1
|
Arulnangai R, Asia Thabassoom H, Vajiha Banu H, Thirugnanasambandham K, Ganesamoorthy R. Recent developments on ursolic acid and its potential biological applications. Toxicol Rep 2025; 14:101900. [PMID: 39897400 PMCID: PMC11786699 DOI: 10.1016/j.toxrep.2025.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
A naturally occurring pentacyclic triterpenoid, ursolic acid (UA) has attracted a lot of interest due to its various pharmacological characteristics and its medical uses. The goal of this thorough review is to present a thorough examination of the therapeutic benefits of UA, including its anti-inflammatory, antioxidant, anticancer, antibacterial, and metabolic-regulating properties. We go over its origins, pharmacological characteristics, and advantages in the treatment of several illnesses, including cancer, neurological disorders, metabolic disorders, and cardiovascular diseases. We further emphasize its potential to improve exercise capacity and its growing function as an exercise mimic. UA's therapeutic potential is thoroughly explained in this review, which highlights the compound's potential as a natural remedy for several illnesses.
Collapse
Affiliation(s)
- R. Arulnangai
- PG & Research Department of Chemistry, Jamal Mohamed College, Trichy, Tamil Nadu, India
| | - H. Asia Thabassoom
- PG & Research Department of Chemistry, Jamal Mohamed College, Trichy, Tamil Nadu, India
| | - H. Vajiha Banu
- PG and Research Department of Microbiology, Jamal Mohamed College, Trichy, Tamil Nadu, India
| | - K. Thirugnanasambandham
- Nammazhvar Organic Farming Research centre, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, Tamil Nadu 641 003, India
| | - R. Ganesamoorthy
- Department of Chemistry, Vinayaka Mission’s Kirupananda Variyar Arts and Science College, Salem, Tamil Nadu, India
| |
Collapse
|
2
|
López-Fitz D, Bah M, Quirino-Barreda CT, Ríos-Arellano EDL, Rodríguez-deLeón E, García-Aguilar L, Rodríguez-Martínez R. Preclinical safety studies of a SEDDS formulation of the vasorelaxing methanol extract from Crataegus rosei Eggl. leaves. Regul Toxicol Pharmacol 2025:105815. [PMID: 40164277 DOI: 10.1016/j.yrtph.2025.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
The present study aimed to assess, via acute and subacute toxicity studies, the safety of the use of the methanol extract obtained from Crataegus rosei leaves as a self-emulsifying drug delivery system (Cr-SEDDS). For the acute toxicity test, female rats were intragastrically administered single 300 and 2000 mg/kg body weight (bw) doses and followed by an observation period of 14 days. For the subacute toxicity study, female and male rats received a daily 300, 500, and 1000 mg/kg bw dose for 28 days. No decrease in food consumption, body weight, signs of apparent toxicity, or deaths were observed. Macro and microscopic necropsies were performed on the main organs, as were blood chemistry, lipidic parameters, and biometry studies. No significant differences in the levels of liver and kidney biomarkers, the levels of red and white blood cells, or structural alterations were observed in the organs of both the treated and control groups. Therefore, the results of these studies demonstrated that the Cr-SEDDS is non-toxic at repeated doses of up to 1000 mg/kg bw. These data enable the establishment of safe dose levels necessary to continue with in vivo pharmacological studies of this SEDDS for the subsequent development of a phytomedicine for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Diana López-Fitz
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, México
| | - Moustapha Bah
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, México
| | - Carlos Tomás Quirino-Barreda
- Laboratorio de Farmacia Molecular y Liberación Controlada, UIDIS, Universidad Autónoma Metropolitana, Unidad Xochimilco, CDMX, México
| | - Ericka de Los Ríos-Arellano
- Unidad de Microscopía, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, México
| | - Eloy Rodríguez-deLeón
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, México
| | - Leticia García-Aguilar
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, México
| | - Rebeca Rodríguez-Martínez
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, México
| |
Collapse
|
3
|
Shannar A, Chou PJ, Peter R, Dave PD, Patel K, Pan Y, Xu J, Sarwar MS, Kong AN. Pharmacodynamics (PD), Pharmacokinetics (PK) and PK-PD Modeling of NRF2 Activating Dietary Phytochemicals in Cancer Prevention and in Health. CURRENT PHARMACOLOGY REPORTS 2024; 11:6. [PMID: 39649473 PMCID: PMC11618211 DOI: 10.1007/s40495-024-00388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 12/10/2024]
Abstract
Purpose of Review Dietary phytochemicals, bioactive compounds derived from plants, have gained increasing attention for their potential role in cancer prevention. Among these, NRF2 (nuclear factor erythroid 2-related factor 2) activating dietary phytochemicals such as curcumin, sulforaphane, ursolic acid, and cyanidin have demonstrated significant antioxidant and anti-inflammatory properties, making them promising agents in chemoprevention. This review examines the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of these dietary phytochemicals, with a focus on their NRF2-mediated effects in cancer prevention. Recent Findings Preclinical studies have highlighted the potential of these dietary phytochemicals to modulate oxidative stress and inflammation, key drivers of carcinogenesis. We explore the complexity of their PK/PD properties, influenced by factors such as bioavailability, metabolism, and drug interactions. While most of these phytochemicals follow two compartmental PK, their anti-oxidant and anti-inflammatory effects follow the indirect response (IDR) model. Furthermore, we discuss the application of physiologically based pharmacokinetic (PBPK) modeling to simulate the behavior of these compounds in humans, providing insights for clinical translation. Summary The integration of PK-PD analysis into the development of dietary phytochemical-based therapies offers a pathway to optimize dosing strategies, enhance therapeutic efficacy, and improve safety. This review underscores the importance of these compounds as part of cancer interception strategies, particularly in the early stages of cancer development, where they may offer a natural, less toxic alternative to conventional therapies. Graphical Abstract
