1
|
Gholami Z, Fatehi F, Mehraban FH, Haynes PA, Jahromi KT, Hosseininaveh V, Mosallanejad H, Ingvarsson PK, Farrokhi N. Comparative Proteomics of Resistant and Susceptible Strains of Frankliniella occidentalis to Abamectin. Electrophoresis 2025; 46:112-126. [PMID: 39789821 PMCID: PMC11773298 DOI: 10.1002/elps.202400171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 01/12/2025]
Abstract
Western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) is an invasive agricultural pest with developed resistance to abamectin in some strains due to frequent treatment with the pesticide. In this study, we examined differentially expressed proteins (DEPs) between abamectin-resistant (AbaR; under abamectin selective pressure) and susceptible strains (AbaS; without abamectin selective pressure) of F. occidentalis. Proteins were isolated from second instar larvae of both strains and separated via two-dimensional polyacrylamide gel electrophoresis. Nano-flow liquid chromatography-tandem mass spectrometry identified selected protein spot features. From 70 DEPs, 43 spot features were identified: A total of 23 showed an increase in abundance, and 20 were down-regulated in response to abamectin pressure. The enzymatic and structural proteins were classified into the functional groups of macromolecular metabolisms, signaling and cellular processes, immune system, genetic information processing, and exoskeleton-related proteins. The up-regulation of exoskeleton-related proteins may contribute to forming a thicker cuticle, potentially hindering abamectin penetration, which is an interesting finding that needs further investigation. Two novel proteins, triacylglycerol lipase and cuticle protein CPF 2, were only expressed in AbaR. This work provides insights into abamectin resistance mechanisms in F. occidentalis, which will provide important information for developing insecticide resistance management approaches for this pest.
Collapse
Affiliation(s)
- Zahra Gholami
- Department of Cell & Molecular Biology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
- Department of Plant Protection, College of Agriculture and Natural ResourcesUniversity of TehranKarajIran
| | - Foad Fatehi
- Department of AgriculturePayame Noor University (PNU)TehranIran
| | | | - Paul A. Haynes
- Department of Molecular SciencesMacquarie UniversityNorth RydeAustralia
| | - Khalil Talebi Jahromi
- Department of Plant Protection, College of Agriculture and Natural ResourcesUniversity of TehranKarajIran
| | - Vahid Hosseininaveh
- Department of Plant Protection, College of Agriculture and Natural ResourcesUniversity of TehranKarajIran
| | - Hadi Mosallanejad
- Iranian Research Institute of Plant ProtectionAgricultural Research Education and Extension Organization (AREEO)TehranIran
| | - Pär K. Ingvarsson
- Department of Plant BiologySwedish University of Agricultural SciencesUppsalaSweden
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| |
Collapse
|
2
|
Logan RAE, Mäurer JB, Wapler C, Ingham VA. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are associated with insecticide resistance in the major malaria vectors Anopheles gambiae s.l. and Anopheles funestus. Sci Rep 2024; 14:19821. [PMID: 39191827 DOI: 10.1038/s41598-024-70713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Malaria remains one of the highest causes of morbidity and mortality, with 249 million cases and over 608,000 deaths in 2022. Insecticides, which target the Anopheles mosquito vector, are the primary method to control malaria. The widespread nature of resistance to the most important insecticide class, the pyrethroids, threatens the control of this disease. To reverse the stall in malaria control there is urgent need for new vector control tools, which necessitates understanding the molecular basis of pyrethroid resistance. In this study we utilised multi-omics data to identify uridine-diphosphate (UDP)-glycosyltransferases (UGTs) potentially involved in resistance across multiple Anopheles species. Phylogenetic analysis identifies sequence similarities between Anopheline UGTs and those involved in agricultural pesticide resistance to pyrethroids, pyrroles and spinosyns. Expression of five UGTs was characterised in An. gambiae and An. coluzzii to determine constitutive over-expression, induction, and tissue specificity. Furthermore, a UGT inhibitor, sulfinpyrazone, restored susceptibility to pyrethroids and DDT in An. gambiae, An. coluzzii, An. arabiensis and An. funestus, the major African malaria vectors. Taken together, this study provides clear association of UGTs with pyrethroid resistance as well as highlighting the potential use of sulfinpyrazone as a novel synergist for vector control.
Collapse
Affiliation(s)
- Rhiannon Agnes Ellis Logan
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Julia Bettina Mäurer
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Charlotte Wapler
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Victoria Anne Ingham
- Parasitology Department, Medical Faculty, Centre for Infectious Diseases, University Hospital Heidelberg, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Lucas ER, Nagi SC, Kabula B, Batengana B, Kisinza W, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Clarkson CS, Miles A, Weetman D, Donnelly MJ. Copy number variants underlie the major selective sweeps in insecticide resistance genes in Anopheles arabiensis from Tanzania. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.583874. [PMID: 38559088 PMCID: PMC10979859 DOI: 10.1101/2024.03.11.583874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To keep ahead of the evolution of resistance to insecticides in mosquitoes, national malaria control programmes must make use of a range of insecticides, both old and new, while monitoring resistance mechanisms. Knowledge of the mechanisms of resistance remains limited in Anopheles arabiensis, which in many parts of Africa is of increasing importance because it is apparently less susceptible to many indoor control interventions. Furthermore, comparatively little is known in general about resistance to non-pyrethroid insecticides such as pirimiphos-methyl (PM), which are crucial for effective control in the context of resistance to pyrethroids. We performed a genome-wide association study to determine the molecular mechanisms of resistance to deltamethrin (commonly used in bednets) and PM, in An. arabiensis from two regions in Tanzania. Genomic regions of positive selection in these populations were largely driven by copy number variants (CNVs) in gene families involved in resistance to these two insecticides. We found evidence of a new gene cluster involved in resistance to PM, identifying a strong selective sweep tied to a CNV in the Coeae2g-Coeae6g cluster of carboxylesterase genes. Using complementary data from An. coluzzii in Ghana, we show that copy number at this locus is significantly associated with PM resistance. Similarly, for deltamethrin, resistance was strongly associated with a novel CNV allele in the Cyp6aa / Cyp6p cluster. Against this background of metabolic resistance, target site resistance was very rare or absent for both insecticides. Mutations in the pyrethroid target site Vgsc were at very low frequency in Tanzania, yet combining these samples with three An. arabiensis individuals from West Africa revealed a startling diversity of evolutionary origins of target site resistance, with up to 5 independent origins of Vgsc-995 mutations found within just 8 haplotypes. Thus, despite having been first recorded over 10 years ago, Vgsc resistance mutations in Tanzanian An. arabiensis have remained at stable low frequencies. Overall, our results provide a new copy number marker for monitoring resistance to PM in malaria mosquitoes, and reveal the complex picture of resistance patterns in An. arabiensis.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Bilali Kabula
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | - Bernard Batengana
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | - William Kisinza
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | | | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sam Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Arjen E Van't Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Emily J Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Nicholas J Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Chris S Clarkson
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
4
|
Sadia CG, Bonneville JM, Zoh MG, Fodjo BK, Kouadio FPA, Oyou SK, Koudou BG, Adepo-Gourene BA, Reynaud S, David JP, Mouahamadou CS. The impact of agrochemical pollutant mixtures on the selection of insecticide resistance in the malaria vector Anopheles gambiae: insights from experimental evolution and transcriptomics. Malar J 2024; 23:69. [PMID: 38443984 PMCID: PMC10916200 DOI: 10.1186/s12936-023-04791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/14/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND There are several indications that pesticides used in agriculture contribute to the emergence and spread of resistance of mosquitoes to vector control insecticides. However, the impact of such an indirect selection pressure has rarely been quantified and the molecular mechanisms involved are still poorly characterized. In this context, experimental selection with different agrochemical mixtures was conducted in Anopheles gambiae. The multi-generational impact of agrochemicals on insecticide resistance was evaluated by phenotypic and molecular approaches. METHODS Mosquito larvae were selected for 30 generations with three different agrochemical mixtures containing (i) insecticides, (ii) non-insecticides compounds, and (iii) both insecticide and non-insecticide compounds. Every five generations, the resistance of adults to deltamethrin and bendiocarb was monitored using bioassays. The frequencies of the kdr (L995F) and ace1 (G119S) target-site mutations were monitored every 10 generations. RNAseq was performed on all lines at generation 30 in order to identify gene transcription level variations and polymorphisms associated with each selection regime. RESULTS Larval selection with agrochemical mixtures did not affect bendiocarb resistance and did not select for ace1 mutation. Contrastingly, an increased deltamethrin resistance was observed in the three selected lines. Such increased resistance was not majorly associated with the presence of kdr L995F mutation in selected lines. RNA-seq identified 63 candidate resistance genes over-transcribed in at least one selected line. These include genes coding for detoxification enzymes or cuticular proteins previously associated with insecticide resistance, and other genes potentially associated with chemical stress response. Combining an allele frequency filtering with a Bayesian FST-based genome scan allowed to identify genes under selection across multiple genomic loci, supporting a multigenic adaptive response to agrochemical mixtures. CONCLUSION This study supports the role of agrochemical contaminants as a significant larval selection pressure favouring insecticide resistance in malaria vectors. Such selection pressures likely impact kdr mutations and detoxification enzymes, but also more generalist mechanisms such as cuticle resistance, which could potentially lead to cross-tolerance to unrelated insecticide compounds. Such indirect effect of global landscape pollution on mosquito resistance to public health insecticides deserves further attention since it can affect the nature and dynamics of resistance alleles circulating in malaria vectors and impact the efficacy of control vector strategies.
Collapse
Affiliation(s)
- Christabelle G Sadia
- University of Nangui Abrogoua, Abidjan, Côte d'Ivoire.
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire.
| | - Jean-Marc Bonneville
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, 38000, Grenoble, France
| | - Marius G Zoh
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, 38000, Grenoble, France
- Vector Control Product Evaluation Centre (VCPEC)/Institut Pierre Richet, Bouaké, Côte d'Ivoire
| | - Behi K Fodjo
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire
| | - France-Paraudie A Kouadio
- University of Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire
| | - Sebastien K Oyou
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire
| | - Benjamin G Koudou
- University of Nangui Abrogoua, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan, Côte d'Ivoire
| | | | - Stephane Reynaud
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, 38000, Grenoble, France
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, 38000, Grenoble, France
| | | |
Collapse
|
5
|
Fadel AN, Ibrahim SS, Sandeu MM, Tatsinkou CGM, Menze BD, Irving H, Hearn J, Nagi SC, Weedall GD, Terence E, Tchapga W, Wanji S, Wondji CS. Exploring the molecular mechanisms of increased intensity of pyrethroid resistance in Central African population of a major malaria vector Anopheles coluzzii. Evol Appl 2024; 17:e13641. [PMID: 38410533 PMCID: PMC10895554 DOI: 10.1111/eva.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 02/28/2024] Open
Abstract
Molecular mechanisms driving the escalation of pyrethroid resistance in the major malaria mosquitoes of Central Africa remain largely uncharacterized, hindering effective management strategies. Here, resistance intensity and the molecular mechanisms driving it were investigated in a population of Anopheles coluzzii from northern Cameroon. High levels of pyrethroid and organochloride resistance were observed in An. coluzzii population, with no mortality for 1× permethrin; only 11% and 33% mortalities for 5× and 10× permethrin diagnostic concentrations, and <2% mortalities for deltamethrin and DDT, respectively. Moderate bendiocarb resistance (88% mortality) and full susceptibility to malathion were observed. Synergist bioassays with piperonyl butoxide recovered permethrin susceptibility, with mortalities increasing to 53.39%, and 87.30% for 5× and 10× permethrin, respectively, implicating P450 monooxygenases. Synergist bioassays with diethyl maleate (DEM) recovered permethrin and DDT susceptibilities (mortalities increasing to 34.75% and 14.88%, respectively), implicating glutathione S-transferases. RNA-seq-based genome-wide transcriptional analyses supported by quantitative PCR identified glutathione S-transferase, GSTe2 (RNA-seqFC = 2.93 and qRT-PCRFC = 8.4, p < 0.0043) and CYP450, CYP6Z2 (RNA-seqFC = 2.39 and qRT-PCRFC = 11.7, p < 0.0177) as the most overexpressed detoxification genes in the pyrethroid-resistant mosquitoes, compared to mosquitoes of the susceptible Ngousso colony. Other overexpressed genes include P450s, CYP6M2 (FC = 1.68, p < 0.0114), CYP4G16 (FC = 2.02, p < 0.0005), and CYP4G17 (FC = 1.86, p < 0.0276). While high frequency of the 1014F kdr mutation (50%) and low frequencies of 1014S (6.61%) and 1575Y (10.29%) were observed, no ace-1 mutation was detected in bendiocarb-resistant populations, suggesting the preeminent role of metabolic mechanism. Overexpression of metabolic resistance genes (including GSTe2 and CYP6Z2 known to confer resistance to multiple insecticides) in An. coluzzii from the Sudan Savannah of Cameroon highlights the need for alternative management strategies to reduce malaria burden in northern Cameroon.
Collapse
Affiliation(s)
- Amen N. Fadel
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Microbiology and ParasitologyUniversity of BueaBueaCameroon
| | - Sulaiman S. Ibrahim
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of BiochemistryBayero UniversityKanoNigeria
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| | - Maurice M. Sandeu
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Microbiology and Infectious DiseasesSchool of Veterinary Medicine and SciencesUniversity of NgaoundéréNgaoundéréCameroon
| | | | | | - Helen Irving
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| | - Jack Hearn
- Centre of Epidemiology and Planetary HealthNorth FacultyVeterinary & Animal ScienceScotland's Rural CollegeInvernessUK
| | - Sanjay C. Nagi
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| | - Gareth D. Weedall
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Ebai Terence
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
| | - Williams Tchapga
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
| | - Samuel Wanji
- Department of Microbiology and ParasitologyUniversity of BueaBueaCameroon
| | - Charles S. Wondji
- Center for Research in Infectious Diseases (CRID)YaoundéCameroon
- Vector Biology DepartmentLiverpool School of Tropical Medicine (LSTM)LiverpoolUK
| |
Collapse
|
6
|
Skorokhod O, Vostokova E, Gilardi G. The role of P450 enzymes in malaria and other vector-borne infectious diseases. Biofactors 2024; 50:16-32. [PMID: 37555735 DOI: 10.1002/biof.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Vector-borne infectious diseases are still an important global health problem. Malaria is the most important among them, mainly pediatric, life-threatening disease. Malaria and other vector-borne disorders caused by parasites, bacteria, and viruses have a strong impact on public health and significant economic costs. Most vector-borne diseases could be prevented by vector control, with attention to the ecological and biodiversity conservation aspects. Chemical control with pesticides and insecticides is widely used as a measure of prevention although increasing resistance to insecticides is a serious issue in vector control. Metabolic resistance is the most common mechanism and poses a big challenge. Insect enzyme systems, including monooxygenase CYP P450 enzymes, are employed by vectors mainly to metabolize insecticides thus causing resistance. The discovery and application of natural specific inhibitors/blockers of vector P450 enzymes as synergists for commonly used pesticides will contribute to the "greening" of insecticides. Besides vector CYPs, host CYP enzymes could also be exploited to fight against vector-borne diseases: using mostly their detoxifying properties and involvement in the immune response. Here, we review published research data on P450 enzymes from all players in vector-borne infections, that is, pathogens, vectors, and hosts, regarding the potential role of CYPs in disease. We discuss strategies on how to exploit cytochromes P450 in vector-borne disease control.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ekaterina Vostokova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
7
|
Nkahe DL, Sonhafouo-Chiana N, Ndjeunia Mbiakop P, Kekeunou S, Mimpfoundi R, Awono-Ambene P, Wondji CS, Antonio-Nkondjio C. Can the use of larviciding with biological compounds contribute in increasing Anopheles gambiae s.l. susceptibility to pyrethroid in a population expressing high resistance intensity? PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105569. [PMID: 37666599 DOI: 10.1016/j.pestbp.2023.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/05/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Larviciding using non-insecticide compounds is considered appropriate for controlling outdoor biting mosquitoes and for managing insecticide resistance. However, there is still not enough information on the influence of larviciding in managing pyrethroid resistance. In the present study, we checked whether the introduction of larviciding using the biolarvicide VectoMax G in the city of Yaoundé is contributing in restoring the susceptibility of An. coluzzii populations to pyrethroids. METHODOLOGY The susceptibility status of field An. coluzzii population was evaluated at different time points before and during larviciding treatments. In addition, An. coluzzii larvae collected in the city of Yaoundé, were split into four groups and exposed to different selection regimes for many generations as follow; (i): deltamethrin 0.05%_only, (ii): Vectomax_only, (iii): Vectomax+deltamethrin 0.05%, (iv): VectoMax+deltamethrin 0.05% + susceptible. Life traits parameters were measured in the progeny and compared between colonies. The control was the susceptible laboratory strain "Ngousso". Kdr allele frequency and the profile of expression of different detoxification genes and oxidative stress genes was checked using qPCR analysis. Gene's expression was compared between the first and the last generation of each colony and in field populations collected before and during larviciding. RESULTS An increase in mosquito susceptibility to deltamethrin and permethrin was recorded for the field populations after larviciding implementation. Resistance intensity to deltamethrin was found to decrease from high to low in field populations. Only the colony vectomax+deltamethrin+susceptible presented a high susceptibility to deltamethrin after 21 generations. The kdr gene frequency was found to be unchanged in the field population and laboratory colonies. A significant decrease in the overexpression profile of Gste2 was detected in field population after larviciding implementation. Other genes showing a similar pattern though not significant were Cyp6z1, Cyp6p1 and Cyp6g16. Concerning fitness only the colony vectomax+deltamethrin+susceptible was found to display a fitness profile similar to the susceptible colony with high fecundity, high hatching rate, short development time and long adult survival rate. CONCLUSION The profile of the field population supported reversal of phenotypic resistance to pyrethroids however no reduction in the frequency of the kdr allele was recorded. Some detoxification genes were detected less overexpressed. The study suggest that reversal may take longer to achieve in a population expressing a very high resistance profile and under continuous insecticide selection pressure.
Collapse
Affiliation(s)
- Diane Leslie Nkahe
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon; Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Nadege Sonhafouo-Chiana
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon; Faculty of Science, University of Buea, Buea, P.O. Box 63, Cameroon
| | - Paulette Ndjeunia Mbiakop
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon; Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Sévilor Kekeunou
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Rémy Mimpfoundi
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon; Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool L3 5QA, UK.
| | - Christophe Antonio-Nkondjio
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon; Faculty of Medicine Paris-Sud, 63 rue Gabriel Peri, 94276, Le Kremlin-Bicêtre, Paris, France..
| |
Collapse
|
8
|
Badzohre A, Oshaghi MA, Enayati AA, Moosa-Kazemi SH, Nikookar SH, Talebzadeh F, Naseri-Karimi N, Hanafi-Bojd AA, Vatandoost H. Ace-1 Target Site Status and Metabolic Detoxification Associated with Bendiocarb Resistance in the Field Populations of Main Malaria Vector, Anopheles stephensi in Iran. J Arthropod Borne Dis 2023; 17:272-286. [PMID: 38860197 PMCID: PMC11162546 DOI: 10.18502/jad.v17i3.14987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2024] Open
Abstract
Background Anopheles stephensi is the main vector of malaria in Iran. This study aimed to determine the susceptibility of An. stephensi from the south of Iran to bendiocarb and to investigate biochemical and molecular resistance mechanisms in this species. Methods Wild An. stephensi were collected from Hormozgan Province and reared to the adult stage. The susceptibility test was conducted according to the WHO protocols using bendiocarb impregnated papers supplied by WHO. Also, field An. Stephensi specimens were collected from south of Kerman and Sistan and Baluchistan Provinces. To determine the G119S mutation in the acetylcholinesterase (Ace1) gene, PCR-RFLP using AluI restriction enzyme and PCR direct-sequencing were performed for the three field populations and compared with the available GenBank data. Also, biochemical assays were performed to measure alpha and beta esterases, insensitive acetylcholinesterase, and oxidases in the strains. Results The bioassay tests showed that the An. stephensi field strain was resistant to bendiocarb (mortality rate 89%). Ace1 gene analysis revealed no G119S in the three field populations. Blast search of sequences revealed 98-99% identity with the Ace1 gene from Pakistan and India respectively. Also, the results of biochemical tests revealed the high activity of non-sensitive acetylcholinesterase, alpha and beta-esterase in the resistant strain compared to the susceptible strain. No G119S was detected in this study additionally the enhanced enzyme activity of esterases and acetylcholinesterase suggesting that resistance was metabolic. Conclusion The use of alternative malaria control methods and the implementation of resistance management strategies are suggested in the study area.
Collapse
Affiliation(s)
- Abdollah Badzohre
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Enayati
- Department of Medical Entomology and Vector Control, School of Public Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Hassan Moosa-Kazemi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Nikookar
- Department of Medical Entomology and Vector Control, Health Sciences Research Center, Addiction Institute, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fahimeh Talebzadeh
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Naseri-Karimi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Hanafi-Bojd
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemical Pollutants and Pesticides, Institute of Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Kouadio FPA, Wipf NC, Nygble AS, Fodjo BK, Sadia CG, Vontas J, Mavridis K, Müller P, Mouhamadou CS. Relationship between insecticide resistance profiles in Anopheles gambiae sensu lato and agricultural practices in Côte d'Ivoire. Parasit Vectors 2023; 16:270. [PMID: 37559080 PMCID: PMC10410919 DOI: 10.1186/s13071-023-05876-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Insecticide-based malaria vector control is increasingly undermined due to the development of insecticide resistance in mosquitoes. Insecticide resistance may partially be related to the use of pesticides in agriculture, while the level and mechanisms of resistance might differ between agricultural practices. The current study aimed to assess whether phenotypic insecticide resistance and associated molecular resistance mechanisms in Anopheles gambiae sensu lato differ between agricultural practices. METHODS We collected An. gambiae s.l. larvae in six sites with three different agricultural practices, including rice, vegetable and cocoa cultivation. We then exposed the emerging adult females to discriminating concentrations of bendiocarb (0.1%), deltamethrin (0.05%), DDT (4%) and malathion (5%) using the standard World Health Organization insecticide susceptibility test. To investigate underlying molecular mechanisms of resistance, we used multiplex TaqMan qPCR assays. We determined the frequency of target-site mutations, including Vgsc-L995F/S and Vgsc-N1570Y, and Ace1-G280S. In addition, we measured the expression levels of genes previously associated with insecticide resistance in An. gambiae s.l., including the cytochrome P450-dependent monooxygenases CYP4G16, CYP6M2, CYP6P1, CYP6P3, CYP6P4, CYP6Z1 and CYP9K1, and the glutathione S-transferase GSTe2. RESULTS The An. gambiae s.l. populations from all six agricultural sites were resistant to bendiocarb, deltamethrin and DDT, while the populations from the two vegetable cultivation sites were additionally resistant to malathion. Most tested mosquitoes carried at least one mutant Vgsc-L995F allele that is associated with pyrethroid and DDT resistance. In the cocoa cultivation sites, we observed the highest 995F frequencies (80-87%), including a majority of homozygous mutants and several in co-occurrence with the Vgsc-N1570Y mutation. We detected the Ace1 mutation most frequently in vegetable-growing sites (51-60%), at a moderate frequency in rice (20-22%) and rarely in cocoa-growing sites (3-4%). In contrast, CYP6M2, CYP6P3, CYP6P4, CYP6Z1 and CYP9K1, previously associated with metabolic insecticide resistance, showed the highest expression levels in the populations from rice-growing sites compared to the susceptible Kisumu reference strain. CONCLUSION In our study, we observed intriguing associations between the type of agricultural practices and certain insecticide resistance profiles in the malaria vector An. gambiae s.l. which might arise from the use of pesticides deployed for protecting crops.
Collapse
Affiliation(s)
- France-Paraudie A Kouadio
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Abidjan, Côte d'Ivoire.
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire.
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, P.O. Box, CH-4001, Basel, Switzerland.
| | - Nadja C Wipf
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, P.O. Box, CH-4001, Basel, Switzerland
| | | | - Behi K Fodjo
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Abidjan, Côte d'Ivoire
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Christabelle G Sadia
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Abidjan, Côte d'Ivoire
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, P.O. Box, CH-4001, Basel, Switzerland
| | - Chouaïbou S Mouhamadou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Abidjan, Côte d'Ivoire
| |
Collapse
|
10
|
Ibrahim SS, Muhammad A, Hearn J, Weedall GD, Nagi SC, Mukhtar MM, Fadel AN, Mugenzi LJ, Patterson EI, Irving H, Wondji CS. Molecular drivers of insecticide resistance in the Sahelo-Sudanian populations of a major malaria vector Anopheles coluzzii. BMC Biol 2023; 21:125. [PMID: 37226196 PMCID: PMC10210336 DOI: 10.1186/s12915-023-01610-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Information on common markers of metabolic resistance in malaria vectors from countries sharing similar eco-climatic characteristics can facilitate coordination of malaria control. Here, we characterized populations of the major malaria vector Anopheles coluzzii from Sahel region, spanning four sub-Saharan African countries: Nigeria, Niger, Chad and Cameroon. RESULTS Genome-wide transcriptional analysis identified major genes previously implicated in pyrethroid and/or cross-resistance to other insecticides, overexpressed across the Sahel, including CYP450s, glutathione S-transferases, carboxylesterases and cuticular proteins. Several, well-known markers of insecticide resistance were found in high frequencies-including in the voltage-gated sodium channel (V402L, I940T, L995F, I1527T and N1570Y), the acetylcholinesterase-1 gene (G280S) and the CYP4J5-L43F (which is fixed). High frequencies of the epidemiologically important chromosomal inversion polymorphisms, 2La, 2Rb and 2Rc, were observed (~80% for 2Rb and 2Rc). The 2La alternative arrangement is fixed across the Sahel. Low frequencies of these inversions (<10%) were observed in the fully insecticide susceptible laboratory colony of An. coluzzii (Ngoussou). Several of the most commonly overexpressed metabolic resistance genes sit in these three inversions. Two commonly overexpressed genes, GSTe2 and CYP6Z2, were functionally validated. Transgenic Drosophila melanogaster flies expressing GSTe2 exhibited extremely high DDT and permethrin resistance (mortalities <10% in 24h). Serial deletion of the 5' intergenic region, to identify putative nucleotide(s) associated with GSTe2 overexpression, revealed that simultaneous insertion of adenine nucleotide and a transition (T->C), between Forkhead box L1 and c-EST putative binding sites, were responsible for the high overexpression of GSTe2 in the resistant mosquitoes. Transgenic flies expressing CYP6Z2 exhibited marginal resistance towards 3-phenoxybenzylalcohol (a primary product of pyrethroid hydrolysis by carboxylesterases) and a type II pyrethroid, α-cypermethrin. However, significantly higher mortalities were observed in CYP6Z2 transgenic flies compared with controls, on exposure to the neonicotinoid, clothianidin. This suggests a possible bioactivation of clothianidin into a toxic intermediate, which may make it an ideal insecticide against populations of An. coluzzii overexpressing this P450. CONCLUSIONS These findings will facilitate regional collaborations within the Sahel region and refine implementation strategies through re-focusing interventions, improving evidence-based, cross-border policies towards local and regional malaria pre-elimination.
Collapse
Affiliation(s)
- Sulaiman S. Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
- Department of Biochemistry, Bayero University, PMB 3011, Kano, Nigeria
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
- Centre for Biotechnology Research, Bayero University, PMB 3011, Kano, Nigeria
| | - Jack Hearn
- Centre of Epidemiology and Planetary Health, Veterinary & Animal Science, Scotland’s Rural College, Inverness, IV2 5NA UK
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF UK
| | - Sanjay C. Nagi
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
| | | | - Amen N. Fadel
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Leon J. Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Edward I. Patterson
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1 Canada
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, L3 5QA UK
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| |
Collapse
|
11
|
Mugenzi LMJ, A. Tekoh T, S. Ibrahim S, Muhammad A, Kouamo M, Wondji MJ, Irving H, Hearn J, Wondji CS. The duplicated P450s CYP6P9a/b drive carbamates and pyrethroids cross-resistance in the major African malaria vector Anopheles funestus. PLoS Genet 2023; 19:e1010678. [PMID: 36972302 PMCID: PMC10089315 DOI: 10.1371/journal.pgen.1010678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 04/11/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cross-resistance to insecticides in multiple resistant malaria vectors is hampering resistance management. Understanding its underlying molecular basis is critical to implementation of suitable insecticide-based interventions. Here, we established that the tandemly duplicated cytochrome P450s, CYP6P9a/b are driving carbamate and pyrethroid cross-resistance in Southern African populations of the major malaria vector Anopheles funestus. Transcriptome sequencing revealed that cytochrome P450s are the most over-expressed genes in bendiocarb and permethrin-resistant An. funestus. The CYP6P9a and CYP6P9b genes are overexpressed in resistant An. funestus from Southern Africa (Malawi) versus susceptible An. funestus (Fold change (FC) is 53.4 and 17 respectively), while the CYP6P4a and CYP6P4b genes are overexpressed in resistant An. funestus in Ghana, West Africa, (FC is 41.1 and 17.2 respectively). Other up-regulated genes in resistant An. funestus include several additional cytochrome P450s (e.g. CYP9J5, CYP6P2, CYP6P5), glutathione-S transferases, ATP-binding cassette transporters, digestive enzymes, microRNA and transcription factors (FC<7). Targeted enrichment sequencing strongly linked a known major pyrethroid resistance locus (rp1) to carbamate resistance centering around CYP6P9a/b. In bendiocarb resistant An. funestus, this locus exhibits a reduced nucleotide diversity, significant p-values when comparing allele frequencies, and the most non-synonymous substitutions. Recombinant enzyme metabolism assays showed that both CYP6P9a/b metabolize carbamates. Transgenic expression of CYP6P9a/b in Drosophila melanogaster revealed that flies expressing both genes were significantly more resistant to carbamates than controls. Furthermore, a strong correlation was observed between carbamate resistance and CYP6P9a genotypes with homozygote resistant An. funestus (CYP6P9a and the 6.5kb enhancer structural variant) exhibiting a greater ability to withstand bendiocarb/propoxur exposure than homozygote CYP6P9a_susceptible (e.g Odds ratio = 20.8, P<0.0001 for bendiocarb) and heterozygotes (OR = 9.7, P<0.0001). Double homozygote resistant genotype (RR/RR) were even more able to survive than any other genotype combination showing an additive effect. This study highlights the risk that pyrethroid resistance escalation poses to the efficacy of other classes of insecticides. Available metabolic resistance DNA-based diagnostic assays should be used by control programs to monitor cross-resistance between insecticides before implementing new interventions.
Collapse
Affiliation(s)
- Leon M. J. Mugenzi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Theofelix A. Tekoh
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science University of Buea, Buea, Cameroon
| | - Sulaiman S. Ibrahim
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Department of Biochemistry, Bayero University, Kano, Nigeria
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Mersimine Kouamo
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Murielle J. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College, An Lòchran, 10 Inverness Campus, Inverness, Scotland, United Kingdom
| | - Charles S. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
12
|
Tene‐Fossog B, Fotso‐Toguem YG, Amvongo‐Adjia N, Ranson H, Wondji CS. Temporal variation of high-level pyrethroid resistance in the major malaria vector Anopheles gambiae s.l. in Yaoundé, Cameroon, is mediated by target-site and metabolic resistance. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:247-259. [PMID: 35521949 PMCID: PMC9545389 DOI: 10.1111/mve.12577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Constant assessment of insecticide resistance levels is mandatory to implement adequate malaria control tools, but little information is available on the annual dynamics of resistance. We, therefore, monitored variations in resistance in Anopheles gambiae s.l. over four seasons during 2 years in two localities of Yaoundé: urban Etoa-Meki and peri-urban Nkolondom. Mosquitoes were collected seasonally at larval stage and reared to adults for insecticide susceptibility tests and molecular analysis of resistance mechanisms. Anopheles coluzzii was found in Etoa-Meki and An. gambiae in Nkolondom. Low mortalities to pyrethroids were observed (permethrin <10%, deltamethrin <21%), and resistance extended to 5× and 10× diagnostic doses, revealing a marked increase compared to previous studies. A seasonal variation in resistance was observed with the highest levels within dry seasons in Etoa-Meki and rainy seasons in Nkolondom. The 1014F kdr allele shows a high frequency (0.9), associated with overexpression of metabolic genes (Cyp6M2, Cyp6P4, Cyp9K1, Cyp6Z1, and Cyp6Z2) varying significantly seasonally. This study reveals an escalation in resistance to pyrethroids in Yaoundé's malaria vectors with seasonal variations. An adequate choice of the implementation period of punctual vector control actions according to the resistance profile will help to potentiate the desired effect and thus improve its efficiency.
Collapse
Affiliation(s)
- Billy Tene‐Fossog
- Department of Medical EntomologyCentre for Research in Infectious Diseases (CRID)YaoundéCameroon
| | - Yvan Gaetan Fotso‐Toguem
- Department of Medical EntomologyCentre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Animal Biology and Physiology, Faculty of ScienceUniversity of Yaoundé 1YaoundéCameroon
| | - Nathalie Amvongo‐Adjia
- Department of Medical EntomologyCentre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Medical Research CentreInstitute of Medical Research and Medicinal Plants Studies (IMPM)YaoundéCameroon
| | - Hilary Ranson
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Charles S. Wondji
- Department of Medical EntomologyCentre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
13
|
Ngangue-Siewe IN, Ndjeunia-Mbiakop P, Kala-Chouakeu NA, Bamou R, Talipouo A, Djamouko-Djonkam L, Vontas J, Mavridis K, Tombi J, Tchuinkam T, Mbida-Mbida JA, Antonio-Nkondjio C. Bendiocarb and Malathion Resistance in Two Major Malaria Vector Populations in Cameroon Is Associated with High Frequency of the G119S Mutation (Ace-1) and Overexpression of Detoxification Genes. Pathogens 2022; 11:pathogens11080824. [PMID: 35894047 PMCID: PMC9330212 DOI: 10.3390/pathogens11080824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
The spread of pyrethroid resistance in malaria vectors is a major threat affecting the performance of current control measures. However, there is still not enough information on the resistance profile of mosquitoes to carbamates and organophosphates which could be used as alternatives. The present study assessed the resistance profile of Anopheles gambiae s.l. to bendiocarb and malathion, at the phenotypic and molecular levels, in different eco-epidemiological settings in Cameroon. Anopheles gambiae s.l. mosquitoes were collected from four eco-epidemiological settings across the country and their susceptibility level to bendiocarb and malathion was determined using WHO tubes bioassays. The ace-1 target site G119S mutation was screened by PCR. Reverse Transcription quantitative PCR 3-plex TaqMan assays were used to quantify the level of expression of eight genes associated with metabolic resistance. Resistance to malathion and/or bendiocarb was recorded in all study sites except in mosquitoes collected in Kaélé and Njombé. The Ace-1 (G119S) mutation was detected in high frequencies (>40%) in Kékem and Santchou. Both An. gambiae and An. coluzzii were detected carrying this mutation. The cytochrome P450s gene Cyp6p3 associated with carbamate resistance and the glutathione S-transferase gene Gste2 associated with organophosphate resistance were found to be overexpressed. Genes associated with pyrethroid (Cyp6m2, Cyp9k1, Cyp6p3) and organochlorine (Gste2, Cyp6z1, Cyp6m2) and cuticle resistance (Cyp4g16) were also overexpressed. The rapid spread of resistance to organophosphates and carbamates could seriously compromise future control strategies based on IRS. It is therefore becoming important to assess the magnitude of bendiocarb and malathion resistance countrywide.
Collapse
Affiliation(s)
- Idriss Nasser Ngangue-Siewe
- Laboratory of Animal Biology and Physiology, University of Douala, Douala P.O. Box 24157, Cameroon; (I.N.N.-S.); (J.A.M.-M.)
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (P.N.-M.); (N.A.K.-C.); (R.B.); (A.T.); (L.D.-D.)
| | - Paulette Ndjeunia-Mbiakop
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (P.N.-M.); (N.A.K.-C.); (R.B.); (A.T.); (L.D.-D.)
- Faculty of Sciences, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Nelly Armanda Kala-Chouakeu
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (P.N.-M.); (N.A.K.-C.); (R.B.); (A.T.); (L.D.-D.)
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang P.O. Box 067, Cameroon;
| | - Roland Bamou
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (P.N.-M.); (N.A.K.-C.); (R.B.); (A.T.); (L.D.-D.)
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang P.O. Box 067, Cameroon;
| | - Abdou Talipouo
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (P.N.-M.); (N.A.K.-C.); (R.B.); (A.T.); (L.D.-D.)
- Faculty of Sciences, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Landre Djamouko-Djonkam
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (P.N.-M.); (N.A.K.-C.); (R.B.); (A.T.); (L.D.-D.)
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang P.O. Box 067, Cameroon;
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece; (J.V.); (K.M.)
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece; (J.V.); (K.M.)
| | - Jeannette Tombi
- Faculty of Sciences, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Timoléon Tchuinkam
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang P.O. Box 067, Cameroon;
| | - Jean Arthur Mbida-Mbida
- Laboratory of Animal Biology and Physiology, University of Douala, Douala P.O. Box 24157, Cameroon; (I.N.N.-S.); (J.A.M.-M.)
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), Yaoundé P.O. Box 288, Cameroon; (P.N.-M.); (N.A.K.-C.); (R.B.); (A.T.); (L.D.-D.)
- Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Correspondence: ; Tel.: +237-699-53-86-56
| |
Collapse
|
14
|
Zoh MG, Tutagata J, Fodjo BK, Mouhamadou CS, Sadia CG, McBeath J, Schmitt F, Horstmann S, David JP, Reynaud S. Exposure of Anopheles gambiae larvae to a sub-lethal dose of an agrochemical mixture induces tolerance to adulticides used in vector control management. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106181. [PMID: 35504174 DOI: 10.1016/j.aquatox.2022.106181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The heavy use of pesticides in agricultural areas often leads to the contamination of nearby mosquito larvae breeding sites. Exposure to complex mixtures of agrochemicals can affect the insecticide sensitivity of mosquito larvae. Our study objective was to determine whether agrochemical residues in Anopheline larval breeding sites can affect the tolerance of adults to commonly used adulticides. We focussed on Fludora® Fusion, a vector control insecticide formulation combining two insecticides (deltamethrin and clothianidin) with different modes of action. An. gambiae larvae were exposed to a sub-lethal dose of a mixture of agrochemical pesticides used in a highly active agricultural area on the Ivory Coast. Comparative bioassays with Fludora Fusion mixture and its two insecticide components (deltamethrin and clothianidin) were carried out between adult mosquitoes exposed or not to the agrochemicals at the larval stage. A transcriptomic analysis using RNA sequencing was then performed on larvae and adults to study the molecular mechanisms underlying the phenotypic changes observed. Bioassays revealed a significantly increased tolerance of adult females to clothianidin (2.5-fold) and Fludora Fusion mixture (2.2-fold) following larval exposure to agrochemicals. Significantly increased tolerance to deltamethrin was not observed suggesting that insecticide exposure affects the adult efficacy of the Fludora Fusion mixture mainly through mechanisms acting on clothianidin. Transcriptomic analysis revealed the potential of agrochemicals to induce various resistance mechanisms including cuticle proteins, detoxification action and altered insecticide sequestration. These results suggest that although the Fludora Fusion mixture is effective for adult vector control, its efficacy may be locally affected by the ecological context. The present study also suggests that, although the complex interactions between the use of agrochemicals and vector control insecticides are difficult to decipher in the field, they still must be considered in the context of insecticide resistance management programmes.
Collapse
Affiliation(s)
- Marius Gonse Zoh
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Jordan Tutagata
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Behi K Fodjo
- Centre Suisse de la Recherche Scientifique en Côte d'Ivoire, Côte d'Ivoire
| | | | | | | | | | | | - Jean-Philippe David
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| |
Collapse
|
15
|
Sonhafouo-Chiana N, Nkahe LD, Kopya E, Awono-Ambene PH, Wanji S, Wondji CS, Antonio-Nkondjio C. Rapid evolution of insecticide resistance and patterns of pesticides usage in agriculture in the city of Yaoundé, Cameroon. Parasit Vectors 2022; 15:186. [PMID: 35655243 PMCID: PMC9164381 DOI: 10.1186/s13071-022-05321-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The practice of agriculture in urban settings contributes to the rapid expansion of insecticide resistance in malaria vectors. However, there is still not enough information on pesticide usage in most urban settings. The present study aims to assess the evolution of Anopheles gambiae (s.l.) population susceptibility to insecticides and patterns of pesticide usage in agriculture in the city of Yaoundé, Cameroon. METHODS WHO susceptibility tests and synergist PBO bioassays were conducted on adult An. gambiae (s.l.) mosquitoes aged 3 to 5 days emerging from larvae collected from the field. Seven insecticides (deltamethrin, permethrin, DDT, bendiocarb, propoxur, fenitrothion and malathion) were evaluated. The presence of target site mutation conferring knockdown (kdr) resistance was investigated using TaqMan assay, and mosquito species were identified using SINE-PCR. Surveys on 81 retailers and 232 farmers were conducted to assess general knowledge and practices regarding agricultural pesticide usage. RESULTS High resistance intensity to pyrethroids was observed with a high frequency of the kdr allele 1014F and low frequency of the kdr 1014S allele. The level of susceptibility of An. gambiae (s.l.) to pyrethroids and carbamates was found to decrease with time (from > 34% in 2017 to < 23% in 2019 for deltamethrin and permethrin and from 97% in 2017 to < 86% in 2019 for bendiocarb). Both An. gambiae (s.s.) and An. coluzzii were recorded. Over 150 pesticides and fertilizers were sold by retailers for agricultural purposes in the city of Yaoundé. Most farmers do not respect safety practices. Poor practices including extensive and inappropriate application of pesticides as well as poor management of perished pesticides and empty pesticide containers were also documented. CONCLUSIONS The study indicated rapid evolution of insecticide resistance and uncontrolled usage of pesticides by farmers in agriculture. There is an urgent need to address these gaps to improve the management of insecticide resistance.
Collapse
Affiliation(s)
- Nadège Sonhafouo-Chiana
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Leslie Diane Nkahe
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
- Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Edmond Kopya
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
- Faculty of Science, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Parfait Herman Awono-Ambene
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
| | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, P.O. Box 63, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), P.O. Box 474, Buea, Cameroon
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Vector Biology, Liverpool School of Tropical medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - Christophe Antonio-Nkondjio
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de Recherche de Yaoundé (IRY), P.O. Box 288, Yaoundé, Cameroon
- Vector Biology, Liverpool School of Tropical medicine, Pembroke Place, Liverpool, L3 5QA UK
| |
Collapse
|
16
|
Kefi M, Charamis J, Balabanidou V, Ioannidis P, Ranson H, Ingham VA, Vontas J. Transcriptomic analysis of resistance and short-term induction response to pyrethroids, in Anopheles coluzzii legs. BMC Genomics 2021; 22:891. [PMID: 34903168 PMCID: PMC8667434 DOI: 10.1186/s12864-021-08205-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Insecticide-treated bed nets and indoor residual spraying comprise the major control measures against Anopheles gambiae sl, the dominant vector in sub-Saharan Africa. The primary site of contact with insecticide is through the mosquitoes' legs, which represents the first barrier insecticides have to bypass to reach their neuronal targets. Proteomic changes and leg cuticle modifications have been associated with insecticide resistance that may reduce the rate of penetration of insecticides. Here, we performed a multiple transcriptomic analyses focusing on An. coluzzii legs. RESULTS Firstly, leg-specific enrichment analysis identified 359 genes including the pyrethroid-binder SAP2 and 2 other chemosensory proteins, along with 4 ABCG transporters previously shown to be leg enriched. Enrichment of gene families included those involved in detecting chemical stimuli, including gustatory and ionotropic receptors and genes implicated in hydrocarbon-synthesis. Subsequently, we compared transcript expression in the legs of a highly resistant strain (VK7-HR) to both a strain with very similar genetic background which has reverted to susceptibility after several generations without insecticide pressure (VK7-LR) and a lab susceptible population (NG). Two hundred thirty-two differentially expressed genes (73 up-regulated and 159 down-regulated) were identified in the resistant strain when compared to the two susceptible counterparts, indicating an over-expression of phase I detoxification enzymes and cuticular proteins, with decrease in hormone-related metabolic processes in legs from the insecticide resistant population. Finally, we analysed the short-term effect of pyrethroid exposure on An. coluzzii legs, comparing legs of 1 h-deltamethrin-exposed An. coluzzii (VK7-IN) to those of unexposed mosquitoes (VK7-HR) and identified 348 up-regulated genes including those encoding for GPCRs, ABC transporters, odorant-binding proteins and members of the divergent salivary gland protein family. CONCLUSIONS The data on An. coluzzii leg-specific transcriptome provides valuable insights into the first line of defense in pyrethroid resistant and short-term deltamethrin-exposed mosquitoes. Our results suggest that xenobiotic detoxification is likely occurring in legs, while the enrichment of sensory proteins, ABCG transporters and cuticular genes is also evident. Constitutive resistance is primarily associated with elevated levels of detoxification and cuticular genes, while short-term insecticide-induced tolerance is linked with overexpression of transporters, GPCRs and GPCR-related genes, sensory/binding and salivary gland proteins.
Collapse
Affiliation(s)
- M Kefi
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - J Charamis
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - V Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - P Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - H Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - V A Ingham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Parasitology Unit, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - J Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece.
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
17
|
Antonio-Nkondjio C, Doumbe-Belisse P, Djamouko-Djonkam L, Ngadjeu CS, Talipouo A, Kopya E, Bamou R, Mayi MPA, Sonhafouo-Chiana N, Nkahe DL, Tabue R, Fosah DA, Bigoga JD, Awono-Ambene P, Wondji CS. High efficacy of microbial larvicides for malaria vectors control in the city of Yaounde Cameroon following a cluster randomized trial. Sci Rep 2021; 11:17101. [PMID: 34429446 PMCID: PMC8385066 DOI: 10.1038/s41598-021-96362-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/03/2021] [Indexed: 11/12/2022] Open
Abstract
The rapid expansion of insecticide resistance and outdoor malaria transmission are affecting the efficacy of current malaria control measures. In urban settings, where malaria transmission is focal and breeding habitats are few, fixed and findable, the addition of anti-larval control measures could be efficient for malaria vector control. But field evidences for this approach remains scarce. Here we provide findings of a randomized-control larviciding trial conducted in the city of Yaoundé that support the efficacy of this approach. A two arms random control trial design including 26 clusters of 2 to 4 km2 each (13 clusters in the intervention area and 13 in the non-intervention area) was used to assess larviciding efficacy. The microbial larvicide VectoMax combining Bacillus thuringiensis var israelensis (Bti) and Bacillus sphaericus in a single granule was applied every 2 weeks in all standing water collection points. The anopheline density collected using CDC light traps was used as the primary outcome, secondary outcomes included the entomological inoculation rate, breeding habitats with anopheline larvae, and larval density. Baseline entomological data collection was conducted for 17 months from March 2017 to July 2018 and the intervention lasted 26 months from September 2018 to November 2020. The intervention was associated with a reduction of 68% of adult anopheline biting density and of 79% of the entomological inoculation rate (OR 0.21; 95% CI 0.14-0.30, P < 0.0001). A reduction of 68.27% was recorded for indoor biting anophelines and 57.74% for outdoor biting anophelines. No impact on the composition of anopheline species was recorded. A reduction of over 35% of adult Culex biting densities was recorded. The study indicated high efficacy of larviciding for reducing malaria transmission intensity in the city of Yaoundé. Larviciding could be part of an integrated control approach for controlling malaria vectors and other mosquito species in the urban environment.
Collapse
Affiliation(s)
- Christophe Antonio-Nkondjio
- Laboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour La Lutte Contre Les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun.
- Department of Vector Biology, Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK.
| | - P Doumbe-Belisse
- Laboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour La Lutte Contre Les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - L Djamouko-Djonkam
- Laboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour La Lutte Contre Les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun
- Vector Borne Diseases Laboratory of the Biology and Applied Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - C S Ngadjeu
- Laboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour La Lutte Contre Les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - A Talipouo
- Laboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour La Lutte Contre Les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - E Kopya
- Laboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour La Lutte Contre Les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - R Bamou
- Laboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour La Lutte Contre Les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun
- Vector Borne Diseases Laboratory of the Biology and Applied Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - M P Audrey Mayi
- Vector Borne Diseases Laboratory of the Biology and Applied Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - N Sonhafouo-Chiana
- Laboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour La Lutte Contre Les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun
- Faculty of Sciences, University of Buea, P.O. Box 63, Buea, Cameroon
| | - D L Nkahe
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - R Tabue
- Ministry of Public Health, National Malaria Control Programme, Yaoundé, Cameroon
| | - D Achu Fosah
- Ministry of Public Health, National Malaria Control Programme, Yaoundé, Cameroon
| | - Jude D Bigoga
- Laboratory for Vector Biology and Control, National Reference Unit for Vector Control, The Biotechnology Center, Nkolbisson-University of Yaounde I, P.O. Box 3851, Messa, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaoundé, Cameroon
| | - P Awono-Ambene
- Laboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour La Lutte Contre Les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| |
Collapse
|
18
|
Longo-Pendy NM, Tene-Fossog B, Tawedi RE, Akone-Ella O, Toty C, Rahola N, Braun JJ, Berthet N, Kengne P, Costantini C, Ayala D. Ecological plasticity to ions concentration determines genetic response and dominance of Anopheles coluzzii larvae in urban coastal habitats of Central Africa. Sci Rep 2021; 11:15781. [PMID: 34349141 PMCID: PMC8338965 DOI: 10.1038/s41598-021-94258-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
In Central Africa, the malaria vector Anopheles coluzzii is predominant in urban and coastal habitats. However, little is known about the environmental factors that may be involved in this process. Here, we performed an analysis of 28 physicochemical characteristics of 59 breeding sites across 5 urban and rural sites in coastal areas of Central Africa. We then modelled the relative frequency of An. coluzzii larvae to these physicochemical parameters in order to investigate environmental patterns. Then, we assessed the expression variation of 10 candidate genes in An. coluzzii, previously incriminated with insecticide resistance and osmoregulation in urban settings. Our results confirmed the ecological plasticity of An. coluzzii larvae to breed in a large range of aquatic conditions and its predominance in breeding sites rich in ions. Gene expression patterns were comparable between urban and rural habitats, suggesting a broad response to ions concentrations of whatever origin. Altogether, An. coluzzii exhibits a plastic response to occupy both coastal and urban habitats. This entails important consequences for malaria control in the context of the rapid urban expansion in Africa in the coming years.
Collapse
Affiliation(s)
| | | | - Robert E. Tawedi
- grid.473396.cInstitut de Recherches Géologiques Et Minières / Centre de Recherches Hydrologiques, Yaoundé, Cameroon
| | | | - Celine Toty
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Nil Rahola
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Jean-Jacques Braun
- grid.473396.cInstitut de Recherches Géologiques Et Minières / Centre de Recherches Hydrologiques, Yaoundé, Cameroon ,grid.462928.30000 0000 9033 1612Géosciences Environnement Toulouse, Université de Toulouse, CNRS, IRD, Toulouse, France ,International Joint Laboratory DYCOFAC, IRGM-UY1-IRD, BP 1857, Yaoundé, Cameroon
| | - Nicolas Berthet
- grid.418115.80000 0004 1808 058XCIRMF, Franceville, Gabon ,grid.428999.70000 0001 2353 6535Institut Pasteur, Unité Environnement Et Risque Infectieux, Cellule D’Intervention Biologique D’Urgence, Paris, France
| | - Pierre Kengne
- grid.418115.80000 0004 1808 058XCIRMF, Franceville, Gabon ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Carlo Costantini
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Diego Ayala
- grid.418115.80000 0004 1808 058XCIRMF, Franceville, Gabon ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier, France
| |
Collapse
|
19
|
Keïta M, Sogoba N, Traoré B, Kané F, Coulibaly B, Traoré SF, Doumbia S. Performance of pirimiphos-methyl based Indoor Residual Spraying on entomological parameters of malaria transmission in the pyrethroid resistance region of Koulikoro, Mali. Acta Trop 2021; 216:105820. [PMID: 33400915 PMCID: PMC8008285 DOI: 10.1016/j.actatropica.2020.105820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/28/2022]
Abstract
Malaria vector control in Mali relies heavily on the use of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) in selected districts. As part of strengthening vector control strategies in Koulikoro district, the National Malaria Control Programme (NMCP) through the support from the US President's Malaria Initiative (PMI) has strategically driven the implementation of IRS, with the LLINs coverage also rising from 93.3% and 98.2%. Due to the increased reports of vector resistance to both pyrethroid and carbamates, there was a campaign for the use of pirimiphos-methyl, an organophosphate at Koulikoro between 2015 and 2016. In this study, the effect of IRS on malaria transmission was assessed, by comparing some key entomological indices between Koulikoro, where IRS was implemented and its neighboring district, Banamba that has never received IRS as vector control intervention. The study was conducted in two villages of each district (Koulikoro and Banamba). Pyrethrum spray catches and entry window trapping were used to collect mosquitoes on a monthly basis. WHO tube tests were carried out to assess mosquito susceptibility to insecticides. Mosquitoes were identified to species level by PCR and their infection to P. falciparum was detected by Enzyme Linked-Immuno-Sorbent Assay (ELISA). Of the 527 specimens identified, An. coluzzii was the most frequent species (95%) followed by An. gambiae (4%) and An. arabiensis (1%). Its density was rainfall dependent in the no-IRS area, and almost independent in the IRS area. The infection rate (IR) in the no-IRS area was 0.96%, while it was null in the IRS area. In the no-IRS area, the entomological inoculation rate (EIR) was 0.21 infective bites /person month with a peak in September. High resistance to pyrethroids and carbamates and susceptibility to organophosphates was observed at all sites. The introduction of pirimiphos-methyl based IRS for vector control resulted in a significant decrease in malaria transmission. An. gambiae s.l., the main malaria vector in the area, was resistant to pyrethroids and carbamates but remained susceptible to the organophosphate pirimiphos-methyl.
Collapse
Affiliation(s)
- Moussa Keïta
- Malaria Research and Training Center/International Center for Excellence in Research (ICER-Mali)/ Faculty of Medicine and Odonto Stomatology/University of Sciences, Techniques and Technologies of Bamako (USTTB) Bamako, Mali.
| | - Nafomon Sogoba
- Malaria Research and Training Center/International Center for Excellence in Research (ICER-Mali)/ Faculty of Medicine and Odonto Stomatology/University of Sciences, Techniques and Technologies of Bamako (USTTB) Bamako, Mali
| | - Boïssé Traoré
- Malaria Research and Training Center/International Center for Excellence in Research (ICER-Mali)/ Faculty of Medicine and Odonto Stomatology/University of Sciences, Techniques and Technologies of Bamako (USTTB) Bamako, Mali
| | - Fousseyni Kané
- Malaria Research and Training Center/International Center for Excellence in Research (ICER-Mali)/ Faculty of Medicine and Odonto Stomatology/University of Sciences, Techniques and Technologies of Bamako (USTTB) Bamako, Mali
| | - Boubacar Coulibaly
- Malaria Research and Training Center/International Center for Excellence in Research (ICER-Mali)/ Faculty of Medicine and Odonto Stomatology/University of Sciences, Techniques and Technologies of Bamako (USTTB) Bamako, Mali
| | - Sekou Fantamady Traoré
- Malaria Research and Training Center/International Center for Excellence in Research (ICER-Mali)/ Faculty of Medicine and Odonto Stomatology/University of Sciences, Techniques and Technologies of Bamako (USTTB) Bamako, Mali
| | - Seydou Doumbia
- Malaria Research and Training Center/International Center for Excellence in Research (ICER-Mali)/ Faculty of Medicine and Odonto Stomatology/University of Sciences, Techniques and Technologies of Bamako (USTTB) Bamako, Mali
| |
Collapse
|
20
|
Zhang C, Shi Q, Li T, Cheng P, Guo X, Song X, Gong M. Comparative proteomics reveals mechanisms that underlie insecticide resistance in Culex pipiens pallens Coquillett. PLoS Negl Trop Dis 2021; 15:e0009237. [PMID: 33764997 PMCID: PMC7993597 DOI: 10.1371/journal.pntd.0009237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
Mosquito control based on chemical insecticides is considered as an important element of the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of insecticide resistance of important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. In contrast to target site resistance, other mechanisms are far from being fully understood. Global protein profiles among cypermethrin-resistant, propoxur-resistant, dimethyl-dichloro-vinyl-phosphate-resistant and susceptible strain of Culex pipiens pallens were obtained and proteomic differences were evaluated by using isobaric tags for relative and absolute quantification labeling coupled with liquid chromatography/tandem mass spectrometric analysis. A susceptible strain of Culex pipiens pallens showed elevated resistance levels after 25 generations of insecticide selection, through iTRAQ data analysis detected 2,502 proteins, of which 1,513 were differentially expressed in insecticide-selected strains compared to the susceptible strain. Finally, midgut differential protein expression profiles were analyzed, and 62 proteins were selected for verification of differential expression using iTRAQ and parallel reaction monitoring strategy, respectively. iTRAQ profiles of adaptation selection to three insecticide strains combined with midgut profiles revealed that multiple insecticide resistance mechanisms operate simultaneously in resistant insects of Culex pipiens pallens. Significant molecular resources were developed for Culex pipiens pallens, potential candidates were involved in metabolic resistance and reducing penetration or sequestering insecticide. Future research that is targeted towards RNA interference of the identified metabolic targets, such as cuticular proteins, cytochrome P450s, glutathione S-transferases and ribosomal proteins proteins and biological pathways (drug metabolism—cytochrome P450, metabolism of xenobiotics by cytochrome P450, oxidative phosphorylation, ribosome) could lay the foundation for a better understanding of the genetic basis of insecticide resistance in Culex pipiens pallens. Global protein profiles were compared among a susceptible strain of Cx. pipiens pallens and strains that were cypermethrin-resistant, propoxur-resistant, and dimethyl-dichloro-vinyl-phosphate-resistant after 25 generations of selection by distinct chemical insecticide families, multiple mechanisms were found to operate simultaneously in resistant mosquitoes of Cx. pipiens pallens, including mechanisms to lower penetration of or sequester the insecticide or to increase biodegradation of the insecticide via subtle alterations in either the cuticular protein levels or the activities of detoxification enzymes (P450s and glutathione S-transferases).
Collapse
Affiliation(s)
- Chongxing Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
- * E-mail: (ZCX); (GMQ)
| | - Qiqi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Tao Li
- Nanning MHelixProTech Co., Ltd., Nanning Hi-tech Zone Bioengineering Center, Nanning, P.R. China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Xiao Song
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
- * E-mail: (ZCX); (GMQ)
| |
Collapse
|
21
|
Muhammad A, Ibrahim SS, Mukhtar MM, Irving H, Abajue MC, Edith NMA, Da’u SS, Paine MJI, Wondji CS. High pyrethroid/DDT resistance in major malaria vector Anopheles coluzzii from Niger-Delta of Nigeria is probably driven by metabolic resistance mechanisms. PLoS One 2021; 16:e0247944. [PMID: 33705436 PMCID: PMC7951933 DOI: 10.1371/journal.pone.0247944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022] Open
Abstract
Entomological surveillance of local malaria vector populations is an important component of vector control and resistance management. In this study, the resistance profile and its possible mechanisms was characterised in a field population of the major malaria vector Anopheles coluzzii from Port Harcourt, the capital of Rivers state, in the Niger-Delta Region of Nigeria. Larvae collected in Port-Harcourt, were reared to adulthood and used for WHO bioassays. The population exhibited high resistance to permethrin, deltamethrin and DDT with mortalities of 6.7% ± 2.4, 37.5% ± 3.2 and 6.3% ± 4.1, respectively, but were fully susceptible to bendiocarb and malathion. Synergist bioassays with piperonylbutoxide (PBO) partially recovered susceptibility, with mortalities increasing to 53% ± 4, indicating probable role of CYP450s in permethrin resistance (χ2 = 29.48, P < 0.0001). Transcriptional profiling revealed five major resistance-associated genes overexpressed in the field samples compared to the fully susceptible laboratory colony, Ngoussou. Highest fold change (FC) was observed with GSTe2 (FC = 3.3 in permethrin exposed and 6.2 in unexposed) and CYP6Z3 (FC = 1.4 in exposed and 4.6 in unexposed). TaqMan genotyping of 32 F0 females detected the 1014F and 1575Y knockdown resistance (kdr) mutations with frequencies of 0.84 and 0.1, respectively, while 1014S mutation was not detected. Sequencing of a fragment of the voltage-gated sodium channel, spanning exon 20 from 13 deltamethrin-resistant and 9 susceptible females revealed only 2 distinct haplotypes with a low haplotype diversity of 0.33. The findings of high pyrethroid resistance but with a significant degree of recovery after PBO synergist assay suggests the need to move to PBO-based nets. This could be complemented with carbamate- or organophosphate-based indoor residual spraying in this area.
Collapse
Affiliation(s)
- Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- Centre for Biotechnology Research, Bayero University, Kano, Nigeria
| | - Sulaiman S. Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- Department of Biochemistry, Bayero University, Kano, Nigeria
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | | | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | - Maduamaka C. Abajue
- Department of Animal and Environmental Biology, University of Port Harcourt, Port Harcourt, Nigeria
| | - Noutcha M. A. Edith
- Department of Animal and Environmental Biology, University of Port Harcourt, Port Harcourt, Nigeria
| | - Sabitu S. Da’u
- Department of Science, School of Continuing Education, Bayero University, Kano, Nigeria
| | - Mark J. I. Paine
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| |
Collapse
|
22
|
Bamou R, Kopya E, Nkahe LD, Menze BD, Awono-Ambene P, Tchuinkam T, Njiokou F, Wondji CS, Antonio-Nkondjio C. Increased prevalence of insecticide resistance in Anopheles coluzzii populations in the city of Yaoundé, Cameroon and influence on pyrethroid-only treated bed net efficacy. ACTA ACUST UNITED AC 2021; 28:8. [PMID: 33528357 PMCID: PMC7852377 DOI: 10.1051/parasite/2021003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022]
Abstract
In Cameroon, pyrethroid-only long-lasting insecticidal nets (LLINs) are still largely used for malaria control. The present study assessed the efficacy of such LLINs against a multiple-resistant population of the major malaria vector, Anopheles coluzzii, in the city of Yaoundé via a cone bioassay and release-recapture experimental hut trial. Susceptibility of field mosquitoes in Yaoundé to pyrethroids, DDT, carbamates and organophosphate insecticides was investigated using World Health Organization (WHO) bioassay tube tests. Mechanisms of insecticide resistance were characterised molecularly. Efficacy of unwashed PermaNet® 2.0 was evaluated against untreated control nets using a resistant colonised strain of An. coluzzii. Mortality, exophily and blood feeding inhibition were estimated. Field collected An. coluzzii displayed high resistance with mortality rates of 3.5% for propoxur (0.1%), 4.16% for DDT (4%), 26.9% for permethrin (0.75%), 50.8% for deltamethrin (0.05%), and 80% for bendiocarb (0.1%). High frequency of the 1014F west-Africa kdr allele was recorded in addition to the overexpression of several detoxification genes, such as Cyp6P3, Cyp6M2, Cyp9K1, Cyp6P4 Cyp6Z1 and GSTe2. A low mortality rate (23.2%) and high blood feeding inhibition rate (65%) were observed when resistant An. coluzzii were exposed to unwashed PermaNet® 2.0 net compared to control untreated net (p < 0.001). Furthermore, low personal protection (52.4%) was observed with the resistant strain, indicating reduction of efficacy. The study highlights the loss of efficacy of pyrethroid-only nets against mosquitoes exhibiting high insecticide resistance and suggests a switch to new generation bed nets to improve control of malaria vector populations in Yaoundé.
Collapse
Affiliation(s)
- Roland Bamou
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P.O. Box 067, Dschang, Cameroon - Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon
| | - Edmond Kopya
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon - Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Leslie Diane Nkahe
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon - Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Benjamin D Menze
- Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom - Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon
| | - Timoléon Tchuinkam
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Flobert Njiokou
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Charles S Wondji
- Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom - Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon - Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| |
Collapse
|
23
|
Park SH, Jun H, Ahn SK, Lee J, Yu SL, Lee SK, Kang JM, Kim H, Lee HI, Hong SJ, Na BK, Bahk YY, Kim TS. Monitoring Insecticide Resistance and Target Site Mutations of L1014 Kdr And G119 Ace Alleles in Five Mosquito Populations in Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:543-550. [PMID: 33202506 PMCID: PMC7672240 DOI: 10.3347/kjp.2020.58.5.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/01/2020] [Indexed: 11/25/2022]
Abstract
Mosquitoes are globally distributed and important vectors for the transmission of many human diseases. Mosquito control is a difficult task and the cost of preventing mosquito-borne diseases is much lower than that for curing the associated diseases. Thus, chemical control remains the most effective tool for mosquito. Due to the long-term intensive use of insecticides to control mosquito vectors, resistance to most chemical insecticides has been reported. This study aimed to investigate the relationship between insecticide resistance and target site mutation of L1014 kdr and G119 ace alleles in 5 species/species group of mosquitoes (Aedes vexans, Ae. albopictus, Anopheles spp., Culex pipiens complex, and Cx. tritaeniorhynchus) obtained from 6 collection sites. For Anopheles spp., the proportion of mosquitoes with mutated alleles in L1014 was 88.4%, homozygous resistant genotypes were observed in 46.7%, and heterozygous resistant genotypes were observed in 41.8%. For the Cx. pipiens complex and Cx. tritaeniorhynchus species, homozygous resistant genotypes were found in 25.9% and 9.8%, respectively. However, target site mutation of L1014 in the Ae. vexans nipponii and Ae. albopictus species was not observed. Anopheles spp., Cx. pipiens complex, and Cx. tritaeniorhynchus mosquitoes were resistant to deltamethrin and chlorpyriphos, whereas Ae. vexans nipponii and Ae. albopictus were clearly susceptible. We also found a correlation between the resistance phenotype and the presence of the L1014 kdr and G119 ace mutations only in the Anopheles spp. population. In this study, we suggest that insecticide resistance poses a growing threat and resistance management must be integrated into all mosquito control programs.
Collapse
Affiliation(s)
- Seo Hye Park
- Department of Parasitology and Tropical Medicine & Global Resource Bank of Parasitic Protozoa Pathogens, Inha University School of Medicine, Incheon 22212, Korea
| | - Hojong Jun
- Department of Parasitology and Tropical Medicine & Global Resource Bank of Parasitic Protozoa Pathogens, Inha University School of Medicine, Incheon 22212, Korea
| | - Seong Kyu Ahn
- Department of Parasitology and Tropical Medicine & Global Resource Bank of Parasitic Protozoa Pathogens, Inha University School of Medicine, Incheon 22212, Korea
| | - Jinyoung Lee
- Department of Parasitology and Tropical Medicine & Global Resource Bank of Parasitic Protozoa Pathogens, Inha University School of Medicine, Incheon 22212, Korea
| | - Sung-Lim Yu
- Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 22212, Korea
| | - Sung Keun Lee
- Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Hyunwoo Kim
- Division of Vectors and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong 28159, Korea
| | - Hee-Il Lee
- Division of Vectors and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong 28159, Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea.,Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Young Yil Bahk
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea
| | - Tong-Soo Kim
- Department of Parasitology and Tropical Medicine & Global Resource Bank of Parasitic Protozoa Pathogens, Inha University School of Medicine, Incheon 22212, Korea
| |
Collapse
|
24
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Nkahe DL, Kopya E, Djiappi-Tchamen B, Toussile W, Sonhafouo-Chiana N, Kekeunou S, Mimpfoundi R, Awono-Ambene P, Wondji CS, Antonio-Nkondjio C. Fitness cost of insecticide resistance on the life-traits of a Anopheles coluzzii population from the city of Yaoundé, Cameroon. Wellcome Open Res 2020; 5:171. [PMID: 33029560 PMCID: PMC7525343 DOI: 10.12688/wellcomeopenres.16039.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Pyrethroid resistance is rapidly expanding in An. gambiae s.l. populations across Sub-Saharan Africa. Yet there is still not enough information on the fitness cost of insecticide resistance . In the present study, the fitness cost of insecticide resistance on Anopheles coluzzii population from the city of Yaoundé was investigated. Methods: A resistant An. coluzzii colony was established from field collected mosquitoes resistant to both DDT and pyrethroid and selected for 12 generations with deltamethrin 0.05%. The Ngousso laboratory susceptible strain was used as control. A total of 100 females of each strain were blood fed and allowed for individual eggs laying, and then different life traits parameters such as fecundity, fertility, larval development time, emergence rate and longevity were measured. The TaqMan assay was used to screen for the presence of the L1014F and L1014S kdr mutations. Results: Field collected mosquitoes from the F0 generation had a mortality rate of 2.05% for DDT, 34.16% for permethrin and 50.23% for deltamethrin. The mortality rate of the F12 generation was 30.48% for deltamethrin, 1.25% for permethrin and 0% for DDT. The number of eggs laid per female was lower in the resistant colony compared to the susceptible (p <0.0001). Insecticide resistant larvae were found with a significantly long larval development time (10.61±0.33 days) compare to susceptible (7.57±0.35 days). The number of emerging females was significantly high in the susceptible group compared to the resistant . The adults lifespan was also significantly high for susceptible (21.73±1.19 days) compared to resistant (14.63±0.68 days). Only the L1014F- kdr allele was detected in resistant population.. Conclusion: The study suggests that pyrethroid resistance is likely associated with a high fitness cost on An.coluzzii populations. The addition of new tools targeting specifically larval stages could improve malaria vectors control and insecticide resistance management.
Collapse
Affiliation(s)
- Diane Leslie Nkahe
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Edmond Kopya
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Borel Djiappi-Tchamen
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | | | - Nadege Sonhafouo-Chiana
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Sevilor Kekeunou
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Remy Mimpfoundi
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | | | | | - Christophe Antonio-Nkondjio
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
26
|
Nkahe DL, Kopya E, Djiappi-Tchamen B, Toussile W, Sonhafouo-Chiana N, Kekeunou S, Mimpfoundi R, Awono-Ambene P, Wondji CS, Antonio-Nkondjio C. Fitness cost of insecticide resistance on the life-traits of a Anopheles coluzzii population from the city of Yaoundé, Cameroon. Wellcome Open Res 2020; 5:171. [PMID: 33029560 PMCID: PMC7525343 DOI: 10.12688/wellcomeopenres.16039.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 08/03/2024] Open
Abstract
Background: Pyrethroid resistance is rapidly expanding in An. gambiae s.l. populations across Sub-Saharan Africa. Yet there is still not enough information on the fitness cost of insecticide resistance . In the present study, the fitness cost of insecticide resistance on Anopheles coluzzii population from the city of Yaoundé was investigated. Methods: A resistant An. coluzzii colony was established from field collected mosquitoes resistant to both DDT and pyrethroid and selected for 12 generations with deltamethrin 0.05%. The Ngousso laboratory susceptible strain was used as control. A total of 100 females of each strain were blood fed and allowed for individual eggs laying, and then different life traits parameters such as fecundity, fertility, larval development time, emergence rate and longevity were measured. The TaqMan assay was used to screen for the presence of the L1014F and L1014S kdr mutations. Results: Field collected mosquitoes from the F0 generation had a mortality rate of 2.05% for DDT, 34.16% for permethrin and 50.23% for deltamethrin. The mortality rate of the F12 generation was 30.48% for deltamethrin, 1.25% for permethrin and 0% for DDT. The number of eggs laid per female was lower in the resistant colony compared to the susceptible (p <0.0001). Insecticide resistant larvae were found with a significantly long larval development time (10.61±0.33 days) compare to susceptible (7.57±0.35 days). The number of emerging females was significantly high in the susceptible group compared to the resistant . The adults lifespan was also significantly high for susceptible (21.73±1.19 days) compared to resistant (14.63±0.68 days). Only the L1014F- kdr allele was detected in resistant population.. Conclusion: The study suggests that pyrethroid resistance is likely associated with a high fitness cost on An.coluzzii populations. The addition of new tools targeting specifically larval stages could improve malaria vectors control and insecticide resistance management.
Collapse
Affiliation(s)
- Diane Leslie Nkahe
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Edmond Kopya
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Borel Djiappi-Tchamen
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | | | - Nadege Sonhafouo-Chiana
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Faculty of Sciences, University of Buea, Buea, Cameroon
| | - Sevilor Kekeunou
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Remy Mimpfoundi
- Department of Animal Biology, University of Yaoundé 1, Yaoundé, Cameroon
| | | | | | - Christophe Antonio-Nkondjio
- Malaria Research Laboratory, OCEAC, Yaoundé, Centre, PO Box 288, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
27
|
Keïta M, Kané F, Thiero O, Traoré B, Zeukeng F, Sodio AB, Traoré SF, Djouaka R, Doumbia S, Sogoba N. Acetylcholinesterase (ace-1 R) target site mutation G119S and resistance to carbamates in Anopheles gambiae (sensu lato) populations from Mali. Parasit Vectors 2020; 13:283. [PMID: 32503614 PMCID: PMC7275337 DOI: 10.1186/s13071-020-04150-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The long-lasting insecticidal nets (LLINs) and indoor residual spraying of insecticide (IRS) are major malaria vector control strategies in Mali. The success of control strategies depends on a better understanding of the status of malaria vectors with respect to the insecticides used. In this study we evaluate the level of resistance of Anopheles gambiae (sensu lato) to bendiocarb and the molecular mechanism that underlies it. METHODS Larvae of An. gambiae (s.l.) were collected from breeding habitats encountered in the three study sites and bioassayed with bendiocarb. The ace-1 target site substitution G119S was genotyped using a TaqMan assay. RESULTS The three species of the An. gambiae complex in Mali, i.e. An. arabiensis, An. coluzzii and An. gambiae (s.s.) were found in sympatry in the three surveyed localities with different frequencies. We observed a resistance and suspicious resistance of the three species to bendiocarb with a mortality rate ranging from 37% to 86%. The allelic frequency of the G119S mutation was higher in An. gambiae (s.s.) compared to the other two species; 42.86%, 25.61% and 16.67% respectively in Dangassa, Koula, and Karadié. The allelic frequency of G119S in An. coluzzii ranged from 4.5% to 8.33% and from 1.43% to 21.15% for An. arabiensis. After exposure to bendiocarb, the G119S mutation was found only in survivors. The survival of Anopheles gambiae (s.l) populations from the three surveyed localities was associated with the presence of the mutation. CONCLUSIONS The study highlights the implication of G119S mutation in bendiocarb resistance in An. gambiae (s.s.), An. arabiensis and An. coluzzii populations from the three surveyed localities.
Collapse
Affiliation(s)
- Moussa Keïta
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.
| | - Fousseyni Kané
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Oumar Thiero
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Boissé Traoré
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Francis Zeukeng
- The AgroEcohealth Platform, International Institute of Tropical Agriculture (IITA-Benin), 08 Tripostal, P.O. Box 0932, Cotonou, Benin
| | - Ambiélè Bernard Sodio
- Faculty of Science and Technique, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Sekou Fantamady Traoré
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Rousseau Djouaka
- The AgroEcohealth Platform, International Institute of Tropical Agriculture (IITA-Benin), 08 Tripostal, P.O. Box 0932, Cotonou, Benin
| | - Seydou Doumbia
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Nafomon Sogoba
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| |
Collapse
|
28
|
Wang C, Xu X, Huang Y, Yu H, Li H, Wan Q, Pan B. Transcription profiling and characterization of Dermanyssus gallinae cytochrome P450 genes involved in beta-cypermethrin resistance. Vet Parasitol 2020; 283:109155. [PMID: 32534384 DOI: 10.1016/j.vetpar.2020.109155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/29/2023]
Abstract
The poultry red mite, Dermanyssus gallinae, poses a significant threat to hen health and poultry husbandry. D. gallinae has typically been controlled using synthetic acaricides, like pyrethroids, but increased resistance to pyrethroids has been found in poultry red mite populations worldwide. Pyrethroids resistance in arthropods has been associated to cytochrome P450 monooxygenases (P450s), a main member of a group of detoxification enzymes. To explore the potential contribution of P450s to the resistance to pyrethroids in D. gallinae, we first identified and then characterized four P450s genes. Phylogenetic analysis revealed that the four P450s genes in D. gallinae belong to three different clades, with two in the CYP-6, one in the CYP-4 and one in the CYP-2. All four P450s genes were expressed in a similar pattern in D. gallinae at different stages of development, and showed high expression in the adult stage, indicating that they played a role in mite development. Simultaneously, constitutive over-expression of Deg-CYP-3, a clade associated with pesticide metabolism, was detected in a resistant strain (RS) compared with a susceptible strain (SS). When exposed to beta-cypermethrin, the four P450s gene transcripts in the RS strain increased in a time-dependent manner. In particular, Deg-CYP-3 expression increased 5-fold compared to gene expression in control group at 12 h, although the four P450s genes were not induced in the SS strain. Our results show the first insights into the molecular characteristics of P450s genes in D. gallinae. The elevated presence of P450s genes in the RS strain, indicated by their constitutive over-expression and their inducible expression, suggests that they confer resistance to beta-cypermethrin, and are involved in its detoxification.
Collapse
Affiliation(s)
- Chuanwen Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaolin Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yu Huang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - He Yu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiang Wan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Fagbohun IK, Idowu ET, Otubanjo OA, Awolola TS. First report of AChE1 (G119S) mutation and multiple resistance mechanisms in Anopheles gambiae s.s. in Nigeria. Sci Rep 2020; 10:7482. [PMID: 32366848 PMCID: PMC7198501 DOI: 10.1038/s41598-020-64412-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
Susceptibility and PBO synergist bioassays were done using 3-5 days old female Anopheles mosquito collected from Lagos State, Nigeria with WHO test papers DDT (4%), permethrin (0.75%), Bendiocarb (1%) and PBO (4%) according to standard procedures. The activities of cytochrome P450s, glutathione S-transferase and carboxylesterases were determined using biochemical assays. The presence of kdr-w, kdr-e and Ace-1R mutations were examined using molecular assays. Resistance to DDT and permethrin in An gambiae s.s from the four Local Government Areas (LGAs) was recorded while suspected resistance to bendiocarb was recorded in mosquitoes from Alimosho and Kosofe LGAs. PBO synergist reduced the knockdown time and also recorded significantly (P < 0.05) higher 24 hrs percentage mortality compared to non-synergized bioassays. Increased activities of detoxifying enzymes was recorded in wild mosquito compared to the insecticides susceptible laboratory strain and this was significant (P < 0.05) in P450s, esterase α and β. Kdr-w was detected in An. gambiae s.s from all the LGAs, kdr-e (L1014S) was detected in Alimosho, Kosofe and Ibeju-Lekki, while the Ace-1R gene was detected in Alimosho and Kosofe. Results from this study provide evidence for resistance of An. gambiae from Lagos State to multiple classes of neurotoxic insecticides with multiple resistance mechanisms to these insecticides.
Collapse
|
30
|
Antonio-Nkondjio C, Ndo C, Njiokou F, Bigoga JD, Awono-Ambene P, Etang J, Ekobo AS, Wondji CS. Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination. Parasit Vectors 2019; 12:501. [PMID: 31655608 PMCID: PMC6815446 DOI: 10.1186/s13071-019-3753-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022] Open
Abstract
Malaria still has a devastating impact on public health and welfare in Cameroon. Despite the increasing number of studies conducted on disease prevalence, transmission patterns or treatment, there are to date, not enough studies summarising findings from previous works in order to identify gaps in knowledge and areas of interest where further evidence is needed to drive malaria elimination efforts. The present study seeks to address these gaps by providing a review of studies conducted so far on malaria in Cameroon since the 1940s to date. Over 250 scientific publications were consulted for this purpose. Although there has been increased scale-up of vector control interventions which significantly reduced the morbidity and mortality to malaria across the country from a prevalence of 41% of the population reporting at least one malaria case episode in 2000 to a prevalence of 24% in 2017, the situation is not yet under control. There is a high variability in disease endemicity between epidemiological settings with prevalence of Plasmodium parasitaemia varying from 7 to 85% in children aged 6 months to 15 years after long-lasting insecticidal nets (LLINs) scale-up. Four species of Plasmodium have been recorded across the country: Plasmodium falciparum, P. malariae, P. ovale and P. vivax. Several primate-infecting Plasmodium spp. are also circulating in Cameroon. A decline of artemisinin-based combinations therapeutic efficacy from 97% in 2006 to 90% in 2016 have been reported. Several mutations in the P. falciparum chloroquine resistance (Pfcrt) and P. falciparum multidrug resistance 1 (Pfmdr1) genes conferring resistance to either 4-amino-quinoleine, mefloquine, halofanthrine and quinine have been documented. Mutations in the Pfdhfr and Pfdhps genes involved in sulfadoxine-pyrimethamine are also on the rise. No mutation associated with artemisinin resistance has been recorded. Sixteen anopheline species contribute to malaria parasite transmission with six recognized as major vectors: An. gambiae, An. coluzzii, An. arabiensis, An. funestus, An. nili and An. moucheti. Studies conducted so far, indicated rapid expansion of DDT, pyrethroid and carbamate resistance in An. gambiae, An. coluzzii, An. arabiensis and An. funestus threatening the performance of LLINs. This review highlights the complex situation of malaria in Cameroon and the need to urgently implement and reinforce integrated control strategies in different epidemiological settings, as part of the substantial efforts to consolidate gains and advance towards malaria elimination in the country.
Collapse
Affiliation(s)
- Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288 Yaoundé, Cameroun
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, UK
| | - Cyrille Ndo
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Flobert Njiokou
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Jude D. Bigoga
- Laboratory for Vector Biology and control, National Reference Unit for Vector Control, The Biotechnology Center, Nkolbisson-University of Yaounde I, P.O. Box 3851, Messa, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288 Yaoundé, Cameroun
| | - Josiane Etang
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288 Yaoundé, Cameroun
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
- Institute for Insect Biotechnology, Justus Liebig University Gießen, Winchester Str. 2, 35394 Gießen, Germany
| | - Albert Same Ekobo
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, UK
| |
Collapse
|
31
|
Elanga-Ndille E, Nouage L, Ndo C, Binyang A, Assatse T, Nguiffo-Nguete D, Djonabaye D, Irwing H, Tene-Fossog B, Wondji CS. The G119S Acetylcholinesterase ( Ace-1) Target Site Mutation Confers Carbamate Resistance in the Major Malaria Vector Anopheles gambiae from Cameroon: A Challenge for the Coming IRS Implementation. Genes (Basel) 2019; 10:genes10100790. [PMID: 31614683 PMCID: PMC6826778 DOI: 10.3390/genes10100790] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023] Open
Abstract
Growing resistance is reported to carbamate insecticides in malaria vectors in Cameroon. However, the contribution of acetylcholinesterase (Ace-1) to this resistance remains uncharacterised. Here, we established that the G119S mutation is driving resistance to carbamates in Anopheles gambiae populations from Cameroon. Insecticide bioassay on field-collected mosquitoes from Bankeng, a locality in southern Cameroon, showed high resistance to the carbamates bendiocarb (64.8% ± 3.5% mortality) and propoxur (55.71% ± 2.9%) but a full susceptibility to the organophosphate fenitrothion. The TaqMan genotyping of the G119S mutation in field-collected adults revealed the presence of this resistance allele (39%). A significant correlation was observed between the Ace-1R and carbamate resistance at allelic ((bendiocarb; odds ratio (OR) = 75.9; p < 0.0001) and (propoxur; OR = 1514; p < 0.0001)) and genotypic (homozygote resistant vs. homozygote susceptible (bendiocarb; OR = 120.8; p < 0.0001) and (propoxur; OR = 3277; p < 0.0001)) levels. Furthermore, the presence of the mutation was confirmed by sequencing an Ace-1 portion flanking codon 119. The cloning of this fragment revealed a likely duplication of Ace-1 in Cameroon as mosquitoes exhibited at least three distinct haplotypes. Phylogenetic analyses showed that the predominant Ace-1R allele is identical to that from West Africa suggesting a recent introduction of this allele in Central Africa from the West. The spread of this Ace-1R represents a serious challenge to future implementation of indoor residual spraying (IRS)-based interventions using carbamates or organophosphates in Cameroon.
Collapse
Affiliation(s)
| | - Lynda Nouage
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Cyrille Ndo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon.
| | - Achille Binyang
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Tatiane Assatse
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Daniel Nguiffo-Nguete
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Doumani Djonabaye
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Helen Irwing
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Billy Tene-Fossog
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| |
Collapse
|
32
|
Djamouko-Djonkam L, Mounchili-Ndam S, Kala-Chouakeu N, Nana-Ndjangwo SM, Kopya E, Sonhafouo-Chiana N, Talipouo A, Ngadjeu CS, Doumbe-Belisse P, Bamou R, Toto JC, Tchuinkam T, Wondji CS, Antonio-Nkondjio C. Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon. Infect Dis Poverty 2019; 8:84. [PMID: 31594541 PMCID: PMC6784347 DOI: 10.1186/s40249-019-0597-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022] Open
Abstract
Background The rapid and unplanned urbanization of African cities is considered to increase the risk of urban malaria transmission. The present study objective was to assess factors influencing the spatio-temporal distribution of Anopheles gambiae s.l. larvae in the city of Yaoundé, Cameroon. Methods All water bodies were checked once every 2 months for the presence of mosquito larvae from March 2017 to May 2018 in 32 districts of Yaoundé. Physico-chemical characteristics including the size, depth, turbidity, pH, temperature, conductivity, sulfates, organophosphates, hydrogen peroxide (H2O2), conductivity, iron and calcium were recorded and analyzed according to anopheline larvae presence or absence. High resolution satellite images from landsat sentinel Enhanced Thematic Mapper were used for spatial mapping of both field and environmental variables. Bivariate and multivariate logistic regression models were used to identify variables closely associated with anopheline larvae distribution. Results A total of 18 696 aquatic habitats were checked and only 2942 sites (15.7%) contained anopheline larvae. A high number of sites with anopheline larvae (≥ 69%) presented late instar larvae (L3, L4 and pupae). Anopheline mosquito larvae were sampled from a variety of breeding sites including puddles (51.6%), tire prints (12.9%), wells (11.7%) and drains (11.3%). Bivariate logistic regression analyses associated anopheline larvae presence with the absence of predators, absence of algae, absence of vegetation and depth of less than 1 m. Conductivity, turbidity, organophosphates, H2O2 and temperature were significantly high in breeding sites with anopheline larvae than in breeding sites without these larvae (P < 0.1). Anopheline species collected included An. coluzzii (91.1%) and An. gambiae s.s. (8.9%). GIS mapping indicated a heterogeneous distribution of anopheline breeding habitats in the city of Yaoundé. Land cover analysis indicated high variability of the city of Yaoundé’s landscape. Conclusions The data confirms adaptation of An. gambiae s.l. to the urban domain in the city of Yaoundé and calls for urgent actions to improve malaria vector control.
Collapse
Affiliation(s)
- Landre Djamouko-Djonkam
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Souleman Mounchili-Ndam
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Nelly Kala-Chouakeu
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Stella Mariette Nana-Ndjangwo
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Edmond Kopya
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Nadége Sonhafouo-Chiana
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Health Sciences University of Buea, P.O. Box 63, Buea, Cameroon
| | - Abdou Talipouo
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Carmene Sandra Ngadjeu
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Patricia Doumbe-Belisse
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Roland Bamou
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Jean Claude Toto
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Timoléon Tchuinkam
- Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | | | - Christophe Antonio-Nkondjio
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon. .,Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
33
|
Status of Insecticide Resistance and Its Mechanisms in Anopheles gambiae and Anopheles coluzzii Populations from Forest Settings in South Cameroon. Genes (Basel) 2019; 10:genes10100741. [PMID: 31554225 PMCID: PMC6827028 DOI: 10.3390/genes10100741] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/02/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023] Open
Abstract
A key factor affecting malaria vector control efforts in Cameroon is the rapid expansion of insecticide resistance in Anopheles gambiae s.l (An. gambiae) populations; however, mechanisms involved in insecticide resistance in forest mosquito populations are still not well documented yet. The present study was conducted to screen molecular mechanisms conferring insecticide resistance in An. gambiae s.l. populations from the South Cameroon forest region. WHO bioassays were conducted with F0 An. gambiae females aged three to four days from forest (Sangmelima, Nyabessan, and Mbandjock) and urban sites (Yaoundé (Bastos and Nkolondom)), against pyrethroids (permethrin 0.75% and deltamethrin 0.05%) and carbamates (bendiocarb 0.1%). Members of the An. Gambiae s.l. species complex were identified using molecular diagnostic tools. TaqMan assays were used to screen for target site mutations. The expression profiles of eight genes implicated in insecticide resistance were assessed using RT-qPCR. Cuticle hydrocarbon lipids were measured to assess their potential implication in insecticide resistance. Both An. Gambiae and An. coluzzii were detected. An. gambiae was highly prevalent in Sangmelima, Nyabessan, Mbandjock, and Nkolondom. An. coluzzii was the only species found in the Yaoundé city center (Bastos). Low mortality rate to both pyrethroids and bendiocarb was recorded in all sites. High frequency of L1014F allele (75.32–95.82%) and low frequencies of L1014S (1.71–23.05%) and N1575Y (5.28–12.87%) were recorded. The G119S mutation (14.22–35.5%) was detected for the first time in An. gambiae populations from Cameroon. This mutation was rather absent from An. coluzzii populations. The detoxification genes Cyp6m2, Cyp9k1, Cyp6p4, Cyp6z1, as well as Cyp4g16 which catalyzes epicuticular hydrocarbon biosynthesis, were found to be overexpressed in at least one population. The total cuticular hydrocarvbon content, a proxy of cuticular resistance, did not show a pattern associated with pyrethroid resistance in these populations. The rapid emergence of multiple resistance mechanisms in An. Gambiae s.l. population from the South Cameroon forest region is of big concern and could deeply affect the sustainability of insecticide-based interventions strategies in this region.
Collapse
|
34
|
Namountougou M, Soma DD, Kientega M, Balboné M, