1
|
Mao Y, Xia Z, Xia W, Jiang P. Metabolic reprogramming, sensing, and cancer therapy. Cell Rep 2024; 43:115064. [PMID: 39671294 DOI: 10.1016/j.celrep.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
The metabolic reprogramming of tumor cells is a crucial strategy for their survival and proliferation, involving tissue- and condition-dependent remodeling of certain metabolic pathways. While it has become increasingly clear that tumor cells integrate extracellular and intracellular signals to adapt and proliferate, nutrient and metabolite sensing also exert direct or indirect influences, although the underlying mechanisms remain incompletely understood. Furthermore, metabolic changes not only support the rapid growth and dissemination of tumor cells but also promote immune evasion by metabolically "educating" immune cells in the tumor microenvironment (TME). Recent studies have highlighted the profound impact of metabolic reprogramming on the TME and the potential of targeting metabolic pathways as a therapeutic strategy, with several enzyme inhibitors showing promising results in clinical trials. Thus, understanding how tumor cells alter their metabolic pathways and metabolically remodel the TME to support their survival and proliferation may offer new strategies for metabolic therapy and immunotherapy.
Collapse
Affiliation(s)
- Youxiang Mao
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziyan Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wenjun Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
2
|
Saeed Issa B, Adhab AH, Salih Mahdi M, Kyada A, Ganesan S, Bhanot D, Naidu KS, Kaur S, Mansoor AS, Radi UK, Saadoun Abd N, Kariem M. Decoding the complex web: Cellular and molecular interactions in the lung tumor microenvironment. J Drug Target 2024:1-44. [PMID: 39707828 DOI: 10.1080/1061186x.2024.2445772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The lung tumor microenvironment (TME) or stroma is a dynamic space of numerous cells and their released molecules. This complicated web regulates tumor progression and resistance to different modalities. Lung cancer cells in conjunction with their stroma liberate a wide range of factors that dampen antitumor attacks by innate immunity cells like natural killer (NK) cells and also adaptive responses by effector T cells. These factors include numerous growth factors, exosomes and epigenetic regulators, and also anti-inflammatory cytokines. Understanding the intricate interactions between tumor cells and various elements within the lung TME, such as immune and stromal cells can help provide novel strategies for better management and treatment of lung malignancies. The current article discusses the complex network of cells and signaling molecules, which mediate communications in lung TME. By elucidating these multifaceted interactions, we aim to provide insights into potential therapeutic targets and strategies for lung cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot-360003, Gujarat, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India
| | - Sharnjeet Kaur
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali140307, Punjab, India
| | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Muthena Kariem
- Department of medical analysis, Medical laboratory technique college, The Islamic University, Najaf, Iraq
- Department of medical analysis, Medical laboratory technique college, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of medical analysis, Medical laboratory technique college, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Lv K, He T. Cancer-associated fibroblasts: heterogeneity, tumorigenicity and therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:70. [PMID: 39680287 DOI: 10.1186/s43556-024-00233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Cancer, characterized by its immune evasion, active metabolism, and heightened proliferation, comprises both stroma and cells. Although the research has always focused on parenchymal cells, the non-parenchymal components must not be overlooked. Targeting cancer parenchymal cells has proven to be a formidable challenge, yielding limited success on a broad scale. The tumor microenvironment(TME), a critical niche for cancer cell survival, presents a novel way for cancer treatment. Cancer-associated fibroblast (CAF), as a main component of TME, is a dynamically evolving, dual-functioning stromal cell. Furthermore, their biological activities span the entire spectrum of tumor development, metastasis, drug resistance, and prognosis. A thorough understanding of CAFs functions and therapeutic advances holds significant clinical implications. In this review, we underscore the heterogeneity of CAFs by elaborating on their origins, types and function. Most importantly, by elucidating the direct or indirect crosstalk between CAFs and immune cells, the extracellular matrix, and cancer cells, we emphasize the tumorigenicity of CAFs in cancer. Finally, we highlight the challenges encountered in the exploration of CAFs and list targeted therapies for CAF, which have implications for clinical treatment.
Collapse
Affiliation(s)
- Keke Lv
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Tianlin He
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
4
|
Singh A, Mahapatra KK, Praharaj PP, Patra S, Mishra SR, Patil S, Bhutia SK. Prolonged glutamine starvation reactivates mTOR to inhibit autophagy and initiate autophagic lysosome reformation to maintain cell viability. Int J Biochem Cell Biol 2024; 177:106694. [PMID: 39547430 DOI: 10.1016/j.biocel.2024.106694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Autophagy, a cellular recycling mechanism, utilizes lysosomes for cellular degradation. Prolonged autophagy reduces the pool of functional lysosomes in the cell. However, lysosomal homeostasis is maintained through the regeneration of functional lysosomes during the terminal stage of autophagy, i.e. Autophagic lysosome reformation (ALR). Through confocal microscopy during glutamine starvation, we unravel the regeneration of tubules from autolysosomes by undertaking significant membrane remodeling, which majorly depends on mTOR reactivation, RAB7 dissociation, phosphatidyl inositol 3 phosphate (PI3P) dependent-dynamin 2 and clathrin recruitment. In glutamine-starved cells, we found mTOR is the central modulator in regulating ALR initiation, and its pharmacological inhibition with rapamycin leads to a decrease in lysosomal tubulation. Moreover, RAB7 and Clathrin are essential for tubule elongation and it showed that siRNA targeting RAB7 and Clathrin restricts tubule initiation under glutamine starvation. In this setting, we examined the physiological relevance of ALR during prolonged glutamine deprivation and found that genetic and pharmacological inhibition of critical proteins involved in ALR promotes cell death in oral cancer cells, establishing ALR is essential for maintaining cell survival during stress.
Collapse
Affiliation(s)
- Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Sankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India.
| |
Collapse
|
5
|
Zuzak T, Bogaczyk A, Krata AA, Kamiński R, Paneth P, Kluz T. Isotopic Composition of C, N, and S as an Indicator of Endometrial Cancer. Cancers (Basel) 2024; 16:3169. [PMID: 39335141 PMCID: PMC11430076 DOI: 10.3390/cancers16183169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES The metabolic pathway of cancerous tissue differs from healthy tissue, leading to the unique isotopic composition of stable isotopes at their natural abundance. We have studied if these changes can be developed into diagnostic or prognostic tools in the case of endometrial cancer. METHODS Measurements of stable isotope ratios were performed using isotope ratio mass spectrometry for nitrogen, carbon, and sulfur isotopic assessment. Uterine tissue and serum samples were collected from patients and the control group. RESULTS At a natural abundance, the isotopic compositions of all three of the studied elements of uterus cancerous and healthy tissues are different. However, no correlation of the isotopic composition of the tissues with that of serum was found. CONCLUSIONS Differences in the isotopic composition of the tissues might be a potential prognostic tool. However, the lack of a correlation between the differences in the isotopic composition of the tissues and serum seems to exclude their application as diagnostic biomarkers, which, however, might be possible if a position-specific isotopic analysis is performed.
Collapse
Affiliation(s)
- Tomasz Zuzak
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, Szopena 2, 35-055 Rzeszow, Poland
| | - Anna Bogaczyk
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, Szopena 2, 35-055 Rzeszow, Poland
| | - Agnieszka Anna Krata
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Rafał Kamiński
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, Szopena 2, 35-055 Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| |
Collapse
|
6
|
Kandalgaonkar MR, Kumar V, Vijay‐Kumar M. Digestive dynamics: Unveiling interplay between the gut microbiota and the liver in macronutrient metabolism and hepatic metabolic health. Physiol Rep 2024; 12:e16114. [PMID: 38886098 PMCID: PMC11182692 DOI: 10.14814/phy2.16114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Although the liver is the largest metabolic organ in the body, it is not alone in functionality and is assisted by "an organ inside an organ," the gut microbiota. This review attempts to shed light on the partnership between the liver and the gut microbiota in the metabolism of macronutrients (i.e., proteins, carbohydrates, and lipids). All nutrients absorbed by the small intestines are delivered to the liver for further metabolism. Undigested food that enters the colon is metabolized further by the gut microbiota that produces secondary metabolites, which are absorbed into portal circulation and reach the liver. These microbiota-derived metabolites and co-metabolites include ammonia, hydrogen sulfide, short-chain fatty acids, secondary bile acids, and trimethylamine N-oxide. Further, the liver produces several compounds, such as bile acids that can alter the gut microbial composition, which can in turn influence liver health. This review focuses on the metabolism of these microbiota metabolites and their influence on host physiology. Furthermore, the review briefly delineates the effect of the portosystemic shunt on the gut microbiota-liver axis, and current understanding of the treatments to target the gut microbiota-liver axis.
Collapse
Affiliation(s)
- Mrunmayee R. Kandalgaonkar
- Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| | - Virender Kumar
- College of Pharmacy and Pharmaceutical SciencesUniversity of ToledoToledoOhioUSA
| | - Matam Vijay‐Kumar
- Department of Physiology and PharmacologyUniversity of Toledo College of Medicine and Life SciencesToledoOhioUSA
| |
Collapse
|
7
|
Fu H, Wu S, Shen H, Luo K, Huang Z, Lu N, Li Y, Lan Q, Xian Y. Glutamine Metabolism Heterogeneity in Glioblastoma Unveils an Innovative Combination Therapy Strategy. J Mol Neurosci 2024; 74:52. [PMID: 38724832 DOI: 10.1007/s12031-024-02201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/12/2024] [Indexed: 07/20/2024]
Abstract
Treatment of glioblastoma multiforme (GBM) remains challenging. Unraveling the orchestration of glutamine metabolism may provide a novel viewpoint on GBM therapy. The study presented a full and comprehensive comprehending of the glutamine metabolism atlas and heterogeneity in GBM for facilitating the development of a more effective therapeutic choice. Transcriptome data from large GBM cohorts were integrated in this study. A glutamine metabolism-based classification was established through consensus clustering approach, and a classifier by LASSO analysis was defined for differentiating the classification. Prognosis, signaling pathway activity, tumor microenvironment, and responses to immune checkpoint blockade (ICB) and small molecular drugs were characterized in each cluster. A combinational therapy of glutaminase inhibitor CB839 with dihydroartemisinin (DHA) was proposed, and the influence on glutamine metabolism, apoptosis, reactive oxygen species (ROS), and migration was measured in U251 and U373 cells. We discovered that GBM presented heterogeneous glutamine metabolism-based clusters, with unique survival outcomes, activity of signaling pathways, tumor microenvironment, and responses to ICB and small molecular compounds. In addition, the classifier could accurately differentiate the two clusters. Strikingly, the combinational therapy of CB839 with DHA synergistically attenuated glutamine metabolism, triggered apoptosis and ROS accumulation, and impaired migrative capacity in GBM cells, demonstrating the excellent preclinical efficacy. Altogether, our findings unveil the glutamine metabolism heterogeneity in GBM and propose an innovative combination therapy of CB839 with DHA for this malignant disease.
Collapse
Affiliation(s)
- Huangde Fu
- Department of Neurosurgery, The Second Nanning People's Hospital, Nanning, Guangxi, 530031, China.
- Department of Neurosurgery, The Third Nanning People's Hospital, Nanning, Guangxi, 530005, China.
| | - Shengtian Wu
- Department of Neurosurgery, The Second Nanning People's Hospital, Nanning, Guangxi, 530031, China
| | - Hechun Shen
- Department of Neurosurgery, The Second Nanning People's Hospital, Nanning, Guangxi, 530031, China
| | - Kai Luo
- Department of Neurosurgery, The Second Nanning People's Hospital, Nanning, Guangxi, 530031, China
| | - Zhongxiang Huang
- Department of Pathology, The Second Nanning People's Hospital, Nanning, Guangxi, 530031, China
| | - Nankun Lu
- Department of Neurosurgery, The Second Nanning People's Hospital, Nanning, Guangxi, 530031, China
| | - Yaolin Li
- Department of Neurosurgery, The Second Nanning People's Hospital, Nanning, Guangxi, 530031, China
| | - Qian Lan
- Department of Laboratory, The Second Nanning People's Hospital, Nanning, Guangxi, 530031, China
| | - Yishun Xian
- Department of Neurosurgery, The Second Nanning People's Hospital, Nanning, Guangxi, 530031, China
| |
Collapse
|
8
|
Fan Y, Xue H, Li Z, Huo M, Gao H, Guan X. Exploiting the Achilles' heel of cancer: disrupting glutamine metabolism for effective cancer treatment. Front Pharmacol 2024; 15:1345522. [PMID: 38510646 PMCID: PMC10952006 DOI: 10.3389/fphar.2024.1345522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Cancer cells have adapted to rapid tumor growth and evade immune attack by reprogramming their metabolic pathways. Glutamine is an important nitrogen resource for synthesizing amino acids and nucleotides and an important carbon source in the tricarboxylic acid (TCA) cycle and lipid biosynthesis pathway. In this review, we summarize the significant role of glutamine metabolism in tumor development and highlight the vulnerabilities of targeting glutamine metabolism for effective therapy. In particular, we review the reported drugs targeting glutaminase and glutamine uptake for efficient cancer treatment. Moreover, we discuss the current clinical test about targeting glutamine metabolism and the prospective direction of drug development.
