing cellular viability and movement ability. In contrast to enrichment of Nectins 1‑3 in normal tissues, Nectin‑4 is particularly overexpressed in a number of tumor types, including breast, lung, urothelial, colorectal, pancreatic and ovarian cancer. Moreover, the upregulation of Nectin‑4 is an independent biomarker for overall survival in numerous cancer types. A large number of studies have revealed that high expression of Nectin‑4 is closely related to tumor occurrence and development in various cancer types, but the manner in which Nectin‑4 protein contributes to the onset and development of these malignancies is yet unknown. The present review summarizes the molecular mechanisms and functions of Nectin‑4 protein in the biological processes and current advances with regard to its expression and regulation in various cancer types.
Collapse
Affiliation(s)
- Yongheng Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiuxin Han
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Lili Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yanting Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiaoyu Huang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Guanghao Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Chuncai Xu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Mengfan Yin
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Peng Zhou
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Fanqi Shi
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yan Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
37
|
Tsamouri MM, Steele TM, Mudryj M, Kent MS, Ghosh PM. Comparative Cancer Cell Signaling in Muscle-Invasive Urothelial Carcinoma of the Bladder in Dogs and Humans. Biomedicines 2021; 9:1472. [PMID: 34680588 PMCID: PMC8533305 DOI: 10.3390/biomedicines9101472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Muscle-invasive urothelial carcinoma (MIUC) is the most common type of bladder malignancy in humans, but also in dogs that represent a naturally occurring model for this disease. Dogs are immunocompetent animals that share risk factors, pathophysiological features, clinical signs and response to chemotherapeutics with human cancer patients. This review summarizes the fundamental pathways for canine MIUC initiation, progression, and metastasis, emerging therapeutic targets and mechanisms of drug resistance, and proposes new opportunities for potential prognostic and diagnostic biomarkers and therapeutics. Identifying similarities and differences between cancer signaling in dogs and humans is of utmost importance for the efficient translation of in vitro research to successful clinical trials for both species.
Collapse
Affiliation(s)
- Maria Malvina Tsamouri
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Graduate Group in Integrative Pathobiology, University of California Davis, Davis, CA 95616, USA
| | - Thomas M. Steele
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA; (T.M.S.); (M.M.)
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
38
|
Shin C, Kim SS, Jo YH. Extending traditional antibody therapies: Novel discoveries in immunotherapy and clinical applications. Mol Ther Oncolytics 2021; 22:166-179. [PMID: 34514097 PMCID: PMC8416972 DOI: 10.1016/j.omto.2021.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Immunotherapy has been well regarded as one of the safer and antigen-specific anti-cancer treatments compared to first-generation chemotherapy. Since Coley's discovery, researchers focused on engineering novel antibody-based therapies. Including artificial and modified antibodies, such as antibody fragments, antibody-drug conjugates, and synthetic mimetics, the variety of immunotherapy has been rapidly expanding in the last few decades. Genetic and chemical modifications to monoclonal antibody have been brought into academia, in vivo trials, and clinical applications. Here, we have looked around antibodies overall. First, we elucidate the antibody structure and its cytotoxicity mechanisms. Second, types of therapeutic antibodies are presented. Additionally, there is a summarized list of US Food and Drug Administration (FDA)-approved therapeutic antibodies and recent clinical trials. This review provides a comprehensive overview of both the general function of therapeutic antibodies and a few main variations in development, including recent advent with the proposed mechanism of actions, and we introduce types of therapeutic antibodies, clinical trials, and approved commercial immunotherapeutic drugs.
