1
|
Elgart S, Flegg MB, Mehra S, Flegg JA. A spatial multiscale mathematical model of Plasmodium vivax transmission. J Math Biol 2024; 90:13. [PMID: 39718581 DOI: 10.1007/s00285-024-02166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/16/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024]
Abstract
The epidemiological behavior of Plasmodium vivax malaria occurs across spatial scales including within-host, population, and metapopulation levels. On the within-host scale, P. vivax sporozoites inoculated in a host may form latent hypnozoites, the activation of which drives secondary infections and accounts for a large proportion of P. vivax illness; on the metapopulation level, the coupled human-vector dynamics characteristic of the population level are further complicated by the migration of human populations across patches with different malaria forces of (re-)infection. To explore the interplay of all three scales in a single two-patch model of Plasmodium vivax dynamics, we construct and study a system of eight integro-differential equations with periodic forcing (arising from the single-frequency sinusoidal movement of a human sub-population). Under the numerically-informed ansatz that the limiting solutions to the system are closely bounded by sinusoidal ones for certain regions of parameter space, we derive a single nonlinear equation from which all approximate limiting solutions may be drawn, and devise necessary and sufficient conditions for the equation to have only a disease-free solution. Our results illustrate the impact of movement on P. vivax transmission and suggest a need to focus vector control efforts on forest mosquito populations. The three-scale model introduced here provides a more comprehensive framework for studying the clinical, behavioral, and geographical factors underlying P. vivax malaria endemicity.
Collapse
Affiliation(s)
| | - Mark B Flegg
- School of Mathematics, Monash University, Melbourne, Australia
| | - Somya Mehra
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
2
|
Tumbo A, Lorenz FR, Yang ASP, Sefried S, Schindler T, Mpina M, Dangy JP, Milando FA, Rashid MA, Nyaulingo G, Ramadhani K, Jongo S, Felgner PL, Abebe Y, Sim BKL, Church LWP, Richie TL, Billingsley PF, Murshedkar T, Hoffman SL, Abdulla S, Kremsner PG, Mordmüller B, Daubenberger C, Fendel R. PfSPZ Vaccine induces focused humoral immune response in HIV positive and negative Tanzanian adults. EBioMedicine 2024; 108:105364. [PMID: 39353279 PMCID: PMC11464252 DOI: 10.1016/j.ebiom.2024.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND PfSPZ Vaccine, a promising pre-erythrocytic stage malaria vaccine candidate based on whole, radiation-attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), has proven safe and effective in mediating sterile protection from malaria in malaria-naïve and exposed healthy adults. Vaccine-induced protection presumably depends on cellular responses to early parasite liver stages, but humoral immunity contributes. METHODS On custom-made Pf protein microarrays, we profiled IgG and IgM responses to PfSPZ Vaccine and subsequent homologous controlled human malaria infection (CHMI) in 21 Tanzanian adults with (n = 12) or without (n = 9) HIV infection. Expression of the main identified immunogens in the pre-erythrocytic parasite stage was verified by immunofluorescence detection using freshly purified PfSPZ and an in vitro model of primary human hepatocytes. FINDINGS Independent of HIV infection status, immunisation induced focused IgG and IgM responses to circumsporozoite surface protein (PfCSP) and merozoite surface protein 5 (PfMSP5). We show that PfMSP5 is detectable on the surface and in the apical complex of PfSPZ. INTERPRETATION Our data demonstrate that HIV infection does not affect the quantity of the total IgG and IgM antibody responses to PfCSP and PfMSP5 after immunization with PfSPZ Vaccine. PfMSP5 represents a highly immunogenic, so far underexplored, target for vaccine-induced antibodies in malaria pre-exposed volunteers. FUNDING This work was supported by the Equatorial Guinea Malaria Vaccine Initiative (EGMVI), the Clinical Trial Platform of the German Center for Infection Research (TTU 03.702), the Swiss Government Excellence Scholarships for Foreign Scholars and Artists (grant 2016.0056) and the Interdisciplinary Center for Clinical Research doctoral program of the Tübingen University Hospital. The funders had no role in design, analysis, or reporting of this study.
Collapse
Affiliation(s)
- Anneth Tumbo
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Freia-Raphaella Lorenz
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Annie S P Yang
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stephanie Sefried
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Tobias Schindler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Maximilian Mpina
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Jean-Pierre Dangy
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Florence A Milando
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Mohammed A Rashid
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Gloria Nyaulingo
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Kamaka Ramadhani
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Said Jongo
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | | | - Yonas Abebe
- Sanaria Inc., Rockville, Maryland, United States
| | | | | | | | | | | | | | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Branch, Bagamoyo, United Republic of Tanzania
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
| |
Collapse
|
3
|
Balam S, Miura K, Ayadi I, Konaté D, Incandela NC, Agnolon V, Guindo MA, Diakité SA, Olugbile S, Nebie I, Herrera SM, Long C, Kajava AV, Diakité M, Corradin G, Herrera S, Herrera MA. Cross-reactivity of r Pvs48/45, a recombinant Plasmodium vivax protein, with sera from Plasmodium falciparum endemic areas of Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588966. [PMID: 38659832 PMCID: PMC11042229 DOI: 10.1101/2024.04.10.588966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Ps48/45, a Plasmodium gametocyte surface protein, is a promising candidate for malaria transmission-blocking (TB) vaccine. Due to its relevance for a multispecies vaccine, we explored the cross-reactivity and TB activity of a recombinant P. vivax Ps48/45 protein (rPvs48/45) with sera from P. falciparum-exposed African donors. Methods rPvs48/45 was produced in Chinese hamster ovary cell lines and tested by ELISA for its cross-reactivity with sera from Burkina Faso, Tanzania, Mali, and Nigeria - In addition, BALB/c mice were immunized with the rPvs48/45 protein formulated in Montanide ISA-51 and inoculated with a crude extract of P. falciparum NF-54 gametocytes to evaluate the parasite-boosting effect on rPvs48/45 antibody titers. Specific anti-rPvs48/45 IgG purified from African sera was used to evaluate the ex vivo TB activity on P. falciparum, using standard mosquito membrane feeding assays (SMFA). Results rPvs48/45 protein showed cross-reactivity with sera of individuals from all four African countries, in proportions ranging from 94% (Tanzania) to 40% (Nigeria). Also, the level of cross-reactive antibodies varied significantly between countries (p<0.0001), with a higher antibody level in Mali and the lowest in Nigeria. In addition, antibody levels were higher in adults (≥ 17 years) than young children (≤ 5 years) in both Mali and Tanzania, with a higher proportion of responders in adults (90%) than in children (61%) (p<0.0001) in Mali, where male (75%) and female (80%) displayed similar antibody responses. Furthermore, immunization of mice with P. falciparum gametocytes boosted anti-Pvs48/45 antibody responses, recognizing P. falciparum gametocytes in indirect immunofluorescence antibody test. Notably, rPvs48/45 affinity-purified African IgG exhibited a TB activity of 61% against P. falciparum in SMFA. Conclusion African sera (exposed only to P. falciparum) cross-recognized the rPvs48/45 protein. This, together with the functional activity of IgG, warrants further studies for the potential development of a P. vivax and P. falciparum cross-protective TB vaccine.
Collapse
Affiliation(s)
- Saidou Balam
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Imen Ayadi
- Immunobiology Department, University of Lausanne, Lausanne, Switzerland
| | - Drissa Konaté
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Valentina Agnolon
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland aaaa
| | - Merepen A Guindo
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Seidina A.S. Diakité
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Sope Olugbile
- Immunobiology Department, University of Lausanne, Lausanne, Switzerland
| | - Issa Nebie
- Groupe de Recherche Action Santé (GRAS), Burkina Faso, West Africa
| | | | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Andrey V. Kajava
- Montpellier Cell Biology Research Center (CRBM), University of Montpellier, CNRS, France
| | - Mahamadou Diakité
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Socrates Herrera
- Caucaseco Scientific Research Center, Cali, Colombia
- Malaria Vaccine and Drug Development Center, Cali, Colombia
| | | |
Collapse
|
4
|
Nesbitt JE, Jaskiewicz JJ, Bean H, Toner M, Tessier SN, Sandlin RD. Cryogenic enrichment of Plasmodium falciparum gametocytes from spiked whole blood. Cryobiology 2024; 114:104810. [PMID: 38040049 PMCID: PMC10954416 DOI: 10.1016/j.cryobiol.2023.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Each individual cell type typically requires a unique set of conditions for optimal cryopreservation outcome, which relates to its specific response to cryoprotective agent (CPA) toxicity, osmotic behavior and sensitivity to ice crystallization. Cryopreservation of heterogenous cell populations is therefore exceedingly difficult as it requires separate and often conflicting conditions for each cell type. Conversely, these contrasting conditions could be utilized to favor cryogenic preference of a single cell population within a heterogenous sample, leading to its enrichment by elimination of remaining cells. To establish proof-of-concept for this overall approach, a protocol was developed for the cryogenic enrichment of Plasmodium falciparum gametocytes from whole blood. To accomplish this goal, we evaluated the effects of CPAs and cooling conditions during cryopreservation of whole blood samples spiked with P. falciparum gametocytes. We identified that cooling to -80 °C at a rate of -1 °C/min in the presence of 11 % glycerol selectively favors recovery of gametocytes. This protocol eliminates 95.3 ± 1.7 % of total blood cells and recovers 43.2 ± 6.5 % of parasites, leading to a 19-fold enrichment as assessed by microscopic examination of blood smears. This protocol is tunable, where gametocyte enrichment 900-fold may be feasible, however there is an apparent tradeoff in overall parasite recovery. Although translation of this protocol for point-of-care testing for malaria presents many challenges, the overall approach of cryogenic purification may prove useful for alternative diagnostic applications.
Collapse
Affiliation(s)
- Jenny E Nesbitt
- Center for Engineering in Medicine & Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, USA
| | - Justyna J Jaskiewicz
- Center for Engineering in Medicine & Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, USA
| | - Hailey Bean
- Center for Engineering in Medicine & Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, USA
| | - Mehmet Toner
- Center for Engineering in Medicine & Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, USA
| | - Shannon N Tessier
- Center for Engineering in Medicine & Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, USA
| | - Rebecca D Sandlin
- Center for Engineering in Medicine & Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children's Boston, USA.
| |
Collapse
|
5
|
Sa-Ngamuang C, Lawpoolsri S, Su Yin M, Barkowsky T, Cui L, Prachumsri J, Haddawy P. Assessment of malaria risk in Southeast Asia: a systematic review. Malar J 2023; 22:339. [PMID: 37940923 PMCID: PMC10631000 DOI: 10.1186/s12936-023-04772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Several countries in Southeast Asia are nearing malaria elimination, yet eradication remains elusive. This is largely due to the challenge of focusing elimination efforts, an area where risk prediction can play an essential supporting role. Despite its importance, there is no standard numerical method to quantify the risk of malaria infection. Thus, there is a need for a consolidated view of existing definitions of risk and factors considered in assessing risk to analyse the merits of risk prediction models. This systematic review examines studies of the risk of malaria in Southeast Asia with regard to their suitability in addressing the challenges of malaria elimination in low transmission areas. METHODS A search of four electronic databases over 2010-2020 retrieved 1297 articles, of which 25 met the inclusion and exclusion criteria. In each study, examined factors included the definition of the risk and indicators of malaria transmission used, the environmental and climatic factors associated with the risk, the statistical models used, the spatial and temporal granularity, and how the relationship between environment, climate, and risk is quantified. RESULTS This review found variation in the definition of risk used, as well as the environmental and climatic factors in the reviewed articles. GLM was widely adopted as the analysis technique relating environmental and climatic factors to malaria risk. Most of the studies were carried out in either a cross-sectional design or case-control studies, and most utilized the odds ratio to report the relationship between exposure to risk and malaria prevalence. CONCLUSIONS Adopting a standardized definition of malaria risk would help in comparing and sharing results, as would a clear description of the definition and method of collection of the environmental and climatic variables used. Further issues that need to be more fully addressed include detection of asymptomatic cases and considerations of human mobility. Many of the findings of this study are applicable to other low-transmission settings and could serve as a guideline for further studies of malaria in other regions.
Collapse
Affiliation(s)
- Chaitawat Sa-Ngamuang
- Faculty of Information and Communication Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Myat Su Yin
- Faculty of Information and Communication Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Thomas Barkowsky
- Bremen Spatial Cognition Center (BSCC), University of Bremen, Bremen, Germany
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Jetsumon Prachumsri
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Peter Haddawy
- Faculty of Information and Communication Technology, Mahidol University, Nakhon Pathom, Thailand.
- Bremen Spatial Cognition Center (BSCC), University of Bremen, Bremen, Germany.
| |
Collapse
|
6
|
Kotepui M, Kotepui KU, Masangkay FR, Mahittikorn A, Wilairatana P. Prevalence and proportion estimate of asymptomatic Plasmodium infection in Asia: a systematic review and meta-analysis. Sci Rep 2023; 13:10379. [PMID: 37369862 DOI: 10.1038/s41598-023-37439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
Asymptomatic Plasmodium infection raises a problem for the persistent transmission of malaria in low-endemic areas such as Asia. This systematic review was undertaken to estimate the prevalence and proportion of asymptomatic Plasmodium infection in Asia. The systematic review was registered at PROSPERO (ID: CRD42022373664). The research followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. A comprehensive search of five databases, Ovid, Scopus, MEDLINE, PubMed, and Embase, was conducted to identify studies of asymptomatic Plasmodium infection in Asian countries. The pooled prevalence of asymptomatic Plasmodium infection, the pooled proportion of asymptomatic Plasmodium infection among all parasitised individuals, and the associated 95% confidence intervals were estimated using a random-effects model. A total of 916 articles were retrieved, and 87 articles that met the criteria were included in the systematic review. The pooled prevalence of asymptomatic Plasmodium infection among enrolled participants in Southeast Asia, South Asia, and Western Asia was 5.8%, 9.4%, and 8.4%, respectively. The pooled proportion of asymptomatic Plasmodium infection among all parasitised individuals in Southeast Asia, South Asia, and Western Asia was 89.3%, 87.2%, and 64.8%, respectively. There was a low prevalence of asymptomatic Plasmodium infection, but there was a high proportion of asymptomatic Plasmodium infection per all parasitised individuals in different parts of Asia. These results may support and facilitate elimination and control programs for asymptomatic Plasmodium infection in Asia.