Collapse
Affiliation(s)
- Yuxin Fan
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Han Xue
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Zhimin Li
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Mingge Huo
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Hongxia Gao
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
| | - Xingang Guan
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| |
Collapse
|
9
|
McPhedran SJ, Carleton GA, Lum JJ. Metabolic engineering for optimized CAR-T cell therapy. Nat Metab 2024; 6:396-408. [PMID: 38388705 DOI: 10.1038/s42255-024-00976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
The broad effectiveness of T cell-based therapy for treating solid tumour cancers remains limited. This is partly due to the growing appreciation that immune cells must inhabit and traverse a metabolically demanding tumour environment. Accordingly, recent efforts have centred on using genome-editing technologies to augment T cell-mediated cytotoxicity by manipulating specific metabolic genes. However, solid tumours exhibit numerous characteristics restricting immune cell-mediated cytotoxicity, implying a need for metabolic engineering at the pathway level rather than single gene targets. This emerging concept has yet to be put into clinical practice as many questions concerning the complex interplay between metabolic networks and T cell function remain unsolved. This Perspective will highlight key foundational studies that examine the relevant metabolic pathways required for effective T cell cytotoxicity and persistence in the human tumour microenvironment, feasible strategies for metabolic engineering to increase the efficiency of chimeric antigen receptor T cell-based approaches, and the challenges lying ahead for clinical implementation.
Collapse
Affiliation(s)
- Sarah J McPhedran
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Gillian A Carleton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
10
|
Redolfi-Bristol D, Mangiameli A, Yamamoto K, Marin E, Zhu W, Mazda O, Riello P, Pezzotti G. Ammonia Toxicity and Associated Protein Oxidation: A Single-Cell Surface Enhanced Raman Spectroscopy Study. Chem Res Toxicol 2024; 37:117-125. [PMID: 38146714 PMCID: PMC10792663 DOI: 10.1021/acs.chemrestox.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Ammonia (NH3) is a commonly used industrial chemical to which exposure at high concentrations can result in severe skin damage. Moreover, high levels of ammonia in the human body can lead to hyperammonemia conditions and enhanced cancer metabolism. In this work, the toxicity mechanism of NH3 has been studied against human dermal fibroblast (HDF) cells using surface-enhanced Raman spectroscopy (SERS). For this purpose, gold nanoparticles of size 50 nm have been prepared and used as probes for Raman signal enhancement, after being internalized inside HDF cells. Following the exposure to ammonia, HDF cells showed a significant variation in the protein ternary structure's signals, demonstrating their denaturation and oxidation process, together with early signs of apoptosis. Meaningful changes were observed especially in the Raman vibrations of sulfur-containing amino acids (cysteine and methionine) together with aromatic residues. Fluorescence microscopy revealed the formation of reactive oxygen and nitrogen species in cells, which confirmed their stressed condition and to whom the causes of protein degradation can be attributed. These findings can provide new insights into the mechanism of ammonia toxicity and protein oxidation at a single-cell level, demonstrating the high potential of the SERS technique in investigating the cellular response to toxic compounds.
Collapse
Affiliation(s)
- Davide Redolfi-Bristol
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Dipartimento
di Scienze Molecolari e Nanosistemi, Università
Ca’ Foscari di Venezia, Via Torino 155, Venezia 30172, Italia
| | - Alessandro Mangiameli
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Dipartimento
di Scienze Molecolari e Nanosistemi, Università
Ca’ Foscari di Venezia, Via Torino 155, Venezia 30172, Italia
| | - Kenta Yamamoto
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Wenliang Zhu
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Osam Mazda
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Pietro Riello
- Dipartimento
di Scienze Molecolari e Nanosistemi, Università
Ca’ Foscari di Venezia, Via Torino 155, Venezia 30172, Italia
| | - Giuseppe Pezzotti
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department
of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hiraka-ta, Osaka 573-1010, Japan
- Department
of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department
of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department
of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca
degli Abruzzi 24, Torino 10129, Italy
- Dipartimento
di Scienze Molecolari e Nanosistemi, Università
Ca’ Foscari di Venezia, Via Torino 155, Venezia 30172, Italia
| |
Collapse
|
11
|
Sari D, Gozuacik D, Akkoc Y. Role of autophagy in cancer-associated fibroblast activation, signaling and metabolic reprograming. Front Cell Dev Biol 2024; 11:1274682. [PMID: 38234683 PMCID: PMC10791779 DOI: 10.3389/fcell.2023.1274682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
Tumors not only consist of cancerous cells, but they also harbor several normal-like cell types and non-cellular components. cancer-associated fibroblasts (CAFs) are one of these cellular components that are found predominantly in the tumor stroma. Autophagy is an intracellular degradation and quality control mechanism, and recent studies provided evidence that autophagy played a critical role in CAF formation, metabolic reprograming and tumor-stroma crosstalk. Therefore, shedding light on the autophagy and its role in CAF biology might help us better understand the roles of CAFs and the TME in cancer progression and may facilitate the exploitation of more efficient cancer diagnosis and treatment. Here, we provide an overview about the involvement of autophagy in CAF-related pathways, including transdifferentiation and activation of CAFs, and further discuss the implications of targeting tumor stroma as a treatment option.
Collapse
Affiliation(s)
- Dyana Sari
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Department of Medical Biology, School of Medicine, Koç University, Istanbul, Türkiye
- Department of Biotechnology, SUNUM Nanotechnology Research and Application Center, Istanbul, Türkiye
| | - Yunus Akkoc
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| |
Collapse
|
12
|
Elmetwalli A, Nageh A, Youssef AI, Youssef M, Ahmed MAER, Noreldin AE, El-Sewedy T. Ammonia scavenger and glutamine synthetase inhibitors cocktail in targeting mTOR/β-catenin and MMP-14 for nitrogen homeostasis and liver cancer. Med Oncol 2023; 41:38. [PMID: 38157146 DOI: 10.1007/s12032-023-02250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/12/2023] [Indexed: 01/03/2024]
Abstract
The glutamine synthetase (GS) facilitates cancer cell growth by catalyzing de novo glutamine synthesis. This enzyme removes ammonia waste from the liver following the urea cycle. Since cancer development is associated with dysregulated urea cycles, there has been no investigation of GS's role in ammonia clearance. Here, we demonstrate that, although GS expression is increased in the setting of β-catenin oncogenic activation, it is insufficient to clear the ammonia waste burden due to the dysregulated urea cycle and may thus be unable to prevent cancer formation. In vivo study, a total of 165 male Swiss albino mice allocated in 11 groups were used, and liver cancer was induced by p-DAB. The activity of GS was evaluated along with the relative expression of mTOR, β-catenin, MMP-14, and GS genes in liver samples and HepG2 cells using qRT-PCR. Moreover, the cytotoxicity of the NH3 scavenger phenyl acetate (PA) and/or GS-inhibitor L-methionine sulfoximine (MSO) and the migratory potential of cells was assessed by MTT and wound healing assays, respectively. The Swiss target prediction algorithm was used to screen the mentioned compounds for probable targets. The treatment of the HepG2 cell line with PA plus MSO demonstrated strong cytotoxicity. The post-scratch remaining wound area (%) in the untreated HepG2 cells was 2.0%. In contrast, the remaining wound area (%) in the cells treated with PA, MSO, and PA + MSO for 48 h was 61.1, 55.8, and 78.5%, respectively. The combination of the two drugs had the greatest effect, resulting in the greatest decrease in the GS activity, β-catenin, and mTOR expression. MSO and PA are both capable of suppressing mTOR, a key player in the development of HCC, and MMP-14, a key player in the development of HCC. PA inhibited the MMP-14 enzyme more effectively than MSO, implying that PA might be a better way to target HCC as it inhibited MMP-14 more effectively than MSO. A large number of abnormal hepatocytes (5%) were found to be present in the HCC mice compared to mice in the control group as determined by the histopathological lesions scores. In contrast, PA, MSO, and PA + MSO showed a significant reduction in the hepatic lesions score either when protecting the liver or when treating the liver. The molecular docking study indicated that PA and MSO form a three-dimensional structure with NF-κB and COX-II, blocking their ability to promote cancer and cause gene mutations. PA and MSO could be used to manipulate GS activities to modulate ammonia levels, thus providing a potential treatment for ammonia homeostasis.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Aly Nageh
- Fertility and Assisted Reproductive Techniques Unit, International Teaching Hospital, Tanta University, Tanta, Egypt
| | - Amany I Youssef
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Magda Youssef
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed Abd El-Rahman Ahmed
- Department of Clinical Pathology, Military Medical Academy, Alexandria Armed Forces Hospitals, Alexandria, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Rojas L, Pardo-Rodriguez D, Urueña C, Lasso P, Arévalo C, Cala MP, Fiorentino S. Effect of Petiveria alliacea Extracts on Metabolism of K562 Myeloid Leukemia Cells. Int J Mol Sci 2023; 24:17418. [PMID: 38139247 PMCID: PMC10743714 DOI: 10.3390/ijms242417418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Previously, studies have shown that leukemic cells exhibit elevated glycolytic metabolism and oxidative phosphorylation in comparison to hematopoietic stem cells. These metabolic processes play a crucial role in the growth and survival of leukemic cells. Due to the metabolic plasticity of tumor cells, the use of natural products has been proposed as a therapeutic alternative due to their ability to attack several targets in tumor cells, including those that could modulate metabolism. In this study, the potential of Petiveria alliacea to modulate the metabolism of K562 cell lysates was evaluated by non-targeted metabolomics. Initially, in vitro findings showed that P. alliacea reduces K562 cell proliferation; subsequently, alterations were observed in the endometabolome of cell lysates treated with the extract, mainly in glycolytic, phosphorylative, lipid, and amino acid metabolism. Finally, in vitro assays were performed, confirming that P. Alliacea extract decreased the oxygen consumption rate and intracellular ATP. These results suggest that the anti-tumor activity of the aqueous extract on the K562 cell line is attributed to the decrease in metabolites related to cell proliferation and/or growth, such as nucleotides and nucleosides, leading to cell cycle arrest. Our results provide a preliminary part of the mechanism for the anti-tumor and antiproliferative effects of P. alliacea on cancer.
Collapse
Affiliation(s)
- Laura Rojas
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110211, Colombia; (L.R.); (C.U.); (P.L.); (C.A.)
| | - Daniel Pardo-Rodriguez
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá 111711, Colombia;
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110211, Colombia; (L.R.); (C.U.); (P.L.); (C.A.)
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110211, Colombia; (L.R.); (C.U.); (P.L.); (C.A.)
| | - Cindy Arévalo
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110211, Colombia; (L.R.); (C.U.); (P.L.); (C.A.)
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vicepresidency for Research, Universidad de Los Andes, Bogotá 111711, Colombia;
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá 110211, Colombia; (L.R.); (C.U.); (P.L.); (C.A.)
| |
Collapse
|
14
|
Tang PW, Frisbie L, Hempel N, Coffman L. Insights into the tumor-stromal-immune cell metabolism cross talk in ovarian cancer. Am J Physiol Cell Physiol 2023; 325:C731-C749. [PMID: 37545409 DOI: 10.1152/ajpcell.00588.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
The ovarian cancer tumor microenvironment (TME) consists of a constellation of abundant cellular components, extracellular matrix, and soluble factors. Soluble factors, such as cytokines, chemokines, structural proteins, extracellular vesicles, and metabolites, are critical means of noncontact cellular communication acting as messengers to convey pro- or antitumorigenic signals. Vast advancements have been made in our understanding of how cancer cells adapt their metabolism to meet environmental demands and utilize these adaptations to promote survival, metastasis, and therapeutic resistance. The stromal TME contribution to this metabolic rewiring has been relatively underexplored, particularly in ovarian cancer. Thus, metabolic activity alterations in the TME hold promise for further study and potential therapeutic exploitation. In this review, we focus on the cellular components of the TME with emphasis on 1) metabolic signatures of ovarian cancer; 2) understanding the stromal cell network and their metabolic cross talk with tumor cells; and 3) how stromal and tumor cell metabolites alter intratumoral immune cell metabolism and function. Together, these elements provide insight into the metabolic influence of the TME and emphasize the importance of understanding how metabolic performance drives cancer progression.
Collapse
Affiliation(s)
- Priscilla W Tang
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Leonard Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Gynecologic Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
15
|
Nagpal S, Mande SS. Environmental insults and compensative responses: when microbiome meets cancer. Discov Oncol 2023; 14:130. [PMID: 37453005 DOI: 10.1007/s12672-023-00745-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Tumor microenvironment has recently been ascribed a new hallmark-the polymorphic microbiome. Accumulating evidence regarding the tissue specific territories of tumor-microbiome have opened new and interesting avenues. A pertinent question is regarding the functional consequence of the interface between host-microbiome and cancer. Given microbial communities have predominantly been explored through an ecological perspective, it is important that the foundational aspects of ecological stress and the fight to 'survive and thrive' are accounted for tumor-micro(b)environment as well. Building on existing evidence and classical microbial ecology, here we attempt to characterize the ecological stresses and the compensative responses of the microorganisms inside the tumor microenvironment. What insults would microbes experience inside the cancer jungle? How would they respond to these insults? How the interplay of stress and microbial quest for survival would influence the fate of tumor? This work asks these questions and tries to describe this underdiscussed ecological interface of the tumor and its microbiota. It is hoped that a larger scientific thought on the importance of microbial competition sensing vis-à-vis tumor-microenvironment would be stimulated.
Collapse
Affiliation(s)
- Sunil Nagpal
- TCS Research, Tata Consultancy Services Ltd, Pune, 411013, India.
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sharmila S Mande
- TCS Research, Tata Consultancy Services Ltd, Pune, 411013, India.
| |
Collapse
|
16
|
Nihashi Y, Song X, Yamamoto M, Setoyama D, Kida YS. Decoding Metabolic Symbiosis between Pancreatic Cancer Cells and Cancer-Associated Fibroblasts Using Cultured Tumor Microenvironment. Int J Mol Sci 2023; 24:11015. [PMID: 37446193 DOI: 10.3390/ijms241311015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a poor prognosis, largely due to its unique tumor microenvironment (TME) and dense fibrotic stroma. Cancer-associated fibroblasts (CAFs) play a crucial role in promoting tumor growth and metastasis, contributing to the metabolic adaptation of PDAC cells. However, the metabolic interactions between PDAC cells and CAFs are not well-understood. In this study, an in vitro co-culture model was used to investigate these metabolic interactions. Metabolomic analysis was performed under monoculture conditions of Capan-1 PDAC cells and CAF precursor cells, as well as co-culture conditions of PDAC cells and differentiated inflammatory CAF (iCAF). Co-cultured Capan-1 cells displayed significant metabolic changes, such as increased 2-oxoglutaric acid and lauric acid and decreased amino acids. The metabolic profiles of co-cultured Capan-1 and CAFs revealed differences in intracellular metabolites. Analysis of extracellular metabolites in the culture supernatant showed distinct differences between Capan-1 and CAF precursors, with the co-culture supernatant exhibiting the most significant changes. A comparison of the culture supernatants of Capan-1 and CAF precursors revealed different metabolic processes while co-culturing the two cell types demonstrated potential metabolic interactions. In conclusion, this study emphasizes the importance of metabolic interactions between cancer cells and CAFs in tumor progression and highlights the role of TME in metabolic reprogramming.
Collapse
Affiliation(s)
- Yuma Nihashi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Xiaoyu Song
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- Tsukuba Life Science Innovation Program (T-LSI), School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Kishibe-Shimmachi, Suita 564-8565, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yasuyuki S Kida
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- School of Integrative & Global Majors, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
17
|
Lathigara D, Kaushal D, Wilson RB. Molecular Mechanisms of Western Diet-Induced Obesity and Obesity-Related Carcinogenesis-A Narrative Review. Metabolites 2023; 13:metabo13050675. [PMID: 37233716 DOI: 10.3390/metabo13050675] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
The present study aims to provide a narrative review of the molecular mechanisms of Western diet-induced obesity and obesity-related carcinogenesis. A literature search of the Cochrane Library, Embase and Pubmed databases, Google Scholar and the grey literature was conducted. Most of the molecular mechanisms that induce obesity are also involved in the twelve Hallmarks of Cancer, with the fundamental process being the consumption of a highly processed, energy-dense diet and the deposition of fat in white adipose tissue and the liver. The generation of crown-like structures, with macrophages surrounding senescent or necrotic adipocytes or hepatocytes, leads to a perpetual state of chronic inflammation, oxidative stress, hyperinsulinaemia, aromatase activity, activation of oncogenic pathways and loss of normal homeostasis. Metabolic reprogramming, epithelial mesenchymal transition, HIF-1α signalling, angiogenesis and loss of normal host immune-surveillance are particularly important. Obesity-associated carcinogenesis is closely related to metabolic syndrome, hypoxia, visceral adipose tissue dysfunction, oestrogen synthesis and detrimental cytokine, adipokine and exosomal miRNA release. This is particularly important in the pathogenesis of oestrogen-sensitive cancers, including breast, endometrial, ovarian and thyroid cancer, but also 'non-hormonal' obesity-associated cancers such as cardio-oesophageal, colorectal, renal, pancreatic, gallbladder and hepatocellular adenocarcinoma. Effective weight loss interventions may improve the future incidence of overall and obesity-associated cancer.
Collapse
Affiliation(s)
- Dhruvi Lathigara
- Department General Surgery, UWS, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
| | - Devesh Kaushal
- Department General Surgery, UWS, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
| | - Robert Beaumont Wilson
- Department Upper Gastrointestinal Surgery, UNSW, Liverpool Hospital, Liverpool, NSW 2170, Australia
| |
Collapse
|
18
|
Chen Y, Zhang X, Yang H, Liang T, Bai X. The "Self-eating" of cancer-associated fibroblast: A potential target for cancer. Biomed Pharmacother 2023; 163:114762. [PMID: 37100015 DOI: 10.1016/j.biopha.2023.114762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
Autophagy helps maintain energy homeostasis and protect cells from stress effects by selectively removing misfolded/polyubiquitylated proteins, lipids, and damaged mitochondria. Cancer-associated fibroblasts (CAFs) are cellular components of tumor microenvironment (TME). Autophagy in CAFs inhibits tumor development in the early stages; however, it has a tumor-promoting effect in advanced stages. In this review, we aimed to summarize the modulators responsible for the induction of autophagy in CAFs, such as hypoxia, nutrient deprivation, mitochondrial stress, and endoplasmic reticulum stress. In addition, we aimed to present autophagy-related signaling pathways in CAFs, and role of autophagy in CAF activation, tumor progression, tumor immune microenvironment. Autophagy in CAFs may be an emerging target for tumor therapy. In summary, autophagy in CAFs is regulated by a variety of modulators and can reshape tumor immune microenvironment, affecting tumor progression and treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Jin J, Byun JK, Choi YK, Park KG. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp Mol Med 2023; 55:706-715. [PMID: 37009798 PMCID: PMC10167356 DOI: 10.1038/s12276-023-00971-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 04/04/2023] Open
Abstract
Proliferating cancer cells rely largely on glutamine for survival and proliferation. Glutamine serves as a carbon source for the synthesis of lipids and metabolites via the TCA cycle, as well as a source of nitrogen for amino acid and nucleotide synthesis. To date, many studies have explored the role of glutamine metabolism in cancer, thereby providing a scientific rationale for targeting glutamine metabolism for cancer treatment. In this review, we summarize the mechanism(s) involved at each step of glutamine metabolism, from glutamine transporters to redox homeostasis, and highlight areas that can be exploited for clinical cancer treatment. Furthermore, we discuss the mechanisms underlying cancer cell resistance to agents that target glutamine metabolism, as well as strategies for overcoming these mechanisms. Finally, we discuss the effects of glutamine blockade on the tumor microenvironment and explore strategies to maximize the utility of glutamine blockers as a cancer treatment.
Collapse
Affiliation(s)
- Jonghwa Jin
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Jun-Kyu Byun
- BK21 FOUR Community-based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, 41404, Korea.
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea.
| |
Collapse
|
20
|
Daschner PJ, Ross S, Seifried H, Kumar A, Flores R. Nutrition and Microbiome Interactions in Human Cancer. J Acad Nutr Diet 2023; 123:504-514. [PMID: 36208721 DOI: 10.1016/j.jand.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/11/2022]
Abstract
Individual physiologic responses to changes in dietary patterns can vary widely to affect cancer risk, which is driven by multiple host-specific factors (eg, genetics, epigenetics, inflammatory and metabolic states, and the colonizing microbiome). Emerging evidence indicates that diet-induced microbiota alterations are key modulators of several host functions important to tumor etiology, progression, and response to cancer therapy. Thus, diet may potentially be used to target alterations of the microbiota as an effective means to improve outcomes across the cancer continuum (from cancer prevention to tumor development and progression, to effects on treatment and survivorship). This review will focus on recent examples of functional interactions between dietary components (nutrients and non-nutrients) and the gastrointestinal microbiome, which are 2 critical and malleable environmental variables in cancer risk that affect host immune, metabolic, and cell signaling functions and may provide insights for novel cancer therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Phillip J Daschner
- Division of Cancer Biology, National Cancer Institute, Bethesda, Maryland.
| | - Sharon Ross
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Harold Seifried
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Amit Kumar
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Roberto Flores
- Office of Nutrition Research, Division of Program Coordination, Planning and Strategic Initiatives, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
21
|
Yi X, Zhang Q, Xie T, Feng S, Xu N, Lin JM. Microfluidic Mixer for In Situ Ammonia Analysis of Single Cells in Mass Spectrometry. Anal Chem 2023; 95:2321-2328. [PMID: 36656794 DOI: 10.1021/acs.analchem.2c04181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mass spectrometry (MS) is a powerful tool for exploring single-cell heterogeneity. However, due to the ultralow absolute content of most substances in a single cell, existing methods can only analyze high-content substances; conventional methods are incompetent for quantitative analysis of important trace-amount small-molecule metabolites such as ammonia and sulfide. Herein, a method integrating single-cell extraction, online derivatization, and MS for multifunctional and more accurate MS analysis is reported. For application, ammonia content in a single cell was analyzed, where the cellular heterogeneity in ammonia metabolism was revealed. First, the extraction room of a microfluidic probe was covered on the target single cell, and the extraction fluid was allowed to flow through a single cell and dissolve cellular ammonia. Then, the ammonia was mixed and reacted with the pretreatment reagent input from another inlet to achieve the derivatization and signal amplification, enhancing the analysis sensitivity on MS. Finally, the sample was sent to MS, and the ammonia content was successfully quantitatively evaluated by analyzing its derivative urotropine, demonstrating the potential of this method to advance single-cell mass spectrometry analysis to higher sensitivity.
Collapse
Affiliation(s)
- Xizhen Yi
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Tianze Xie
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Shuo Feng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Ning Xu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Bell HN, Huber AK, Singhal R, Korimerla N, Rebernick RJ, Kumar R, El-Derany MO, Sajjakulnukit P, Das NK, Kerk SA, Solanki S, James JG, Kim D, Zhang L, Chen B, Mehra R, Frankel TL, Győrffy B, Fearon ER, Pasca di Magliano M, Gonzalez FJ, Banerjee R, Wahl DR, Lyssiotis CA, Green M, Shah YM. Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer. Cell Metab 2023; 35:134-149.e6. [PMID: 36528023 PMCID: PMC9841369 DOI: 10.1016/j.cmet.2022.11.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Effective therapies are lacking for patients with advanced colorectal cancer (CRC). The CRC tumor microenvironment has elevated metabolic waste products due to altered metabolism and proximity to the microbiota. The role of metabolite waste in tumor development, progression, and treatment resistance is unclear. We generated an autochthonous metastatic mouse model of CRC and used unbiased multi-omic analyses to reveal a robust accumulation of tumoral ammonia. The high ammonia levels induce T cell metabolic reprogramming, increase exhaustion, and decrease proliferation. CRC patients have increased serum ammonia, and the ammonia-related gene signature correlates with altered T cell response, adverse patient outcomes, and lack of response to immune checkpoint blockade. We demonstrate that enhancing ammonia clearance reactivates T cells, decreases tumor growth, and extends survival. Moreover, decreasing tumor-associated ammonia enhances anti-PD-L1 efficacy. These findings indicate that enhancing ammonia detoxification can reactivate T cells, highlighting a new approach to enhance the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda K Huber
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Navyateja Korimerla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ryan J Rebernick
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Roshan Kumar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marwa O El-Derany
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Peter Sajjakulnukit
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nupur K Das
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel A Kerk
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jadyn G James
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Donghwan Kim
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon Chen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Balázs Győrffy
- Department of Bioinformatics and 2(nd) Department of Pediatrics, Semmelweis University, Budapest, Hungary; TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Eric R Fearon
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Veteran's Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Cancer-Associated Fibroblast Diversity Shapes Tumor Metabolism in Pancreatic Cancer. Cancers (Basel) 2022; 15:cancers15010061. [PMID: 36612058 PMCID: PMC9817728 DOI: 10.3390/cancers15010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Despite extensive research, the 5-year survival rate of pancreatic cancer (PDAC) patients remains at only 9%. Patients often show poor treatment response, due partly to a highly complex tumor microenvironment (TME). Cancer-associated fibroblast (CAF) heterogeneity is characteristic of the pancreatic TME, where several CAF subpopulations have been identified, such as myofibroblastic CAFs (myCAFs), inflammatory CAFs (iCAFs), and antigen presenting CAFs (apCAFs). In PDAC, cancer cells continuously adapt their metabolism (metabolic switch) to environmental changes in pH, oxygenation, and nutrient availability. Recent advances show that these environmental alterations are all heavily driven by stromal CAFs. CAFs and cancer cells exchange cytokines and metabolites, engaging in a tight bidirectional crosstalk, which promotes tumor aggressiveness and allows constant adaptation to external stress, such as chemotherapy. In this review, we summarize CAF diversity and CAF-mediated metabolic rewiring, in a PDAC-specific context. First, we recapitulate the most recently identified CAF subtypes, focusing on the cell of origin, activation mechanism, species-dependent markers, and functions. Next, we describe in detail the metabolic crosstalk between CAFs and tumor cells. Additionally, we elucidate how CAF-driven paracrine signaling, desmoplasia, and acidosis orchestrate cancer cell metabolism. Finally, we highlight how the CAF/cancer cell crosstalk could pave the way for new therapeutic strategies.
Collapse
|
24
|
Colombo M, Passarelli F, Corsetto PA, Rizzo AM, Marabese M, De Simone G, Pastorelli R, Broggini M, Brunelli L, Caiola E. NSCLC Cells Resistance to PI3K/mTOR Inhibitors Is Mediated by Delta-6 Fatty Acid Desaturase (FADS2). Cells 2022; 11:cells11233719. [PMID: 36496978 PMCID: PMC9736998 DOI: 10.3390/cells11233719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Hyperactivation of the phosphatidylinositol-3-kinase (PI3K) pathway is one of the most common events in human cancers. Several efforts have been made toward the identification of selective PI3K pathway inhibitors. However, the success of these molecules has been partially limited due to unexpected toxicities, the selection of potentially responsive patients, and intrinsic resistance to treatments. Metabolic alterations are intimately linked to drug resistance; altered metabolic pathways can help cancer cells adapt to continuous drug exposure and develop resistant phenotypes. Here we report the metabolic alterations underlying the non-small cell lung cancer (NSCLC) cell lines resistant to the usual PI3K-mTOR inhibitor BEZ235. In this study, we identified that an increased unsaturation degree of lipid species is associated with increased plasma membrane fluidity in cells with the resistant phenotype and that fatty acid desaturase FADS2 mediates the acquisition of chemoresistance. Therefore, new studies focused on reversing drug resistance based on membrane lipid modifications should consider the contribution of desaturase activity.
Collapse
Affiliation(s)
- Marika Colombo
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Federico Passarelli
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Paola A. Corsetto
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Angela M. Rizzo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giulia De Simone
- Protein and Metabolite Biomarkers Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Roberta Pastorelli
- Protein and Metabolite Biomarkers Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Correspondence: (M.B.); (L.B.)
| | - Laura Brunelli
- Protein and Metabolite Biomarkers Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Correspondence: (M.B.); (L.B.)
| | - Elisa Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| |
Collapse
|
25
|
High-efficiency 3D cell spheroid formation via the inertial focusing effect in rotating droplets. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Zhu Y, Li X, Wang L, Hong X, Yang J. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:988295. [PMID: 36046791 PMCID: PMC9421293 DOI: 10.3389/fendo.2022.988295] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
It is notorious that cancer cells alter their metabolism to adjust to harsh environments of hypoxia and nutritional starvation. Metabolic reprogramming most often occurs in the tumor microenvironment (TME). TME is defined as the cellular environment in which the tumor resides. This includes surrounding blood vessels, fibroblasts, immune cells, signaling molecules and the extracellular matrix (ECM). It is increasingly recognized that cancer cells, fibroblasts and immune cells within TME can regulate tumor progression through metabolic reprogramming. As the most significant proportion of cells among all the stromal cells that constitute TME, cancer-associated fibroblasts (CAFs) are closely associated with tumorigenesis and progression. Multitudinous studies have shown that CAFs participate in and promote tumor metabolic reprogramming and exert regulatory effects via the dysregulation of metabolic pathways. Previous studies have demonstrated that curbing the substance exchange between CAFs and tumor cells can dramatically restrain tumor growth. Emerging studies suggest that CAFs within the TME have emerged as important determinants of metabolic reprogramming. Metabolic reprogramming also occurs in the metabolic pattern of immune cells. In the meanwhile, immune cell phenotype and functions are metabolically regulated. Notably, immune cell functions influenced by metabolic programs may ultimately lead to alterations in tumor immunity. Despite the fact that multiple previous researches have been devoted to studying the interplays between different cells in the tumor microenvironment, the complicated relationship between CAFs and immune cells and implications of metabolic reprogramming remains unknown and requires further investigation. In this review, we discuss our current comprehension of metabolic reprogramming of CAFs and immune cells (mainly glucose, amino acid, and lipid metabolism) and crosstalk between them that induces immune responses, and we also highlight their contributions to tumorigenesis and progression. Furthermore, we underscore potential therapeutic opportunities arising from metabolism dysregulation and metabolic crosstalk, focusing on strategies targeting CAFs and immune cell metabolic crosstalk in cancer immunotherapy.
Collapse
Affiliation(s)
- Yifei Zhu
- School of Medicine, Southeast University, Nanjing, China
| | - Xinyan Li
- School of Medicine, Southeast University, Nanjing, China
| | - Lei Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Xiwei Hong
- School of Medicine, Southeast University, Nanjing, China
| | - Jie Yang
- Department of General surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| |
Collapse
|
27
|
Zhang Z, Xiahou Z, Wu W, Song Y. Nitrogen Metabolism Disorder Accelerates Occurrence and Development of Lung Adenocarcinoma: A Bioinformatic Analysis and In Vitro Experiments. Front Oncol 2022; 12:916777. [PMID: 35903696 PMCID: PMC9315097 DOI: 10.3389/fonc.2022.916777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Nitrogen metabolism (NM) plays a pivotal role in immune regulation and the occurrence and development of cancers. The aim of this study was to construct a prognostic model and nomogram using NM-related genes for the evaluation of patients with lung adenocarcinoma (LUAD). Methods The differentially expressed genes (DEGs) related to NM were acquired from The Cancer Genome Atlas (TCGA) database. Consistent clustering analysis was used to divide them into different modules, and differentially expressed genes and survival analysis were performed. The survival information of patients was combined with the expressing levels of NM-related genes that extracted from TCGA and Gene Expression Omnibus (GEO) databases. Subsequently, univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) regression were used to build a prognostic model. GO and KEGG analysis were elaborated in relation with the mechanisms of NM disorder (NMD). Meanwhile, immune cells and immune functions related to NMD were discussed. A nomogram was built according to the univariate and multivariate Cox analysis to identify independent risk factors. Finally, real-time fluorescent quantitative PCR (RT-PCR) and Western bolt (WB) were used to verify the expression level of hub genes. Results There were 138 differential NM-related genes that were divided into two gene modules. Sixteen NM-related genes were used to build a prognostic model and the receiver operating characteristic curve (ROC) showed that the efficiency was reliable. GO and KEGG analysis suggested that NMD accelerated development of LUAD through the Wnt signaling pathway. The level of activated dendritic cells (aDCs) and type II interferon response in the low-risk group was higher than that of the high-risk group. A nomogram was constructed based on ABCC2, HMGA2, and TN stages, which was identified as four independent risk factors. Finally, RT-PCR and WB showed that CDH17, IGF2BP1, IGFBP1, ABCC2, and HMGA2 were differently expressed between human lung fibroblast (HLF) cells and cancer cells. Conclusions High NM levels were revealed as a poor prognosis of LUAD. NMD regulates immune system through affecting aDCs and type II interferon response. The prognostic model with NM-related genes could be used to effectively evaluate the outcomes of patients.
Collapse
Affiliation(s)
- Zexin Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhikai Xiahou
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Wenfeng Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafeng Song
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- *Correspondence: Yafeng Song,
| |
Collapse
|
28
|
Poonaki E, Nickel AC, Shafiee Ardestani M, Rademacher L, Kaul M, Apartsin E, Meuth SG, Gorji A, Janiak C, Kahlert UD. CD133-Functionalized Gold Nanoparticles as a Carrier Platform for Telaglenastat (CB-839) against Tumor Stem Cells. Int J Mol Sci 2022; 23:5479. [PMID: 35628289 PMCID: PMC9141725 DOI: 10.3390/ijms23105479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
The failure of a long-lasting curative therapeutic benefit of currently applied chemotherapies against malignant cancers is suggested to be caused by the ineffectiveness of such interventions on cancer stem cells (CSCs). CD133/AC133 is a cell surface protein previously shown to have potential to identify CSCs in various tumors, including brain tumors. Moreover, an increase in the rate of cellular metabolism of glutamine and glucose are contributors to the fast cellular proliferation of some high-grade malignancies. Inhibition of glutaminolysis by utilizing pharmacological inhibitors of the enzyme glutaminase 1 (GLS1) can be an effective anti-CSC strategy. In this study, the clinical-stage GLS1 inhibitor Telaglenastat (CB-839) was loaded into PEGylated gold nanoparticles equipped with the covalently conjugated CD133 aptamer (Au-PEG-CD133-CB-839) and exposed to a collection of CD133-positive brain tumor models in vitro. Our results show that Au-PEG-CD133-CB-839 significantly decreased the viability of CD133-postive cancer cells in a dose-dependent manner, which was higher as compared to the effects of treatment of the cells with the individual components of the assembled nanodrug. Interestingly, the treatment effect was observed in glioblastoma stem cells modeling different transcriptomic subtypes of the disease. The presented platform is the fundament for subsequent target specificity characterization and in vivo application.
