1
|
Golumbeanu M, Briët O, Champagne C, Lemant J, Winkel M, Zogo B, Gerhards M, Sinka M, Chitnis N, Penny M, Pothin E, Smith T. AnophelesModel: An R package to interface mosquito bionomics, human exposure and intervention effects with models of malaria intervention impact. PLoS Comput Biol 2024; 20:e1011609. [PMID: 39269993 PMCID: PMC11424000 DOI: 10.1371/journal.pcbi.1011609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 09/25/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
In recent decades, field and semi-field studies of malaria transmission have gathered geographic-specific information about mosquito ecology, behaviour and their sensitivity to interventions. Mathematical models of malaria transmission can incorporate such data to infer the likely impact of vector control interventions and hence guide malaria control strategies in various geographies. To facilitate this process and make model predictions of intervention impact available for different geographical regions, we developed AnophelesModel. AnophelesModel is an online, open-access R package that quantifies the impact of vector control interventions depending on mosquito species and location-specific characteristics. In addition, it includes a previously published, comprehensive, curated database of field entomological data from over 50 Anopheles species, field data on mosquito and human behaviour, and estimates of vector control effectiveness. Using the input data, the package parameterizes a discrete-time, state transition model of the mosquito oviposition cycle and infers species-specific impacts of various interventions on vectorial capacity. In addition, it offers formatted outputs ready to use in downstream analyses and by other models of malaria transmission for accurate representation of the vector-specific components. Using AnophelesModel, we show how the key implications for intervention impact change for various vectors and locations. The package facilitates quantitative comparisons of likely intervention impacts in different geographical settings varying in vector compositions, and can thus guide towards more robust and efficient malaria control recommendations. The AnophelesModel R package is available under a GPL-3.0 license at https://github.com/SwissTPH/AnophelesModel.
Collapse
Affiliation(s)
- Monica Golumbeanu
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Olivier Briët
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Clara Champagne
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jeanne Lemant
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Munir Winkel
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Maximilian Gerhards
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Marianne Sinka
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Melissa Penny
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- The Kids Research Institute Australia, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Crawley, WA, Australia
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Tom Smith
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Yarhere IE, Nte AR. A Study of Childhood Malaria trends at the University of Port Harcourt Teaching Hospital: 2006 - 2018. Niger Med J 2023; 64:272-280. [PMID: 38898967 PMCID: PMC11185816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Background Several efforts have been put in place to reduce the global burden of malaria especially in children and in sub-Saharan Africa. The study aimed to evaluate the impact of malaria control activities on the trend of childhood malarial diseases at a tertiary hospital in South-south Nigeria. Methodology A retrospective review of the case records of all malaria diagnoses including in-patient, out-patient, and emergency room, seen in the Department of paediatrics at the University of Port Harcourt Teaching Hospital from January 2006 to December 2018 was conducted. Results There were 41, 863 malaria cases diagnosed over the 12 years with a decline in yearly diagnosis and admissions, from the year 2006 through 2018. Total malaria admissions were 578, (44.5/ year), giving a severe malaria incidence of 1.26%, and there were 164 malaria death cases, with a yearly average of 12. The causes of death in the children with malarial parasitaemia were severe anaemia in 75 (45.7%), hypoglycaemia in 14 (8.5%), cerebral malaria in 17 (10.4%), and prostration with other co-morbidities, 22 (13.4%). Thirty-six children (22%) were convulsing and died soon after admission, with a compounding diagnosis of aspiration and respiratory failure. Conclusion There is a gradual reduction in childhood malaria disease, admission, and death, though this is slower than anticipated based on efforts and strategies put in place by the Nigerian government and various organizations.
Collapse
Affiliation(s)
- Iroro Enameguolo Yarhere
- Department of Peadiatrics, College of Health Sciences, University of Port Harcourt, Port Harcourt, Nigeria
| | - Alice Romokek Nte
- Department of Peadiatrics, College of Health Sciences, University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
3
|
Achee NL, Perkins TA, Moore SM, Liu F, Sagara I, Van Hulle S, Ochomo EO, Gimnig JE, Tissera HA, Harvey SA, Monroe A, Morrison AC, Scott TW, Reiner RC, Grieco JP. Spatial repellents: The current roadmap to global recommendation of spatial repellents for public health use. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 3:100107. [PMID: 36590345 PMCID: PMC9801085 DOI: 10.1016/j.crpvbd.2022.100107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Spatial repellent (SR) products are envisioned to complement existing vector control methods through the continual release of volatile active ingredients (AI) providing: (i) protection against day-time and early-evening biting; (ii) protection in enclosed/semi-enclosed and peri-domestic spaces; (iii) various formulations to fit context-specific applications; and (iv) increased coverage over traditional control methods. SR product AIs also have demonstrated effect against insecticide-resistant vectors linked to malaria and Aedes-borne virus (ABV) transmission. Over the past two decades, key stakeholders, including World Health Organization (WHO) representatives, have met to discuss the role of SRs in reducing arthropod-borne diseases based on existing evidence. A key focus has been to establish a critical development path for SRs, including scientific, regulatory and social parameters that would constitute an outline for a SR target product profile, i.e. optimum product characteristics. The principal gap is the lack of epidemiological data demonstrating SR public health impact across a range of different ecological and epidemiological settings, to inform a WHO policy recommendation. Here we describe in brief trials that are designed to fulfill evidence needs for WHO assessment and initial projections of SR cost-effectiveness against malaria and dengue.
Collapse
Affiliation(s)
- Nicole L. Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA,Corresponding author. Department of Biological Sciences, Eck Institute for Global Health, 239 Galvin Life Science Center, Notre Dame, IN, 46556, USA.