Collapse
Affiliation(s)
- Charles Shin
- Chadwick International, Incheon 22002, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Hwa Jo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
39
|
Niu H, Song F, Wei H, Li Y, Huang H, Wu C. Inhibition of BRD4 Suppresses the Growth of Esophageal Squamous Cell Carcinoma. Cancer Invest 2021; 39:826-841. [PMID: 34519605 DOI: 10.1080/07357907.2021.1975736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bromodomain-containing protein 4 (BRD4) binds acetylated lysine residues on histones to facilitate the epigenetic regulation of many genes, and it plays a key role in many cancer types. Despite many prior reports that have explored the importance of BRD4 in oncogenesis and the regulation of epigenetic memory, its role in esophageal squamous cell carcinoma (ESCC) progression is poorly understood. Here, we investigated BRD4 expression in human ESCC tissues to understand how it regulates the biology of these tumor cells. METHODS BRD4 expression in ESCC tissues was measured via immunohistochemical staining. BRD4 inhibition in the Eca-109 and KYSE-150 ESCC cell lines was conducted to explore its functional role in these tumor cells. RESULTS BRD4 overexpression was observed in ESCC tissues and cells, and inhibiting the function of the gene impaired the proliferative, invasive, and migratory activity of these cells while promoting their apoptosis. Cyclin D1 and c-Myc expression were also suppressed by BRD4 inhibition, and the expression of key epithelial-mesenchymal transition markers including E-cadherin and Vimentin was markedly altered by such inhibition. CONCLUSIONS BRD4 plays key functional roles in the biology of ESCC, proposing that it could be a viable therapeutic target for treating this cancer type.
Collapse
Affiliation(s)
- Haiyu Niu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Oncology, Lanzhou University Second Hospital, Lanzhou, China.,Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Feixue Song
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hanwen Wei
- Department of Cardiology, The First People's Hospital of Lanzhou, Lanzhou, China
| | - Yuan Li
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Hao Huang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Institute of Cell Therapy, Soochow University, Changzhou, China.,Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
40
|
Duraivelan K, Samanta D. Emerging roles of the nectin family of cell adhesion molecules in tumour-associated pathways. Biochim Biophys Acta Rev Cancer 2021; 1876:188589. [PMID: 34237351 DOI: 10.1016/j.bbcan.2021.188589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Tumour cells achieve maximum survival by modifying cellular machineries associated with processes such as cell division, migration, survival, and apoptosis, resulting in genetically complex and heterogeneous populations. While nectin and nectin-like cell adhesion molecules control development and maintenance of multicellular organisation in higher vertebrates by mediating cell-cell adhesion and related signalling processes, recent studies indicate that they also critically regulate growth and development of different types of cancers. In this review, we detail current knowledge about the role of nectin family members in various tumours. Furthermore, we also analyse the seemingly opposing roles of some members of nectin family in tumour-associated pathways, as they function as both tumour suppressors and oncogenes. Understanding this functional duality of nectin family in tumours will further our knowledge of molecular mechanisms regulating tumour development and progression, and contribute to the advancement of tumour diagnosis and therapy.
Collapse
Affiliation(s)
- Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
41
|
Kong L, Yu Y, Guan H, Jiang L, Sun F, Li X, Huang W, Li B. TGIF1 plays a carcinogenic role in esophageal squamous cell carcinoma through the Wnt/β‑catenin and Akt/mTOR signaling pathways. Int J Mol Med 2021; 47:77. [PMID: 33693954 PMCID: PMC7951946 DOI: 10.3892/ijmm.2021.4910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
TGFB induced factor homeobox 1 (TGIF1), a transcriptional corepressor, has been reported to be involved in tumorigenesis and cancer development. However, the role of TGIF1 in the growth and metastasis of esophageal cancer is poorly studied. In the present study, it was found that TGIF1 was highly expressed in esophageal cancer tissues and cell lines. The silencing of TGIF1 by siRNA interference significantly inhibited the proliferation, migration, invasion and epithelial‑mesenchymal transition (EMT) process of KYSE‑150 esophageal cancer cells, and promoted cell apoptosis. Correspondingly, the upregulation of TGIF1 significantly promoted the proliferation and metastatic potential of Eca‑109 cells, and reduced apoptosis. Furthermore, the data indicated that the Wnt/β‑catenin and Akt/mammalian target of rapamycin (mTOR) signaling pathways were inhibited by TGIF1 knockdown, and were promoted by the overexpression of TGIF1. It was also confirmed that TGIF1 knockdown reduced tumor growth, inhibited Wnt/β‑catenin and Akt/mTOR pathway activation, and reversed the TGF‑β1‑mediated EMT process in a tumor xenograft model. Taken together, the data of the present study suggest that TGIF1 plays an oncogenic role in the progression of esophageal cancer. It may carry out this role by regulating the Wnt/β‑catenin and Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Lingling Kong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300070, P.R. China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Yang Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
- School of Graduate Studies, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, Shandong 250062, P.R. China
| | - Hui Guan
- Department of Radiation Oncology, The Fourth People's Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Liyang Jiang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Fenghao Sun
- Department of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaolin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Baosheng Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300070, P.R. China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
42
|
Heath EI, Rosenberg JE. The biology and rationale of targeting nectin-4 in urothelial carcinoma. Nat Rev Urol 2021; 18:93-103. [PMID: 33239713 DOI: 10.1038/s41585-020-00394-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 01/29/2023]
Abstract
Bladder cancer is the tenth most common cancer type worldwide. Urothelial carcinoma is the most common type of bladder cancer and accounts for 90% of bladder cancer cases in the USA and Europe. Novel approaches are needed to improve patient outcomes. Nectin-4 is a tumour-associated antigen found on the surface of most urothelial carcinoma cells. In the antibody-drug conjugate enfortumab vedotin, human anti-nectin-4 antibody is linked to the cytotoxic microtubule-disrupting agent monomethyl auristatin E. In ongoing phase I, II and III clinical trials, enfortumab vedotin has been evaluated as a monotherapy and in combination with a checkpoint inhibitor and/or chemotherapy in locally advanced and metastatic urothelial carcinoma. Encouraging data from the phase II study resulted in the FDA granting accelerated approval for enfortumab vedotin in December 2019 for patients with locally advanced or metastatic urothelial carcinoma who were previously treated with platinum and a checkpoint inhibitor therapy. Moreover, data from a phase I study led to the FDA granting breakthrough therapy designation to enfortumab vedotin combined with pembrolizumab as a first-line treatment in February 2020 for cisplatin-ineligible patients with locally advanced or metastatic urothelial carcinoma. Results of ongoing and future combination studies of enfortumab vedotin with immunotherapy and other novel agents are eagerly awaited.
Collapse
Affiliation(s)
- Elisabeth I Heath
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
43
|
Murata M, Ito T, Tanaka Y, Kaku-Ito Y, Furue M. NECTIN4 Expression in Extramammary Paget's Disease: Implication of a New Therapeutic Target. Int J Mol Sci 2020; 21:E5891. [PMID: 32824340 PMCID: PMC7460664 DOI: 10.3390/ijms21165891] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Extramammary Paget's disease (EMPD) is a rare skin cancer arising in the anogenital area. Most EMPD tumors remain dormant as in situ lesions, but the outcomes of patients with metastatic EMPD are poor because of the lack of effective systemic therapies. Nectin cell adhesion molecule 4 (NECTIN4) has attracted attention as a potential therapeutic target for some cancers. Urothelial cancer is one such cancer, and clinical trials of enfortumab vedotin, a drug-conjugated anti-NECTIN4 antibody, are ongoing. However, little is known regarding the role of NECTIN4 in EMPD. In this study, we conducted immunohistochemical analysis of NECTIN4 expression in 110 clinical EMPD samples and normal skin tissue. In normal skin, positive signals were observed in epidermal keratinocytes (particularly in the lower part of the epidermis), eccrine and apocrine sweat glands, inner and outer root sheaths, and matrix of the hair follicles. The most EMPD lesions exhibited strong NECTIN4 expression, and high NECTIN4 expression was significantly associated with increased tumor thickness, advanced TNM stage, and worse disease-specific survival. These results support the potential use of NECTIN4-targeted therapy for EMPD. Our report contributes to the better understanding of the pathobiology of NECTIN4 in the skin and the skin-related adverse effects of NECTIN4-targeted therapy.
Collapse
Affiliation(s)
- Maho Murata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (M.M.); (Y.T.); (Y.K.-I.); (M.F.)
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (M.M.); (Y.T.); (Y.K.-I.); (M.F.)
| | - Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (M.M.); (Y.T.); (Y.K.-I.); (M.F.)
| | - Yumiko Kaku-Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (M.M.); (Y.T.); (Y.K.-I.); (M.F.)
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (M.M.); (Y.T.); (Y.K.-I.); (M.F.)