Collapse
Affiliation(s)
- Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Parv Dushyant Dave
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Komal Patel
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Yuxin Pan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Jiawei Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| |
Collapse
|
4
|
Fu H, Wu TH, Ma CP, Yen FL. Improving Water Solubility and Skin Penetration of Ursolic Acid through a Nanofiber Process to Achieve Better In Vitro Anti-Breast Cancer Activity. Pharmaceutics 2024; 16:1147. [PMID: 39339184 PMCID: PMC11434903 DOI: 10.3390/pharmaceutics16091147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Woman's breast cancer has always been among the top ten causes of cancer death, and nearly 2% to 5% of locally advanced breast cancers develop a fungating breast wound. Fungal breast cancer leads to skin ulcers, wound ruptures, and other bacterial infections in patients. Ursolic acid (UA), a natural pentacyclic triterpene compound, is widely distributed in many fruits. Previous studies demonstrated that UA has anti-breast cancer, antifungal, and improved wound-healing effects. UA, however, had poor water solubility and low bioavailability, restricting its clinical application. Nanofibers have the advantages of rapid dissolution, improved stability, and bioavailability of active ingredients. We had successfully prepared ursolic acid nanofibers (UANFs) and effectively improved their water solubility and skin penetration. UANFs can increase water solubility by improving the physicochemical properties, including increased surface area, intermolecular bonding with excipients, and amorphous transformation. Furthermore, UANFs had better anti-breast cancer activity than raw UA. UANFs inhibited the expression of phospho-signal transducer and activator of transcription 3 (STAT3) and phospho-extracellular regulated protein kinases (ERK)1/2, and induced cleaved caspase-3 protein expression, but had no effect on the raw UA treatment. In summary, UANFs enhanced the skin absorption of UA and improved its anti-breast cancer efficacy. We expect that UANFs can be used as an anti-breast cancer treatment and reduce the discomfort of breast cancer patients during dressing changes, but more detailed efficacy and safety trials still need to be conducted in further studies.
Collapse
Affiliation(s)
- Hsuan Fu
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Hui Wu
- Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan;
| | - Chih-Peng Ma
- Department of Radiology, Pingtung Christian Hospital, Pingtung 90059, Taiwan
| | - Feng-Lin Yen
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| |
Collapse
|
5
|
Bozzuto G, Calcabrini A, Colone M, Condello M, Dupuis ML, Pellegrini E, Stringaro A. Phytocompounds and Nanoformulations for Anticancer Therapy: A Review. Molecules 2024; 29:3784. [PMID: 39202863 PMCID: PMC11357218 DOI: 10.3390/molecules29163784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is a complex disease that affects millions of people and remains a major public health problem worldwide. Conventional cancer treatments, including surgery, chemotherapy, immunotherapy, and radiotherapy, have limited achievements and multiple drawbacks, among which are healthy tissue damage and multidrug-resistant phenotype onset. Increasing evidence shows that many plants' natural products, as well as their bioactive compounds, have promising anticancer activity and exhibit minimal toxicity compared to conventional anticancer drugs. However, their widespread use in cancer therapy is severely restricted by limitations in terms of their water solubility, absorption, lack of stability, bioavailability, and selective targeting. The use of nanoformulations for plants' natural product transportation and delivery could be helpful in overcoming these limitations, thus enhancing their therapeutic efficacy and providing the basis for improved anticancer treatment strategies. The present review is aimed at providing an update on some phytocompounds (curcumin, resveratrol, quercetin, and cannabinoids, among others) and their main nanoformulations showing antitumor activities, both in vitro and in vivo, against such different human cancer types as breast and colorectal cancer, lymphomas, malignant melanoma, glioblastoma multiforme, and osteosarcoma. The intracellular pathways underlying phytocompound anticancer activity and the main advantages of nanoformulation employment are also examined. Finally, this review critically analyzes the research gaps and limitations causing the limited success of phytocompounds' and nanoformulations' clinical translation.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Annarica Calcabrini
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Condello
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Evelin Pellegrini
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| |
Collapse
|
6
|