| | - T. Alex Perkins
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Sean M. Moore
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Fang Liu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Issaka Sagara
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Dentistry and Pharmacy at the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Eric O. Ochomo
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - John E. Gimnig
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA
| | | | - Steven A. Harvey
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - April Monroe
- Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Robert C. Reiner
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - John P. Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
4
|
Lubinda J, Bi Y, Haque U, Lubinda M, Hamainza B, Moore AJ. Spatio-temporal monitoring of health facility-level malaria trends in Zambia and adaptive scaling for operational intervention. COMMUNICATIONS MEDICINE 2022; 2:79. [PMID: 35789566 PMCID: PMC9249860 DOI: 10.1038/s43856-022-00144-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background The spatial and temporal variability inherent in malaria transmission within countries implies that targeted interventions for malaria control in high-burden settings and subnational elimination are a practical necessity. Identifying the spatio-temporal incidence, risk, and trends at different administrative geographies within malaria-endemic countries and monitoring them in near real-time as change occurs is crucial for developing and introducing cost-effective, subnational control and elimination intervention strategies. Methods This study developed intelligent data analytics incorporating Bayesian trend and spatio-temporal Integrated Laplace Approximation models to analyse high-burden over 32 million reported malaria cases from 1743 health facilities in Zambia between 2009 and 2015. Results The results show that at least 5.4 million people live in catchment areas with increasing trends of malaria, covering over 47% of all health facilities, while 5.7 million people live in areas with a declining trend (95% CI), covering 27% of health facilities. A two-scale spatio-temporal trend comparison identified significant differences between health facilities and higher-level districts, and the pattern observed in the southeastern region of Zambia provides the first evidence of the impact of recently implemented localised interventions. Conclusions The results support our recommendation for an adaptive scaling approach when implementing national malaria monitoring, control and elimination strategies and a particular need for stratified subnational approaches targeting high-burden regions with increasing disease trends. Strong clusters along borders with highly endemic countries in the north and south of Zambia underscore the need for coordinated cross-border malaria initiatives and strategies. Malaria is an infectious disease that is widespread in many African countries. Malaria transmission within a country can vary between regions, so tailored interventions for malaria control and elimination targeted to different regions are necessary. To achieve this, it is important to measure and monitor the frequency of malaria infections, its risk, and trends at different geographic administrative scales. This study analysed over 32 million reported malaria cases from 1743 health facilities in Zambia between 2009 and 2015. The results showed an increasing national trend in malaria risk and malaria infection frequency and identified differences between health facility and district trends. These findings support a flexible approach when implementing and expanding national malaria monitoring, control and elimination strategies, especially in areas bordering countries where malaria is widespread, cross-border movement is common, and cross-border initiatives could be beneficial. Lubinda et al. analyse over 32 million health-facility reported malaria cases in Zambia (2009–15) to examine spatially-structured temporal trends. They observe overall increasing trends in risk and rates and highlight the potential benefits of using an adaptive scaling approach in national malaria strategies, and a need for cross-border initiatives.
Collapse
|
5
|
Van Bortel W, Mariën J, Jacobs BKM, Sinzinkayo D, Sinarinzi P, Lampaert E, D’hondt R, Mafuko JM, De Weggheleire A, Vogt F, Alexander N, Wint W, Maes P, Vanlerberghe V, Leclair C. Long-lasting insecticidal nets provide protection against malaria for only a single year in Burundi, an African highland setting with marked malaria seasonality. BMJ Glob Health 2022; 7:bmjgh-2022-009674. [PMID: 36455989 PMCID: PMC9772646 DOI: 10.1136/bmjgh-2022-009674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/08/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) are one of the key interventions in the global fight against malaria. Since 2014, mass distribution campaigns of LLINs aim for universal access by all citizens of Burundi. In this context, we assess the impact of LLINs mass distribution campaigns on malaria incidence, focusing on the endemic highland health districts. We also explored the possible correlation between observed trends in malaria incidence with any variations in climate conditions. METHODS Malaria cases for 2011-2019 were obtained from the National Health Information System. We developed a generalised additive model based on a time series of routinely collected data with malaria incidence as the response variable and timing of LLIN distribution as an explanatory variable to investigate the duration and magnitude of the LLIN effect on malaria incidence. We added a seasonal and continuous-time component as further explanatory variables, and health district as a random effect to account for random natural variation in malaria cases between districts. RESULTS Malaria transmission in Burundian highlands was clearly seasonal and increased non-linearly over the study period. Further, a fast and steep decline of malaria incidence was noted during the first year after mass LLIN distribution (p<0.0001). In years 2 and 3 after distribution, malaria cases started to rise again to levels higher than before the control intervention. CONCLUSION This study highlights that LLINs did reduce the incidence in the first year after a mass distribution campaign, but in the context of Burundi, LLINs lost their impact after only 1 year.
Collapse
Affiliation(s)
- Wim Van Bortel
- Outbreak Research Team, Institute of Tropical Medicine, Antwerpen, Belgium,Unit Entomology, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Joachim Mariën
- Outbreak Research Team, Institute of Tropical Medicine, Antwerpen, Belgium,Evolutionary Ecology Group, University of Antwerp, Antwerpen, Belgium
| | - Bart K M Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Denis Sinzinkayo
- National Malaria Control Programme, Bujumbura, Burundi,Doctoral School, University of Burundi, Bujumbura, Burundi
| | | | - Emmanuel Lampaert
- Department of Operations – Central African Regional Support Team, Médecins Sans Frontières, Kinshasa, Congo (the Democratic Republic of the)
| | - Rob D’hondt
- Medical Department, Environmental Health Unit, Médecins Sans Frontières, Brussels, Belgium
| | - Jean-Marie Mafuko
- Department of Operations, Médecins Sans Frontières, Bujumbura, Burundi
| | - Anja De Weggheleire
- Outbreak Research Team, Institute of Tropical Medicine, Antwerpen, Belgium,Unit of Mycobacterial Diseases and Neglected Tropical Diseases, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Florian Vogt
- Outbreak Research Team, Institute of Tropical Medicine, Antwerpen, Belgium,The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia,National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Neil Alexander
- Environmental Research Group Oxford Ltd, c/o Department of Biology, University of Oxford, Oxford, UK
| | - William Wint
- Environmental Research Group Oxford Ltd, c/o Department of Biology, University of Oxford, Oxford, UK
| | - Peter Maes
- Chief of WASH (Water, Sanitation and Hygiene), UNICEF, Kinshasa, Congo (the Democratic Republic of the)
| | - Veerle Vanlerberghe
- Tropical Infectious Diseases Group, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Corey Leclair
- Medical Department, Environmental Health Unit, Médecins Sans Frontières, Brussels, Belgium
| |
Collapse
|
6
|
Dasgupta RR, Mao W, Ogbuoji O. Addressing child health inequity through case management of under-five malaria in Nigeria: an extended cost-effectiveness analysis. Malar J 2022; 21:81. [PMID: 35264153 PMCID: PMC8905868 DOI: 10.1186/s12936-022-04113-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/02/2022] [Indexed: 11/27/2022] Open
Abstract
Background Under-five malaria in Nigeria is a leading cause of global child mortality, accounting for 95,000 annual child deaths. High out-of-pocket medical expenditure contributes to under-five malaria mortality by discouraging care-seeking and use of effective anti-malarials in the poorest households. The significant inequity in child health outcomes in Nigeria stresses the need to evaluate the outcomes of potential interventions across socioeconomic lines. Methods Using a decision tree model, an extended cost-effectiveness analysis was done to determine the effects of subsidies covering the direct and indirect costs of case management of under-five malaria in Nigeria. This analysis estimates the number of child deaths averted, out-of-pocket (OOP) expenditure averted, cases of catastrophic health expenditure (CHE) averted, and cost of implementation. An optimization analysis was also done to determine how to optimally allocate money across wealth groups using different combinations of interventions. Results Fully subsidizing direct medical, non-medical, and indirect costs could annually avert over 19,000 under-five deaths, 8600 cases of CHE, and US$187 million in OOP spending. Per US$1 million invested, this corresponds to an annual reduction of 76 under-five deaths, 34 cases of CHE, and over US$730,000 in OOP expenditure. Due to low initial treatment coverage in poorer socioeconomic groups, health and financial-risk protection benefits would be pro-poor, with the poorest 40% of Nigerians accounting for 72% of all deaths averted, 55% of all OOP expenditure averted, and 74% of all cases of CHE averted. Subsidies targeted to the poor would see greater benefits per dollar spent than broad, non-targeted subsidies. In an optimization scenario, the strategy of fully subsidizing direct medical costs would be dominated by a partial subsidy of direct medical costs as well as a full subsidy of direct medical, nonmedical, and indirect costs. Conclusion Subsidizing case management of under-five malaria for the poorest and most vulnerable would reduce illness-related impoverishment and child mortality in Nigeria while preserving limited financial resources. This study is an example of how focusing a targeted policy-intervention on a single, high-burden disease can yield large health and financial-risk protection benefits in a low and middle-income country context and address equity consideration in evidence-informed policymaking. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04113-w.