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
- Division of Skin Surface Sensing, Department of Dermatology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
44
|
Lin X, Hu H, Pan Y, Pan Y, Gao S. The Prognostic Role of Expression of Nectin-4 in Esophageal Cancer. Med Sci Monit 2019; 25:10089-10094. [PMID: 31883369 PMCID: PMC6946050 DOI: 10.12659/msm.918288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nectin-4 is overexpressed in several human malignant tumors. This study aimed to investigate the expression of Nectin-4 in esophageal cancer tissues compared with adjacent normal esophageal tissue and its association with clinicopathological parameters and prognosis. MATERIAL AND METHODS Nectin-4 expression in esophageal cancer tissues was compared with adjacent normal esophageal tissue from 94 patients using immunohistochemistry, Western blot, and quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The chi-squared (χ²) test and Fisher's exact test compared categorical variables. The log-rank test and Kaplan-Meier survival analysis assessed the relationship between Nectin-4 expression and overall survival (OS). Univariate and multivariate Cox proportional risk models compared Nectin-4 expression, patient prognosis, and clinicopathological parameters. RESULTS Nectin-4 expression was significantly increased in esophageal cancer tissue compared with normal tissue (P<0.001), tumor size ≥4.5 cm, and tumor invasion in T3/T4 compared with T1/T2 stage. Kaplan-Meier survival analysis showed that the OS of patients with increased Nectin-4 expression was significantly reduced compared with patients with low levels of Nectin-4 expression. Patient prognosis in men was less than women, tumor diameter ≥4.5 cm, lymph node involvement, and depth of invasion were associated with poor prognosis. Independent prognostic factors were Nectin-4 expression, lymph node involvement, and depth of invasion. CONCLUSIONS In patients with esophageal cancer, the expression levels of Nectin-4, lymph node involvement, and depth of tumor invasion were independent prognostic factors. Further studies should be performed to evaluate the diagnostic and prognostic roles of Nectin-4 and its potential role as a therapeutic target.
Collapse
Affiliation(s)
- Xiaolong Lin
- Department of Pathology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, Guangdong, P.R. China
| | - Huijun Hu
- Department of Pathology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, Guangdong, P.R. China
| | - Yongquan Pan
- Department of Pathology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, Guangdong, P.R. China
| | - Yuping Pan
- Department of Pathology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, Guangdong, P.R. China
| | - Shuangquan Gao
- Department of Pathology, Yuebei People’s Hospital, Shaoguan, Guangdong, P.R. China
| |
Collapse
|
45
|
Vera-Badillo FE, Robinson AJ, Berman DM, Booth CM. Value of Biomarker Expression for Randomized Clinical Trial Design: One (More) Missed Opportunity. J Clin Oncol 2019; 38:649-651. [PMID: 31880965 DOI: 10.1200/jco.19.02393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Francisco E Vera-Badillo
- Francisco E. Vera-Badillo, MD, MSc and Andrew J. Robinson, MD, Department of Oncology, Queen's University, Kingston, Ontario, Canada; David M. Berman, MD, PhD, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada; and Christopher M. Booth, MD, Department of Oncology, Queen's University; and Cancer Care and Epidemiology, Queen's Research Institute, Kingston, Ontario, Canada
| | - Andrew J Robinson
- Francisco E. Vera-Badillo, MD, MSc and Andrew J. Robinson, MD, Department of Oncology, Queen's University, Kingston, Ontario, Canada; David M. Berman, MD, PhD, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada; and Christopher M. Booth, MD, Department of Oncology, Queen's University; and Cancer Care and Epidemiology, Queen's Research Institute, Kingston, Ontario, Canada
| | - David M Berman
- Francisco E. Vera-Badillo, MD, MSc and Andrew J. Robinson, MD, Department of Oncology, Queen's University, Kingston, Ontario, Canada; David M. Berman, MD, PhD, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada; and Christopher M. Booth, MD, Department of Oncology, Queen's University; and Cancer Care and Epidemiology, Queen's Research Institute, Kingston, Ontario, Canada
| | - Christopher M Booth
- Francisco E. Vera-Badillo, MD, MSc and Andrew J. Robinson, MD, Department of Oncology, Queen's University, Kingston, Ontario, Canada; David M. Berman, MD, PhD, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada; and Christopher M. Booth, MD, Department of Oncology, Queen's University; and Cancer Care and Epidemiology, Queen's Research Institute, Kingston, Ontario, Canada
| |
Collapse
|