Collapse
Affiliation(s)
- Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | | | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Kartal L, Mueller I, Longley RJ. Using Serological Markers for the Surveillance of Plasmodium vivax Malaria: A Scoping Review. Pathogens 2023; 12:791. [PMID: 37375481 DOI: 10.3390/pathogens12060791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The utilisation of serological surveillance methods for malaria has the potential to identify individuals exposed to Plasmodium vivax, including asymptomatic carriers. However, the application of serosurveillance varies globally, including variations in methodology and transmission context. No systematic review exists describing the advantages and disadvantages of utilising serosurveillance in various settings. Collation and comparison of these results is a necessary first step to standardise and validate the use of serology for the surveillance of P. vivax in specific transmission contexts. A scoping review was performed of P. vivax serosurveillance applications globally. Ninety-four studies were found that met predefined inclusion and exclusion criteria. These studies were examined to determine the advantages and disadvantages of serosurveillance experienced in each study. If studies reported seroprevalence results, this information was also captured. Measurement of antibodies serves as a proxy by which individuals exposed to P. vivax may be indirectly identified, including those with asymptomatic infections, which may be missed by other technologies. Other thematic advantages identified included the ease and simplicity of serological assays compared to both microscopy and molecular diagnostics. Seroprevalence rates varied widely from 0-93%. Methodologies must be validated across various transmission contexts to ensure the applicability and comparability of results. Other thematic disadvantages identified included challenges with species cross-reactivity and determining changes in transmission patterns in both the short- and long-term. Serosurveillance requires further refinement to be fully realised as an actionable tool. Some work has begun in this area, but more is required.
Collapse
Affiliation(s)
- Lejla Kartal
- School of Population and Global Health, The University of Melbourne, Parkville 3010, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Ivo Mueller
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Rhea J Longley
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
8
|
Naserrudin NA, Yong PPL, Monroe A, Culleton R, Baumann SE, Sato S, Hod R, Jeffree MS, Ahmed K, Hassan MR. Seeing malaria through the eyes of affected communities: using photovoice to document local knowledge on zoonotic malaria causation and prevention practices among rural communities exposed to Plasmodium knowlesi malaria in Northern Borneo Island. Malar J 2023; 22:166. [PMID: 37237418 DOI: 10.1186/s12936-023-04603-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Many rural communities in Malaysian Borneo and Southeast Asia are at risk of Plasmodium knowlesi malaria. Multiple factors contribute to infection, however, a deep understanding of illness causation and prevention practices among at-risk communities remains limited. This study aims to document local knowledge on malaria causation and preventive practices of rural communities in Sabah, Malaysia, using photovoice-a participatory research method. METHODS From January to June 2022, a photovoice study was conducted with rural communities in Matunggong subdistrict, Malaysia, to explore their experiences with and local knowledge of non-human primate malaria and prevention practices. The study included (1) an introductory phase in which participants were introduced to the photovoice method; (2) a documentation phase in which participants captured and narrated photos from their communities; (3) a discussion phase in which participants discussed photos and relevant topics through a series of three focus group discussions (FGDs) per village; and (4) a dissemination phase where selected photos were shared with key stakeholders through a photo exhibition. A purposively selected sample of 26 participants (adults > 18 years old, male, and female) from four villages participated in all phases of the study. The study activities were conducted in Sabah Malay dialect. Participants and the research team contributed to data review and analyses. RESULTS Rural communities in Sabah, Malaysia possess local knowledge that attributes non-human primate malaria to natural factors related to the presence of mosquitoes that bite humans and which carry "kuman-malaria" or malaria parasite. Participants revealed various preventive practises ranging from traditional practises, including burning dried leaves and using plants that produce foul odours, to non-traditional approaches such as aerosols and mosquito repellents. By engaging with researchers and policymakers, the participants or termed as co-researchers in this study, showcased their ability to learn and appreciate new knowledge and perspectives and valued the opportunity to share their voices with policymakers. The study successfully fostered a balance of power dynamics between the co-researchers, research team members and policymakers. CONCLUSION There were no misconceptions about malaria causation among study participants. The insights from study participants are relevant because of their living experience with the non-human malaria. It is critical to incorporate rural community perspectives in designing locally effective and feasible malaria interventions in rural Sabah, Malaysia. Future research can consider adapting the photovoice methodology for further research with the community toward building locally tailored-malaria strategies.
Collapse
Affiliation(s)
- Nurul Athirah Naserrudin
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, 88400, Kota Kinabalu, Malaysia
- Sabah State Health Department, Ministry of Health, 88590, Kota Kinabalu, Malaysia
| | - Pauline Pau Lin Yong
- Faculty of Social Sciences and Humanities, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
| | - April Monroe
- Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | - Richard Culleton
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Sara Elizabeth Baumann
- Department of Behavioral and Community Health Sciences, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261, USA
| | - Shigeharu Sato
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, 88400, Kota Kinabalu, Malaysia
- Department of Public Health Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Mohammad Saffree Jeffree
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, 88400, Kota Kinabalu, Malaysia
- Department of Public Health Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
| | - Kamruddin Ahmed
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, 88400, Kota Kinabalu, Malaysia
- Department of Public Health Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Malaysia
| | - Mohd Rohaizat Hassan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia.
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia, Sabah, 88400, Kota Kinabalu, Malaysia.
| |
Collapse
|
9
|
Rahim MAFA, Munajat MB, Dian ND, Seri Rakna MIM, Wahid W, Ghazali N, Hassan NW, Abdul Manap SNA, Kasri MRM, Mohamed AI, Osman E, Chuangchaiya S, Lubis IND, Divis PCS, Kaneko A, Tetteh KKA, Idris ZM. Naturally acquired antibody response to Plasmodium falciparum and Plasmodium vivax among indigenous Orang Asli communities in Peninsular Malaysia. Front Cell Infect Microbiol 2023; 13:1165634. [PMID: 37153151 PMCID: PMC10157193 DOI: 10.3389/fcimb.2023.1165634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Malaria remains a public health problem in many parts of the world. In Malaysia, the significant progress towards the national elimination programme and effective disease notification on malaria has resulted in zero indigenous human malaria cases since 2018. However, the country still needs to determine the extent of malaria exposure and transmission patterns, particularly in high-risk populations. In this study, a serological method was used to measure transmission levels of Plasmodium falciparum and Plasmodium vivax among indigenous Orang Asli communities in Kelantan, Peninsular Malaysia. A community-based cross-sectional survey was conducted in three Orang Asli communities (i.e., Pos Bihai, Pos Gob, and Pos Kuala Betis) in Kelantan from June to July 2019. Antibody responses to malaria were assessed by enzyme-linked immunosorbent assay (ELISA) using two P. falciparum (PfAMA-1 and PfMSP-119) and two P. vivax (PvAMA-1 and PvMSP-119) antigens. Age-adjusted antibody responses were analysed using a reversible catalytic model to calculate seroconversion rates (SCRs). Multiple logistic regression was used to investigate factors associated with malaria exposure. The overall malaria seroprevalence was 38.8% for PfAMA-1, 36.4% for PfMSP-119, 2.2% for PvAMA-1, and 9.3% for PvMSP-119. Between study areas, the proportion of seropositivity for any P. falciparum and P. vivax antigens was significantly highest in Pos Kuala Betis with 34.7% (p < 0.001) and 13.6% (p < 0.001), respectively. For all parasite antigens except for PvAMA-1, the proportion of seropositive individuals significantly increased with age (all p < 0.001). Based on the SCR, there was a higher level of P. falciparum transmission than P. vivax in the study area. Multivariate regression analyses showed that living in Pos Kuala Betis was associated with both P. falciparum (adjusted odds ratio [aOR] 5.6, p < 0.001) and P. vivax (aOR 2.1, p < 0.001) seropositivities. Significant associations were also found between age and seropositivity to P. falciparum and P. vivax antigens. Analysis of community-based serological data helps describe the level of transmission, heterogeneity, and factors associated with malaria exposure among indigenous communities in Peninsular Malaysia. This approach could be an important adjunct tool for malaria monitoring and surveillance in low malaria transmission settings in the country.
Collapse
Affiliation(s)
- Mohd Amirul Fitri A. Rahim
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Bakhtiar Munajat
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Nor Diyana Dian
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | | | - Wathiqah Wahid
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Nuraffini Ghazali
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Noor Wanie Hassan
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Siti Nor Azreen Abdul Manap
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | | | | | - Emelia Osman
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Sriwipa Chuangchaiya
- Department of Community Health, Faculty of Public Health, Kasetsart University, Sakon Nakhon, Thailand
| | - Inke Nadia D. Lubis
- Department of Paediatric, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Paul C. S. Divis
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Akira Kaneko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Kevin K. A. Tetteh
- Department of Infection Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Zulkarnain Md Idris
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- *Correspondence: Zulkarnain Md Idris,
| |
Collapse
|
10
|
Huber JH, Elliott M, Koepfli C, Perkins TA. The Impact of Emerging Plasmodium knowlesi on Accurate Diagnosis by Light Microscopy: A Systematic Review and Modeling Analysis. Am J Trop Med Hyg 2023; 108:61-68. [PMID: 36509046 PMCID: PMC9833074 DOI: 10.4269/ajtmh.21-1155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
The five major Plasmodium spp. that cause human malaria appear similar under light microscopy, which raises the possibility that misdiagnosis could routinely occur in clinical settings. Assessing the extent of misdiagnosis is of particular importance for monitoring P. knowlesi, which cocirculates with the other Plasmodium spp. We performed a systematic review and meta-analysis of studies comparing the performance of microscopy and polymerase chain reaction (PCR) for diagnosing malaria in settings with co-circulation of the five Plasmodium spp. We assessed the extent to which co-circulation of Plasmodium parasites affects diagnostic outcomes. We fit a Bayesian hierarchical latent class model to estimate variation in microscopy sensitivity and specificity measured against PCR as the gold standard. Mean sensitivity of microscopy was low, yet highly variable across Plasmodium spp., ranging from 65.7% (95% confidence interval: 48.1-80.3%) for P. falciparum to 0.525% (95% confidence interval 0.0210-3.11%) for P. ovale. Observed PCR prevalence was positively correlated with estimated microscopic sensitivity and negatively correlated with estimated microscopic specificity, though the strength of the associations varied by species. Our analysis suggests that cocirculation of Plasmodium spp. undermines the accuracy of microscopy. Sensitivity was considerably lower for P. knowlesi, P. malariae, and P. ovale. The negative association between specificity and prevalence imply that less frequently encountered species may be misdiagnosed as more frequently encountered species. Together, these results suggest that the burden of P. knowlesi, P. malariae, and P. ovale may be underappreciated in a clinical setting.
Collapse
Affiliation(s)
- John H. Huber
- Address correspondence to John H. Huber, University of Notre Dame, 100 Galvin Life Sciences Center, Notre Dame, IN 46556. E-mail:
| | | | | | | |
Collapse
|
11
|
Survey of malaria vectors on the Cambodia, Thailand and China-Laos Borders. Malar J 2022; 21:399. [PMID: 36585690 PMCID: PMC9801360 DOI: 10.1186/s12936-022-04418-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Anopheles maculatus, Anopheles minimus and Anopheles dirus are the major vectors of malaria transmission in the Greater Mekong Subregion (GMS). The malaria burden in this region has decreased significantly in recent years as all GMS countries progress towards malaria elimination. It is necessary to investigate the Anopheles diversity and abundance status and assess the Plasmodium infection rates to understand the malaria transmission potential of these vector species in GMS countries to guide the development of up-to-date vector control strategies and interventions. METHODS A survey of mosquitoes was conducted in Stung Treng, Sainyabuli and Phongsaly Provinces on the Cambodia-Laos, Thailand-Laos and China-Laos borders, respectively. Mosquito collection was done by overnight trapping at sentinel sites in each province. After morphological identification, the 18S rRNA-based nested-PCR was performed to detect malaria parasites in the captured Anopheles mosquitoes. RESULTS A total of 18 965 mosquitoes comprising of 35 species of 2 subgenera (Subgenus Anopheles and Subgenus Cellia) and 4 tribes (Tribes Culicini, Aedini, Armigerini and Mansoniini) were captured. Tribe Culicini accounted for 85.66% of captures, followed by Subgenus Anopheles (8.15%). Anopheles sinensis dominated the Subgenus Anopheles by 99.81%. Plasmodium-infection was found in 25 out of the 1 683 individual or pooled samples of Anopheles. Among the 25 positive samples, 19, 5 and 1 were collected from Loum, Pangkhom and Siem Pang village, respectively. Eight Anopheles species were found infected with Plasmodium, i.e., An. sinensis, Anopheles kochi, Anopheles vagus, An. minimus, Anopheles annularis, Anopheles philippinensis, Anopheles tessellatus and An. dirus. The infection rates of Plasmodium falciparum, Plasmodium vivax and mixture of Plasmodium parasite species were 0.12% (2/1 683), 1.31% (22/1 683) and 0.06% (1/1 683), respectively. CONCLUSIONS Overall, this survey re-confirmed that multiple Anopheles species carry malaria parasites in the international border areas of the GMS countries. Anopheles sinensis dominated the Anopheles collections and as carriers of malaria parasites, therefore may play a significant role in malaria transmission. More extensive investigations of malaria vectors are required to reveal the detailed vector biology, ecology, behaviour, and genetics in GMS regions in order to assist with the planning and implementation of improved malaria control strategies.
Collapse
|
12
|
The Impact of Submicroscopic Parasitemia on Malaria Rapid Diagnosis in Northeastern Tanzania, an Area with Diverse Transmission Patterns. Infect Dis Rep 2022; 14:798-809. [PMID: 36412740 PMCID: PMC9680434 DOI: 10.3390/idr14060082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Global malaria epidemiology has changed in the last decade with a substantial increase in cases and deaths being recorded. Tanzania accounts for about 4% of all cases and deaths reported in recent years. Several factors contribute to the resurgence of malaria, parasite resistance to antimalarials and mosquito resistance to insecticides being at the top of the list. The presence of sub-microscopic infections poses a significant challenge to malaria rapid diagnostic tests (mRDT). Our cross-sectional surveys in Handeni and Moshi, Tanzania assessed the effect of low parasite density on mRDT. Handeni had higher malaria prevalence by mRDT (39.6%), light microscopy (LM) (16.9%) and polymerase chain reaction (PCR) (18.5%), compared to Moshi with prevalence of 0.2%, 1.3% and 2.3%, respectively. A significant difference (p ˂ 0.001) in malaria prevalence by mRDT, LM and nested PCR was found among age groups. In comparison to all other groups, school-age children (5-15 years) had the highest prevalence of malaria. Our results show that mRDT may miss up to 6% of cases of malaria mainly due to low-density parasitemia when compared to LM and PCR. Routinely used mRDT will likely miss the sub-microscopic parasitemia which will ultimately contribute to the spread of malaria and hinder efforts of elimination.
Collapse
|
13
|
Cui L, Sattabongkot J, Aung PL, Brashear A, Cao Y, Kaewkungwal J, Khamsiriwatchara A, Kyaw MP, Lawpoolsri S, Menezes L, Miao J, Nguitragool W, Parker D, Phuanukoonnon S, Roobsoong W, Siddiqui F, Soe MT, Sriwichai P, Yang Z, Zhao Y, Zhong D. Multidisciplinary Investigations of Sustained Malaria Transmission in the Greater Mekong Subregion. Am J Trop Med Hyg 2022; 107:138-151. [PMID: 36228909 DOI: 10.4269/ajtmh.21-1267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
In the course of malaria elimination in the Greater Mekong Subregion (GMS), malaria epidemiology has experienced drastic spatiotemporal changes with residual transmission concentrated along international borders and the rising predominance of Plasmodium vivax. The emergence of Plasmodium falciparum parasites resistant to artemisinin and partner drugs renders artemisinin-based combination therapies less effective while the potential spread of multidrug-resistant parasites elicits concern. Vector behavioral changes and insecticide resistance have reduced the effectiveness of core vector control measures. In recognition of these problems, the Southeast Asian International Center of Excellence for Malaria Research (ICEMR) has been conducting multidisciplinary research to determine how human migration, antimalarial drug resistance, vector behavior, and insecticide resistance sustain malaria transmission at international borders. These efforts allow us to comprehensively understand the ecology of border malaria transmission and develop population genomics tools to identify and track parasite introduction. In addition to employing in vivo, in vitro, and molecular approaches to monitor the emergence and spread of drug-resistant parasites, we also use genomic and genetic methods to reveal novel mechanisms of antimalarial drug resistance of parasites. We also use omics and population genetics approaches to study insecticide resistance in malaria vectors and identify changes in mosquito community structure, vectorial potential, and seasonal dynamics. Collectively, the scientific findings from the ICEMR research activities offer a systematic view of the factors sustaining residual malaria transmission and identify potential solutions to these problems to accelerate malaria elimination in the GMS.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | | - Awtum Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Yaming Cao
- Department of Immunology, China Medical University, Shenyang, China
| | | | | | | | | | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Daniel Parker
- Department of Epidemiology, University of California at Irvine, Irvine, California
| | | | | | - Faiza Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, China Medical University, Shenyang, China
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| |
Collapse
|
14
|
Sattabongkot J, Cui L, Bantuchai S, Chotirat S, Kaewkungwal J, Khamsiriwatchara A, Kiattibutr K, Kyaw MP, Lawpoolsri S, Linn NYY, Menezes L, Miao J, Nguitragool W, Parker D, Prikchoo P, Roobsoong W, Sa-Angchai P, Samung Y, Sirichaisinthop J, Sriwichai P, Suk-Uam K, Thammapalo S, Wang B, Zhong D. Malaria Research for Tailored Control and Elimination Strategies in the Greater Mekong Subregion. Am J Trop Med Hyg 2022; 107:152-159. [PMID: 36228914 DOI: 10.4269/ajtmh.21-1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
The malaria landscape in the Greater Mekong Subregion has experienced drastic changes with the ramp-up of the control efforts, revealing formidable challenges that slowed down the progress toward malaria elimination. Problems such as border malaria and cross-border malaria introduction, multidrug resistance in Plasmodium falciparum, the persistence of Plasmodium vivax, the asymptomatic parasite reservoirs, and insecticide resistance in primary vectors require integrated strategies tailored for individual nations in the region. In recognition of these challenges and the need for research, the Southeast Asian International Center of Excellence for Malaria Research has established a network of researchers and stakeholders and conducted basic and translational research to identify existing and emerging problems and develop new countermeasures. The installation of a comprehensive disease and vector surveillance system at sentinel sites in border areas with the implementation of passive/active case detection and cross-sectional surveys allowed timely detection and management of malaria cases, provided updated knowledge for effective vector control measures, and facilitated the efficacy studies of antimalarials. Incorporating sensitive molecular diagnosis to expose the significance of asymptomatic parasite reservoirs for sustaining transmission helped establish the necessary evidence to guide targeted control to eliminate residual transmission. In addition, this program has developed point-of-care diagnostics to monitor the quality of artemisinin combination therapies, delivering the needed information to the drug regulatory authorities to take measures against falsified and substandard antimalarials. To accelerate malaria elimination, this program has actively engaged with stakeholders of all levels, fostered vertical and horizontal collaborations, and enabled the effective dissemination of research findings.
Collapse
Affiliation(s)
- Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | - Sadudee Chotirat
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Kirakorn Kiattibutr
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Nay Yi Yi Linn
- Department of Public Health, Ministry of Health, Nay Pyi Taw, Myanmar
| | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Daniel Parker
- Department of Epidemiology, University of California at Irvine, Irvine, California
| | - Pathomporn Prikchoo
- Office of Disease Prevention and Control 12, Ministry of Public Health, Songkla, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Yudthana Samung
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jeeraphat Sirichaisinthop
- Vector-Borne Disease Control Center, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kritsana Suk-Uam
- Vector Borne Disease Control Center 2.3, Ministry of Public Health, Tak, Thailand
| | - Suwich Thammapalo
- Vector-Borne Disease Control Center, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | - Baomin Wang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| |
Collapse
|
15
|
Rahim MAFA, Chuangchaiya S, Chanpum P, Palawong L, Kantee P, Dian ND, Lubis IND, Divis PCS, Kaneko A, Tetteh KKA, Idris ZM. Seroepidemiological surveillance, community perceptions and associated risk factors of malaria exposure among forest-goers in Northeastern Thailand. Front Cell Infect Microbiol 2022; 12:953585. [PMID: 36093204 PMCID: PMC9450859 DOI: 10.3389/fcimb.2022.953585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
Malaria remains a major public health challenge in Thailand. Continuous assessment and understanding of the behavior and perceptions related to malaria exposure in the high-risk group are necessary to achieve the elimination goal. This study aimed to investigate the parasite prevalence, seroprevalence rate, knowledge, attitudes, and practices (KAP), and malaria risk factors in rural communities living close to a forested area in the northeastern part of Thailand. A community-based cross-sectional survey was conducted in three forest-goer communities (i.e., Ban Khok, Ban Koh, and Dong Yang) located in Khamcha-i district, Mukdahan Province, Thailand, from July to August 2019. Demographic, socioeconomic information and KAP data were collected using a structured questionnaire. Parasite prevalence was determined by microscopy. Seroprevalence was determined via ELISA using two Plasmodium falciparum (PfAMA-1 and PfMSP-119) and two Plasmodium vivax (PvAMA-1 and PvMSP-119) antigens. Age-adjusted antibody responses were analyzed using a reversible catalytic model to calculate seroconversion rate (SCR). Malaria parasite was not detected in any of the 345 participants. The overall malaria seroprevalence was 72.2% for PfAMA-1, 18.8% for PfMSP-119, 32.5% for PvAMA-1, and 4.4% for PvMSP-119. The proportion of seroprevalence for P. falciparum and P. vivax antigens was significantly highest in Ban Koh (35.1%, P < 0.001) and Don Yang (18.8%, P < 0.001), respectively. For all parasite antigens except PvMSP-119, the proportion of seropositive individuals significantly increased with age (P < 0.001). Based on the SCRs, there was a higher level of P. falciparum transmission than P. vivax. Regarding KAP, almost all respondents showed adequate knowledge and awareness about malaria. Nevertheless, significant effort is needed to improve positive attitudes and practices concerning malaria prevention measures. Multivariate regression analyses showed that living in Ban Koh was associated with both P. falciparum (adjusted odds ratio [aOR] 12.87, P < 0.001) and P. vivax (aOR 9.78, P < 0.001) seropositivities. We also found significant associations between age and seropositivity against P. falciparum and P. vivax antigens. The data suggest that seroepidemiological surveillance using AMA-1 and MSP-119 antigens may provide further evidence to reconstruct malaria exposure history. The absence of weak evidence of recent malaria transmission in Mukdahan Province is promising in the context of the disease elimination program.
Collapse
Affiliation(s)
- Mohd Amirul Fitri A. Rahim
- Deparment of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sriwipa Chuangchaiya
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
- *Correspondence: Zulkarnain Md Idris, ; Sriwipa Chuangchaiya,
| | - Paisit Chanpum
- Vector Borne Disease Unit, Ban Koh Sub-District Health Promoting Hospital, Mukdahan, Thailand
| | - Laun Palawong
- Vector Borne Disease Unit, Ban Koh Sub-District Health Promoting Hospital, Mukdahan, Thailand
| | - Panuwat Kantee
- Vector Borne Disease Unit, Ban Koh Sub-District Health Promoting Hospital, Mukdahan, Thailand
| | - Nor Diyana Dian
- Deparment of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Inke Nadia D. Lubis
- Department of Paediatric, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Paul C. S. Divis
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Akira Kaneko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kevin K. A. Tetteh
- Department of Infection Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Zulkarnain Md Idris
- Deparment of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Zulkarnain Md Idris, ; Sriwipa Chuangchaiya,
| |
Collapse
|
16
|
Fuehrer HP, Campino S, Sutherland CJ. The primate malaria parasites Plasmodium malariae, Plasmodium brasilianum and Plasmodium ovale spp.: genomic insights into distribution, dispersal and host transitions. Malar J 2022; 21:138. [PMID: 35505317 PMCID: PMC9066925 DOI: 10.1186/s12936-022-04151-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
During the twentieth century, there was an explosion in understanding of the malaria parasites infecting humans and wild primates. This was built on three main data sources: from detailed descriptive morphology, from observational histories of induced infections in captive primates, syphilis patients, prison inmates and volunteers, and from clinical and epidemiological studies in the field. All three were wholly dependent on parasitological information from blood-film microscopy, and The Primate Malarias” by Coatney and colleagues (1971) provides an overview of this knowledge available at that time. Here, 50 years on, a perspective from the third decade of the twenty-first century is presented on two pairs of primate malaria parasite species. Included is a near-exhaustive summary of the recent and current geographical distribution for each of these four species, and of the underlying molecular and genomic evidence for each. The important role of host transitions in the radiation of Plasmodium spp. is discussed, as are any implications for the desired elimination of all malaria species in human populations. Two important questions are posed, requiring further work on these often ignored taxa. Is Plasmodium brasilianum, circulating among wild simian hosts in the Americas, a distinct species from Plasmodium malariae? Can new insights into the genomic differences between Plasmodium ovale curtisi and Plasmodium ovale wallikeri be linked to any important differences in parasite morphology, cell biology or clinical and epidemiological features?
Collapse
Affiliation(s)
- Hans-Peter Fuehrer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
17
|
Liu ZSJ, Sattabongkot J, White M, Chotirat S, Kumpitak C, Takashima E, Harbers M, Tham WH, Healer J, Chitnis CE, Tsuboi T, Mueller I, Longley RJ. Naturally acquired antibody kinetics against Plasmodium vivax antigens in people from a low malaria transmission region in western Thailand. BMC Med 2022; 20:89. [PMID: 35260169 PMCID: PMC8904165 DOI: 10.1186/s12916-022-02281-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plasmodium vivax (P. vivax) is the dominant Plasmodium spp. causing the disease malaria in low-transmission regions outside of Africa. These regions often feature high proportions of asymptomatic patients with sub-microscopic parasitaemia and relapses. Naturally acquired antibody responses are induced after Plasmodium infection, providing partial protection against high parasitaemia and clinical episodes. However, previous work has failed to address the presence and maintenance of such antibody responses to P. vivax particularly in low-transmission regions. METHODS We followed 34 patients in western Thailand after symptomatic P. vivax infections to monitor antibody kinetics over 9 months, during which no recurrent infections occurred. We assessed total IgG, IgG subclass and IgM levels to up to 52 P. vivax proteins every 2-4 weeks using a multiplexed Luminex® assay and identified protein-specific variation in antibody longevity. Mathematical modelling was used to generate the estimated half-life of antibodies, long-, and short-lived antibody-secreting cells. RESULTS Generally, an increase in antibody level was observed within 1-week post symptomatic infection, followed by an exponential decay of different rates. We observed mostly IgG1 dominance and IgG3 sub-dominance in this population. IgM responses followed similar kinetic patterns to IgG, with some proteins unexpectedly inducing long-lived IgM responses. We also monitored antibody responses against 27 IgG-immunogenic antigens in 30 asymptomatic individuals from a similar region. Our results demonstrate that most antigens induced robust and long-lived total IgG responses following asymptomatic infections in the absence of (detected) boosting infections. CONCLUSIONS Our work provides new insights into the development and maintenance of naturally acquired immunity to P. vivax and will guide the potential use of serology to indicate immune status and/or identify populations at risk.
Collapse
Affiliation(s)
- Zoe Shih-Jung Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Current affiliation: Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3220, Australia
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Michael White
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Paris, France
| | - Sadudee Chotirat
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chalermpon Kumpitak
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Eizo Takashima
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Matthias Harbers
- CellFree Sciences Co., Ltd., Yokohama, Japan and RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Chetan E Chitnis
- Malaria Parasite Biology and Vaccines, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France
| | | | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rhea J Longley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
18
|
Cintyamena U, Murhandarwati EEH, Elyazar I, Probandari A, Ahmad RA. Identifying forms of interventions towards cross border malaria in the Asia-Pacific region: a scoping review protocol. BMJ Open 2022; 12:e056265. [PMID: 35168980 PMCID: PMC8852765 DOI: 10.1136/bmjopen-2021-056265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION An ambitious epidemiology strategy has been set by the WHO, targeting malaria elimination for at least 35 countries in 2030. Challenges in preventing malaria cross borders require greater attention to achieve the elimination target. This scoping review aims to identify successful forms of interventions to control malaria transmission across national borders in the Asia-Pacific region. METHODS AND ANALYSIS This scoping review will search four electronic databases (PubMed, ScienceDirect, EBSCOhost and ProQuest) limiting the time of publication to the last 10 years. Two independent reviewers will screen all titles and abstracts during the second stage. Study characteristics will be recorded; qualitative data will be extracted and evaluated, while quantitative data will be extracted and summarised. Overall, we will follow the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews guidelines. ETHICS AND DISSEMINATION This scoping review has received ethical approval from the Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada. The results will be disseminated through peer-reviewed publications, conference presentations and policy briefs.
Collapse
Affiliation(s)
- Utsamani Cintyamena
- Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - E Elsa Herdiana Murhandarwati
- Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Iqbal Elyazar
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jakarta Pusat, DKI Jakarta, Indonesia
| | - Ari Probandari
- Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Public Health, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Riris Andono Ahmad
- Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Biostatistics, Epidemiology and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
19
|
O'Flaherty K, Roe M, Fowkes FJ. The role of naturally acquired antimalarial antibodies in subclinical
Plasmodium
spp. infection. J Leukoc Biol 2022; 111:1097-1105. [PMID: 35060185 PMCID: PMC9303632 DOI: 10.1002/jlb.5mr1021-537r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Katherine O'Flaherty
- Disease Elimination Program Burnet Institute for Medical Research and Public Health Melbourne Australia
| | - Merryn Roe
- Disease Elimination Program Burnet Institute for Medical Research and Public Health Melbourne Australia
- School of Public Health and Preventive Medicine Monash University Melbourne Australia
| | - Freya J.I. Fowkes
- Disease Elimination Program Burnet Institute for Medical Research and Public Health Melbourne Australia
- School of Public Health and Preventive Medicine Monash University Melbourne Australia
- Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health, The University of Melbourne Melbourne Australia
- Department of Infectious Disease Monash University Melbourne Australia
| |
Collapse
|
20
|
Abagero BR, Kepple D, Pestana K, Witherspoon L, Hordofa A, Adane A, Baharu F, Hansel S, Lopez K, Janies DA, Lo E, Yewhalaw D. Low Density Plasmodium Infections and G6PD Deficiency Among Malaria Suspected Febrile Individuals in Ethiopia. FRONTIERS IN TROPICAL DISEASES 2022; 3:966930. [PMID: 36619004 PMCID: PMC9815519 DOI: 10.3389/fitd.2022.966930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The identification and management of low parasitemia infections have become increasingly challenging for malaria control and elimination. Submicroscopic Plasmodium infections and G6PD deficiency among febrile patients require more sensitive diagnostic methods to improve detection and careful treatment regime of these infections. In Ethiopia, information on the low density submicroscopic malarial infections and frequency of G6PD deficiency (G6PDd) is scarce. In this study, 297 malaria suspected febrile patient samples were collected from health facilities of Bonga town in southwestern Ethiopia. The positivity rates of Plasmodium infection were determined by microscopy and quantitative PCR. G6PD activity level was determined by careSTART™ G6PD biosensor and the frequency of three common variants: G6PD*A (A376G), G6PD*A- (G202A) and Mediterranean (C563T) were investigated. G6PD gene sequencing was performed to detect mutations in exons 2-11 for both G6PD normal and deficient samples based on the phenotypic assay. More than twice Plasmodium infected samples was detected by qPCR (52/297; 17.4%) than microscopy (21/297; 7.0%). About 31 (10%) of the infections were submicroscopic. Bednet usage and age had a significant association with Plasmodium infection. Of the 271 participants who were tested for G6PD phenotype, 19 (7.0%) had low G6PD level. No mutations were observed in A376G, G202A, and C563T in the G6PDd samples, but three novel non-synonymous mutations in exon 2 including a C to T transition at position ChrX:6504 (Arg to Thr), G to T at ChrX:6369 (Ser to IIe), and G to C at ChrX:6664 (Gln to His) were detected. A high number of submicroscopic Plasmodium infections observed in this study pose a challenge for accurate and timely diagnosis, which could hinder malaria control efforts. G6PD deficiency in malaria patients pose danger when treating patients with primaquine. The three novel mutations detected in exon 2 of the G6PD gene merit further investigation on the hemolytic risk when exposed to oxidative antimalarials, their prevalence, and clinical significance.
Collapse
Affiliation(s)
- Beka R. Abagero
- Department of Biological Sciences, University of North Carolina at Charlotte, USA,Tropical Infectious Disease Research Center, Jimma University, Ethiopia
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina at Charlotte, USA
| | - Kareen Pestana
- Department of Biological Sciences, University of North Carolina at Charlotte, USA
| | - Logan Witherspoon
- Department of Biological Sciences, University of North Carolina at Charlotte, USA
| | - Abdisa Hordofa
- Tropical Infectious Disease Research Center, Jimma University, Ethiopia
| | - Abinet Adane
- Tropical Infectious Disease Research Center, Jimma University, Ethiopia
| | - Fetiya Baharu
- Tropical Infectious Disease Research Center, Jimma University, Ethiopia
| | - Shantoy Hansel
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, USA
| | - Karen Lopez
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, USA
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, USA
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, USA,School of Data Science, University of North Carolina, Charlotte, USA,Correspondence: Eugenia Lo, Department of Biological Sciences, University of North Carolina at Charlotte; Delenasaw Yewhalaw, Tropical Infectious Disease Research Center, Jimma University, Ethiopia, ,
| | - Delenasaw Yewhalaw
- Tropical Infectious Disease Research Center, Jimma University, Ethiopia,Correspondence: Eugenia Lo, Department of Biological Sciences, University of North Carolina at Charlotte; Delenasaw Yewhalaw, Tropical Infectious Disease Research Center, Jimma University, Ethiopia, ,
| |
Collapse
|
21
|
Angrisano F, Robinson LJ. Plasmodium vivax - How hidden reservoirs hinder global malaria elimination. Parasitol Int 2021; 87:102526. [PMID: 34896312 DOI: 10.1016/j.parint.2021.102526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 01/23/2023]
Abstract
Plasmodium vivax is the most geographically widespread human malaria parasite. Global malaria efforts have been less successful at reducing the burden of P. vivax compared to P. falciparum, owing to the unique biology and related treatment complexity of P. vivax. As a result, P. vivax is now the dominant malaria parasite throughout the Asia-Pacific and South America causing up to 14 million clinical cases every year and is considered a major obstacle to malaria elimination. Key features circumventing existing malaria control tools are the transmissibility of asymptomatic, low-density circulating infections and reservoirs of persistent dormant liver stages (hypnozoites) that are undetectable but reactivate to cause relapsing infections and sustain transmission. In this review we summarise the new knowledge shaping our understanding of the global epidemiology of P. vivax infections, highlighting the challenges for elimination and the tools that will be required achieve this.
Collapse
|
22
|
Nega D, Abera A, Gidey B, Mekasha S, Abebe A, Dillu D, Mehari D, Assefa G, Hailu S, Haile M, Etana K, Solomon H, Tesfaye G, Nigatu D, Destaw Z, Tesfaye B, Serda B, Yeshiwondim A, Getachew A, Teka H, Nahusenay H, Abdelmenan S, Reda H, Bekele W, Zewdie A, Tollera G, Assefa A, Tasew G, Woyessa A, Abate E. Baseline malaria prevalence at the targeted pre-elimination districts in Ethiopia. BMC Public Health 2021; 21:1996. [PMID: 34732150 PMCID: PMC8567662 DOI: 10.1186/s12889-021-12036-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
Background Encouraged by the previous success in malaria control and prevention strategies, the Ethiopian ministry of health launched malaria elimination with a stepwise approach by primarily targeting the low-transmission Districts and their adjacent areas/zones in order to shrink the country’s malaria map progressively. Hence, this community survey was conducted to establish baseline malaria information at the preliminary phase of elimination at targeted settings. Methods A community-based cross-sectional survey was conducted at 20 malaria-elimination targeted Districts selected from five Regional states and one city administration in Ethiopia. The GPS-enabled smartphones programmed with Open Data Kit were used to enumerate 9326 study households and collect data from 29,993 residents. CareStart™ Malaria PAN (pLDH) Rapid Diagnostic Tests (RDTs) were used for blood testing at the field level. Armpit digital thermometers were used to measure axillary temperature. Result Overall malaria prevalence by RDTs was 1.17% (339/28973). The prevalence at District levels ranged from 0.0 to 4.7%. The proportion of symptomatic cases (axillary temperature > 37.5oc) in the survey was 9.2% (2760/29993). Among the 2510 symptomatic individuals tested with RDTs, only 3.35% (84/2510) were malaria positive. The 75.2% (255/339) of all malaria positives were asymptomatic. Of the total asymptomatic malaria cases, 10.2% (26/255) were under-five children and 89.8% (229/255) were above 5 years of age. Conclusion The study shows a decrease in malaria prevalence compared to the reports of previous malaria indicator surveys in the country. The finding can be used as a baseline for measuring the achievement of ongoing malaria elimination efforts. Particularly, the high prevalence of asymptomatic individuals (0.88%) in these transmission settings indicates there may be sustaining hidden transmission. Therefore, active case detection with more sensitive diagnostic techniques is suggested to know more real magnitude of residual malaria in the elimination-targeted areas.
Collapse
Affiliation(s)
- Desalegn Nega
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Adugna Abera
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Sindew Mekasha
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abnet Abebe
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Dereje Dillu
- Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Degu Mehari
- Federal Ministry of Health, Addis Ababa, Ethiopia
| | | | - Samuel Hailu
- Federal Ministry of Health, Addis Ababa, Ethiopia
| | | | - Kebede Etana
- Federal Ministry of Health, Addis Ababa, Ethiopia
| | | | | | | | - Zelalem Destaw
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Berhane Tesfaye
- Malaria Control and Elimination Partnership in Africa (MACEPA) at PATH, Addis Ababa, Ethiopia
| | - Belendia Serda
- Malaria Control and Elimination Partnership in Africa (MACEPA) at PATH, Addis Ababa, Ethiopia
| | - Asnakew Yeshiwondim
- Malaria Control and Elimination Partnership in Africa (MACEPA) at PATH, Addis Ababa, Ethiopia
| | - Assefaw Getachew
- Malaria Control and Elimination Partnership in Africa (MACEPA) at PATH, Addis Ababa, Ethiopia
| | - Hiwot Teka
- President's Malaria Initiative (PMI), Addis Ababa, Ethiopia
| | | | | | - Hailemariam Reda
- Clinton Health Access Initiative, Inc. (CHAI), Addis Ababa, Ethiopia
| | - Worku Bekele
- World Health Organization (WHO), Addis Ababa, Ethiopia
| | - Ayele Zewdie
- Addis Continental Institute of Public Health, Addis Ababa, Ethiopia
| | | | | | - Geremew Tasew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Adugna Woyessa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ebba Abate
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
23
|
Abstract
J. Kevin Baird and colleagues, examine and discuss the estimated global burden of vivax malaria and it's biological, clinical, and public health complexity.
Collapse
Affiliation(s)
- Katherine E. Battle
- Institute for Disease Modeling, Seattle, Washington, United States of America
| | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia
- Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Sumbele IUN, Teh RN, Nkeudem GA, Sandie SM, Moyeh MN, Shey RA, Shintouo CM, Ghogomu SM, Batiha GES, Alkazmi L, Kimbi HK. Asymptomatic and sub-microscopic Plasmodium falciparum infection in children in the Mount Cameroon area: a cross-sectional study on altitudinal influence, haematological parameters and risk factors. Malar J 2021; 20:382. [PMID: 34565353 PMCID: PMC8474836 DOI: 10.1186/s12936-021-03916-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022] Open
Abstract
Background The Mount Cameroon area has experienced a 57.2% decline in confirmed malaria cases between 2006 and 2013 with the implementation of different control measures but, the disease is still of public health concern. The objective of the study was to assess the burden of asymptomatic and sub-microscopic Plasmodium infection, altitudinal influence on it, their effect on haematological parameters as well as identify the risk factors of infection. Methodology A cross-sectional community-based survey involving 1319 children of both sexes aged 6 months to 14 years was conducted between July 2017 and May 2018. Malaria parasitaemia was confirmed by Giemsa-stained microscopy, sub-microscopic Plasmodium infection by 18S mRNA using nested PCR and full blood count analysis was done using an auto haematology analyser. Results Malaria parasite, asymptomatic malaria parasitaemia and sub-microscopic Plasmodium infection and anaemia were prevalent in 36.4%, 34.0%, 43.8% and 62.3% of the children, respectively. The risk of having sub-microscopic Plasmodium infection was highest in children 5‒9 (OR = 3.13, P < 0.001) and 10‒14 years of age (OR = 8.18, P < 0.001), non-insecticide treated net users (OR = 1.69, P < 0.04) and those anaemic (OR = 9.01, P < 0.001). Children with sub-microscopic infection had a significantly lower mean haemoglobin (9.86 ± 1.7 g/dL, P < 0.001), red blood cell counts (4.48 ± 1.1 × 1012/L, P < 0.001), haematocrit (31.92%, P < 0.001), mean corpuscular haemoglobin concentration (313.25 ± 47.36, P = 0.035) and platelet counts (280.83 ± 112.62, P < 0.001) than their negative counterparts. Children < 5 years old (73.8%), having asymptomatic (69.8%) and sub-microscopic Plasmodium infection (78.3%) as well as resident in the middle belt (72.7%) had a higher prevalence of anaemia than their peers. Conclusion The meaningful individual-level heterogeneity in the burden of asymptomatic and sub-microscopic Plasmodium infection in addition to its corollary on haematological variables among children in the different attitudinal sites of the Mount Cameroon Region accentuate the need for strategic context specific planning of malaria control and preventative measures. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03916-7.
Collapse
Affiliation(s)
- Irene Ule Ngole Sumbele
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon. .,Department of Microbiology and Immunology, Cornell College of Veterinary Medicine, Ithaca, NY, USA.
| | - Rene Ning Teh
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon.,Department of Social Economy and Family Management, Higher Technical Teachers' Training College, University of Buea, Kumba, Cameroon
| | - Gillian Asoba Nkeudem
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon.,Department of Social Economy and Family Management, Higher Technical Teachers' Training College, University of Buea, Kumba, Cameroon
| | | | - Marcel Nyuylam Moyeh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Robert Adamu Shey
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | | | | | | | - Luay Alkazmi
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Helen Kuokuo Kimbi
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon.,Department of Medical Laboratory Science, The University of Bamenda, Bambili, Cameroon
| |
Collapse
|
25
|
Pooseesod K, Parker DM, Meemon N, Lawpoolsri S, Singhasivanon P, Sattabongkot J, Cui L, Phuanukoonnon S. Ownership and utilization of bed nets and reasons for use or non-use of bed nets among community members at risk of malaria along the Thai-Myanmar border. Malar J 2021; 20:305. [PMID: 34229653 PMCID: PMC8259116 DOI: 10.1186/s12936-021-03837-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022] Open
Abstract
Background With the goal for malaria elimination in Thailand set for 2024, increased coverage and utilization of bed net, especially insecticide-treated net (ITN) or long-lasting insecticidal net (LLIN) is a key strategy. This study aims to provide the necessary information about bed net ownership and utilization among the population at risk of malaria living along the Thai-Myanmar border in Tak province. Methods A cross-sectional study was conducted using a mixed-method approach in 331 households from 5 hamlets in the villages of the Thai-Myanmar border. The research tools included a questionnaire, bed net inspection, and semi-structured interviews. Logistic regression was used to explore the sociodemographic factors associated with bed net utilization. The qualitative analysis employed a thematic analysis approach. Results This survey found that 98.5% of households had at least one bed net per household, and 74.3% had at least one ITN/LLIN. However, only 30.8% of households reached the standard policy set by the Minister of Public Health of one ITN/LLINs per two persons. Most residents used bed net (92.1% used in the previous night and 80.9% used every day). For those using bed nets, however, 61.9% used ITNs or LLINs the night before and 53.1% used them every day. Nonetheless, the usage rates of bed nets (any type) in the previous night among children and pregnant women were high, reaching 95.3% and 90.0%, respectively. Seven explanatory variables showed statistically significant associations with bed net use every day, including: “not staying overnight in the forest or the field”, “sleeping pattern based on gender”, “sufficient numbers of bed nets to cover all sleeping spaces”, “preference for free bed nets”, “age”, “gender”, and “SES score” showed statistically significant association with bed net use every day. The major reasons for the regular use of bed nets in both household and the forest were to prevent mosquito biting. The reasons for not using bednets in the household were discomfort feelings from heat, perception of unnecessity due to low mosquito density, whereas the reason for not using bed nets in the forest was inconvenience. Conclusion Despite that overall coverage and usage of bed nets was high, only one third reached the standard level specified by the policy. Overnight in the forest, the dissatisfaction with the quality of free bed nets, insufficient number of bed nets, sleeping alone, male gender, age more than 10 years, low socioeconomic status, discomfort from heat, perception of no benefits of bed nets due to low mosquito density, and inconvenience were factors influencing bed net use. Maintaining high coverage and utility rate of bed nets should be a priority for the malaria high-risk population. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03837-5.
Collapse
Affiliation(s)
- Kasama Pooseesod
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand.,Faculty of Public Health, Thammasat University, Bangkok, Thailand
| | - Daniel M Parker
- Department of Population Health & Disease Prevention, Program in Public Health Susan and Henry Samueli College of Health Sciences, University of California, Irvine, USA
| | - Natthani Meemon
- Department of Society and Health, Faculty of Social Sciences and Humanities, Mahidol University, Nakhon Pathom, Thailand
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand
| | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand.,Faculty of Tropical Medicine, SEAMEO TROPMED Regional Centre for Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Suparat Phuanukoonnon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand. .,Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
26
|
O'Flaherty K, Oo WH, Zaloumis SG, Cutts JC, Aung KZ, Thein MM, Drew DR, Razook Z, Barry AE, Parischa N, Zaw NN, Thu HK, Thi A, Htay WYM, Soe AP, Simpson JA, Beeson JG, Agius PA, Fowkes FJI. Community-based molecular and serological surveillance of subclinical malaria in Myanmar. BMC Med 2021; 19:121. [PMID: 34044836 PMCID: PMC8161608 DOI: 10.1186/s12916-021-01993-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In the Greater Mekong Subregion (GMS), current malaria surveillance strategies rely on a network of village health volunteers (VHVs) reporting the results of rapid diagnostic tests (RDTs), known to miss many asymptomatic infections. Integration of more sensitive diagnostic molecular and serological measures into the VHV network may improve surveillance of residual malaria transmission in hard-to-reach areas in the region and inform targeted interventions and elimination responses. However, data on residual malaria transmission that would be captured by these measures in the VHV-led testing and treatment surveillance network in the GMS is unknown. METHODS A total of 114 VHVs were trained to collect dried blood spots from villagers undergoing routine RDTs as part of VHV-led active and passive case detection from April 2015 to June 2016. Samples were subjected to molecular testing (quantitative polymerase chain reaction [qPCR]) to determine Plasmodium falciparum and P. vivax infection and serological testing (against P. falciparum and P. vivax antigens) to determine exposure to P. falciparum and P. vivax. RESULTS Over 15 months, 114 VHVs performed 32,194 RDTs and collected samples for molecular (n = 13,157) and serological (n = 14,128) testing. The prevalence of molecular-detectable P. falciparum and P. vivax infection was 3.2% compared to the 0.16% prevalence of Plasmodium spp. by RDT, highlighting the large burden of infections undetected by standard surveillance. Peaks in anti-P. falciparum, but not P. vivax, merozoite IgG seroprevalence coincided with seasonal P. falciparum transmission peaks, even in those with no molecularly detectable parasites. At the individual level, antibody seropositivity was associated with reduced odds of contemporaneous P. falciparum (OR for PfCSP 0.51 [95%CI 0.35, 0.76], p = 0.001, PfAMA1 0.70 [95%CI 0.52, 0.93], p = 0.01, and PfMSP2 0.81 [95%CI 0.61, 1.08], p = 0.15), but not P. vivax infection (OR PvAMA1 1.02 [95%CI 0.73, 1.43], p = 0.89) indicating a potential role of immunity in protection against molecular-detectable P. falciparum parasitaemia. CONCLUSIONS We demonstrated that integration and implementation of sample collection for molecular and serological surveillance into networks of VHV servicing hard-to-reach populations in the GMS is feasible, can capture significant levels of ongoing undetected seasonal malaria transmission and has the potential to supplement current routine RDT testing. Improving malaria surveillance by advancing the integration of molecular and serological techniques, through centralised testing approaches or novel point-of-contact tests, will advance progress, and tracking, towards malaria elimination goals in the GMS.
Collapse
Affiliation(s)
- Katherine O'Flaherty
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Win Han Oo
- Burnet Institute Myanmar, Yangon, Myanmar
| | - Sophie G Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Julia C Cutts
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | | | | | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Zahra Razook
- School of Medicine, Deakin University, Geelong, Australia
| | - Alyssa E Barry
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia.,School of Medicine, Deakin University, Geelong, Australia
| | - Naanki Parischa
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | | | | | - Aung Thi
- Department of Public Health, Myanmar Ministry of Health, Nay Pyi Taw, Myanmar
| | | | | | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia.,Department of Microbiology and Central Clinical School, Monash University, Melbourne, Australia
| | - Paul A Agius
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia.,Judith Lumley Centre, La Trobe University, Melbourne, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia. .,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia. .,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia. .,Department of Infectious Diseases, Monash University, Melbourne, Australia.
| |
Collapse
|
27
|
Võ TC, Lê HG, Kang JM, Naw H, Fan CK, Trinh NTM, Quang HH, Na BK. Molecular surveillance of malaria in the Central Highlands, Vietnam. Parasitol Int 2021; 83:102374. [PMID: 33957296 DOI: 10.1016/j.parint.2021.102374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/25/2023]
Abstract
Vietnam achieved outstanding success against malaria in the last few decades. The mortality and morbidity of malaria in Vietnam have decreased remarkably in recent years, but malaria is still a major public health concern in the country, particularly in the Central Highlands region. In this study, molecular analyses of malaria parasites in the Central Highlands were performed to understand the population structure and genetic diversity of the parasites circulating in the region. Plasmodium falciparum (68.7%) and P. vivax (27.4%) along with mixed infections with P. falciparum/P. vivax (3.9%) were detected in 230 blood samples from patients with malaria. Allele-specific nested-polymerase chain reaction (PCR) or PCR-restriction fragment length polymorphism (PCR-RFLP) analyses of pfmsp-1, pfama-1, pvcsp, and pvmsp-1 revealed complex genetic makeup in P. falciparum and P. vivax populations of Vietnam. Substantial multiplicity of infection (MOI) was also identified, suggesting significant genetic diversity and polymorphism of P. falciparum and P. vivax populations in the Central Highlands of Vietnam. These results provide fundamental insight into the current patterns of dispersion and genetic nature of malaria parasites as well as for the development of malaria elimination strategies in the endemic region.
Collapse
Affiliation(s)
- Tuấn Cường Võ
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea.
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea.
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea.
| | - Haung Naw
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea.
| | - Chia-Kwung Fan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine and Research Center of International Tropical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, Taiwan.
| | - Nguyen Thi Minh Trinh
- Tropical Diseases Clinical and Treatment Research Department, Institute of Malariology, Parasitology, and Entomology Quy Nhon, MoH, 611B Nguyen Thai Hoc Street, Quy Nhon, Vietnam.
| | - Huynh Hong Quang
- Tropical Diseases Clinical and Treatment Research Department, Institute of Malariology, Parasitology, and Entomology Quy Nhon, MoH, 611B Nguyen Thai Hoc Street, Quy Nhon, Vietnam.
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea.
| |
Collapse
|
28
|
A foci cohort analysis to monitor successful and persistent foci under Thailand's Malaria Elimination Strategy. Malar J 2021; 20:118. [PMID: 33639951 PMCID: PMC7910787 DOI: 10.1186/s12936-021-03648-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/04/2022] Open
Abstract
Background Thailand’s success in reducing malaria burden is built on the efficient “1-3-7” strategy applied to the surveillance system. The strategy is based on rapid case notification within 1 day, case investigation within 3 days, and targeted foci response to reduce the spread of Plasmodium spp. within 7 days. Autochthonous transmission is still occurring in the country, threatening the goal of reaching malaria-free status by 2024. This study aimed to assess the effectiveness of the 1-3-7 strategy and identify factors associated with presence of active foci. Methods Data from the national malaria information system were extracted from fiscal years 2013 to 2019; after data cleaning, the final dataset included 81,012 foci. A Cox’s proportional hazards model was built to investigate factors linked with the probability of becoming an active focus from 2015 to 2019 among foci that changed status from non-active to active focus during the study period. We performed a model selection technique based on the Akaike Information Criteria (AIC). Results The number of yearly active foci decreased from 2227 to 2013 to 700 in 2019 (68.5 %), and the number of autochthonous cases declined from 17,553 to 3,787 (78.4 %). The best Cox’s hazard model showed that foci in which vector control interventions were required were 18 % more likely to become an active focus. Increasing compliance with the 1-3-7 strategy had a protective effect, with a 22 % risk reduction among foci with over 80 % adherence to 1-3-7 timeliness protocols. Other factors associated with likelihood to become or remain an active focus include previous classification as an active focus, presence of Plasmodium falciparum infections, level of forest disturbance, and location in border provinces. Conclusions These results identified factors that favored regression of non-active foci to active foci during the study period. The model and relative risk map align with the national malaria program’s district stratification and shows strong spatial heterogeneity, with high probability to record active foci in border provinces. The results of the study may be useful for honing Thailand’s program to eliminate malaria and for other countries aiming to accelerate malaria elimination.
Collapse
|
29
|
Kessler A, Shylla B, Singh US, Lyngdoh R, Mawkhlieng B, van Eijk AM, Sullivan SA, Das A, Walton C, Wilson ML, Carlton JM, Albert S. Spatial and temporal village-level prevalence of Plasmodium infection and associated risk factors in two districts of Meghalaya, India. Malar J 2021; 20:70. [PMID: 33541366 PMCID: PMC7859895 DOI: 10.1186/s12936-021-03600-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Despite declining incidence over the past decade, malaria remains an important health burden in India. This study aimed to assess the village-level temporal patterns of Plasmodium infection in two districts of the north-eastern state of Meghalaya and evaluate risk factors that might explain these patterns. METHODS Primary Health Centre passive malaria case data from 2014 to 2018 were analysed to characterize village-specific annual incidence and temporal trends. Active malaria case detection was undertaken in 2018 and 2019 to detect Plasmodium infections using PCR. A questionnaire collected socio-demographic, environmental, and behavioural data, and households were spatially mapped via GPS. Adult mosquitoes were sampled at a subset of subjects' houses, and Anopheles were identified by PCR and sequencing. Risk factors for Plasmodium infection were evaluated using bivariate and multivariate logistic regression analysis, and spatial cluster analysis was undertaken. RESULTS The annual malaria incidence from PHC-based passive surveillance datasets in 2014-2018 was heterogenous but declining across villages in both districts. Active surveillance in 2018 enrolled 1468 individuals from 468 households (West Jaintia Hills) and 1274 individuals from 359 households (West Khasi Hills). Plasmodium falciparum prevalence per 100 people varied from 0 to 4.1% in the nine villages of West Jaintia Hills, and from 0 to 10.6% in the 12 villages of West Khasi Hills. Significant clustering of P. falciparum infections [observed = 11, expected = 2.15, Relative Risk (RR) = 12.65; p < 0.001] was observed in West Khasi Hills. A total of 13 Anopheles species were found at 53 houses in five villages, with Anopheles jeyporiensis being the most abundant. Risk of infection increased with presence of mosquitoes and electricity in the households [Odds Ratio (OR) = 1.19 and 1.11], respectively. Households with reported animals had reduced infection risk (OR = 0.91). CONCLUSION Malaria incidence during 2014-2018 declined in all study villages covered by the passive surveillance data, a period that includes the first widespread insecticide-treated net campaign. The survey data from 2018 revealed a significant association between Plasmodium infection and certain household characteristics. Since species of Plasmodium-competent mosquito vectors continue to be abundant, malaria resurgence remains a threat, and control efforts should continue.
Collapse
Affiliation(s)
- Anne Kessler
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Badondor Shylla
- Indian Institute of Public Health-Shillong, Shillong, Meghalaya, 793001, India
- Martin Luther Christian University, Shillong, Meghalaya, 793006, India
| | - Upasana Shyamsunder Singh
- Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Rilynti Lyngdoh
- Department of Health Services (Malaria), National Vector Borne Disease Programme, Lawmali, Pasteur Hill, Shillong, Meghalaya, 793001, India
| | | | - Anna Maria van Eijk
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Steven A Sullivan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Aparup Das
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, 482003, India
| | - Catherine Walton
- Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Mark L Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
- Department of Epidemiology, College of Global Public Health, New York University, New York, NY, 10012, USA.
| | - Sandra Albert
- Indian Institute of Public Health-Shillong, Shillong, Meghalaya, 793001, India.
- Martin Luther Christian University, Shillong, Meghalaya, 793006, India.
| |
Collapse
|
30
|
Na-Bangchang K, Martviset P, Kitvatanachai S, Tarasuk M, Muhamad P. Pretreatment gametocyte carriage in symptomatic patients with Plasmodium falciparum and Plasmodium vivax infections on the Thai-Myanmar border. J Vector Borne Dis 2021; 58:257-264. [DOI: 10.4103/0972-9062.316274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
Lee SK, Hu F, Firdaus ER, Park JH, Han JH, Lee SE, Shin HI, Cho SH, Park WS, Lu F, Han ET. Surveillance on the Vivax Malaria in Endemic Areas in the Republic of Korea Based on Molecular and Serological Analyses. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:609-617. [PMID: 33412764 PMCID: PMC7806437 DOI: 10.3347/kjp.2020.58.6.609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022]
Abstract
Plasmodium vivax reemerged in 1993. It has been sustained for more than 25 years and become one of the important indigenous parasitic diseases in northern and western parts of the Republic of Korea near the demilitarized zone. In particular, relapse is a significant concern for the control of malaria, as short- and long-term incubation periods vary among those infected in Korea. In this study, the prevalence of asymptomatic carriers was examined among residents of high endemic areas of vivax malaria during nonseasonal transmission of mosquitoes. Blood samples from 3 endemic regions in northwestern Korea were evaluated by microscopic examination, rapid diagnostic testing, and nested PCR to identify asymptomatic patients carrying malaria parasites in the community. However, no positive malaria case among residents of endemic areas was detected. Additionally, serological analysis was carried out to measure antibodies against 3 antigenic recombinant proteins of P. vivax, merozoite surface protein 1-19, circumsporozoite surface protein-VK210, and liver-stage antigen (PvLSA-N), by the protein array method. Interestingly, seropositivity of sera between previous exposure and samples without exposure to malaria was significantly higher using the PvLSA-N antigen than the other antigens, suggesting that PvLSA-N can be used as a serological marker to analyze the degree of exposure for malaria transmission in endemic areas. This indicates a very low asymptomatic carrier prevalence during the nonmalaria season in the endemic areas of Korea.
Collapse
Affiliation(s)
- Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Fengyue Hu
- Department of Pathogenic Biology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Egy Rahman Firdaus
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Sang-Eun Lee
- Division of Vectors and Parasitic Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Chungbuk 28159, Korea
| | - Hyun-Il Shin
- Division of Vectors and Parasitic Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Chungbuk 28159, Korea
| | - Shin Hyeong Cho
- Division of Vectors and Parasitic Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Chungbuk 28159, Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Feng Lu
- Department of Pathogenic Biology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225000, China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
32
|
Kanoi BN, Nagaoka H, Morita M, Tsuboi T, Takashima E. Leveraging the wheat germ cell-free protein synthesis system to accelerate malaria vaccine development. Parasitol Int 2020; 80:102224. [PMID: 33137499 DOI: 10.1016/j.parint.2020.102224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 01/29/2023]
Abstract
Vaccines against infectious diseases have had great successes in the history of public health. Major breakthroughs have occurred in the development of vaccine-based interventions against viral and bacterial pathogens through the application of classical vaccine design strategies. In contrast the development of a malaria vaccine has been slow. Plasmodium falciparum malaria affects millions of people with nearly half of the world population at risk of infection. Decades of dedicated research has taught us that developing an effective vaccine will be time consuming, challenging, and expensive. Nevertheless, recent advancements such as the optimization of robust protein synthesis platforms, high-throughput immunoscreening approaches, reverse vaccinology, structural design of immunogens, lymphocyte repertoire sequencing, and the utilization of artificial intelligence, have renewed the prospects of an accelerated discovery of the key antigens in malaria. A deeper understanding of the major factors underlying the immunological and molecular mechanisms of malaria might provide a comprehensive approach to identifying novel and highly efficacious vaccines. In this review we discuss progress in novel antigen discoveries that leverage on the wheat germ cell-free protein synthesis system (WGCFS) to accelerate malaria vaccine development.
Collapse
Affiliation(s)
- Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
33
|
van Eijk AM, Mannan AS, Sullivan SA, Carlton JM. Defining symptoms of malaria in India in an era of asymptomatic infections. Malar J 2020; 19:237. [PMID: 32631326 PMCID: PMC7339403 DOI: 10.1186/s12936-020-03310-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023] Open
Abstract
Background Malaria is a major public health problem in India. Data from surveys totaling 3031 participants at three sites revealed a high proportion of asymptomatic infections, complicating diagnosis. The aim of this study was to identify differences in complaints and symptoms between sites, and factors associated with asymptomatic Plasmodium infections. Methods Published data from community-based cross-sectional studies conducted between 2012 and 2015 in Nadiad (Gujarat), Chennai (Tamil Nadu), and Rourkela (Odisha) as part of the Center for the Study of Complex Malaria in India were analysed. Complaints and symptoms were systematically recorded, and Plasmodium infections confirmed using microscopy, rapid diagnostic tests (RDTs), and polymerase chain reaction (PCR). Multivariate analyses were conducted to determine the association between general symptoms and age, season, or gender, and factors associated with asymptomatic Plasmodium infections were assessed. Results Complaints of any illness were lowest in Chennai (17.7%), 30.6% in Rourkela and 42.7% in Nadiad. Complaints were more often reported for children; gender differences were noted in Rourkela only. In Nadiad, 7.0% of 796 participants were positive for malaria by PCR (32% Plasmodium falciparum); 78.6% had a history of fever or documented fever, 14.3% had other symptoms, and 7.1% were “truly asymptomatic”. For Chennai this was 29.2%, 4.2% and 66.7% respectively, with a malaria prevalence of 2.6% by PCR of 928 participants (29% P. falciparum). In Rourkela, with 7.7% of 1307 participants positive for malaria by PCR (82% P. falciparum), the percentages were 35.6%, 24.8% and 39.6%, respectively. In Rourkela, asymptomatic infections were associated with young age and male gender (microscopy or RDT), and with rainy season (PCR). In the same site, participants with Plasmodium vivax were more likely to be asymptomatic (11/18 or 61.1%) than persons with P. falciparum mono-infections (27/78 or 34.6%); gametocytes for P. falciparum were evenly distributed between symptomatic and asymptomatic infections (2/53 vs. 2/49, respectively). The addition of the symptoms “headache”, “aches” and “chills” to fever improved the case-definition of symptomatic malaria. Conclusion There were considerable differences in complaints at the three sites in India. Malaria and asymptomatic infections differ by region, indicating that malaria elimination will require localized approaches.
Collapse
Affiliation(s)
- Anna Maria van Eijk
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| | - Asad S Mannan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Steven A Sullivan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| |
Collapse
|
34
|
Moreno-Pérez DA, Patarroyo MA. Inferring Plasmodium vivax protein biology by using omics data. J Proteomics 2020; 218:103719. [PMID: 32092400 DOI: 10.1016/j.jprot.2020.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 11/18/2022]
Abstract
Deciphering Plasmodium vivax biology has long been a challenge for groups working on this parasite, mainly due to the complications involved in propagating it in vitro. However, adapting P. vivax strains in non-human primates and the arrival of high-performance analysis methods has led to increased knowledge regarding parasite protein composition and the ability of some molecules to trigger an immune response or participate in protein-protein interactions. This review describes the state of the art concerning proteomics-, immunomics- and interatomics-related P. vivax omic studies, discussing their potential use in developing disease control methods.
Collapse
Affiliation(s)
- D A Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, Colombia; Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 No. 55-37, Bogotá, Colombia
| | - M A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, Colombia.
| |
Collapse
|
35
|
Chan L, Dietrich MH, Nguitragool W, Tham W. Plasmodium vivax Reticulocyte Binding Proteins for invasion into reticulocytes. Cell Microbiol 2020; 22:e13110. [PMID: 31469946 PMCID: PMC7003471 DOI: 10.1111/cmi.13110] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/25/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022]
Abstract
Plasmodium vivax is responsible for most of the malaria infections outside Africa and is currently the predominant malaria parasite in countries under elimination programs. P. vivax preferentially enters young red cells called reticulocytes. Advances in understanding the molecular and cellular mechanisms of entry are hampered by the inability to grow large numbers of P. vivax parasites in a long-term in vitro culture. Recent progress in understanding the biology of the P. vivax Reticulocyte Binding Protein (PvRBPs) family of invasion ligands has led to the identification of a new invasion pathway into reticulocytes, an understanding of their structural architecture and PvRBPs as targets of the protective immune response to P. vivax infection. This review summarises current knowledge on the role of reticulocytes in P. vivax infection, the function of the PvRBP family of proteins in generating an immune response in human populations, and the characterization of anti-PvRBP antibodies in blocking parasite invasion.
Collapse
Affiliation(s)
- Li‐Jin Chan
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Melanie H. Dietrich
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Wai‐Hong Tham
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
36
|
Mercado CEG, Lawpoolsri S, Sudathip P, Kaewkungwal J, Khamsiriwatchara A, Pan-Ngum W, Yimsamran S, Lawawirojwong S, Ho K, Ekapirat N, Maude RR, Wiladphaingern J, Carrara VI, Day NPJ, Dondorp AM, Maude RJ. Spatiotemporal epidemiology, environmental correlates, and demography of malaria in Tak Province, Thailand (2012-2015). Malar J 2019; 18:240. [PMID: 31311606 PMCID: PMC6636027 DOI: 10.1186/s12936-019-2871-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/06/2019] [Indexed: 12/14/2022] Open
Abstract
Background Tak Province, at the Thai–Myanmar border, is one of three high malaria incidence areas in Thailand. This study aimed to describe and identify possible factors driving the spatiotemporal trends of disease incidence from 2012 to 2015. Methods Climate variables and forest cover were correlated with malaria incidence using Pearson’s r. Statistically significant clusters of high (hot spots) and low (cold spots) annual parasite incidence per 1000 population (API) were identified using Getis-Ord Gi* statistic. Results The total number of confirmed cases declined by 76% from 2012 to 2015 (Plasmodium falciparum by 81%, Plasmodium vivax by 73%). Incidence was highly seasonal with two main annual peaks. Most cases were male (62.75%), ≥ 15 years (56.07%), and of Myanmar (56.64%) or Thai (39.25%) nationality. Median temperature (1- and 2-month lags), average temperature (1- and 2-month lags) and average relative humidity (2- and 3-month lags) correlated positively with monthly total, P. falciparum and P. vivax API. Total rainfall in the same month correlated with API for total cases and P. vivax but not P. falciparum. At sub-district level, percentage forest cover had a low positive correlation with P. falciparum, P. vivax, and total API in most years. There was a decrease in API in most sub-districts for both P. falciparum and P. vivax. Sub-districts with the highest API were in the Tha Song Yang and Umphang Districts along the Thai–Myanmar border. Annual hot spots were mostly in the extreme north and south of the province. Conclusions There has been a large decline in reported clinical malaria from 2012 to 2015 in Tak Province. API was correlated with monthly climate and annual forest cover but these did not account for the trends over time. Ongoing elimination interventions on one or both sides of the border are more likely to have been the cause but it was not possible to assess this due to a lack of suitable data. Two main hot spot areas were identified that could be targeted for intensified elimination activities. Electronic supplementary material The online version of this article (10.1186/s12936-019-2871-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chris Erwin G Mercado
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prayuth Sudathip
- Bureau of Vector-borne Diseases (BVBD), Department of Disease Control (DDC), Ministry of Public Health (MOPH), Nonthaburi, Thailand
| | - Jaranit Kaewkungwal
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Amnat Khamsiriwatchara
- Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wirichada Pan-Ngum
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Surapon Yimsamran
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Siam Lawawirojwong
- Geo-Informatics and Space Technology Development Agency (GISTDA), Bangkok, Thailand
| | - Kevin Ho
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nattwut Ekapirat
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rapeephan R Maude
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jacher Wiladphaingern
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Verena I Carrara
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Shoklo Malaria Research Unit (SMRU), Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| |
Collapse
|
37
|
Houzé S. [Malaria: immuno-permissive management in the prevention of transfusional malaria]. Transfus Clin Biol 2019; 26:192-194. [PMID: 31331829 DOI: 10.1016/j.tracli.2019.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Malaria is a potentially life-threatening tropical infectious disease caused by a parasite that infects erythrocytes. Its transmission is vectorial, but the transfusion of infected red blood cells can cause a delicate diagnosis of transmitted malaria. Prevention is based on the selection of donors at risk by the search for antibodies reflecting past infection, in the absence of a sufficiently sensitive parasite detection technique to prevent all risks. Recent cases of transfusion malaria have reiterated that this preventive measure does not allow screening of all asymptomatic carriers.
Collapse
Affiliation(s)
- S Houzé
- CNR du Paludisme, hôpital Bichat, AP-HP, 46, rue Henri Huchard, 75018 Paris, France.
| |
Collapse
|
38
|
Hawash Y, Ismail K, Alsharif K, Alsanie W. Malaria Prevalence in a Low Transmission Area, Jazan District of Southwestern Saudi Arabia. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:233-242. [PMID: 31284345 PMCID: PMC6616166 DOI: 10.3347/kjp.2019.57.3.233] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/24/2019] [Accepted: 05/03/2019] [Indexed: 11/23/2022]
Abstract
Detailed description of malaria in low transmission areas is crucial for elimination. The current study aimed to provide a comprehensive description for malaria transmission in Jazan, a low transmission district, southwestern Saudi Arabia. Patients at a tertiary care hospital were recruited in our study between August 2016 and September 2018. Malaria diagnosis was performed through a species-specific nested polymerase chain reaction (nested PCR), microscopy and Paramax-3TM rapid detection test (RDT). Malaria was detected in 30 patients by the PCR, with point prevalence of 10.9%. Of these malaria infections, 80% was imported, 26.6% was asymptomatic and 23.3% was sub-microscopic. Malaria was reported throughout the year, with February/March and September/October peaks. Infection was significantly more in males than in females (P=0.01). Likewise, infections were detected more in febrile than in non-febrile patients (P=0.01). Adult aged 15-24 years, fever and travel were identified as high-risk factors. Malaria was primarily attributed to Plasmodium falciparum mono-infections, followed by P. vivax mono-infections and lastly to falciparum/vivax mixed infections accounting 76.6%, 16.6%, and 6.6% of PCR-confirmed malaria cases, respectively. The nested PCR was superior to the smear microscopy (sensitivity 76.6%; specificity 100%) and the RDT (sensitivity 83.3%, specificity 94.2%). The overall percent agreement between microscopy and the RDT was 92.7% (kappa=0.63). High proportion of imported malaria including sub-microscopic and sub-patent cases were described. We suggest that incorporation of molecular tool into the conventional malaria diagnosis is beneficial in Jazan district.
Collapse
Affiliation(s)
- Yousry Hawash
- Clinical Laboratories Sciences Department, College of Applied Medical Science, Taif University, Taif,
Saudi Arabia
- Parasitology Department, National Liver Institute, Menoufia University, Menoufia,
Egypt
| | - Khadiga Ismail
- Clinical Laboratories Sciences Department, College of Applied Medical Science, Taif University, Taif,
Saudi Arabia
- Parasitology Department, Faculty of Medicine, Ain-Shams University, Cairo,
Egypt
| | - Khalaf Alsharif
- Clinical Laboratories Sciences Department, College of Applied Medical Science, Taif University, Taif,
Saudi Arabia
| | - Walaa Alsanie
- Clinical Laboratories Sciences Department, College of Applied Medical Science, Taif University, Taif,
Saudi Arabia
| |
Collapse
|
39
|
Jiram AI, Ooi CH, Rubio JM, Hisam S, Karnan G, Sukor NM, Artic MM, Ismail NP, Alias NW. Evidence of asymptomatic submicroscopic malaria in low transmission areas in Belaga district, Kapit division, Sarawak, Malaysia. Malar J 2019; 18:156. [PMID: 31046769 PMCID: PMC6498596 DOI: 10.1186/s12936-019-2786-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Malaysia has declared its aim to eliminate malaria with a goal of achieving zero local transmission by the year 2020. However, targeting the human reservoir of infection, including those with asymptomatic infection is required to achieve malaria elimination. Diagnosing asymptomatic malaria is not as straightforward due to the obvious lack of clinical manifestations and often subpatent level of parasites. Accurate diagnosis of malaria is important for providing realistic estimates of malaria burden and preventing misinformed interventions. Low levels of parasitaemia acts as silent reservoir of transmission thus remains infectious to susceptible mosquito vectors. Hence, the aim of this study is to investigate the prevalence of asymptomatic submicroscopic malaria (SMM) in the District of Belaga, Sarawak. METHODS In 2013, a total of 1744 dried blood spots (DBS) were obtained from residents of 8 longhouses who appeared healthy. Subsequently, 251 venous blood samples were collected from residents of 2 localities in 2014 based on the highest number of submicroscopic cases from prior findings. Thin and thick blood films were prepared from blood obtained from all participants in this study. Microscopic examination were carried out on all samples and a nested and nested multiplex PCR were performed on samples collected in 2013 and 2014 respectively. RESULTS No malaria parasites were detected in all the Giemsa-stained blood films. However, of the 1744 samples, 29 (1.7%) were positive for Plasmodium vivax by PCR. Additionally, of the 251 samples, the most prevalent mono-infection detected by PCR was Plasmodium falciparum 50 (20%), followed by P. vivax 39 (16%), P. knowlesi 9 (4%), and mixed infections 20 (8%). CONCLUSIONS This research findings conclude evidence of Plasmodium by PCR, among samples previously undetectable by routine blood film microscopic examination, in local ethnic minority who are clinically healthy. SMM in Belaga district is attributed not only to P. vivax, but also to P. falciparum and P. knowlesi. In complementing efforts of programme managers, there is a need to increase surveillance for SMM nationwide to estimate the degree of SMM that warrant measures to block new transmission of malaria.
Collapse
Affiliation(s)
- Adela Ida Jiram
- Parasitology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia.
| | - Choo Huck Ooi
- Vector Borne Diseases Section, Sarawak Health Department, Ministry of Health Malaysia, Diplomatik Road, Off Bako Road, Petra Jaya, 93050, Kuching, Sarawak, Malaysia
| | - José Miguel Rubio
- Malaria & Emerging Parasitic Diseases Laboratory, Parasitology Department, National Centre of Microbiology, Instituto de Salud Carlos III (ISCIII), Carretera de Majadahonda - Pozuelo, km. 2,200, Majadahonda, 28220, Madrid, Spain
| | - Shamilah Hisam
- Parasitology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Govindarajoo Karnan
- Parasitology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Nurnadiah Mohd Sukor
- Parasitology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Mohd Mafie Artic
- Parasitology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Nor Parina Ismail
- Parasitology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Nor Wahida Alias
- Parasitology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Nguitragool W, Karl S, White M, Koepfli C, Felger I, Singhasivanon P, Mueller I, Sattabongkot J. Highly heterogeneous residual malaria risk in western Thailand. Int J Parasitol 2019; 49:455-462. [PMID: 30954453 PMCID: PMC6996282 DOI: 10.1016/j.ijpara.2019.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 01/01/2023]
Abstract
There is a highly heterogenous risk of malaria infection among villagers in western Thailand. The molecular force of infection was determined in a low endemic setting. There is a strong correlation between malaria prevalence and the force of infection.
Over the past decades, the malaria burden in Thailand has substantially declined. Most infections now originate from the national border regions. In these areas, the prevalence of asymptomatic infections is still substantial and poses a challenge for the national malaria elimination program. To determine epidemiological parameters as well as risk factors for malaria infection in western Thailand, we carried out a cohort study in Kanchanaburi and Ratchaburi provinces on the Thailand-Myanmar border. Blood samples from 999 local participants were examined for malaria infection every 4 weeks between May 2013 and Jun 2014. Prevalence of Plasmodium falciparum and Plasmodium vivax was determined by quantitative PCR (qPCR) and showed a seasonal variation with values fluctuating from 1.7% to 4.2% for P. vivax and 0% to 1.3% for P. falciparum. Ninety percent of infections were asymptomatic. The annual molecular force of blood-stage infection (molFOB) was estimated by microsatellite genotyping to be 0.24 new infections per person-year for P. vivax and 0.02 new infections per person-year for P. falciparum. The distribution of infections was heterogenous, that is, the vast majority of infections (>80%) were found in a small number of individuals (<8% of the study population) who tested positive at multiple timepoints. Significant risk factors were detected for P. vivax infections, including previous clinical malaria, occupation in agriculture and travel to Myanmar. In contrast, indoor residual spraying was associated with a protection from infection. These findings provide a recent landscape of malaria epidemiology and emphasize the importance of novel strategies to target asymptomatic and imported infections.
Collapse
Affiliation(s)
- Wang Nguitragool
- Department of Molecular Tropical Medicine & Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stephan Karl
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Michael White
- Malaria: Parasites and Hosts Unit, Department of Parasites & Insect Vectors, Institute Pasteur, Paris, France
| | - Cristian Koepfli
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Ingrid Felger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical & Public Health Institute, Basel, Switzerland
| | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia; Malaria: Parasites and Hosts Unit, Department of Parasites & Insect Vectors, Institute Pasteur, Paris, France.
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
41
|
Kobayashi T, Jain A, Liang L, Obiero JM, Hamapumbu H, Stevenson JC, Thuma PE, Lupiya J, Chaponda M, Mulenga M, Mamini E, Mharakurwa S, Gwanzura L, Munyati S, Mutambu S, Felgner P, Davies DH, Moss WJ. Distinct Antibody Signatures Associated with Different Malaria Transmission Intensities in Zambia and Zimbabwe. mSphere 2019; 4:e00061-19. [PMID: 30918058 PMCID: PMC6437277 DOI: 10.1128/mspheredirect.00061-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/30/2022] Open
Abstract
Antibodies to Plasmodium falciparum are specific biomarkers that can be used to monitor parasite exposure over broader time frames than microscopy, rapid diagnostic tests, or molecular assays. Consequently, seroprevalence surveys can assist with monitoring the impact of malaria control interventions, particularly in the final stages of elimination, when parasite incidence is low. The protein array format to measure antibodies to diverse P. falciparum antigens requires only small sample volumes and is high throughput, permitting the monitoring of malaria transmission on large spatial and temporal scales. We expanded the use of a protein microarray to assess malaria transmission in settings beyond those with a low malaria incidence. Antibody responses in children and adults were profiled, using a P. falciparum protein microarray, through community-based surveys in three areas in Zambia and Zimbabwe at different stages of malaria control and elimination. These three epidemiological settings had distinct serological profiles reflective of their malaria transmission histories. While there was little correlation between transmission intensity and antibody signals (magnitude or breadth) in adults, there was a clear correlation in children younger than 5 years of age. Antibodies in adults appeared to be durable even in the absence of significant recent transmission, whereas antibodies in children provided a more accurate picture of recent levels of transmission intensity. Seroprevalence studies in children could provide a valuable marker of progress toward malaria elimination.IMPORTANCE As malaria approaches elimination in many areas of the world, monitoring the effect of control measures becomes more important but challenging. Low-level infections may go undetected by conventional tests that depend on parasitemia, particularly in immune individuals, who typically show no symptoms of malaria. In contrast, antibodies persist after parasitemia and may provide a more accurate picture of recent exposure. Only a few parasite antigens-mainly vaccine candidates-have been evaluated in seroepidemiological studies. We examined antibody responses to 500 different malaria proteins in blood samples collected through community-based surveillance from areas with low, medium, and high malaria transmission intensities. The breadth of the antibody responses in adults was broad in all three settings and was a poor correlate of recent exposure. In contrast, children represented a better sentinel population for monitoring recent malaria transmission. These data will help inform the use of multiplex serology for malaria surveillance.
Collapse
Affiliation(s)
- Tamaki Kobayashi
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Li Liang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Joshua M Obiero
- Vaccine Research & Development Center, Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | | | - Jennifer C Stevenson
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Macha Research Trust, Choma, Zambia
| | - Philip E Thuma
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Macha Research Trust, Choma, Zambia
| | - James Lupiya
- Tropical Diseases Research Centre, Ndola, Zambia
| | | | | | - Edmore Mamini
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | | | | | - Shungu Munyati
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Susan Mutambu
- National Institute of Health Research, Harare, Zimbabwe
| | - Philip Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - D Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - William J Moss
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Jaiteh F, Masunaga Y, Okebe J, D'Alessandro U, Balen J, Bradley J, Gryseels C, Ribera JM, Grietens KP. Community perspectives on treating asymptomatic infections for malaria elimination in The Gambia. Malar J 2019; 18:39. [PMID: 30777112 PMCID: PMC6378745 DOI: 10.1186/s12936-019-2672-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Innovative and cost-effective strategies that clear asymptomatic malaria infections are required to reach malaria elimination goals, but remain a challenge. This mixed methods study explored people's attitudes towards the reactive treatment of compound contacts of malaria cases with a 3-day course of dihydroartemisinin-piperaquine (DHAP), the socio-cultural representations of asymptomatic infections, and more specifically their treatment. METHODS Prior to the start of the intervention, a sequential mixed method study was carried out. Qualitative data collection involved in-depth interviews and participant observations (including informal conversations) with key informants from the trial communities and the trial staff. Quantitative data were derived from a pre-trial cross-sectional survey on health literacy and health-seeking behaviour among randomly selected members of the study communities. RESULTS In the pre-trial cross-sectional survey, 73% of respondents reported that malaria could be hidden in the body without symptoms. Whilst this may be interpreted as people's comprehension of asymptomatic malaria, qualitative data indicated that informants had different interpretations of asymptomatic disease than the biomedical model. It was described as: (i) a minor illness that does not prevent people carrying out daily activities; (ii) an illness that oscillates between symptomatic and asymptomatic phases; and, (iii) a condition where disease agents are present in the body but remain hidden, without signs and symptoms, until something triggers their manifestation. Furthermore, this form of hidden malaria was reported to be most present in those living in the same compound with a malaria case (71%). CONCLUSION Treating asymptomatic malaria with pharmaceuticals was considered acceptable. However, people felt uncertain to take treatment without screening for malaria first, largely due to the lack of symptoms. Knowledge of asymptomatic malaria was not a strong re-inforcement for treatment adherence. In this study, the pre-intervention active engagement of communities existed of having people co-design accurate information messages about their personal risk of malaria, which increased their trust in expert knowledge and thus proved essential for the successful implementation of the community-based intervention.
Collapse
Affiliation(s)
- Fatou Jaiteh
- Medical Anthropology Unit, Institute of Tropical Medicine, Antwerp, Belgium.
- Medical Research Council Unit the Gambia at the London, School of Hygiene and Tropical Medicine, Fajara, The Gambia.
- Faculty of Social and Behavioural Science, Department of Sociology and Anthropology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Yoriko Masunaga
- Medical Anthropology Unit, Institute of Tropical Medicine, Antwerp, Belgium
- Faculty of Social and Behavioural Science, Department of Sociology and Anthropology, University of Amsterdam, Amsterdam, The Netherlands
| | - Joseph Okebe
- Medical Research Council Unit the Gambia at the London, School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Umberto D'Alessandro
- Medical Research Council Unit the Gambia at the London, School of Hygiene and Tropical Medicine, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, London, UK
| | - Julie Balen
- School of Health and Related Research (ScHARR), The University of Sheffield, Sheffield, UK
| | - John Bradley
- London School of Hygiene and Tropical Medicine, London, UK
| | - Charlotte Gryseels
- Medical Anthropology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | |
Collapse
|
43
|
Taghavian O, Jain A, Joyner CJ, Ketchum S, Nakajima R, Jasinskas A, Liang L, Fong R, King C, Greenhouse B, Murphy M, Bailey J, Galinski MR, Barnwell JW, Plowe CV, Davies DH, Felgner PL. Antibody Profiling by Proteome Microarray with Multiplex Isotype Detection Reveals Overlap between Human and Aotus nancymaae Controlled Malaria Infections. Proteomics 2019; 18. [PMID: 29266845 DOI: 10.1002/pmic.201700277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/21/2017] [Indexed: 12/13/2022]
Abstract
The development of vaccines against malaria and serodiagnostic tests for detecting recent exposure requires tools for antigen discovery and suitable animal models. The protein microarray is a high-throughput, sample sparing technique, with applications in infectious disease research, clinical diagnostics, epidemiology, and vaccine development. We recently demonstrated Qdot-based indirect immunofluorescence together with portable optical imager ArrayCAM using single isotype detection could replicate data using the conventional laser confocal scanner system. We developed a multiplexing protocol for simultaneous detection of IgG, IgA, and IgM and compared samples from a controlled human malaria infection model with those from controlled malaria infections of Aotus nancymaae, a widely used non-human primate model of human malaria. IgG profiles showed the highest concordance in number of reactive antigens; thus, of the 139 antigens recognized by human IgG antibody, 111 were also recognized by Aotus monkeys. Interestingly, IgA profiles were largely non-overlapping. Finally, on the path toward wider deployment of the portable platform, we show excellent correlations between array data obtained in five independent laboratories around the United States using the multiplexing protocol (R2 : 0.60-0.92). This study supports the use of this platform for wider deployment, particularly in endemic areas where such a tool will have the greatest impact on global human health.