Similie D, Minda D, Bora L, Kroškins V, Lugiņina J, Turks M, Dehelean CA, Danciu C. An Update on Pentacyclic Triterpenoids Ursolic and Oleanolic Acids and Related Derivatives as Anticancer Candidates. Antioxidants (Basel) 2024; 13:952. [PMID: 39199198 PMCID: PMC11351203 DOI: 10.3390/antiox13080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer is a global health problem, with the incidence rate estimated to reach 40% of the population by 2030. Although there are currently several therapeutic methods, none of them guarantee complete healing. Plant-derived natural products show high therapeutic potential in the management of various types of cancer, with some of them already being used in current practice. Among different classes of phytocompounds, pentacyclic triterpenoids have been in the spotlight of research on this topic. Ursolic acid (UA) and its structural isomer, oleanolic acid (OA), represent compounds intensively studied and tested in vitro and in vivo for their anticancer and chemopreventive properties. Since natural compounds can rarely be used in practice as such due to their characteristic physico-chemical properties, to tackle this problem, their derivatization has been attempted, obtaining compounds with improved solubility, absorption, stability, effectiveness, and reduced toxicity. This review presents various UA and OA derivatives that have been synthesized and evaluated in recent studies for their anticancer potential. It can be observed that the most frequent structural transformations were carried out at the C-3, C-28, or both positions simultaneously. It has been demonstrated that conjugation with heterocycles or cinnamic acid, derivatization as hydrazide, or transforming OH groups into esters or amides increases anticancer efficacy.
Collapse
Affiliation(s)
- Diana Similie
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Vladislavs Kroškins
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Jevgeņija Lugiņina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Cristina Adriana Dehelean
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
7
|
Chauhan A, Pathak VM, Yadav M, Chauhan R, Babu N, Chowdhary M, Ranjan A, Mathkor DM, Haque S, Tuli HS, Ramniwas S, Yadav V. Role of ursolic acid in preventing gastrointestinal cancer: recent trends and future perspectives. Front Pharmacol 2024; 15:1405497. [PMID: 39114347 PMCID: PMC11303223 DOI: 10.3389/fphar.2024.1405497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024] Open
Abstract
Gastrointestinal malignancies are one of the major worldwide health concerns. In the present review, we have assessed the plausible therapeutic implication of Ursolic Acid (UA) against gastrointestinal cancer. By modulating several signaling pathways critical in cancer development, UA could offer anti-inflammatory, anti-proliferative, and anti-metastatic properties. However, being of low oral bioavailability and poor permeability, its clinical value is restricted. To deliver and protect the drug, liposomes and polymer micelles are two UA nanoformulations that can effectively increase medicine stability. The use of UA for treating cancers is safe and appropriate with low toxicity characteristics and a predictable pharmacokinetic profile. Although the bioavailability of UA is limited, its nanoformulations could emerge as an alternative to enhance its efficacy in treating GI cancers. Further optimization and validation in the clinical trials are necessary. The combination of molecular profiling with nanoparticle-based drug delivery technologies holds the potential for bringing UA to maximum efficacy, looking for good prospects with GI cancer treatment.
Collapse
Affiliation(s)
- Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | | | - Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Neelesh Babu
- Department of Microbiology, Baba Farid Institute of Technology, Dehradun, Uttarakhand, India
| | - Manish Chowdhary
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
8
|
Yang X, Liang B, Zhang L, Zhang M, Ma M, Qing L, Yang H, Huang G, Zhao J. Ursolic acid inhibits the proliferation of triple‑negative breast cancer stem‑like cells through NRF2‑mediated ferroptosis. Oncol Rep 2024; 52:94. [PMID: 38847277 PMCID: PMC11184361 DOI: 10.3892/or.2024.8753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid that has been found in a broad variety of fruits, spices and medicinal plants, has various biological effects such as reducing inflammation, protecting cells from damage, and preserving brain function. However, its impact on ferroptosis in cancer stem‑like cells remains unexplored. The present study investigated the effect of UA on MDA‑MB‑231 and BT‑549 cell‑derived triple‑negative breast CSCs (BCSCs) and its potential ferroptosis pathway. The effects of ferroptosis on BCSCs were demonstrated by the detection of ferroptosis‑related indexes including the intracellular level of glutathione, malondialdehyde, reactive oxygen species and iron. The effects of UA on the biological behaviors of BCSCs were analyzed by Cell Counting Kit‑8, stemness indexes detection and mammosphere formation assay. The mechanism of UA induction on BCSCs was explored by reverse transcription‑quantitative PCR and western blotting. BALB/c‑nude mice were subcutaneously injected with MDA‑MB‑231‑derived BCSCs to establish xenograft models to detect the effects of UA in vivo. The results revealed that BCSCs have abnormal iron metabolism and are less susceptible to ferroptosis. UA effectively reduces the stemness traits and proliferation of BCSCs in spheroids and mice models by promoting ferroptosis. It was observed that UA stabilizes Kelch‑like ECH‑associated protein 1 and suppresses nuclear factor erythroid‑related factor 2 (NRF2) activation. These findings suggested that the ability of UA to trigger ferroptosis through the inhibition of the NRF2 pathway could be a promising approach for treating BCSCs, potentially addressing metastasis and drug resistance in triple‑negative breast cancer (TNBC). This expands the clinical applications of UA and provides a theoretical basis for its use in TNBC treatment.
Collapse
Affiliation(s)
- Xinhua Yang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Lisha Zhang
- The Preparation Center, Nanchang Hongdu Hospital of TCM, Nanchang, Jiangxi 330013, P.R. China
| | - Mingzhu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Ming Ma
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Lijuan Qing
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| | - Jian Zhao
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
- Shanghai Key Laboratory of Molecular Imaging, Jiading Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China
| |
Collapse
|
9
|
Pushpa Ragini S, Dyett BP, Sarkar S, Zhai J, White JF, Banerjee R, Drummond CJ, Conn CE. A systematic study of the effect of lipid architecture on cytotoxicity and cellular uptake of cationic cubosomes. J Colloid Interface Sci 2024; 663:82-93. [PMID: 38394820 DOI: 10.1016/j.jcis.2024.02.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
HYPOTHESIS Lipid nanoparticles containing a cationic lipid are increasingly used in drug and gene delivery as they can display improved cellular uptake, enhanced loading for anionic cargo such as siRNA and mRNA or exhibit additional functionality such as cytotoxicity against cancer cells. This research study tests the hypothesis that the molecular structure of the cationic lipid influences the structure of the lipid nanoparticle, the cellular uptake, and the resultant cytotoxicity. EXPERIMENTS Three potentially cytotoxic cationic lipids, with systematic variations to the hydrophobic moiety, were designed and synthesised. All the three cationic lipids synthesised contain pharmacophores such as the bicyclic coumarin group (CCA12), the tricyclic etodolac moiety (ETD12), or the large pentacyclic triterpenoid "ursolic" group (U12) conjugated to a quaternary ammonium cationic lipid containing twin C12 chains. The cationic lipids were doped into monoolein cubosomes at a range of concentrations from 0.1 mol% to 5 mol% and the effect of the lipid molecular architecture on the cubosome phase behaviour was assessed using a combination of Small Angle X-Ray Scattering (SAXS), Dynamic Light Scattering (DLS), zeta-potential and cryo-Transmission Electron Microscopy (Cryo-TEM). The resulting cytotoxicity of these particles against a range of cancerous and non-cancerous cell-lines was assessed, along with their cellular uptake. FINDINGS The molecular architecture of the cationic lipid was linked to the internal nanostructure of the resulting cationic cubosomes with a transition to more curved cubic and hexagonal phases generally observed. Cubosomes formed from the cationic lipid CCA12 were found to have improved cellular uptake and significantly higher cytotoxicity than the cationic lipids ETD12 and U12 against the gastric cancer cell-line (AGS) at lipid concentrations ≥ 75 µg/mL. CCA12 cationic cubosomes also displayed reasonable cytotoxicity against the prostate cancer PC-3 cell-line at lipid concentrations ≥ 100 µg/mL. In contrast, 2.5 mol% ETD12 and 2.5 mol% U12 cubosomes were generally non-toxic against both cancerous and non-cancerous cell lines over the entire concentration range tested. The molecular architecture of the cationic lipid was found to influence the cubosome phase behaviour, the cellular uptake and the toxicity although further studies are necessary to determine the exact relationship between structure and cellular uptake across a range of cell lines.
Collapse
Affiliation(s)
- S Pushpa Ragini
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Brendan P Dyett
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Sampa Sarkar
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jiali Zhai
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jacinta F White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Rajkumar Banerjee
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Calum J Drummond
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia.
| | - Charlotte E Conn
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia.
| |
Collapse
|
10
|
Wang Z, Yang L. Natural-product-based, carrier-free, noncovalent nanoparticles for tumor chemo-photodynamic combination therapy. Pharmacol Res 2024; 203:107150. [PMID: 38521285 DOI: 10.1016/j.phrs.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Cancer, with its diversity, heterogeneity, and complexity, is a significant contributor to global morbidity, disability, and mortality, highlighting the necessity for transformative treatment approaches. Photodynamic therapy (PDT) has aroused continuous interest as a viable alternative to conventional cancer treatments that encounter drug resistance. Nanotechnology has brought new advances in medicine and has shown great potential in drug delivery and cancer treatment. For precise and efficient therapeutic utilization of such a tumor therapeutic approach with high spatiotemporal selectivity and minimal invasiveness, the carrier-free noncovalent nanoparticles (NPs) based on chemo-photodynamic combination therapy is essential. Utilizing natural products as the foundation for nanodrug development offers unparalleled advantages, including exceptional pharmacological activity, easy functionalization/modification, and well biocompatibility. The natural-product-based, carrier-free, noncovalent NPs revealed excellent synergistic anticancer activity in comparison with free photosensitizers and free bioactive natural products, representing an alternative and favorable combination therapeutic avenue to improve therapeutic efficacy. Herein, a comprehensive summary of current strategies and representative application examples of carrier-free noncovalent NPs in the past decade based on natural products (such as paclitaxel, 10-hydroxycamptothecin, doxorubicin, etoposide, combretastatin A4, epigallocatechin gallate, and curcumin) for tumor chemo-photodynamic combination therapy. We highlight the insightful design and synthesis of the smart carrier-free NPs that aim to enhance PDT efficacy. Meanwhile, we discuss the future challenges and potential opportunities associated with these NPs to provide new enlightenment, spur innovative ideas, and facilitate PDT-mediated clinical transformation.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
11
|
Herman H, Rata DM, Cadinoiu AN, Atanase LI, Hermenean A. Colloidal and Biological Characterization of Dual Drug-Loaded Smart Micellar Systems. Polymers (Basel) 2024; 16:1189. [PMID: 38732658 PMCID: PMC11085147 DOI: 10.3390/polym16091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Smart polymeric micelles (PMs) are of great interest in drug delivery owing to their low critical micellar concentration and sizes. In the present study, two different pH-sensitive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) copolymer samples were used for the encapsulation of paclitaxel (PTX), ursolic acid (UA), and dual loading of PTX and UA. Based on the molecular features of copolymers, spherical PMs with sizes of around 35 nm and 140 nm were obtained by dialysis for P2VP55-b-PEO284 and P2VP274-b-PEO1406 samples, respectively. The micellar sizes increased after loading of both drugs. Moreover, drug encapsulation and loading efficiencies varied from 53 to 94% and from 3.2 to 18.7% as a function of the copolymer/drug ratio, molar mass of copolymer sample, and drug type. By FT-IR spectroscopy, it was possible to demonstrate the drug loading and the presence of some interactions between the polymer matrix and loaded drugs. In vitro viability was studied on 4T1 mammary carcinoma mouse cells as a function of time and concentration of drug-loaded PMs. UA-PMs and free PMs alone were not effective in inhibiting the tumor cell growth whereas a viability of 40% was determined for cells treated with both PTX- and PTX/UA-loaded PMs. A synergic effect was noticed for PTX/UA-loaded PMs.
Collapse
Affiliation(s)
- Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University, Rebreanu Street, No. 86, 310414 Arad, Romania; (H.H.); (A.H.)
| | - Delia M. Rata
- Faculty of Medicine, “Apollonia” University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania; (D.M.R.); (A.N.C.)
| | - Anca N. Cadinoiu
- Faculty of Medicine, “Apollonia” University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania; (D.M.R.); (A.N.C.)
| | - Leonard I. Atanase
- Faculty of Medicine, “Apollonia” University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania; (D.M.R.); (A.N.C.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University, Rebreanu Street, No. 86, 310414 Arad, Romania; (H.H.); (A.H.)
| |
Collapse
|
12
|
Guo NJ, Wang B, Zhang Y, Kang HQ, Nie HQ, Feng MK, Zhang XY, Zhao LJ, Wang N, Liu HM, Zheng YC, Li W, Gao Y. USP7 as an emerging therapeutic target: A key regulator of protein homeostasis. Int J Biol Macromol 2024; 263:130309. [PMID: 38382779 DOI: 10.1016/j.ijbiomac.2024.130309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Maintaining protein balance within a cell is essential for proper cellular function, and disruptions in the ubiquitin-proteasome pathway, which is responsible for degrading and recycling unnecessary or damaged proteins, can lead to various diseases. Deubiquitinating enzymes play a vital role in regulating protein homeostasis by removing ubiquitin chains from substrate proteins, thereby controlling important cellular processes, such as apoptosis and DNA repair. Among these enzymes, ubiquitin-specific protease 7 (USP7) is of particular interest. USP7 is a cysteine protease consisting of a TRAF region, catalytic region, and C-terminal ubiquitin-like (UBL) region, and it interacts with tumor suppressors, transcription factors, and other key proteins involved in cell cycle regulation and epigenetic control. Moreover, USP7 has been implicated in the pathogenesis and progression of various diseases, including cancer, inflammation, neurodegenerative conditions, and viral infections. Overall, characterizing the functions of USP7 is crucial for understanding the pathophysiology of diverse diseases and devising innovative therapeutic strategies. This article reviews the structure and function of USP7 and its complexes, its association with diseases, and its known inhibitors and thus represents a valuable resource for advancing USP7 inhibitor development and promoting potential future treatment options for a wide range of diseases.
Collapse
Affiliation(s)
- Ning-Jie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui-Qin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hai-Qian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Meng-Kai Feng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xi-Ya Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Wen Li
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
13
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Phytochemistry, pharmacology, and medical uses of Oldenlandia (family Rubaceae): a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2021-2053. [PMID: 37837473 DOI: 10.1007/s00210-023-02756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
The Oldenlandia genus comprises approximately 240 species of plants, yet only a limited number of these have been investigated for their chemical composition and medicinal properties. These species contain a wide range of compounds such as iridoids, anthraquinones, triterpenes, phytosterols, flavonoids, anthocyanidins, vitamins, essential oils, phenolic acids, and coumarins. These diverse phytochemical profiles underscore the pharmacological potential of Oldenlandia plants for various medical purposes. Among other chemical constituents, ursolic acid stands out as the most important active compound in Oldenlandia, owing to its proven anticancer, anti-inflammatory, antimicrobial, and hepatoprotective properties. The evaluation of Oldenlandia's pharmacological prospects indicates that the holistic utilization of the entire plant yields the most significant effects. Oldenlandia diffusa showcases anticancer and anti-inflammatory capabilities attributed to its varying constituents. Across a broad spectrum of pharmacological capacities, anticancer research predominates, constituting the majority of medical uses. Oldenlandia diffusa emerges as a standout for its remarkable anticancer effects against diverse malignancies. Antioxidant applications follow, with O. corymbosa demonstrating potent antioxidant properties alongside O. umbellata and O. diffusa. Subsequent priority lies in anti-inflammatory studies, wherein O. diffusa exhibits noteworthy efficacy, trailed by O. corymbosa also takes the lead in antimicrobial activity, with O. umbellata as a strong contender. Additional investigation is essential to ascertain the relative significance of these species in various pharmacological applications. This comprehensive assessment underscores the multifaceted potential of Oldenlandia as a versatile herbal resource, offering diverse pharmacological capacities. The call for sustained exploration and research remains essential to unlock the full extent of Oldenlandia's medicinal benefits.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim 8, Babil, 51001, Iraq.
| | | |
Collapse
|
14
|
Ramírez J, Gilardoni G, Radice M, Morocho V. Phytochemistry, Bioactivity, and Ethnopharmacology of the Genus Lepechinia Willd. (Lamiaceae): A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:481. [PMID: 38498420 PMCID: PMC10893467 DOI: 10.3390/plants13040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 03/20/2024]
Abstract
The genus Lepechinia (Lamiaceae) involves several aromatic shrubs that are distributed only in the American continent, inhabiting mountain areas, mainly in the Andean region of South America. Based on the PRISMA approach, we selected and critically analyzed 48 research articles. From a phytochemical point of view, most of the secondary metabolites reported in Lepechinia spp. are terpenes and terpenoids, with a few exceptions comprising flavonoids and other shikimic acid derivatives. On the one hand, sesquiterpenoids of the guajane, aromadendrane, eudesmane, and cadinane groups are characteristic of essential oils, together with (E)-β-caryophyllene as the main representative of its chemical family. On the other hand, abietane diterpenoids are the prevalent compounds described in non-volatile fractions. Many biological activities and traditional medical uses have been reported for both pure metabolites and complex mixtures (e.g., essential oils). Regarding ethno-medical uses, the treatment of muscle pain, headache, toothache, diabetes mellitus, uterine tumors, uterine infections, and diarrhea has been reported. Concerning their verified biological activities, insecticidal, antifungal, antioxidant, and anticholinesterase properties have been described. Furthermore, some data concerning anti-herpetic activity have been reported.
Collapse
Affiliation(s)
- Jorge Ramírez
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (G.G.); (V.M.)
| | - Gianluca Gilardoni
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (G.G.); (V.M.)
| | - Matteo Radice
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via E. Orabona, 4, 70125 Bari, Italy;
| | - Vladimir Morocho
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (G.G.); (V.M.)
| |
Collapse
|
15
|
Singh S, Gouri V, Samant M. TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 2023; 40:335. [PMID: 37855975 DOI: 10.1007/s12032-023-02204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex malignancy responsible for the second-highest cancer deaths worldwide. TGF-β maintains normal cellular homeostasis by inhibiting the cell cycle and inducing apoptosis, but its elevated level is correlated with colorectal cancer progression, as TGF-β is a master regulator of the epithelial-to-mesenchymal transition, a critical step of metastasis. Tumors, including CRC, use elevated TGF-β levels to avoid immune surveillance by modulating immune cell differentiation, proliferation, and effector function. Presently, the treatment of advanced CRC is mainly based on chemotherapy, with multiple adverse effects. Thus, there is a need to develop alternate tactics because CRC continue to be mostly resistant to the present therapeutic regimen. TGF-β blockade has emerged as a promising therapeutic target in cancer therapy. Blocking TGF-β with phytochemicals and other molecules, such as antisense oligonucleotides, monoclonal antibodies, and bifunctional traps, alone or in combination, may be a safer and more effective way to treat CRC. Furthermore, combination immunotherapy comprising TGF-β blockers and immune checkpoint inhibitors is gaining popularity because both molecules work synergistically to suppress the immune system. Here, we summarize the current understanding of TGF-β as a therapeutic target for managing CRC and its context-dependent tumor-promoting or tumor-suppressing nature.
Collapse
Affiliation(s)
- Sumeet Singh
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Vinita Gouri
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
- Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
16
|
Fakhri S, Moradi SZ, Faraji F, Farhadi T, Hesami O, Iranpanah A, Webber K, Bishayee A. Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance. Cancer Metastasis Rev 2023; 42:959-1020. [PMID: 37505336 DOI: 10.1007/s10555-023-10119-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer development and progression. In this line, revealing the precise mechanisms of the TME and associated signaling pathways of tumor resistance could pave the road for cancer prevention and efficient treatment. The use of nanomedicine could be a step forward in overcoming the barriers in tumor-targeted therapy. Novel delivery systems benefit from enhanced permeability and retention effect, decreasing tumor resistance, reducing tumor hypoxia, and targeting tumor-associated factors, including immune cells, endothelial cells, and fibroblasts. Emerging evidence also indicates the engagement of multiple dysregulated mediators in the TME, such as matrix metalloproteinase, vascular endothelial growth factor, cytokines/chemokines, Wnt/β-catenin, Notch, Hedgehog, and related inflammatory and apoptotic pathways. Hence, investigating novel multitargeted agents using a novel delivery system could be a promising strategy for regulating TME and drug resistance. In recent years, small molecules from natural sources have shown favorable anticancer responses by targeting TME components. Nanoformulations of natural compounds are promising therapeutic agents in simultaneously targeting multiple dysregulated factors and mediators of TME, reducing tumor resistance mechanisms, overcoming interstitial fluid pressure and pericyte coverage, and involvement of basement membrane. The novel nanoformulations employ a vascular normalization strategy, stromal/matrix normalization, and stress alleviation mechanisms to exert higher efficacy and lower side effects. Accordingly, the nanoformulations of anticancer monoclonal antibodies and conventional chemotherapeutic agents also improved their efficacy and lessened the pharmacokinetic limitations. Additionally, the coadministration of nanoformulations of natural compounds along with conventional chemotherapeutic agents, monoclonal antibodies, and nanomedicine-based radiotherapy exhibits encouraging results. This critical review evaluates the current body of knowledge in targeting TME components by nanoformulation-based delivery systems of natural small molecules, monoclonal antibodies, conventional chemotherapeutic agents, and combination therapies in both preclinical and clinical settings. Current challenges, pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Tara Farhadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Osman Hesami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
17
|
Radwan MO, Abd-Alla HI, Alsaggaf AT, El-Mezayen H, Abourehab MAS, El-Beeh ME, Tateishi H, Otsuka M, Fujita M. Gypsogenin Battling for a Front Position in the Pentacyclic Triterpenes Game of Thrones on Anti-Cancer Therapy: A Critical Review-Dedicated to the Memory of Professor Hanaa M. Rady. Molecules 2023; 28:5677. [PMID: 37570648 PMCID: PMC10420691 DOI: 10.3390/molecules28155677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
In the last decade, gypsogenin has attracted widespread attention from medicinal chemists by virtue of its prominent anti-cancer potential. Despite its late identification, gypsogenin has proved itself as a new anti-proliferative player battling for a frontline position among other classic pentacyclic triterpenes such as oleanolic acid, glycyrrhetinic acid, ursolic acid, betulinic acid, and celastrol. Herein, we present the most important reactions of gypsogenin via modification of its four functional groups. Furthermore, we demonstrate insights into the anti-cancer activity of gypsogenin and its semisynthetic derivatives and go further by introducing our perspective to judiciously guide the prospective rational design. The present article opens a new venue for a better exploitation of gypsogenin chemical entity as a lead compound in cancer chemotherapy. To the best of our knowledge, this is the first review article exploring the anti-cancer activity of gypsogenin derivatives.
Collapse
Affiliation(s)
- Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Chemistry of Natural Compounds Department, National Research Centre, Giza 12622, Egypt
| | - Howaida I. Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre, Giza 12622, Egypt
| | - Azhaar T. Alsaggaf
- Department of Chemistry, Taibah University, Madinah 42353, Saudi Arabia;
| | | | - Mohammed A. S. Abourehab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamed E. El-Beeh
- Biology Department, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
18
|
Tossetta G, Fantone S, Marzioni D, Mazzucchelli R. Role of Natural and Synthetic Compounds in Modulating NRF2/KEAP1 Signaling Pathway in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15113037. [PMID: 37296999 DOI: 10.3390/cancers15113037] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide. Prostate cancer can be treated by surgery or active surveillance when early diagnosed but, when diagnosed at an advanced or metastatic stage, radiation therapy or androgen-deprivation therapy is needed to reduce cancer progression. However, both of these therapies can cause prostate cancer resistance to treatment. Several studies demonstrated that oxidative stress is involved in cancer occurrence, development, progression and treatment resistance. The nuclear factor erythroid 2-related factor 2 (NRF2)/KEAP1 (Kelch-Like ECH-Associated Protein 1) pathway plays an important role in protecting cells against oxidative damage. Reactive oxygen species (ROS) levels and NRF2 activation can determine cell fate. In particular, toxic levels of ROS lead physiological cell death and cell tumor suppression, while lower ROS levels are associated with carcinogenesis and cancer progression. On the contrary, a high level of NRF2 promotes cell survival related to cancer progression activating an adaptive antioxidant response. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
19
|
Liu CH, Tai CJ, Kuo YT, Chang SS, Lin LT. Combination of Oncolytic Measles Virus and Ursolic Acid Synergistically Induces Oncolysis of Hepatocellular Carcinoma Cells. Viruses 2023; 15:1294. [PMID: 37376594 DOI: 10.3390/v15061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a difficult-to-treat cancer due to late diagnosis and limited curative treatment options. Developing more effective therapeutic strategies is essential for the management of HCC. Oncolytic virotherapy is a novel treatment modality for cancers, and its combination with small molecules merits further exploration. In this study, we combined oncolytic measles virus (MV) with the natural triterpenoid compound ursolic acid (UA) and evaluated their combination effect against HCC cells, including those harboring hepatitis B virus (HBV) or hepatitis C virus (HCV) replication. We found that the combination of MV and UA synergistically induced more cell death in Huh-7 HCC cells through enhanced apoptosis. In addition, increased oxidative stress and loss of mitochondrial potential were observed in the treated cells, indicating dysregulation of the mitochondria-dependent pathway. Similar synergistic cytotoxic effects were also found in HCC cells harboring HBV or HCV genomes. These findings underscore the potential of oncolytic MV and UA combination for further development as a treatment strategy for HCC.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Chen-Jei Tai
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 100, Taiwan
| | - Yu-Ting Kuo
- Department of Medical Imaging, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Shen-Shong Chang
- Division of Gastroenterology, Taipei City Hospital Yang-Ming Branch, Taipei 111, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
20
|
Zou H, Yang Y, Chen HW. Natural compounds ursolic acid and digoxin exhibit inhibitory activities to cancer cells in RORγ-dependent and -independent manner. Front Pharmacol 2023; 14:1146741. [PMID: 37180705 PMCID: PMC10169565 DOI: 10.3389/fphar.2023.1146741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Natural compounds ursolic acid (UA) and digoxin isolated from fruits and other plants display potent anti-cancer effects in preclinical studies. UA and digoxin have been at clinical trials for treatment of different cancers including prostate cancer, pancreatic cancer and breast cancer. However, they displayed limited benefit to patients. Currently, a poor understanding of their direct targets and mechanisms of action (MOA) severely hinders their further development. We previously identified nuclear receptor RORγ as a novel therapeutic target for castration-resistant prostate cancer (CRPC) and triple-negative breast cancer (TNBC) and demonstrated that tumor cell RORγ directly activates gene programs such as androgen receptor (AR) signaling and cholesterol metabolism. Previous studies also demonstrated that UA and digoxin are potential RORγt antagonists in modulating the functions of immune cells such as Th17 cells. Here we showed that UA displays a strong activity in inhibition of RORγ-dependent transactivation function in cancer cells, while digoxin exhibits no effect at clinically relevant concentrations. In prostate cancer cells, UA downregulates RORγ-stimulated AR expression and AR signaling, whereas digoxin upregulates AR signaling pathway. In TNBC cells, UA but not digoxin alters RORγ-controlled gene programs of cell proliferation, apoptosis and cholesterol biosynthesis. Together, our study reveals for the first-time that UA, but not digoxin, acts as a natural antagonist of RORγ in the cancer cells. Our finding that RORγ is a direct target of UA in cancer cells will help select patients with tumors that likely respond to UA treatment.
Collapse
Affiliation(s)
- Hongye Zou
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Yatian Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
- VA Northern California Health Care System, Mather, CA, United States
| |
Collapse
|