1
|
Brūmele B, Serova E, Lupp A, Suija M, Mutso M, Kurg R. Cross-Reactivity of N6AMT1 Antibodies with Aurora Kinase A: An Example of Antibody-Specific Non-Specificity. Antibodies (Basel) 2024; 13:33. [PMID: 38804301 PMCID: PMC11130794 DOI: 10.3390/antib13020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Primary antibodies are one of the main tools used in molecular biology research. However, the often-occurring cross-reactivity of primary antibodies complicates accurate data analysis. Our results show that three commercial polyclonal antibodies raised against N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) strongly cross-react with endogenous and recombinant mitosis-associated protein Aurora kinase A (AURKA). The cross-reactivity was verified through immunofluorescence, immunoblot, and immunoprecipitation assays combined with mass spectrometry. N6AMT1 and AURKA are evolutionarily conserved proteins that are vital for cellular processes. Both proteins share the motif ENNPEE, which is unique to only these two proteins. We suggest that N6AMT1 antibodies recognise this motif in N6AMT1 and AURKA proteins and exhibit an example of "specific" non-specificity. This serves as an example of the importance of controls and critical data interpretation in molecular biology research.
Collapse
Affiliation(s)
- Baiba Brūmele
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Evgeniia Serova
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Aleksandra Lupp
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Mihkel Suija
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Margit Mutso
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
2
|
Totonji S, Ramos-Triguero A, Willmann D, Sum M, Urban S, Bauer H, Rieder A, Wang S, Greschik H, Metzger E, Schüle R. Lysine Methyltransferase 9 (KMT9) Is an Actionable Target in Muscle-Invasive Bladder Cancer. Cancers (Basel) 2024; 16:1532. [PMID: 38672614 PMCID: PMC11049522 DOI: 10.3390/cancers16081532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Novel treatment modalities are imperative for the challenging management of muscle-invasive and metastatic BC to improve patient survival rates. The recently identified KMT9, an obligate heterodimer composed of KMT9α and KMT9β, regulates the growth of various types of tumors such as prostate, lung, and colon cancer. While the overexpression of KMT9α was previously observed to be associated with aggressive basal-like MIBC in an analysis of patients' tissue samples, a potential functional role of KMT9 in this type of cancer has not been investigated to date. In this study, we show that KMT9 regulates proliferation, migration, and invasion of various MIBC cell lines with different genetic mutations. KMT9α depletion results in the differential expression of genes regulating the cell cycle, cell adhesion, and migration. Differentially expressed genes include oncogenes such as EGFR and AKT1 as well as mediators of cell adhesion or migration such as DAG1 and ITGA6. Reduced cell proliferation upon KMT9α depletion is also observed in Pten/Trp53 knockout bladder tumor organoids, which cannot be rescued with an enzymatically inactive KMT9α mutant. In accordance with the idea that the catalytic activity of KMT9 is required for the control of cellular processes in MIBC, a recently developed small-molecule inhibitor of KMT9 (KMI169) also impairs cancer cell proliferation. Since KMT9α depletion also restricts the growth of xenografts in mice, our data suggest that KMT9 is an actionable novel therapeutic target for the treatment of MIBC.
Collapse
Affiliation(s)
- Sainab Totonji
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Anna Ramos-Triguero
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Dominica Willmann
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Manuela Sum
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Sylvia Urban
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Helena Bauer
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Astrid Rieder
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Sheng Wang
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Holger Greschik
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany; (S.T.)
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, 79106 Freiburg, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Cosenza-Contreras M, Schäfer A, Sing J, Cook L, Stillger MN, Chen CY, Villacorta Hidalgo J, Pinter N, Meyer L, Werner T, Bug D, Haberl Z, Kübeck O, Zhao K, Stei S, Gafencu AV, Ionita R, Brehar FM, Ferrer-Lozano J, Ribas G, Cerdá-Alberich L, Martí-Bonmatí L, Nimsky C, Van Straaten A, Biniossek ML, Föll M, Cabezas-Wallscheid N, Büscher J, Röst H, Arnoux A, Bartsch JW, Schilling O. Proteometabolomics of initial and recurrent glioblastoma highlights an increased immune cell signature with altered lipid metabolism. Neuro Oncol 2024; 26:488-502. [PMID: 37882631 PMCID: PMC10912002 DOI: 10.1093/neuonc/noad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND There is an urgent need to better understand the mechanisms associated with the development, progression, and onset of recurrence after initial surgery in glioblastoma (GBM). The use of integrative phenotype-focused -omics technologies such as proteomics and lipidomics provides an unbiased approach to explore the molecular evolution of the tumor and its associated environment. METHODS We assembled a cohort of patient-matched initial (iGBM) and recurrent (rGBM) specimens of resected GBM. Proteome and metabolome composition were determined by mass spectrometry-based techniques. We performed neutrophil-GBM cell coculture experiments to evaluate the behavior of rGBM-enriched proteins in the tumor microenvironment. ELISA-based quantitation of candidate proteins was performed to test the association of their plasma concentrations in iGBM with the onset of recurrence. RESULTS Proteomic profiles reflect increased immune cell infiltration and extracellular matrix reorganization in rGBM. ASAH1, SYMN, and GPNMB were highly enriched proteins in rGBM. Lipidomics indicates the downregulation of ceramides in rGBM. Cell analyses suggest a role for ASAH1 in neutrophils and its localization in extracellular traps. Plasma concentrations of ASAH1 and SYNM show an association with time to recurrence. CONCLUSIONS We describe the potential importance of ASAH1 in tumor progression and development of rGBM via metabolic rearrangement and showcase the feedback from the tumor microenvironment to plasma proteome profiles. We report the potential of ASAH1 and SYNM as plasma markers of rGBM progression. The published datasets can be considered as a resource for further functional and biomarker studies involving additional -omics technologies.