Collapse
Affiliation(s)
- Rishav Raj Dasgupta
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA. .,Center for Policy Impact in Global Health at Duke Global Health Institute, Durham, NC, USA.
| | - Wenhui Mao
- Center for Policy Impact in Global Health at Duke Global Health Institute, Durham, NC, USA
| | - Osondu Ogbuoji
- Center for Policy Impact in Global Health at Duke Global Health Institute, Durham, NC, USA. .,Duke Margolis Center for Health Policy, Durham, NC, USA.
| |
Collapse
|
7
|
Lin ZR, Li SG, Sun XD, Guo XR, Zheng Z, Yang J, Pian HR, Tian P, Chen QY, Sun XY, Ding CL, Duan KX, Chen HW, Bee DY, Zhou HN. Effectiveness of joint 3 + 1 malaria strategy along China-Myanmar cross border areas. BMC Infect Dis 2021; 21:1246. [PMID: 34906092 PMCID: PMC8670156 DOI: 10.1186/s12879-021-06920-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cross-border malaria in Laiza City of Myanmar seriously affected Yingjiang County of China and compromised reaching the goal of malaria elimination by 2020. Since 2017, a pilot project on 3 + 1 strategy of joint cross-border malaria prevention and control was carried out for building a malaria buffer in these border areas. Here, 3 were the three preventive lines in China where different focalized approaches of malaria elimination were applied and + 1 was a defined border area in Myanmar where the integrated measures of malaria control were adopted. METHODS A 5-year retrospective analysis (2015 to 2019) was conducted that included case detection, parasite prevalence and vector surveillance. Descriptive statistics was used and the incidence or rates were compared. The annual parasite incidence and the parasite prevalence rate in + 1 area of Myanmar, the annual importation rate in Yingjiang County of China and the density of An. minimus were statistically significant indictors to assess the effectiveness of the 3 + 1 strategy. RESULTS In + 1 area of Myanmar from 2015 to 2019, the averaged annual parasite incidence was (59.11 ± 40.73)/1000 and Plasmodium vivax accounted for 96.27% of the total confirmed cases. After the pilot project, the annual parasite incidence dropped 89% from 104.77/1000 in 2016 to 12.18/1000 in 2019, the microscopic parasite prevalence rate dropped 100% from 0.34% in 2017 to zero in 2019 and the averaged density of An. Minimus per trap-night dropped 93% from 1.92 in June to 0.13 in September. The submicroscopic parasite prevalence rate increased from 1.15% in 2017 to 1.66% in 2019 without significant difference between the two surveys (P = 0.084). In Yingjiang County of China, neither indigenous nor introduced case was reported and 100% cases were imported from Myanmar since 2017. The averaged annual importation rate from 2015 to 2019 was (0.47 ± 0.15)/1000. After the pilot project, the annual importation rate dropped from 0.59/1000 in 2016 to 0.28/1000 in 2019 with an overall reduction of 53% in the whole county. The reduction was 67% (57.63/1000 to 18.01/1000) in the first preventive line, 52% (0.20/1000 to 0.10/1000) in the second preventive line and 36% (0.32/1000 to 0.22/1000) in the third preventive line. The averaged density of An. Minimus per trap-night in the first preventive line dropped 94% from 2.55 in June to 0.14 in September, without significant difference from that of + 1 area of Myanmar (Z value = - 1.18, P value = 0.24). CONCLUSION The pilot project on 3 + 1 strategy has been significantly effective in the study areas and a buffer zone of border malaria was successfully established between Laiza City of Myanmar and Yingjiang County of China.
Collapse
Affiliation(s)
- Zu-Rui Lin
- Yunnan Institute of Parasitic Diseases; Yunnan Provincial Centre of Malaria Research, Yunnan Provincial Collaborative Innovation Centre for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Pu'er, 665000, China
| | - Shi-Gang Li
- Yangjiang Centre for Disease Control and Prevention, Yangjiang, 679300, China
| | - Xiao-Dong Sun
- Yunnan Institute of Parasitic Diseases; Yunnan Provincial Centre of Malaria Research, Yunnan Provincial Collaborative Innovation Centre for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Pu'er, 665000, China.
| | - Xiang-Rui Guo
- Yangjiang Centre for Disease Control and Prevention, Yangjiang, 679300, China
| | - Zhi Zheng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100730, China.
| | - Jie Yang
- Dehong Centre for Disease Control and Prevention, Mangshi, 678400, China
| | - Hong-Ru Pian
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100730, China
| | - Peng Tian
- Yunnan Institute of Parasitic Diseases; Yunnan Provincial Centre of Malaria Research, Yunnan Provincial Collaborative Innovation Centre for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Pu'er, 665000, China
| | - Qi-Yan Chen
- Yunnan Institute of Parasitic Diseases; Yunnan Provincial Centre of Malaria Research, Yunnan Provincial Collaborative Innovation Centre for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Pu'er, 665000, China
| | | | - Chun-Li Ding
- Yunnan Institute of Parasitic Diseases; Yunnan Provincial Centre of Malaria Research, Yunnan Provincial Collaborative Innovation Centre for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Pu'er, 665000, China
| | - Kai-Xia Duan
- Yunnan Institute of Parasitic Diseases; Yunnan Provincial Centre of Malaria Research, Yunnan Provincial Collaborative Innovation Centre for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Pu'er, 665000, China
| | - Hong-Wei Chen
- Nangbang Township Central Hospital, Yingjiang, 679300, China
| | - Dakhidam Yaw Bee
- Malaria Project Office, Health Department of Kachin Special Region II, Laiza City, Myanmar
| | - Hong-Ning Zhou
- Yunnan Institute of Parasitic Diseases; Yunnan Provincial Centre of Malaria Research, Yunnan Provincial Collaborative Innovation Centre for Public Health and Disease Prevention and Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Pu'er, 665000, China.