Collapse
Affiliation(s)
- Elham Poonaki
- Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (E.P.); (S.G.M.)
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-University, 40204 Düsseldorf, Germany; (L.R.); (M.K.)
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Faculty of Medicine, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Ann-Christin Nickel
- Clinic for Neurosurgery, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416634793, Iran;
| | - Lars Rademacher
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-University, 40204 Düsseldorf, Germany; (L.R.); (M.K.)
| | - Marilyn Kaul
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-University, 40204 Düsseldorf, Germany; (L.R.); (M.K.)
| | - Evgeny Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
- Laboratoire de Chimie de Coordination CNRS, 31400 Toulouse, France
| | - Sven G. Meuth
- Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (E.P.); (S.G.M.)
| | - Ali Gorji
- Epilepsy Research Center, Department of Neurosurgery and Department of Neurology, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 9815733169, Iran
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-University, 40204 Düsseldorf, Germany; (L.R.); (M.K.)
| | - Ulf Dietrich Kahlert
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Faculty of Medicine, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| |
Collapse
|
29
|
Natural Compounds Targeting Cancer-Associated Fibroblasts against Digestive System Tumor Progression: Therapeutic Insights. Biomedicines 2022; 10:biomedicines10030713. [PMID: 35327514 PMCID: PMC8945097 DOI: 10.3390/biomedicines10030713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are critical for cancer occurrence and progression in the tumor microenvironment (TME), due to their versatile roles in extracellular matrix remodeling, tumor–stroma crosstalk, immunomodulation, and angiogenesis. CAFs are the most abundant stromal component in the TME and undergo epigenetic modification and abnormal signaling cascade activation, such as transforming growth factor-β (TGF-β) and Wnt pathways that maintain the distinct phenotype of CAFs, which differs from normal fibroblasts. CAFs have been considered therapeutic targets due to their putative oncogenic functions. Current digestive system cancer treatment strategies often result in lower survival outcomes and fail to prevent cancer progression; therefore, comprehensive characterization of the tumor-promoting and -restraining CAF activities might facilitate the design of new therapeutic approaches. In this review, we summarize the enormous literature on natural compounds that mediate the crosstalk of CAFs with digestive system cancer cells, discuss how the biology and the multifaceted functions of CAFs contribute to cancer progression, and finally, pave the way for CAF-related antitumor therapies.
Collapse
|
30
|
Potential Metabolite Markers for Pancreatic Cancer Identified by Metabolomic Analysis of Induced Cancer-Associated Fibroblasts. Cancers (Basel) 2022; 14:cancers14061375. [PMID: 35326527 PMCID: PMC8945883 DOI: 10.3390/cancers14061375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Fibroblasts in normal tissues conduct energy metabolism via oxidative phosphorylation (OXPHOS). However, cancer-associated fibroblasts (CAFs) produce energy (i.e., ATP) via glycolysis. Nonetheless, whether intracellular metabolism transitions from OXPHOS to glycolysis when normal tissue fibroblasts differentiate into CAFs remains to be determined. Here, we established an experimental system and induced the in vitro differentiation of mesenchymal stem cells to CAFs and performed detailed metabolomic and RNA sequencing analyses. We found that the intracellular metabolic pathway was reprogrammed to the glycolytic pathway when mesenchymal stem cells were co-cultured with pancreatic cancer cells. Furthermore, we identified CAF-specific metabolites that were expressed post reprogramming. These metabolites have also been observed in pancreatic cancer mouse models, suggesting their potential as cancer biomarkers. Abstract Cancer-associated fibroblasts (CAFs) in the tumor microenvironment perform glycolysis to produce energy, i.e., ATP. Since the origin of CAFs is unidentified, it is not determined whether the intracellular metabolism transitions from oxidative phosphorylation (OXPHOS) to glycolysis when normal tissue fibroblasts differentiate into CAFs. In this study, we established an experimental system and induced the in vitro differentiation of mesenchymal stem cells (MSCs) to CAFs. Additionally, we performed metabolomic and RNA-sequencing analyses before and after differentiation to investigate changes in the intracellular metabolism. Consequently, we discovered that OXPHOS, which was the primary intracellular metabolism in MSCs, was reprogrammed to glycolysis. Furthermore, we analyzed the metabolites in pancreatic tumor tissues in a mice model. The metabolites extracted as candidates in the in vitro experiments were also detected in the in vivo experiments. Thus, we conclude that normal tissue fibroblasts that differentiate into CAFs undergo a metabolic reprogramming from OXPHOS to glycolysis. Moreover, we identified the CAF-specific metabolites expressed during metabolic reprogramming as potential future biomarkers for pancreatic cancer.
Collapse
|
31
|
Wang S, Yan Y, Xu WJ, Gong SG, Zhong XJ, An QY, Zhao YL, Liu JM, Wang L, Yuan P, Jiang R. The Role of Glutamine and Glutaminase in Pulmonary Hypertension. Front Cardiovasc Med 2022; 9:838657. [PMID: 35310969 PMCID: PMC8924297 DOI: 10.3389/fcvm.2022.838657] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Pulmonary hypertension (PH) refers to a clinical and pathophysiological syndrome in which pulmonary vascular resistance and pulmonary arterial pressure are increased due to structural or functional changes in pulmonary vasculature caused by a variety of etiologies and different pathogenic mechanisms. It is followed by the development of right heart failure and even death. In recent years, most studies have found that PH and cancer shared a complex common pathological metabolic disturbance, such as the shift from oxidative phosphorylation to glycolysis. During the shifting process, there is an upregulation of glutamine decomposition driven by glutaminase. However, the relationship between PH and glutamine hydrolysis, especially by glutaminase is yet unclear. This review aims to explore the special linking among glutamine hydrolysis, glutaminase and PH, so as to provide theoretical basis for clinical precision treatment in PH.
Collapse
Affiliation(s)
- Shang Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Wei-Jie Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Su-Gang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiu-Jun Zhong
- Department of Respiratory Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin-Yan An
- Department of Respiratory, Sijing Hospital of Songjiang District, Shanghai, China
| | - Ya-Lin Zhao
- Department of Respiratory and Critical Care Medicine, The First Hospital of Kunming, Kunming, China
| | - Jin-Ming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Ping Yuan,
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Rong Jiang,
| |
Collapse
|