Collapse
Affiliation(s)
- Miguel Cosenza-Contreras
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Agnes Schäfer
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Justin Sing
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Maren N Stillger
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Chia-Yi Chen
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jose Villacorta Hidalgo
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Niko Pinter
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Larissa Meyer
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Tilman Werner
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Darleen Bug
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Zeno Haberl
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Oliver Kübeck
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Susanne Stei
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology “ Nicolae Simionescu,”Bucharest, Romania
| | - Radu Ionita
- Institute of Cellular Biology and Pathology “ Nicolae Simionescu,”Bucharest, Romania
| | - Felix M Brehar
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Bagdasar-Arseni” Emergency Clinical Hospital, Bucharest, Romania
| | - Jaime Ferrer-Lozano
- Department of Pathology Hospital Universitari i Politècnic La Fe, València, Spain
| | - Gloria Ribas
- Biomedical Imaging Research Group (GIBI230) Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Leo Cerdá-Alberich
- Biomedical Imaging Research Group (GIBI230) Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Luis Martí-Bonmatí
- Department of Pathology Hospital Universitari i Politècnic La Fe, València, Spain
- Department of Radiology Hospital Universitari i Politècnic La Fe, València, Spain
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Alexis Van Straaten
- Department of medical informatics and evaluation of practices, Assistance Publique-Hôpitaux de Paris Centre, Paris University & European Hospital Georges Pompidou, Paris, France
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Melanie Föll
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| | | | - Jörg Büscher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Hannes Röst
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Armelle Arnoux
- Clinical Epidemiology INSERM & Clinical Research Unit, Assistance Publique-Hôpitaux de Paris Centre, Paris University & European Hospital Georges Pompidou, Paris, France
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Marburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Mutso M, Brūmele B, Serova E, Väärtnõu F, Suija M, Kurg R. The methyltransferase N6AMT1 participates in the cell cycle by regulating cyclin E levels. PLoS One 2024; 19:e0298884. [PMID: 38394175 PMCID: PMC10889616 DOI: 10.1371/journal.pone.0298884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The methyltransferase N6AMT1 has been associated with the progression of different pathological conditions, such as tumours and neurological malfunctions, but the underlying mechanism is not fully understood. Analysis of N6AMT1-depleted cells revealed that N6AMT1 is involved in the cell cycle and cell proliferation. In N6AMT1-depleted cells, the cell doubling time was increased, and cell progression out of mitosis and the G0/G1 and S phases was disrupted. It was discovered that in N6AMT1-depleted cells, the transcription of cyclin E was downregulated, which indicates that N6AMT1 is involved in the regulation of cyclin E transcription. Understanding the functions and importance of N6AMT1 in cell proliferation and cell cycle regulation is essential for developing treatments and strategies to control diseases that are associated with N6AMT1.
Collapse
Affiliation(s)
- Margit Mutso
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Baiba Brūmele
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Evgeniia Serova
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Fred Väärtnõu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mihkel Suija
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Petrova E, López-Gay JM, Fahrner M, Leturcq F, de Villartay JP, Barbieux C, Gonschorek P, Tsoi LC, Gudjonsson JE, Schilling O, Hovnanian A. Comparative analyses of Netherton syndrome patients and Spink5 conditional knock-out mice uncover disease-relevant pathways. Commun Biol 2024; 7:152. [PMID: 38316920 PMCID: PMC10844249 DOI: 10.1038/s42003-024-05780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Netherton syndrome (NS) is a rare skin disease caused by loss-of-function mutations in the serine peptidase inhibitor Kazal type 5 (SPINK5) gene. Disease severity and the lack of efficacious treatments call for a better understanding of NS mechanisms. Here we describe a novel and viable, Spink5 conditional knock-out (cKO) mouse model, allowing to study NS progression. By combining transcriptomics and proteomics, we determine a disease molecular profile common to mouse models and NS patients. Spink5 cKO mice and NS patients share skin barrier and inflammation signatures defined by up-regulation and increased activity of proteases, IL-17, IL-36, and IL-20 family cytokine signaling. Systemic inflammation in Spink5 cKO mice correlates with disease severity and is associated with thymic atrophy and enlargement of lymph nodes and spleen. This systemic inflammation phenotype is marked by neutrophils and IL-17/IL-22 signaling, does not involve primary T cell immunodeficiency and is independent of bacterial infection. By comparing skin transcriptomes and proteomes, we uncover several putative substrates of tissue kallikrein-related proteases (KLKs), demonstrating that KLKs can proteolytically regulate IL-36 pro-inflammatory cytokines. Our study thus provides a conserved molecular framework for NS and reveals a KLK/IL-36 signaling axis, adding new insights into the disease mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Evgeniya Petrova
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France.
| | - Jesús María López-Gay
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, F-75248, Cedex 05, France
- Sorbonne University, UPMC University Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005, Paris, France
| | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Florent Leturcq
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France
| | - Jean-Pierre de Villartay
- Imagine Institute, Laboratory "Genome Dynamics in the Immune System", INSERM UMR 11635, Paris, France
| | - Claire Barbieux
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France
| | - Patrick Gonschorek
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Alain Hovnanian
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute and University of Paris, Paris, France.
- Department of Genomic Medicine of rare diseases, Necker Hospital for Sick Children, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France.
- University of Paris Cité, Paris, France.
| |
Collapse
|
6
|
Wang S, Klein SO, Urban S, Staudt M, Barthes NPF, Willmann D, Bacher J, Sum M, Bauer H, Peng L, Rennar GA, Gratzke C, Schüle KM, Zhang L, Einsle O, Greschik H, MacLeod C, Thomson CG, Jung M, Metzger E, Schüle R. Structure-guided design of a selective inhibitor of the methyltransferase KMT9 with cellular activity. Nat Commun 2024; 15:43. [PMID: 38167811 PMCID: PMC10762027 DOI: 10.1038/s41467-023-44243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Inhibition of epigenetic regulators by small molecules is an attractive strategy for cancer treatment. Recently, we characterised the role of lysine methyltransferase 9 (KMT9) in prostate, lung, and colon cancer. Our observation that the enzymatic activity was required for tumour cell proliferation identified KMT9 as a potential therapeutic target. Here, we report the development of a potent and selective KMT9 inhibitor (compound 4, KMI169) with cellular activity through structure-based drug design. KMI169 functions as a bi-substrate inhibitor targeting the SAM and substrate binding pockets of KMT9 and exhibits high potency, selectivity, and cellular target engagement. KMT9 inhibition selectively downregulates target genes involved in cell cycle regulation and impairs proliferation of tumours cells including castration- and enzalutamide-resistant prostate cancer cells. KMI169 represents a valuable tool to probe cellular KMT9 functions and paves the way for the development of clinical candidate inhibitors as therapeutic options to treat malignancies such as therapy-resistant prostate cancer.
Collapse
Affiliation(s)
- Sheng Wang
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Sebastian O Klein
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Sylvia Urban
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Maximilian Staudt
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Nicolas P F Barthes
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dominica Willmann
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Johannes Bacher
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Manuela Sum
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Helena Bauer
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Ling Peng
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Georg A Rennar
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Christian Gratzke
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Katrin M Schüle
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Holger Greschik
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Calum MacLeod
- Drug Discovery, Pharmaron UK Ltd, Hoddesdon, United Kingdom
| | | | - Manfred Jung
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany.
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Mucke HA. Patent highlights February-March 2023. Pharm Pat Anal 2023; 12:205-212. [PMID: 37982661 DOI: 10.4155/ppa-2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
8
|
Koll FJ, Metzger E, Hamann J, Ramos-Triguero A, Bankov K, Köllermann J, Döring C, Chun FKH, Schüle R, Wild PJ, Reis H. Overexpression of KMT9α Is Associated with Aggressive Basal-like Muscle-Invasive Bladder Cancer. Cells 2023; 12:cells12040589. [PMID: 36831256 PMCID: PMC9954512 DOI: 10.3390/cells12040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Muscle-invasive bladder cancer (MIBC) is associated with limited response rates to systemic therapy leading to a significant risk of recurrence and death. A recently discovered histone methyltransferase KMT9, acts as an epigenetic regulator of carcinogenesis in different tumor entities. In this study, we investigated the presence and association of histological and molecular subtypes and their impact on the survival of KMT9α in MIBC. We performed an immunohistochemical (IHC) analysis of KMT9α in 135 MIBC patients undergoing radical cystectomy. KMT9α was significantly overexpressed in the nucleus in MIBC compared to normal urothelium and low-grade urothelial cancer. Using the HTG transcriptome panel, we assessed mRNA expression profiles to determine molecular subtypes and identify differentially expressed genes. Patients with higher nuclear and nucleolar KMT9α expression showed basal/squamous urothelial cancer characteristics confirmed by IHC and differentially upregulated KRT14 expression. We identified a subset of patients with nucleolar expression of KMT9α, which was associated with an increased risk of death in uni- and multivariate analyses (HR 2.28, 95%CI 1.28-4.03, p = 0.005). In conclusion, basal-like MIBC and the squamous histological subtype are associated with high nuclear KMT9α expression. The association with poor survival makes it a potential target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Florestan J. Koll
- Department of Urology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-86496
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), 79106 Freiburg, Germany
| | - Jana Hamann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Anna Ramos-Triguero
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Jens Köllermann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Felix K. H. Chun
- Department of Urology, University Hospital Frankfurt, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, 79106 Freiburg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), 79106 Freiburg, Germany
| | - Peter J. Wild
- Frankfurt Cancer Institute (FCI), University Hospital, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
| | - Henning Reis
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Potential strategies for the management of adenocarcinoma: a perspective. Future Med Chem 2023; 15:123-127. [PMID: 36802841 DOI: 10.4155/fmc-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
10
|
Khan FH, Bhat BA, Sheikh BA, Tariq L, Padmanabhan R, Verma JP, Shukla AC, Dowlati A, Abbas A. Microbiome dysbiosis and epigenetic modulations in lung cancer: From pathogenesis to therapy. Semin Cancer Biol 2022; 86:732-742. [PMID: 34273520 DOI: 10.1016/j.semcancer.2021.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
The lung microbiome plays an essential role in maintaining healthy lung function, including host immune homeostasis. Lung microbial dysbiosis or disruption of the gut-lung axis can contribute to lung carcinogenesis by causing DNA damage, inducing genomic instability, or altering the host's susceptibility to carcinogenic insults. Thus far, most studies have reported the association of microbial composition in lung cancer. Mechanistic studies describing host-microbe interactions in promoting lung carcinogenesis are limited. Considering cancer as a multifaceted disease where epigenetic dysregulation plays a critical role, epigenetic modifying potentials of microbial metabolites and toxins and their roles in lung tumorigenesis are not well studied. The current review explains microbial dysbiosis and epigenetic aberrations in lung cancer and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Faizan Haider Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | | | - Lubna Tariq
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Roshan Padmanabhan
- Department of Medicine, Case Western Reserve University, and University Hospital, Cleveland, OH, 44106, USA
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University Varanasi, India
| | | | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; University Hospitals Seidman Cancer Center, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
11
|
Bernhard P, Feilen T, Rogg M, Fröhlich K, Cosenza-Contreras M, Hause F, Schell C, Schilling O. Proteome alterations during clonal isolation of established human pancreatic cancer cell lines. Cell Mol Life Sci 2022; 79:561. [PMID: 36271971 PMCID: PMC9587952 DOI: 10.1007/s00018-022-04584-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
Abstract
Clonal isolation is an integral step of numerous workflows in genome editing and cell engineering. It comprises the isolation of a single progenitor cell from a defined cell line population with subsequent expansion to obtain a monoclonal cell population. This process is associated with transient loss of cell–cell contacts and absence of a multicellular microenvironment. Previous studies have revealed transcriptomic changes upon clonal isolation with cell line specific extent. Since transcriptome alterations are only partially reflected on the proteome level, we sought to investigate the impact of clonal isolation on the cellular proteome to a depth of > 6000 proteins in three established pancreatic cancer cell lines. We show that clonal isolation does have an impact on the cellular proteome, however, with cell line specific extent, affecting different biological processes, and also depending on the isolation method. We demonstrate a different impact of clonal isolation on mesenchymal- and epithelial-derived cell lines mainly affecting cell proliferation, metabolism, cell adhesion and cellular stress. The results bear relevance to the field of genomic editing and cell engineering and highlight the need to consider the impact of clonal isolation when interpreting data stemming from experiments that include this step.
Collapse
Affiliation(s)
- P Bernhard
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - T Feilen
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - M Rogg
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany
| | - K Fröhlich
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - M Cosenza-Contreras
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - F Hause
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany
| | - C Schell
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - O Schilling
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany. .,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
12
|
Lüchtenborg AM, Metzger P, Cosenza Contreras M, Oria V, Biniossek ML, Lindner F, Fröhlich K, Malyi A, Erbes T, Gensch N, Maurer J, Thomsen A, Boerries M, Schilling O, Werner M, Bronsert P. Krüppel-like factor 7 influences translation and pathways involved in ribosomal biogenesis in breast cancer. BREAST CANCER RESEARCH : BCR 2022; 24:65. [PMID: 36192788 PMCID: PMC9531505 DOI: 10.1186/s13058-022-01562-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
Background Ribosomal biogenesis and ribosomal proteins have attracted attention in the context of tumor biology in recent years. Instead of being mere translational machineries, ribosomes might play an active role in tumor initiation and progression. Despite its importance, regulation of ribosomal biogenesis is still not completely understood.
Methods Using Gene Set Enrichment Analysis of RNA sequencing and proteomical mass spectrometry data in breast cancer cells expressing Krüppel-like factor 7 (KLF7), we identified processes altered by this transcription factor. In silico analyses of a cohort of breast cancer patients in The Cancer Genome Atlas confirmed our finding. We further verified the role of KLF7 the identified ribosomal processes in in vitro assays of mammary carcinoma cell lines and analyses of breast cancer patients’ tissue slices.
Results We identified the transcription factor Krüppel-like factor 7 (KLF7) as a regulator of ribosomal biogenesis and translation in breast cancer cells and tissue. Highly significant overlapping processes related to ribosomal biogenesis were identified in proteomics and transcriptomics data and confirmed in patients’ breast cancer RNA Seq data. Further, nucleoli, the sites of ribosomal biogenesis, were morphologically altered and quantitatively increased in KLF7-expressing cells. Pre-rRNA processing was identified as one potential process affected by KLF7. In addition, an increase in global translation independent from proliferation and transcription was observed upon exogenous KLF7 expression in vitro. Importantly, in a cohort of breast cancer patients, KLF7-expression levels correlated with aggressiveness of the intrinsic breast cancer subtype and tumor grading. Moreover, KLF7 correlated with nucleolar characteristics in human breast tumor tissue, indicating a role for KLF7 in ribosomal biogenesis. Conclusion In mammary carcinoma, KLF7 is involved in ribosomal biogenesis. Alterations of ribosomal biogenesis has far reaching quantitative and qualitative implications for the proteome of the cancer cells. This might influence the aggressiveness of cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01562-8.
Collapse
Affiliation(s)
- Anne-Marie Lüchtenborg
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Metzger
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Miguel Cosenza Contreras
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Victor Oria
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Lindner
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klemens Fröhlich
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ambrus Malyi
- 2Nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Nicole Gensch
- Core Facility Signaling Factory, BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Jochen Maurer
- Department of Obstetrics and Gynecology, University Hospital Aachen (UKA), Aachen, Germany
| | - Andreas Thomsen
- Department of Radiation Oncology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Werner
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and Cancer Research Center (DKFZ), Heidelberg, Germany.,Tumorbank Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,Core Facility for Histopathology and Digital Pathology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Breisacher Straße 115A, 79106, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) Partner Site Freiburg and Cancer Research Center (DKFZ), Heidelberg, Germany. .,Core Facility for Histopathology and Digital Pathology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Ling B, Zhang Z, Xiang Z, Cai Y, Zhang X, Wu J. Advances in the application of proteomics in lung cancer. Front Oncol 2022; 12:993781. [PMID: 36237335 PMCID: PMC9552298 DOI: 10.3389/fonc.2022.993781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Although the incidence and mortality of lung cancer have decreased significantly in the past decade, it is still one of the leading causes of death, which greatly impairs people’s life and health. Proteomics is an emerging technology that involves the application of techniques for identifying and quantifying the overall proteins in cells, tissues and organisms, and can be combined with genomics, transcriptomics to form a multi-omics research model. By comparing the content of proteins between normal and tumor tissues, proteomics can be applied to different clinical aspects like diagnosis, treatment, and prognosis, especially the exploration of disease biomarkers and therapeutic targets. The applications of proteomics have promoted the research on lung cancer. To figure out potential applications of proteomics associated with lung cancer, we summarized the role of proteomics in studies about tumorigenesis, diagnosis, prognosis, treatment and resistance of lung cancer in this review, which will provide guidance for more rational application of proteomics and potential therapeutic strategies of lung cancer.
Collapse
Affiliation(s)
- Bai Ling
- Department of Pharmacy, The Yancheng Clinical College of Xuzhou Medical University, The First people’s Hospital of Yancheng, Yancheng, China
| | - Zhengyu Zhang
- Nanjing Medical University School of Medicine, Nanjing, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqi Cai
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Zhang
- Stomatology Hospital, School of stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- *Correspondence: Jian Wu,
| |
Collapse
|
14
|
Fretwurst T, Tritschler I, Rothweiler R, Nahles S, Altmann B, Schilling O, Nelson K. Proteomic profiling of human bone from different anatomical sites - A pilot study. Proteomics Clin Appl 2022; 16:e2100049. [PMID: 35462455 DOI: 10.1002/prca.202100049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE The study aim is a comparative proteome-based analysis of different autologous bone entities (alveolar bone [AB], iliac cortical [IC] bone, and iliac spongiosa [IS]) used for alveolar onlay grafting. EXPERIMENTAL DESIGN Site-matched bone samples of AB, IC, and IS were harvested during alveolar onlay grafting. Proteins were extracted using a detergent-based (sodium dodecyl sulfate) strategy and trypsinized. Proteome analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used for peptide-to-spectrum matching, peak detection, and quantitation. Linear models for microarray analysis (LIMMA) were used to detect differentially abundant peptides and proteins. RESULTS A total of 1730 different proteins were identified across the 15 samples at a false discovery rate of 1%. Partial least-squares discriminant analysis approved segregation of AB, IC, and IS protein profiles. LIMMA statistics highlighted 66 proteins that were more abundant in AB then in IC (vs. 92 proteins were enriched in IC over AB). Gene Ontology enrichment analysis revealed a matrisomal versus an immune-related proteome fingerprint in AB versus IC. CONCLUSION AND CLINICAL RELEVANCE This pilot study demonstrates an ECM protein-related proteome fingerprint in AB and an immune-related proteome fingerprint in IS and IC.