| |
Collapse
|
8
|
Runge M, Molteni F, Mandike R, Snow RW, Lengeler C, Mohamed A, Pothin E. Applied mathematical modelling to inform national malaria policies, strategies and operations in Tanzania. Malar J 2020; 19:101. [PMID: 32122342 PMCID: PMC7053121 DOI: 10.1186/s12936-020-03173-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND More than ever, it is crucial to make the best use of existing country data, and analytical tools for developing malaria control strategies as the heterogeneity in malaria risk within countries is increasing, and the available malaria control tools are expanding while large funding gaps exist. Global and local policymakers, as well as funders, increasingly recognize the value of mathematical modelling as a strategic tool to support decision making. This case study article describes the long-term use of modelling in close collaboration with the National Malaria Control Programme (NMCP) in Tanzania, the challenges encountered and lessons learned. CASE DESCRIPTION In Tanzania, a recent rebound in prevalence led to the revision of the national malaria strategic plan with interventions targeted to the malaria risk at the sub-regional level. As part of the revision, a mathematical malaria modelling framework for setting specific predictions was developed and used between 2016 and 2019 to (1) reproduce setting specific historical malaria trends, and (2) to simulate in silico the impact of future interventions. Throughout the project, multiple stakeholder workshops were attended and the use of mathematical modelling interactively discussed. EVALUATION In Tanzania, the model application created an interdisciplinary and multisectoral dialogue platform between modellers, NMCP and partners and contributed to the revision of the national malaria strategic plan by simulating strategies suggested by the NMCP. The uptake of the modelling outputs and sustained interest by the NMCP were critically associated with following factors: (1) effective sensitization to the NMCP, (2) regular and intense communication, (3) invitation for the modellers to participate in the strategic plan process, and (4) model application tailored to the local context. CONCLUSION Empirical data analysis and its use for strategic thinking remain the cornerstone for evidence-based decision-making. Mathematical impact modelling can support the process both by unifying all stakeholders in one strategic process and by adding new key evidence required for optimized decision-making. However, without a long-standing partnership, it will be much more challenging to sensibilize programmes to the usefulness and sustained use of modelling and local resources within the programme or collaborating research institutions need to be mobilized.
Collapse
Affiliation(s)
- Manuela Runge
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Fabrizio Molteni
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- National Malaria Control Programme, Ministry of Health Community Development Gender Elderly and Children, Dodoma, Tanzania
| | - Renata Mandike
- National Malaria Control Programme, Ministry of Health Community Development Gender Elderly and Children, Dodoma, Tanzania
| | - Robert W Snow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Population Health Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Christian Lengeler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ally Mohamed
- National Malaria Control Programme, Ministry of Health Community Development Gender Elderly and Children, Dodoma, Tanzania
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
- CHAI, Clinton Health Access Initative, Boston, USA.
| |
Collapse
|
9
|
Runge M, Snow RW, Molteni F, Thawer S, Mohamed A, Mandike R, Giorgi E, Macharia PM, Smith TA, Lengeler C, Pothin E. Simulating the council-specific impact of anti-malaria interventions: A tool to support malaria strategic planning in Tanzania. PLoS One 2020; 15:e0228469. [PMID: 32074112 PMCID: PMC7029840 DOI: 10.1371/journal.pone.0228469] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/16/2020] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The decision-making process for malaria control and elimination strategies has become more challenging. Interventions need to be targeted at council level to allow for changing malaria epidemiology and an increase in the number of possible interventions. Models of malaria dynamics can support this process by simulating potential impacts of multiple interventions in different settings and determining appropriate packages of interventions for meeting specific expected targets. METHODS The OpenMalaria model of malaria dynamics was calibrated for all 184 councils in mainland Tanzania using data from malaria indicator surveys, school parasitaemia surveys, entomological surveillance, and vector control deployment data. The simulations were run for different transmission intensities per region and five interventions, currently or potentially included in the National Malaria Strategic Plan, individually and in combination. The simulated prevalences were fitted to council specific prevalences derived from geostatistical models to obtain council specific predictions of the prevalence and number of cases between 2017 and 2020. The predictions were used to evaluate in silico the feasibility of the national target of reaching a prevalence of below 1% by 2020, and to suggest alternative intervention stratifications for the country. RESULTS The historical prevalence trend was fitted for each council with an agreement of 87% in 2016 (95%CI: 0.84-0.90) and an agreement of 90% for the historical trend (2003-2016) (95%CI: 0.87-0.93) The current national malaria strategy was expected to reduce the malaria prevalence between 2016 and 2020 on average by 23.8% (95% CI: 19.7%-27.9%) if current case management levels were maintained, and by 52.1% (95% CI: 48.8%-55.3%) if the case management were improved. Insecticide treated nets and case management were the most cost-effective interventions, expected to reduce the prevalence by 25.0% (95% CI: 19.7%-30.2) and to avert 37 million cases between 2017 and 2020. Mass drug administration was included in most councils in the stratification selected for meeting the national target at minimal costs, expected to reduce the prevalence by 77.5% (95%CI: 70.5%-84.5%) and to avert 102 million cases, with almost twice higher costs than those of the current national strategy. In summary, the model suggested that current interventions are not sufficient to reach the national aim of a prevalence of less than 1% by 2020 and a revised strategic plan needs to consider additional, more effective interventions, especially in high transmission areas and that the targets need to be revisited. CONCLUSION The methodology reported here is based on intensive interactions with the NMCP and provides a helpful tool for assessing the feasibility of country specific targets and for determining which intervention stratifications at sub-national level will have most impact. This country-led application could support strategic planning of malaria control in many other malaria endemic countries.
Collapse
Affiliation(s)
- Manuela Runge
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Robert W. Snow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, England, United Kingodm
- Population Health Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Fabrizio Molteni
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- National Malaria Control Programme (NMCP), Dar es Salaam, Tanzania
| | - Sumaiyya Thawer
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- National Malaria Control Programme (NMCP), Dar es Salaam, Tanzania
| | - Ally Mohamed
- National Malaria Control Programme (NMCP), Dar es Salaam, Tanzania
| | - Renata Mandike
- National Malaria Control Programme (NMCP), Dar es Salaam, Tanzania
| | - Emanuele Giorgi
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, England, United Kingodm
| | - Peter M. Macharia
- Population Health Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Thomas A. Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Lengeler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Clinton Health Access Initiative, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Brunner NC, Chacky F, Mandike R, Mohamed A, Runge M, Thawer SG, Ross A, Vounatsou P, Lengeler C, Molteni F, Hetzel MW. The potential of pregnant women as a sentinel population for malaria surveillance. Malar J 2019; 18:370. [PMID: 31752889 PMCID: PMC6873723 DOI: 10.1186/s12936-019-2999-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
Background With increasing spatial heterogeneity of malaria transmission and a shift of the disease burden towards older children and adults, pregnant women attending antenatal care (ANC) have been proposed as a pragmatic sentinel population for malaria surveillance. However, the representativeness of routine ANC malaria test-positivity and its relationship with prevalence in other population subgroups are yet to be investigated. Methods Monthly ANC malaria test-positivity data from all Tanzanian health facilities for January 2014 to May 2016 was compared to prevalence data from the School Malaria Parasitaemia Survey 2015, the Malaria Indicator Survey (MIS) 2015/16, the Malaria Atlas Project 2015, and a Bayesian model fitted to MIS data. Linear regression was used to describe the difference between malaria test-positivity in pregnant women and respective comparison groups as a function of ANC test-positivity and potential covariates. Results The relationship between ANC test-positivity and survey prevalence in children follows spatially and biologically meaningful patterns. However, the uncertainty of the relationship was substantial, particularly in areas with high or perennial transmission. In comparison, modelled data estimated higher prevalence in children at low transmission intensities and lower prevalence at higher transmission intensities. Conclusions Pregnant women attending ANC are a pragmatic sentinel population to assess heterogeneity and trends in malaria prevalence in Tanzania. Yet, since ANC malaria test-positivity cannot be used to directly predict the prevalence in other population subgroups, complementary community-level measurements remain highly relevant.