Collapse
Affiliation(s)
- Omid Taghavian
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Aarti Jain
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Chester J Joyner
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Rie Nakajima
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Algis Jasinskas
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Li Liang
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Rich Fong
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Maxwell Murphy
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Jason Bailey
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Mary R Galinski
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - John W Barnwell
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christopher V Plowe
- Howard Hughes Medical Institute/Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - D Huw Davies
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Philip L Felgner
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
44
|
Simultaneous Quantification of Plasmodium Antigens and Host Factor C-Reactive Protein in Asymptomatic Individuals with Confirmed Malaria by Use of a Novel Multiplex Immunoassay. J Clin Microbiol 2019; 57:JCM.00948-18. [PMID: 30404944 PMCID: PMC6322473 DOI: 10.1128/jcm.00948-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Malaria rapid diagnostic tests (RDTs) primarily detect Plasmodium falciparum antigen histidine-rich protein 2 (HRP2) and the malaria-conserved antigen lactate dehydrogenase (LDH) for P. vivax and other malaria species. The performance of RDTs and their utility is dependent on circulating antigen concentration distributions in infected individuals in a population in which malaria is endemic and on the limit of detection of the RDT for the antigens. Malaria rapid diagnostic tests (RDTs) primarily detect Plasmodium falciparum antigen histidine-rich protein 2 (HRP2) and the malaria-conserved antigen lactate dehydrogenase (LDH) for P. vivax and other malaria species. The performance of RDTs and their utility is dependent on circulating antigen concentration distributions in infected individuals in a population in which malaria is endemic and on the limit of detection of the RDT for the antigens. A multiplexed immunoassay for the quantification of HRP2, P. vivax LDH, and all-malaria LDH (pan LDH) was developed to accurately measure circulating antigen concentration and antigen distribution in a population with endemic malaria. The assay also measures C-reactive protein (CRP) levels as an indicator of inflammation. Validation was conducted with clinical specimens from 397 asymptomatic donors from Myanmar and Uganda, confirmed by PCR for infection, and from participants in induced blood-stage malaria challenge studies. The assay lower limits of detection for HRP2, pan LDH, P. vivax LDH, and CRP were 0.2 pg/ml, 9.3 pg/ml, 1.5 pg/ml, and 26.6 ng/ml, respectively. At thresholds for HRP2, pan LDH, and P. vivax LDH of 2.3 pg/ml, 47.8 pg/ml, and 75.1 pg/ml, respectively, and a specificity ≥98.5%, the sensitivities for ultrasensitive PCR-confirmed infections were 93.4%, 84.9%, and 48.9%, respectively. Plasmodium LDH (pLDH) concentration, in contrast to that of HRP2, correlated closely with parasite density. CRP levels were moderately higher in P. falciparum infections with confirmed antigenemia versus those in clinical specimens with no antigen. The 4-plex array is a sensitive tool for quantifying diagnostic antigens in malaria infections and supporting the evaluation of new ultrasensitive RDTs.
Collapse
|
45
|
Kassegne K, Abe EM, Cui YB, Chen SB, Xu B, Deng WP, Shen HM, Wang Y, Chen JH, Zhou XN. Contribution of Plasmodium immunomics: potential impact for serological testing and surveillance of malaria. Expert Rev Proteomics 2018; 16:117-129. [PMID: 30513025 DOI: 10.1080/14789450.2019.1554441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Plasmodium vivax (Pv) and P. knowlesi account together for a considerable share of the global burden of malaria, along with P. falciparum (Pf). However, inaccurate diagnosis and undetectable asymptomatic/submicroscopic malaria infections remain very challenging. Blood-stage antigens involved in either invasion of red blood cells or sequestration/cytoadherence of parasitized erythrocytes have been immunomics-characterized, and are vital for the detection of malaria incidence. Areas covered: We review the recent advances in Plasmodium immunomics to discuss serological markers with potential for specific and sensitive diagnosis of malaria. Insights on alternative use of immunomics to assess malaria prevalence are also highlighted. Finally, we provide practical applications of serological markers as diagnostics, with an emphasis on dot immunogold filtration assay which holds promise for malaria diagnosis and epidemiological surveys. Expert commentary: The approach largely contributes to Pf and Pv research in identifying promising non-orthologous antigens able to detect malaria incidence and to differentiate between past and recent infections. However, further studies to profiling naturally acquired immune responses are expected in order to help discover/validate serological markers of no cross-seroreactivity and guide control interventions. More so, the application of immunomics to knowlesi infections would help validate the recently identified antigens and contribute to the discovery of additional biomarkers of exposure, immunity, or both.
Collapse
Affiliation(s)
- Kokouvi Kassegne
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Eniola Michael Abe
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Yan-Bing Cui
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Shen-Bo Chen
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Bin Xu
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Wang-Ping Deng
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Hai-Mo Shen
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Yue Wang
- b Institute of Parasitic Diseases , Zhejiang Academy of Medical Sciences , Hangzhou , People's Republic of China
| | - Jun-Hu Chen
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| | - Xiao-Nong Zhou
- a National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health , National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, People's Republic of China
| |
Collapse
|
46
|
Kamuyu G, Tuju J, Kimathi R, Mwai K, Mburu J, Kibinge N, Chong Kwan M, Hawkings S, Yaa R, Chepsat E, Njunge JM, Chege T, Guleid F, Rosenkranz M, Kariuki CK, Frank R, Kinyanjui SM, Murungi LM, Bejon P, Färnert A, Tetteh KKA, Beeson JG, Conway DJ, Marsh K, Rayner JC, Osier FHA. KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization. Front Immunol 2018; 9:2866. [PMID: 30619257 PMCID: PMC6298441 DOI: 10.3389/fimmu.2018.02866] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples. The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal–Wallis H test for trend: p < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65–0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines.
Collapse
Affiliation(s)
- Gathoni Kamuyu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - James Tuju
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Department of Biochemistry, Pwani University, Kilifi, Kenya
| | - Rinter Kimathi
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Kennedy Mwai
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - James Mburu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Nelson Kibinge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Marisa Chong Kwan
- Arrayjet, Innovative Microarray Solutions, Edinburgh, United Kingdom
| | - Sam Hawkings
- Arrayjet, Innovative Microarray Solutions, Edinburgh, United Kingdom
| | - Reuben Yaa
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Emily Chepsat
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - James M Njunge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Timothy Chege
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Fatuma Guleid
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Micha Rosenkranz
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christopher K Kariuki
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya.,Cellular and Molecular Immunology, Vrije Universiteit Brussels, Brussels, Belgium
| | - Roland Frank
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Samson M Kinyanjui
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Department of Biochemistry, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Linda M Murungi
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kevin K A Tetteh
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,African Academy of Sciences, Nairobi, Kenya
| | - Julian C Rayner
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Faith H A Osier
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Biochemistry, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Frimpong A, Kusi KA, Ofori MF, Ndifon W. Novel Strategies for Malaria Vaccine Design. Front Immunol 2018; 9:2769. [PMID: 30555463 PMCID: PMC6281765 DOI: 10.3389/fimmu.2018.02769] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
The quest for a licensed effective vaccine against malaria remains a global priority. Even though classical vaccine design strategies have been successful for some viral and bacterial pathogens, little success has been achieved for Plasmodium falciparum, which causes the deadliest form of malaria due to its diversity and ability to evade host immune responses. Nevertheless, recent advances in vaccinology through high throughput discovery of immune correlates of protection, lymphocyte repertoire sequencing and structural design of immunogens, provide a comprehensive approach to identifying and designing a highly efficacious vaccine for malaria. In this review, we discuss novel vaccine approaches that can be employed in malaria vaccine design.
Collapse
Affiliation(s)
- Augustina Frimpong
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,African Institute for Mathematical Sciences, Cape Coast, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michael Fokuo Ofori
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Wilfred Ndifon
- African Institute for Mathematical Sciences, Cape Coast, Ghana.,African Institute for Mathematical Sciences, University of Stellenbosch, Cape Town, South Africa
| |
Collapse
|
48
|
Sattabongkot J, Suansomjit C, Nguitragool W, Sirichaisinthop J, Warit S, Tiensuwan M, Buates S. Prevalence of asymptomatic Plasmodium infections with sub-microscopic parasite densities in the northwestern border of Thailand: a potential threat to malaria elimination. Malar J 2018; 17:329. [PMID: 30208895 PMCID: PMC6134695 DOI: 10.1186/s12936-018-2476-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/04/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Asymptomatic infections with sub-microscopic Plasmodium serve as a silent reservoir of disease, critical to sustaining a low level of remanent malaria in the population. These infections must be effectively identified and targeted for elimination. The sensitivity of light microscopy, the traditional method used for diagnosing Plasmodium infections, is frequently insufficient for detecting asymptomatic infections due to the low density of parasitaemia. The objective of this study was to explore the current prevalence of asymptomatic sub-microscopic Plasmodium carriages to evaluate the parasite reservoir amongst residents from 7 hamlets in Tak Province in northwestern Thailand using a highly sensitive molecular method. METHODS Malaria infection was screened in a real-world setting from 3650 finger-prick blood specimens collected in a mass cross-sectional survey using light microscopy and loop-mediated isothermal amplification (LAMP). LAMP results were later confirmed in a laboratory setting in Bangkok using nested PCR, restriction enzyme digestion and DNA sequencing. The association of malaria infection with demographic factors was explored. RESULTS Parasite prevalence was 0.27% (10/3650) as determined by microscopy. Sub-microscopic infection prevalence was 2.33% (85/3650) by LAMP. Of these, 30.6% (26/85) were infected with Plasmodium falciparum, 52.9% (45/85) with Plasmodium vivax, 2.4% (2/85) with Plasmodium malariae, 4.7% (4/85) with mixed P. falciparum and P. vivax, and 9.4% (8/85) had parasite densities too low for species identification. Asymptomatic carriages (T < 37.5 °C) accounted for 95% (76/80) of all sub-microscopic cases with the highest prevalence occurring in the subjects 31-45 years of age (p ≤ 0.035). Participants working on plantations or as merchants had an increased infection risk. Evaluation by microscopy identified 10.53% (10/95) of all Plasmodium infected participants. CONCLUSION Participants carrying asymptomatic Plasmodium infections with sub-microscopic parasite densities are considerable in this area. These findings provide the true disease burden and risk factors in this region. This information helps to direct policy makers towards better schemes and delivery of targeted interventions. Moreover, this is the first study to use LAMP in mass screening for sub-clinical and sub-microscopic infections in a field setting in Thailand. LAMP proves to be a sensitive and field-deployable assay suitable for national malaria control screening campaigns.
Collapse
Affiliation(s)
- Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chayanut Suansomjit
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Saradee Warit
- Tuberculosis Research Laboratory, Medical Molecular Biology Research Unit, BIOTEC, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Montip Tiensuwan
- Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sureemas Buates
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
49
|
Zhao Y, Zeng J, Zhao Y, Liu Q, He Y, Zhang J, Yang Z, Fan Q, Wang Q, Cui L, Cao Y. Risk factors for asymptomatic malaria infections from seasonal cross-sectional surveys along the China-Myanmar border. Malar J 2018; 17:247. [PMID: 29973194 PMCID: PMC6032786 DOI: 10.1186/s12936-018-2398-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Border malaria, a shared phenomenon in the Greater Mekong Sub-region of Southeast Asia, is a major obstacle for regional malaria elimination. Along the China-Myanmar border, an additional problem arose as a result of the settlement of internally displaced people (IDP) in the border region. Since asymptomatic malaria significantly impacts transmission dynamics, assessment of the prevalence, dynamics and risk factors of asymptomatic malaria infections is necessary. METHODS Cross-sectional surveys were carried out in 3 seasons (March and April, July and November) and 2 sites (villages and IDP camps) in 2015. A total of 1680 finger-prick blood samples were collected and used for parasite detection by microscopy and nested RT-PCR (nRT-PCR). Logistic regression models were used to explore the risk factors associated with asymptomatic malaria at individual and household levels. RESULTS The prevalence of asymptomatic Plasmodium infections was 23.3% by nRT-PCR, significantly higher than that detected by microscopy (1.5%). The proportions of Plasmodium vivax, Plasmodium falciparum and mixed-species infections were 89.6, 8.1 and 2.3%, respectively. Asymptomatic infections showed obvious seasonality with higher prevalence in the rainy season. Logistic regression analysis identified males and school children (≤ 15 years) as the high-risk populations. Vector-based interventions, including bed net and indoor residual spray, were found to have significant impacts on asymptomatic Plasmodium infections, with non-users of these measures carrying much higher risks of infection. In addition, individuals living in poorly constructed households or farther away from clinics were more prone to asymptomatic infections. CONCLUSIONS Sub-microscopic Plasmodium infections were highly prevalent in the border human populations from IDP camps and surrounding villages. Both individual- and household-level risk factors were identified, which provides useful information for identifying the high-priority populations to implement targeted malaria control.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jie Zeng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yonghong Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Qingyang Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yang He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jiaqi Zhang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Liwang Cui
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
- Department of Entomology, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
50
|
Martins-Campos KM, Kuehn A, Almeida A, Duarte APM, Sampaio VS, Rodriguez ÍC, da Silva SGM, Ríos-Velásquez CM, Lima JBP, Pimenta PFP, Bassat Q, Müller I, Lacerda M, Monteiro WM, Barbosa Guerra MDGV. Infection of Anopheles aquasalis from symptomatic and asymptomatic Plasmodium vivax infections in Manaus, western Brazilian Amazon. Parasit Vectors 2018; 11:288. [PMID: 29728152 PMCID: PMC5935932 DOI: 10.1186/s13071-018-2749-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
Background Asymptomatic individuals are one of the major challenges for malaria elimination programs in endemic areas. In the absence of clinical symptoms and with a lower parasite density they constitute silent reservoirs considered important for maintaining transmission of human malaria. Studies from Brazil have shown that infected individuals may carry these parasites for long periods. Results Patients were selected from three periurban endemic areas of the city of Manaus, in the western Brazilian Amazon. Symptomatic and asymptomatic patients with positive thick blood smear and quantitative real-time PCR (qPCR) positive for Plasmodium vivax were invited to participate in the study. A standardised pvs25 gene amplification by qPCR was used for P. vivax gametocytes detection. Anopheles aquasalis were fed using membrane feeding assays (MFA) containing blood from malaria patients. Parasitemia of 42 symptomatic and 25 asymptomatic individuals was determined by microscopic examination of blood smears and qPCR. Parasitemia density and gametocyte density were assessed as determinants of infection rates and oocysts densities. A strong correlation between gametocyte densities (microscopy and molecular techniques) and mosquito infectivity (P < 0.001) and oocysts median numbers (P < 0.05) was found in both groups. The ability to infect mosquitoes was higher in the symptomatic group (41%), but infectivity in the asymptomatic group was also seen (1.42%). Conclusions Although their infectivity to mosquitoes is relatively low, given the high prevalence of P. vivax asymptomatic carriers they are likely to play and important role in malaria transmission in the city of Manaus. The role of asymptomatic infections therefore needs to be considered in future malaria elimination programs in Brazil. Electronic supplementary material The online version of this article (10.1186/s13071-018-2749-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keillen M Martins-Campos
- Programa de Pós Graduação em Medicina Tropical, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Andrea Kuehn
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Anne Almeida
- Programa de Pós Graduação em Medicina Tropical, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Ana Paula M Duarte
- Programa de Pós Graduação em Medicina Tropical, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | | | - Íria C Rodriguez
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Sara G M da Silva
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | | | | | - Paulo Filemon Paolucci Pimenta
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Brazil
| | - Quique Bassat
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ivo Müller
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Walter and Eliza Hall Institute, Parkville, Australia
| | - Marcus Lacerda
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Instituto de Pesquisas Leônidas & Maria Deane, Fiocruz, Manaus, Brazil
| | - Wuelton M Monteiro
- Programa de Pós Graduação em Medicina Tropical, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil.,Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Maria das Graças V Barbosa Guerra
- Programa de Pós Graduação em Medicina Tropical, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil. .,Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.
| |
Collapse
|