Collapse
Affiliation(s)
- Tobias Fretwurst
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - René Rothweiler
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Nahles
- Department of Oral and Maxillofacial Surgery, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Brigitte Altmann
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,G.E.R.N Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Katja Nelson
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Acute, Chronic, and Treated Aortic Diseases Present Distinguishable Serum Proteome Fingerprints with Protein Profiles That Correlate with Disease Severity. Biomedicines 2022; 10:biomedicines10092103. [PMID: 36140204 PMCID: PMC9495769 DOI: 10.3390/biomedicines10092103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic diseases are a rare but potentially life-threatening condition. We present a serum proteomic study for a spectrum of aortic diseases including thoracic aortic aneurysms (n = 11), chronic dissections (n = 9), acute aortic dissections (n = 11), and surgically treated dissections (n = 19) as well as healthy controls (n = 10) and patients of coronary heart disease (n = 10) to represent non-aortic cardiovascular disease. In total, we identified and quantified 425 proteins across all 70 samples. The different aortic diseases represented distinguishable proteome profiles. We identified protein clusters that positively or negatively correlate with disease severity, including increase of cytosolic tissue leakage proteins and decrease of components of the coagulation and complement system. Further, we identified a serum proteome fingerprint of acute aortic dissections, consisting, among others, of enriched inflammatory markers such as C-reactive protein and members of the S100 protein family. The study underlines the applicability of serum proteomics for the investigation of aortic diseases and highlights the possibility to establish disease-specific prognostic markers.
Collapse
|
16
|
Ensslen T, Sarthak K, Aksimentiev A, Behrends JC. Resolving Isomeric Posttranslational Modifications Using a Biological Nanopore as a Sensor of Molecular Shape. J Am Chem Soc 2022; 144:16060-16068. [PMID: 36007197 DOI: 10.1021/jacs.2c06211] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chemical nature and precise position of posttranslational modifications (PTMs) in proteins or peptides are crucial for various severe diseases, such as cancer. State-of-the-art PTM diagnosis is based on elaborate and costly mass-spectrometry or immunoassay-based approaches, which are limited in selectivity and specificity. Here, we demonstrate the use of a protein nanopore to differentiate peptides─derived from human histone H4 protein─of identical mass according to the positions of acetylated and methylated lysine residues. Unlike sequencing by stepwise threading, our method detects PTMs and their positions by sensing the shape of a fully entrapped peptide, thus eliminating the need for controlled translocation. Molecular dynamics simulations show that the sensitivity to molecular shape derives from a highly nonuniform electric field along the pore. This molecular shape-sensing principle offers a path to versatile, label-free, and high-throughput characterizations of protein isoforms.
Collapse
Affiliation(s)
- Tobias Ensslen
- Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Kumar Sarthak
- Center for the Physics of Living Cells, Beckman Institute for Advanced Science and Technology and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aleksei Aksimentiev
- Center for the Physics of Living Cells, Beckman Institute for Advanced Science and Technology and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jan C Behrends
- Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
17
|
Ruppert M, Barta BA, Korkmaz-Icöz S, Loganathan S, Oláh A, Sayour AA, Benke K, Nagy D, Bálint T, Karck M, Schilling O, Merkely B, Radovits T, Szabó G. Sex similarities and differences in the reverse and anti-remodeling effect of pressure unloading therapy in a rat model of aortic banding and debanding. Am J Physiol Heart Circ Physiol 2022; 323:H204-H222. [PMID: 35687503 DOI: 10.1152/ajpheart.00654.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Investigating the effect of sex on pressure unloading therapy in a clinical scenario is limited by several non-standardized factors. Hence, we sought to study sex-related similarities and differences under laboratory conditions. METHODS Pressure overload was induced in male and female rats by aortic banding (AB) for 6 and 12 weeks. Age-matched sham operated animals served as controls. Pressure unloading was performed by aortic debanding at week 6. Different aspects of myocardial remodeling were characterized by echocardiography, pressure-volume analysis, histology, qRT-PCR and explorative proteomics. RESULTS Hypertrophy, increased fetal gene expression, interstitial fibrosis, and prolonged active relaxation were noted in the AB groups at week 6 in both sexes. However, decompensation of systolic function and further deterioration of diastolic function only occurred in male AB rats at week 12. AB induced similar proteomic alterations in both sexes at week 6, while characteristic differences were found at week 12. After debanding, regression of hypertrophy and recovery of diastolic function took place to a similar extent in both sexes. Nevertheless, fibrosis, transcription of β-to-α myosin-heavy chain ratio, and myocardial proteomic alterations were reduced to a greater degree in females compared to males. Debanding exposed anti-remodeling properties in both sexes, and prevented the functional decline in males. CONCLUSIONS Female sex is associated with greater reversibility of fibrosis, fetal gene expression, and proteomic alterations. Nevertheless, pressure unloading exposes a more pronounced anti-remodeling effect on the functional level in males, which is attributed to the more progressive functional deterioration in AB animals.
Collapse
Affiliation(s)
- Mihály Ruppert
- Heart and Vascular Centre, Semmelweis University, Budapest, Pest, Hungary
| | - Bálint András Barta
- Heart and Vascular Centre, Semmelweis University; Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center; Faculty of Biology, University of Freiburg, Budapest
| | - Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Attila Oláh
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | | | - Kalman Benke
- Heart and Vascular Centre, Semmelweis University; Department of Cardiac Surgery, University Hospital Halle
| | - Dávid Nagy
- Heart and Vascular Centre, Semmelweis University, Budapest, Pest, Hungary
| | - Tímea Bálint
- Heart and Vascular Centre, Semmelweis University, Budapest, Pest, Hungary
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Baden-Württemberg, Germany
| | - Béla Merkely
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Gábor Szabó
- Department of Cardiac Surgery, University Hospital Heidelberg; Department of Cardiac Surgery, University Hospital Halle, Germany
| |
Collapse
|
18
|
Fröhlich K, Brombacher E, Fahrner M, Vogele D, Kook L, Pinter N, Bronsert P, Timme-Bronsert S, Schmidt A, Bärenfaller K, Kreutz C, Schilling O. Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity. Nat Commun 2022; 13:2622. [PMID: 35551187 PMCID: PMC9098472 DOI: 10.1038/s41467-022-30094-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Numerous software tools exist for data-independent acquisition (DIA) analysis of clinical samples, necessitating their comprehensive benchmarking. We present a benchmark dataset comprising real-world inter-patient heterogeneity, which we use for in-depth benchmarking of DIA data analysis workflows for clinical settings. Combining spectral libraries, DIA software, sparsity reduction, normalization, and statistical tests results in 1428 distinct data analysis workflows, which we evaluate based on their ability to correctly identify differentially abundant proteins. From our dataset, we derive bootstrap datasets of varying sample sizes and use the whole range of bootstrap datasets to robustly evaluate each workflow. We find that all DIA software suites benefit from using a gas-phase fractionated spectral library, irrespective of the library refinement used. Gas-phase fractionation-based libraries perform best against two out of three reference protein lists. Among all investigated statistical tests non-parametric permutation-based statistical tests consistently perform best. Data independent acquisition (DIA) has been gaining momentum in clinical proteomics. Here, the authors create a benchmark dataset comprising inter-patient heterogeneity to compare popular DIA data analysis workflows for identifying differentially abundant proteins.
Collapse
Affiliation(s)
- Klemens Fröhlich
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany
| | - Eva Brombacher
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany.,Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg im Breisgau, Germany.,Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg im Breisgau, Germany
| | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Vogele
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lucas Kook
- Epidemiology, Biostatistics & Prevention Institute, University of Zurich, Zurich, Switzerland.,Institute for Data Analysis and Process Design, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Niko Pinter
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Tumorbank Comprehensive Cancer Center Freiburg, Medical Center University of Freiburg, Freiburg im Breisgau, Germany
| | - Sylvia Timme-Bronsert
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Tumorbank Comprehensive Cancer Center Freiburg, Medical Center University of Freiburg, Freiburg im Breisgau, Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Katja Bärenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, and Swiss Institute of Bioinformatics (SIB), Wolfgang, Switzerland
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg im Breisgau, Germany.,Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
19
|
Pinter N, Glätzer D, Fahrner M, Fröhlich K, Johnson J, Grüning BA, Warscheid B, Drepper F, Schilling O, Föll MC. MaxQuant and MSstats in Galaxy Enable Reproducible Cloud-Based Analysis of Quantitative Proteomics Experiments for Everyone. J Proteome Res 2022; 21:1558-1565. [PMID: 35503992 DOI: 10.1021/acs.jproteome.2c00051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantitative mass spectrometry-based proteomics has become a high-throughput technology for the identification and quantification of thousands of proteins in complex biological samples. Two frequently used tools, MaxQuant and MSstats, allow for the analysis of raw data and finding proteins with differential abundance between conditions of interest. To enable accessible and reproducible quantitative proteomics analyses in a cloud environment, we have integrated MaxQuant (including TMTpro 16/18plex), Proteomics Quality Control (PTXQC), MSstats, and MSstatsTMT into the open-source Galaxy framework. This enables the web-based analysis of label-free and isobaric labeling proteomics experiments via Galaxy's graphical user interface on public clouds. MaxQuant and MSstats in Galaxy can be applied in conjunction with thousands of existing Galaxy tools and integrated into standardized, sharable workflows. Galaxy tracks all metadata and intermediate results in analysis histories, which can be shared privately for collaborations or publicly, allowing full reproducibility and transparency of published analysis. To further increase accessibility, we provide detailed hands-on training materials. The integration of MaxQuant and MSstats into the Galaxy framework enables their usage in a reproducible way on accessible large computational infrastructures, hence realizing the foundation for high-throughput proteomics data science for everyone.
Collapse
Affiliation(s)
- Niko Pinter
- Institute for Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Damian Glätzer
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Klemens Fröhlich
- Institute for Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - James Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Chemistry and Pharmacy, Department of Biochemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Friedel Drepper
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), 79106 Freiburg, Germany
| | - Melanie Christine Föll
- Institute for Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany.,Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
Barta BA, Ruppert M, Fröhlich KE, Cosenza-Contreras M, Oláh A, Sayour AA, Kovács K, Karvaly GB, Biniossek M, Merkely B, Schilling O, Radovits T. Sex-related differences of early cardiac functional and proteomic alterations in a rat model of myocardial ischemia. J Transl Med 2021; 19:507. [PMID: 34895263 PMCID: PMC8666068 DOI: 10.1186/s12967-021-03164-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Reduced cardiovascular risk in premenopausal women has been the focus of research in recent decades. Previous hypothesis-driven experiments have highlighted the role of sex hormones on distinct inflammatory responses, mitochondrial proteins, extracellular remodeling and estrogen-mediated cardioprotective signaling pathways related to post-ischemic recovery, which were associated with better cardiac functional outcomes in females. We aimed to investigate the early, sex-specific functional and proteomic changes following myocardial ischemia in an unbiased approach. METHODS Ischemia was induced in male (M-Isch) and female (F-Isch) rats with sc. injection of isoproterenol (85 mg/kg) daily for 2 days, while controls (M-Co, F-Co) received sc. saline solution. At 48 h after the first injection pressure-volume analysis was carried out to assess left ventricular function. FFPE tissue slides were scanned and analyzed digitally, while myocardial proteins were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using isobaric labeling. Concentrations of circulating steroid hormones were measured with LC-MS/MS. Feature selection (PLS and PLS-DA) was used to examine associations among functional, proteomic and hormonal datasets. RESULTS Induction of ischemia resulted in 38% vs 17% mortality in M-Isch and F-Isch respectively. The extent of ischemic damage to surviving rats was comparable between the sexes. Systolic dysfunction was more pronounced in males, while females developed a more severe impairment of diastolic function. 2224 proteins were quantified, with 520 showing sex-specific differential regulation. Our analysis identified transcriptional, cytoskeletal, contractile, and mitochondrial proteins, molecular chaperones and the extracellular matrix as sources of disparity between the sexes. Bioinformatics highlighted possible associations of estrogens and their metabolites with early functional and proteomic alterations. CONCLUSIONS Our study has highlighted sex-specific alterations in systolic and diastolic function shortly after ischemia, and provided a comprehensive look at the underlying proteomic changes and the influence of estrogens and their metabolites. According to our bioinformatic analysis, inflammatory, mitochondrial, chaperone, cytoskeletal, extracellular and matricellular proteins are major sources of intersex disparity, and may be promising targets for early sex-specific pharmacologic interventions.
Collapse
Affiliation(s)
- Bálint András Barta
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary. .,Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany. .,Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Mihály Ruppert
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Klemens Erwin Fröhlich
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Miguel Cosenza-Contreras
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,MeInBio Graduate School, University of Freiburg, Freiburg, Germany
| | - Attila Oláh
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Alex Ali Sayour
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Krisztián Kovács
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gellért Balázs Karvaly
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Martin Biniossek
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Béla Merkely
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Tamás Radovits
- Experimental Research Laboratory, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| |
Collapse
|
21
|
Berlin C, Cottard F, Willmann D, Urban S, Tirier SM, Marx L, Rippe K, Schmitt M, Petrocelli V, Greten FR, Fichtner-Feigl S, Kesselring R, Metzger E, Schüle R. KMT9 controls stemness and growth of colorectal cancer. Cancer Res 2021; 82:210-220. [PMID: 34737213 DOI: 10.1158/0008-5472.can-21-1261] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/26/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer-associated deaths worldwide. Treatment failure and tumor recurrence due to survival of therapy-resistant cancer stem/initiating cells represent major clinical issues to overcome. In this study, we identified lysine methyltransferase 9 (KMT9), an obligate heterodimer composed of KMT9α and KMT9β that monomethylates histone H4 at lysine 12 (H4K12me1), as an important regulator in colorectal tumorigenesis. KMT9α and KMT9β were overexpressed in CRC and colocalized with H4K12me1 at promoters of target genes involved in the regulation of proliferation. Ablation of KMT9α drastically reduced colorectal tumorigenesis in mice and prevented the growth of murine as well as human patient-derived tumor organoids. Moreover, loss of KMT9α impaired the maintenance and function of CRC stem/initiating cells and induced apoptosis specifically in this cellular compartment. Together, these data suggest that KMT9 is an important regulator of colorectal carcinogenesis, identifying KMT9 as a promising therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Christopher Berlin
- Klinik für Allgemein- und Viszeralchirurgie, Klinikum der Albert-Ludwigs-Universität Freiburg
| | - Felicie Cottard
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg
| | - Dominica Willmann
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg
| | - Sylvia Urban
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg
| | | | - Lisa Marx
- Klinik für Allgemein- und Viszeralchirurgie, Klinikum der Albert-Ludwigs-Universität Freiburg
| | | | - Mark Schmitt
- Institut für Tumorbiologie und experimentelle Therapie, Georg-Speyer-Haus Frankfurt/Main
| | - Valentina Petrocelli
- Institut für Tumorbiologie und experimentelle Therapie, Georg-Speyer-Haus Frankfurt/Main
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy Paul-Ehrlich-Str
| | | | - Rebecca Kesselring
- Klinik für Allgemein- und Viszeralchirurgie, Klinikum der Albert-Ludwigs-Universität Freiburg
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg
| |
Collapse
|
22
|
Klatt JN, Dinh TJ, Schilling O, Zengerle R, Schmidt F, Hutzenlaub T, Paust N. Automation of peptide desalting for proteomic liquid chromatography - tandem mass spectrometry by centrifugal microfluidics. LAB ON A CHIP 2021; 21:2255-2264. [PMID: 33908535 DOI: 10.1039/d1lc00137j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For large-scale analysis of complex protein mixtures, liquid chromatography - tandem mass spectrometry (LC-MS/MS) has been proven to be one of the most versatile tools due to its high sensitivity and ability to both identify and quantify thousands of proteins in a single measurement. Sample preparation typically comprises site-specific cleavage of proteins into peptides, followed by desalting and concomitant peptide enrichment, which is commonly performed by solid phase extraction. Desalting workflows may include multiple liquid handling steps and are thus error prone and labour intensive. To improve the reproducibility of sample preparation for low amounts of protein, we present a centrifugal microfluidic disk that automates all liquid handling steps required for peptide desalting by solid phase extraction (DesaltingDisk). Microfluidic implementation was enabled by a novel centrifugal microfluidic dosing on demand structure that enabled mapping multiple washing steps onto a microfluidic disk. Evaluation of the microfluidic disk was performed by LC-MS/MS analysis of tryptic HEK-293 eukaryotic cell peptide mixtures desalted either using the microfluidic disk or a manual workflow. A comparable number of peptides were identified in the disk and manual set with 19 775 and 20 212 identifications, respectively. For a core set of 10 444 peptides that could be quantified in all injections, intensity coefficients of variation were calculated based on label-free quantitation intensities. The disk set featured smaller variability with a median CV of 9.3% compared to the median CV of 12.6% for the manual approach. Intensity CVs on protein level were lowered from 5.8% to 4.2% when using the LabDisk. Interday reproducibility for both workflows was assessed by LC-SRM/MS analysis of samples that were spiked with 11 synthetic peptides of varying hydrophobicity. Except for the most hydrophilic and hydrophobic peptides, the average CV was lowered to 3.6% for the samples processed with the disk compared to 7.2% for the manual workflow. The presented centrifugal microfluidic DesaltingDisk demonstrates the potential to improve reproducibility in the sample preparation workflow for proteomic mass spectrometry, especially for application with limited amount of sample material.
Collapse
Affiliation(s)
- J-N Klatt
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, Freiburg im Breisgau, Germany and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - T J Dinh
- Faculty of Biology, University of Freiburg, Schaenzle Str. 1, Freiburg, Germany and Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, Freiburg, Germany
| | - O Schilling
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, Freiburg, Germany
| | - R Zengerle
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, Freiburg im Breisgau, Germany and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - F Schmidt
- Weill Cornell Medicine - Qatar, Qatar Foundation - Education City, Doha, State of Qatar
| | - T Hutzenlaub
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, Freiburg im Breisgau, Germany and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - N Paust
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, Freiburg im Breisgau, Germany and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| |
Collapse
|
23
|
Qiyusanlong Formula Induces Autophagy in Non-Small-Cell Lung Cancer Cells and Xenografts through the mTOR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5575453. [PMID: 34093717 PMCID: PMC8164545 DOI: 10.1155/2021/5575453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
Objective Qiyusanlong (QYSL) formula has been used in the clinic for more than 20 years and has been proved to have pronounced efficacy in the treatment of non-small-cell lung cancer (NSCLC). This work aims to evaluate the molecular mechanism of QYSL formula action on NSCLC, specifically in relation to autophagy induction. Methods In vitro, CCK-8 was used to detect the effect of QYSL serum on cell viability in A549 cells. In vivo, A549 cells were implanted subcutaneously in nude mice to establish a xenograft model. TUNEL staining was used to measure cell apoptosis and TEM to observe the autophagy-related morphological changes in vitro and in vivo. Western blotting, RT-qPCR, and immunofluorescence were used to measure autophagy-related proteins. In addition, rapamycin (an inhibitor of mTOR and inducer of autophagy) and MHY1485 (an activator of mTOR and inhibitor of autophagy) were used to determine whether QYSL-induced autophagy was regulated by the mTOR pathway. Results QYSL serum inhibited the cell viability of A549 cells in a concentration‐dependent manner. In vivo, the QYSL formula inhibited xenograft growth. The QYSL formula promoted apoptosis in A549 cells and induced autophagosome formation in vitro and in vivo. In addition, the QYSL formula downregulated the expression of mTOR and p62, while it upregulated the expression of ATG-7 and Beclin-1 and increased the LC3-II/LC3-I ratio. QYSL serum inhibited p-mTOR in a similar manner to rapamycin while reducing the activating effects of MHY1485 on p-mTOR. Conclusion The QYSL formula has anti-lung cancer effects and promotes autophagy through the mTOR signaling pathway.
Collapse
|
24
|
Metformin Reduces Histone H3K4me3 at the Promoter Regions of Positive Cell Cycle Regulatory Genes in Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13040739. [PMID: 33578894 PMCID: PMC7916663 DOI: 10.3390/cancers13040739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary To understand the effect of metformin on epigenetic regulation, we analyzed histone H3 methylation, DNA methylation, and chromatin accessibility in lung cancer cells. Metformin showed little effect on DNA methylation or chromatin accessibility but significantly reduced H3K4me3 levels at the promoters of positive cell cycle regulatory genes. Metformin downregulated H3K4 methyltransferase MLL2 expression and knockdown of MLL2 resulted in suppression of H3K4me3 expression and lung cancer cell proliferation. We further evaluated the clinicopathological significance of MLL2 in tumor and matched normal tissues from 42 non-small cell lung cancer patients. MLL2 overexpression was significantly associated with poor recurrence-free survival in lung adenocarcinoma. Our study facilitates the understanding of the effect of metformin on the regulation of histone H3K4me3 at promoter regions of cell cycle regulatory genes in lung cancer cells, and MLL2 may be a potential therapeutic target for lung cancer therapy. Abstract This study aimed at understanding the effect of metformin on histone H3 methylation, DNA methylation, and chromatin accessibility in lung cancer cells. Metformin significantly reduced H3K4me3 level at the promoters of positive cell cycle regulatory genes such as CCNB2, CDK1, CDK6, and E2F8. Eighty-eight genes involved in cell cycle showed reduced H3K4me3 levels in response to metformin, and 27% of them showed mRNA downregulation. Metformin suppressed the expression of H3K4 methyltransferases MLL1, MLL2, and WDR82. The siRNA-mediated knockdown of MLL2 significantly downregulated global H3K4me3 level and inhibited lung cancer cell proliferation. MLL2 overexpression was found in 14 (33%) of 42 NSCLC patients, and a Cox proportional hazards analysis showed that recurrence-free survival of lung adenocarcinoma patients with MLL2 overexpression was approximately 1.32 (95% CI = 1.08–4.72; p = 0.02) times poorer than in those without it. Metformin showed little effect on DNA methylation and chromatin accessibility at the promoter regions of cell cycle regulatory genes. The present study suggests that metformin reduces H3K4me3 levels at the promoters of positive cell cycle regulatory genes through MLL2 downregulation in lung cancer cells. Additionally, MLL2 may be a potential therapeutic target for reducing the recurrence of lung adenocarcinoma.
Collapse
|
25
|
Network Pharmacology Integrated Molecular Docking Reveals the Mechanism of Anisodamine Hydrobromide Injection against Novel Coronavirus Pneumonia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5818107. [PMID: 32802131 PMCID: PMC7411467 DOI: 10.1155/2020/5818107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022]
Abstract
Background The Coronavirus Disease 2019 (COVID-19) outbreak in Wuhan, China, was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Anisodamine hydrobromide injection (AHI), the main ingredient of which is anisodamine, is a listed drug for improving microcirculation in China. Anisodamine can improve the condition of patients with COVID-19. Materials and Methods Protein-protein interactions obtained from the String databases were used to construct the protein interaction network (PIN) of AHI using Cytoscape. The crucial targets of AHI PIN were screened by calculating three topological parameters. Gene ontology and pathway enrichment analyses were performed. The intersection between the AHI component proteins and angiotensin-converting enzyme 2 (ACE2) coexpression proteins was analyzed. We further investigated our predictions of crucial targets by performing molecular docking studies with anisodamine. Results The PIN of AHI, including 172 nodes and 1454 interactions, was constructed. A total of 54 crucial targets were obtained based on topological feature calculations. The results of Gene Ontology showed that AHI could regulate cell death, cytokine-mediated signaling pathways, and immune system processes. KEGG disease pathways were mainly enriched in viral infections, cancer, and immune system diseases. Between AHI targets and ACE2 coexpression proteins, 26 common proteins were obtained. The results of molecular docking showed that anisodamine bound well to all the crucial targets. Conclusion The network pharmacological strategy integrated molecular docking to explore the mechanism of action of AHI against COVID-19. It provides protein targets associated with COVID-19 that may be further tested as therapeutic targets of anisodamine.
Collapse
|