Collapse
Affiliation(s)
- Nina C Brunner
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Frank Chacky
- National Malaria Control Programme, P.O. Box 9083, Dar es Salaam, United Republic of Tanzania.,Ministry of Health, Community Development, Gender, Elderly and Children, Building No. 11, P. O. Box 743, 40478, Dodoma, United Republic of Tanzania
| | - Renata Mandike
- National Malaria Control Programme, P.O. Box 9083, Dar es Salaam, United Republic of Tanzania.,Ministry of Health, Community Development, Gender, Elderly and Children, Building No. 11, P. O. Box 743, 40478, Dodoma, United Republic of Tanzania
| | - Ally Mohamed
- National Malaria Control Programme, P.O. Box 9083, Dar es Salaam, United Republic of Tanzania.,Ministry of Health, Community Development, Gender, Elderly and Children, Building No. 11, P. O. Box 743, 40478, Dodoma, United Republic of Tanzania
| | - Manuela Runge
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Sumaiyya G Thawer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland.,National Malaria Control Programme, P.O. Box 9083, Dar es Salaam, United Republic of Tanzania
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Penelope Vounatsou
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Christian Lengeler
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Fabrizio Molteni
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Petersplatz 1, 4003, Basel, Switzerland.,National Malaria Control Programme, P.O. Box 9083, Dar es Salaam, United Republic of Tanzania
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland. .,University of Basel, Petersplatz 1, 4003, Basel, Switzerland.
| |
Collapse
|
11
|
Sequeira J, Louçã J, Mendes AM, Lind PG. Transition from endemic behavior to eradication of malaria due to combined drug therapies: An agent-model approach. J Theor Biol 2019; 484:110030. [PMID: 31568789 DOI: 10.1016/j.jtbi.2019.110030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/14/2019] [Accepted: 09/26/2019] [Indexed: 01/05/2023]
Abstract
We introduce an agent-based model describing a susceptible-infectious-susceptible (SIS) system of humans and mosquitoes to predict malaria epidemiological scenarios in realistic biological conditions. Emphasis is given to the transition from endemic behavior to eradication of malaria transmission induced by combined drug therapies acting on both the gametocytemia reduction and on the selective mosquito mortality during parasite development in the mosquito. Our mathematical framework enables to uncover the critical values of the parameters characterizing the effect of each drug therapy. Moreover, our results provide quantitative evidence of what was up to now only partially assumed with empirical support: interventions combining gametocytemia reduction through the use of gametocidal drugs, with the selective action of ivermectin during parasite development in the mosquito, may actively promote disease eradication in the long run. In the agent model, the main properties of human-mosquito interactions are implemented as parameters and the model is validated by comparing simulations with real data of malaria incidence collected in the endemic malaria region of Chimoio in Mozambique. Finally, we discuss our findings in light of current drug administration strategies for malaria prevention, which may interfere with human-to-mosquito transmission process.
Collapse
Affiliation(s)
- João Sequeira
- Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Av. das Forças Armadas, Lisboa 1649-026, Portugal; Hospital Santa Cruz, Av. Prof. Dr. Reinaldo dos Santos, Carnaxide 2790-134, Portugal
| | - Jorge Louçã
- Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Av. das Forças Armadas, Lisboa 1649-026, Portugal
| | - António M Mendes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal
| | - Pedro G Lind
- Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, Av. das Forças Armadas, Lisboa 1649-026, Portugal; Department of Computer Science, OsloMet - Oslo Metropolitan University, P.O. Box 4 St. Olavs plass, Oslo N-0130, Norway.
| |
Collapse
|
12
|
Mpimbaza A, Nayiga S, Ndeezi G, Rosenthal PJ, Karamagi C, Katahoire A. Understanding the context of delays in seeking appropriate care for children with symptoms of severe malaria in Uganda. PLoS One 2019; 14:e0217262. [PMID: 31166968 PMCID: PMC6550380 DOI: 10.1371/journal.pone.0217262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/08/2019] [Indexed: 12/02/2022] Open
Abstract
Introduction A large proportion of children with uncomplicated malaria receive appropriate treatment late, contributing to progression of illness to severe disease. We explored contexts of caregiver delays in seeking appropriate care for children with severe malaria. Methods This qualitative study was conducted at the Children’s Ward of Jinja Hospital, where children with severe malaria were hospitalized. A total of 22in-depth interviews were conducted with caregivers of children hospitalized with severe malaria. Issues explored were formulated based on the Partners for Applied Social Sciences (PASS) model, focusing on facilitators and barriersto caregivers’promptseeking and accessing ofappropriate care. The data were coded deductively using ATLAS.ti (version 7.5). Codes were then grouped into families based on emerging themes. Results Caregivers’ rating of initial symptoms as mild illness lead to delays in response. Use of home initiated interventions with presumably ineffective herbs or medicines was common, leading to further delay. When care was sought outside the home, drug shops were preferred over public health facilities for reasons of convenience. Drug shops often provided sub-optimal care, and thus contributed to delays in access to appropriate care. Public facilities were often a last resort when illness was perceived to be progressing to severe disease. Further delays occurred at health facilities due to inadequate referral systems. Conclusion Communities living in endemic areas need to be sensitized about the significance of fever, even if mild, as an indicator of malaria. Additionally, amidst ongoing efforts at bringing antimalarial treatment services closer to communities, the value of drug shops as providers ofrationalantimalarialtreatment needs to be reviewed.
Collapse
Affiliation(s)
- Arthur Mpimbaza
- Child Health & Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda
- * E-mail:
| | - Susan Nayiga
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grace Ndeezi
- Department of Pediatrics & Child Health, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, CA, United States of America
| | - Charles Karamagi
- Department of Pediatrics & Child Health, Makerere University, College of Health Sciences, Kampala, Uganda
- Clinical Epidemiology Unit, Department of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Anne Katahoire
- Child Health & Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda
| |
Collapse
|
13
|
Elliott RC, Smith DL, Echodu DC. Synergy and timing: a concurrent mass medical campaign predicted to augment indoor residual spraying for malaria. Malar J 2019; 18:160. [PMID: 31060554 PMCID: PMC6501353 DOI: 10.1186/s12936-019-2788-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/23/2019] [Indexed: 11/12/2022] Open
Abstract
Background Control programmes for high burden countries are tasked with charting effective multi-year strategies for malaria control within significant resource constraints. Synergies between different control tools, in which more than additive benefit accrues from interventions used together, are of interest because they may be used to obtain savings or to maximize health impact per expenditure. One commonly used intervention in sub-Saharan Africa is indoor residual spraying (IRS), typically deployed through a mass campaign. While possible synergies between IRS and long-lasting insecticide-treated nets (LLINs) have been investigated in multiple transmission settings, coordinated synergy between IRS and other mass medical distribution campaigns have not attracted much attention. Recently, a strong timing-dependent synergy between an IRS campaign and a mass drug administration (MDA) was theoretically quantified. These synergistic benefits likely differ across settings depending on transmission intensity and its overall seasonal pattern. Methods High coverage interventions are modelled in different transmission environments using two methods: a Ross–Macdonald model variant and openmalaria simulations. The impact of each intervention strategy was measured through its ability to prevent host infections over time, and the effects were compared to the baseline case of deploying interventions in isolation. Results By modelling IRS and MDA together and varying their deployment times, a strong synergy was found when the administered interventions overlapped. The added benefit of co-timed interventions was robust to differences in the models. In the Ross–Macdonald model, the impact compared was roughly double the sequential interventions in most transmission settings. Openmalaria simulations of this medical control augmentation of an IRS campaign show an even stronger response with the same timing relationship. Conclusions The strong synergies found for these control tools between the complementary interventions demonstrate a general feature of effective concurrent campaign-style vector and medical interventions. A mass treatment campaign is normally short-lived, especially in higher transmission settings. When co-timed, the rapid clearing of the host parasite reservoir via chemotherapy is protected from resurgence by the longer duration of the vector control. An effective synchronous treatment campaign has the potential to greatly augment the impact of indoor residual spraying. Mass screening and treatment (MSAT) with highly sensitive rapid diagnostic tests may demonstrate a comparable trend while mass LLIN campaigns may similarly coordinate with MDA/MSAT.
Collapse
Affiliation(s)
- Richard C Elliott
- Micron School of Materials Science and Engineering, Boise State University, Engineering Building, Suite 338, Boise, ID, 83725, USA. .,Pilgrim Africa, 115 N 85th St #202, Seattle, WA, 98103, USA.
| | - David L Smith
- Institute for Health Metrics and Evaluation, University of Washington, 2301 Fifth Ave., Suite 600, Seattle, WA, 98121, USA
| | | |
Collapse
|
14
|
Caminade C, McIntyre KM, Jones AE. Impact of recent and future climate change on vector-borne diseases. Ann N Y Acad Sci 2019; 1436:157-173. [PMID: 30120891 PMCID: PMC6378404 DOI: 10.1111/nyas.13950] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022]
Abstract
Climate change is one of the greatest threats to human health in the 21st century. Climate directly impacts health through climatic extremes, air quality, sea-level rise, and multifaceted influences on food production systems and water resources. Climate also affects infectious diseases, which have played a significant role in human history, impacting the rise and fall of civilizations and facilitating the conquest of new territories. Our review highlights significant regional changes in vector and pathogen distribution reported in temperate, peri-Arctic, Arctic, and tropical highland regions during recent decades, changes that have been anticipated by scientists worldwide. Further future changes are likely if we fail to mitigate and adapt to climate change. Many key factors affect the spread and severity of human diseases, including mobility of people, animals, and goods; control measures in place; availability of effective drugs; quality of public health services; human behavior; and political stability and conflicts. With drug and insecticide resistance on the rise, significant funding and research efforts must to be maintained to continue the battle against existing and emerging diseases, particularly those that are vector borne.
Collapse
Affiliation(s)
- Cyril Caminade
- Department of Epidemiology and Population Health, Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
- NIHR Health Protection Research Unit in Emerging and Zoonotic InfectionsLiverpoolUK
| | - K. Marie McIntyre
- Department of Epidemiology and Population Health, Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
- NIHR Health Protection Research Unit in Emerging and Zoonotic InfectionsLiverpoolUK
| | - Anne E. Jones
- Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
15
|
Mpimbaza A, Katahoire A, Rosenthal PJ, Karamagi C, Ndeezi G. Caregiver responses and association with delayed care-seeking in children with uncomplicated and severe malaria. Malar J 2018; 17:476. [PMID: 30563514 PMCID: PMC6299589 DOI: 10.1186/s12936-018-2630-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022] Open
Abstract
Background Gaps remain in understanding the role of caregiver responses on time to seek appropriate care. The objective of this study was to describe caregiver responses to illness and the impact of these responses on time to seek appropriate care among children with malaria. Methods A case–control study of 325 children with severe (cases) and 325 children with uncomplicated (controls) malaria was conducted in Jinja, Uganda. Caregivers’ responses to their children’s illnesses and time to seek appropriate care were documented. Responses included staying at home, seeking care at drug shops, and seeking care at public health facilities classified into two types: (1) health facilities where caregiver initially sought care before enrollment, and (2) health facilities where children were provided appropriate care and enrolled in the study. Weighted Cox regression was used to determine risk factors for delays in time to seek appropriate care within 24 h of illness onset. Results Children staying home on self-medication was the most common initial response to illness among caregivers of controls (57.5%) and cases (42.4%, p < 0.001), followed by staying at home without medication (25.2%) and seeking care at drug shops (32.0%) for caregivers of controls and cases, respectively. Seeking care at drug shops was more common among caregivers of cases than of controls (32.0% vs. 12.3%; p < 0.001). However, compared to public health facilities, drug shops offered sub-optimal services with children less likely to have been examined (50.0% vs. 82.9%; p < 0.001) or referred to another facility (12.5% vs. 61.4%; p < 0.001). Upon adjustment for known risk factors for delay, initially seeking care at a drug shop (HR 0.37, p = 0.036) was associated with delay in seeking care at a health facility where appropriate care was provided. In contrast, those initially seeking care at public health facility before enrollment were more likely to subsequently seek care at another public health facility where appropriate care was provided (HR 5.55, p < 0.001). Conclusion Caregivers should be educated on the importance of promptly seeking care at a health facility where appropriate care can be provided. The role of drug shops in providing appropriate care to children with malaria needs to be reviewed. Electronic supplementary material The online version of this article (10.1186/s12936-018-2630-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arthur Mpimbaza
- Child Health and Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda.
| | - Anne Katahoire
- Child Health and Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda
| | | | - Charles Karamagi
- Department of Pediatrics and Child Health, Makerere University, College of Health Sciences, Kampala, Uganda.,Clinical Epidemiology Unit, Department of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Grace Ndeezi
- Department of Pediatrics and Child Health, Makerere University, College of Health Sciences, Kampala, Uganda
| |
Collapse
|
16
|
Weber GE, White MT, Babakhanyan A, Sumba PO, Vulule J, Ely D, John C, Angov E, Lanar D, Dutta S, Narum DL, Horii T, Cowman A, Beeson J, Smith J, Kazura JW, Dent AE. Sero-catalytic and Antibody Acquisition Models to Estimate Differing Malaria Transmission Intensities in Western Kenya. Sci Rep 2017; 7:16821. [PMID: 29203846 PMCID: PMC5715086 DOI: 10.1038/s41598-017-17084-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022] Open
Abstract
We sought to identify a subset of Plasmodium falciparum antibody targets that would inform monitoring efforts needed to eliminate malaria in high transmission settings. IgG antibodies to 28 recombinant Pf antigens were measured in residents of two communities in western Kenya examined in 2003 and 2013, when the respective prevalence of asymptomatic parasitemia among children was 81 and 15 percent by microscopy. Annual seroconversion rates based on a sero-catalytic model that dichotomised antibody values to negative versus positive showed that rates were higher in 2003 than 2013 for 1 pre-erythrocytic and 7 blood-stage antigens. Antibody acquisition models that considered antibody levels as continuous variables showed that age-related antibody levels to Circumsporozoite Protein and 10 merozoite proteins increased at different rates with age in 2003 versus 2013. Both models found that antibodies to 5 proteins of the Merozoite Surface Protein 1 complex were differentially acquired between the cohorts, and that changes in antibody levels to Apical Membrane Antigen 1 suggested a decrease in transmission that occurred ~10 years before 2013. Further studies evaluating antibodies to this subset of Pf antigens as biomarkers of malaria exposure and naturally acquired immunity are warranted in endemic settings where transmission has been reduced but persists.
Collapse
Affiliation(s)
- Grace E Weber
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Anna Babakhanyan
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | | | - John Vulule
- Kenya Medical Research Institute, Kisumu, Kenya
| | - Dylan Ely
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Chandy John
- Department of Pediatrics, Riley Hospital, Indiana University, Indianapolis, IN, USA
| | - Evelina Angov
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - David Lanar
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheetij Dutta
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Alan Cowman
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Joseph Smith
- Center for Infectious Disease Research, Seattle, WA, USA
| | - James W Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA.
| | - Arlene E Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA.,Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| |
Collapse
|
17
|
Korenromp E, Hamilton M, Sanders R, Mahiané G, Briët OJT, Smith T, Winfrey W, Walker N, Stover J. Impact of malaria interventions on child mortality in endemic African settings: comparison and alignment between LiST and Spectrum-Malaria model. BMC Public Health 2017; 17:781. [PMID: 29143637 PMCID: PMC5688465 DOI: 10.1186/s12889-017-4739-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background In malaria-endemic countries, malaria prevention and treatment are critical for child health. In the context of intervention scale-up and rapid changes in endemicity, projections of intervention impact and optimized program scale-up strategies need to take into account the consequent dynamics of transmission and immunity. Methods The new Spectrum-Malaria program planning tool was used to project health impacts of Insecticide-Treated mosquito Nets (ITNs) and effective management of uncomplicated malaria cases (CMU), among other interventions, on malaria infection prevalence, case incidence and mortality in children 0–4 years, 5–14 years of age and adults. Spectrum-Malaria uses statistical models fitted to simulations of the dynamic effects of increasing intervention coverage on these burdens as a function of baseline malaria endemicity, seasonality in transmission and malaria intervention coverage levels (estimated for years 2000 to 2015 by the World Health Organization and Malaria Atlas Project). Spectrum-Malaria projections of proportional reductions in under-five malaria mortality were compared with those of the Lives Saved Tool (LiST) for the Democratic Republic of the Congo and Zambia, for given (standardized) scenarios of ITN and/or CMU scale-up over 2016–2030. Results Proportional mortality reductions over the first two years following scale-up of ITNs from near-zero baselines to moderately higher coverages align well between LiST and Spectrum-Malaria —as expected since both models were fitted to cluster-randomized ITN trials in moderate-to-high-endemic settings with 2-year durations. For further scale-up from moderately high ITN coverage to near-universal coverage (as currently relevant for strategic planning for many countries), Spectrum-Malaria predicts smaller additional ITN impacts than LiST, reflecting progressive saturation. For CMU, especially in the longer term (over 2022–2030) and for lower-endemic settings (like Zambia), Spectrum-Malaria projects larger proportional impacts, reflecting onward dynamic effects not fully captured by LiST. Conclusions Spectrum-Malaria complements LiST by extending the scope of malaria interventions, program packages and health outcomes that can be evaluated for policy making and strategic planning within and beyond the perspective of child survival. Electronic supplementary material The online version of this article (10.1186/s12889-017-4739-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Matthew Hamilton
- Avenir Health, 655 Winding Brook Drive, Glastonbury, CT-06033, USA
| | - Rachel Sanders
- Avenir Health, 655 Winding Brook Drive, Glastonbury, CT-06033, USA
| | - Guy Mahiané
- Avenir Health, 655 Winding Brook Drive, Glastonbury, CT-06033, USA
| | - Olivier J T Briët
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.,Epidemiology and Public Health, University of Basel, Basel, Switzerland
| | - Thomas Smith
- Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.,Epidemiology and Public Health, University of Basel, Basel, Switzerland
| | - William Winfrey
- Avenir Health, 655 Winding Brook Drive, Glastonbury, CT-06033, USA
| | - Neff Walker
- Department of International Health, Institute for International Programs, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA
| | - John Stover
- Avenir Health, 655 Winding Brook Drive, Glastonbury, CT-06033, USA
| |
Collapse
|
18
|
Korenromp EL, Mahiané G, Rowley J, Nagelkerke N, Abu-Raddad L, Ndowa F, El-Kettani A, El-Rhilani H, Mayaud P, Chico RM, Pretorius C, Hecht K, Wi T. Estimating prevalence trends in adult gonorrhoea and syphilis in low- and middle-income countries with the Spectrum-STI model: results for Zimbabwe and Morocco from 1995 to 2016. Sex Transm Infect 2017; 93:599-606. [PMID: 28325771 PMCID: PMC5739862 DOI: 10.1136/sextrans-2016-052953] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/06/2017] [Accepted: 01/14/2017] [Indexed: 11/13/2022] Open
Abstract
Objective To develop a tool for estimating national trends in adult prevalence of sexually transmitted infections by low- and middle-income countries, using standardised, routinely collected programme indicator data. Methods The Spectrum-STI model fits time trends in the prevalence of active syphilis through logistic regression on prevalence data from antenatal clinic-based surveys, routine antenatal screening and general population surveys where available, weighting data by their national coverage and representativeness. Gonorrhoea prevalence was fitted as a moving average on population surveys (from the country, neighbouring countries and historic regional estimates), with trends informed additionally by urethral discharge case reports, where these were considered to have reasonably stable completeness. Prevalence data were adjusted for diagnostic test performance, high-risk populations not sampled, urban/rural and male/female prevalence ratios, using WHO's assumptions from latest global and regional-level estimations. Uncertainty intervals were obtained by bootstrap resampling. Results Estimated syphilis prevalence (in men and women) declined from 1.9% (95% CI 1.1% to 3.4%) in 2000 to 1.5% (1.3% to 1.8%) in 2016 in Zimbabwe, and from 1.5% (0.76% to 1.9%) to 0.55% (0.30% to 0.93%) in Morocco. At these time points, gonorrhoea estimates for women aged 15–49 years were 2.5% (95% CI 1.1% to 4.6%) and 3.8% (1.8% to 6.7%) in Zimbabwe; and 0.6% (0.3% to 1.1%) and 0.36% (0.1% to 1.0%) in Morocco, with male gonorrhoea prevalences 14% lower than female prevalence. Conclusions This epidemiological framework facilitates data review, validation and strategic analysis, prioritisation of data collection needs and surveillance strengthening by national experts. We estimated ongoing syphilis declines in both Zimbabwe and Morocco. For gonorrhoea, time trends were less certain, lacking recent population-based surveys.
Collapse
Affiliation(s)
| | - Guy Mahiané
- Avenir Health, Glastonbury, Connecticut, USA
| | | | | | - Laith Abu-Raddad
- Weill Cornell Medical College-Qatar, Cornell University, Doha, Qatar
| | - Francis Ndowa
- Skin & Genito-Urinary Medicine Clinic, Harare, Zimbabwe
| | - Amina El-Kettani
- Ministry of Health, Direction de l'Epidémiologie & Service de Maladies Sexuellement Transmissibles, Rabat, Morocco
| | | | | | | | | | | | - Teodora Wi
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| |
Collapse
|
19
|
Disparities between malaria infection and treatment rates: Evidence from a cross-sectional analysis of households in Uganda. PLoS One 2017; 12:e0171835. [PMID: 28241041 PMCID: PMC5328248 DOI: 10.1371/journal.pone.0171835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 01/26/2017] [Indexed: 12/04/2022] Open
Abstract
Background In Sub-Saharan Africa, both under-treatment and over-treatment of malaria are common since illnesses are often diagnosed and treated on the basis of symptoms. We investigate whether malaria treatment rates among febrile individuals correspond to observed patterns of malaria infection by age and by local prevalence. Methods and findings We use data on treatment of febrile illnesses from a household survey that was conducted between March and May 2012 in 92 villages in six districts in Eastern Uganda. All household members were also tested for malaria using a rapid diagnostic test. We show that both the age of the febrile individual and the village prevalence rate are strongly associated with the odds that a febrile patient was infected with malaria, but not with the odds of ACT treatment. Compared to individuals who were aged 15 or above, febrile individuals aged 5–14 had 3.21 times the odds of testing positive for malaria (95% CI: [2.36 4.37], P<0·001), and febrile individuals who were under age 5 had 2.66 times the odds of testing positive for malaria (95% CI: [1.99 3.56], P<0·001). However, ACT treatment rates for febrile illnesses were not significantly higher for either children ages 5–14 (Unadjusted OR: 1.19, 95% CI: [0.88 1.62], P = 0.255) or children under the age of 5 (Unadjusted OR: 1.24, 95% CI: [0.92 1.68], P = 0·154). A one standard deviation increase in the village malaria prevalence rate was associated with a 2.03 times higher odds that a febrile individual under the age of five tested positive for malaria (95% CI: [1.63 2.54], p<0·001), but was not significantly associated with the odds of ACT treatment (Un-adjusted OR: 0.83, 95% CI: [0.66 1.05], P = 0·113). We present some evidence that this discrepancy may be because caregivers do not suspect a higher likelihood of malaria infection, conditional on fever, in young children or in high-prevalence villages. Conclusion Our findings suggest that households have significant mis-perceptions about malaria likelihood that may contribute to the under-treatment of malaria. Policies are needed to encourage caregivers to seek immediate diagnostic testing and treatment for febrile illnesses, particularly among young children.
Collapse
|
20
|
Hamilton M, Mahiane G, Werst E, Sanders R, Briët O, Smith T, Cibulskis R, Cameron E, Bhatt S, Weiss DJ, Gething PW, Pretorius C, Korenromp EL. Spectrum-Malaria: a user-friendly projection tool for health impact assessment and strategic planning by malaria control programmes in sub-Saharan Africa. Malar J 2017; 16:68. [PMID: 28183343 PMCID: PMC5301449 DOI: 10.1186/s12936-017-1705-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scale-up of malaria prevention and treatment needs to continue but national strategies and budget allocations are not always evidence-based. This article presents a new modelling tool projecting malaria infection, cases and deaths to support impact evaluation, target setting and strategic planning. METHODS Nested in the Spectrum suite of programme planning tools, the model includes historic estimates of case incidence and deaths in groups aged up to 4, 5-14, and 15+ years, and prevalence of Plasmodium falciparum infection (PfPR) among children 2-9 years, for 43 sub-Saharan African countries and their 602 provinces, from the WHO and malaria atlas project. Impacts over 2016-2030 are projected for insecticide-treated nets (ITNs), indoor residual spraying (IRS), seasonal malaria chemoprevention (SMC), and effective management of uncomplicated cases (CMU) and severe cases (CMS), using statistical functions fitted to proportional burden reductions simulated in the P. falciparum dynamic transmission model OpenMalaria. RESULTS In projections for Nigeria, ITNs, IRS, CMU, and CMS scale-up reduced health burdens in all age groups, with largest proportional and especially absolute reductions in children up to 4 years old. Impacts increased from 8 to 10 years following scale-up, reflecting dynamic effects. For scale-up of each intervention to 80% effective coverage, CMU had the largest impacts across all health outcomes, followed by ITNs and IRS; CMS and SMC conferred additional small but rapid mortality impacts. DISCUSSION Spectrum-Malaria's user-friendly interface and intuitive display of baseline data and scenario projections holds promise to facilitate capacity building and policy dialogue in malaria programme prioritization. The module's linking to the OneHealth Tool for costing will support use of the software for strategic budget allocation. In settings with moderately low coverage levels, such as Nigeria, improving case management and achieving universal coverage with ITNs could achieve considerable burden reductions. Projections remain to be refined and validated with local expert input data and actual policy scenarios.
Collapse
Affiliation(s)
- Matthew Hamilton
- Avenir Health, Geneva, 1 route de Morillons/150 Route de Ferney (WCC, office 164), PO box 2100, 1211 Geneva 2, Switzerland
- Avenir Health, Glastonbury, USA
| | - Guy Mahiane
- Avenir Health, Geneva, 1 route de Morillons/150 Route de Ferney (WCC, office 164), PO box 2100, 1211 Geneva 2, Switzerland
- Avenir Health, Glastonbury, USA
| | - Elric Werst
- Avenir Health, Geneva, 1 route de Morillons/150 Route de Ferney (WCC, office 164), PO box 2100, 1211 Geneva 2, Switzerland
- Avenir Health, Glastonbury, USA
| | - Rachel Sanders
- Avenir Health, Geneva, 1 route de Morillons/150 Route de Ferney (WCC, office 164), PO box 2100, 1211 Geneva 2, Switzerland
- Avenir Health, Glastonbury, USA
| | - Olivier Briët
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Thomas Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Richard Cibulskis
- World Health Organization Global Malaria Programme, Geneva, Switzerland
| | - Ewan Cameron
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Samir Bhatt
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Daniel J. Weiss
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Peter W. Gething
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Carel Pretorius
- Avenir Health, Geneva, 1 route de Morillons/150 Route de Ferney (WCC, office 164), PO box 2100, 1211 Geneva 2, Switzerland
- Avenir Health, Glastonbury, USA
| | - Eline L. Korenromp
- Avenir Health, Geneva, 1 route de Morillons/150 Route de Ferney (WCC, office 164), PO box 2100, 1211 Geneva 2, Switzerland
- Avenir Health, Glastonbury, USA
| |
Collapse
|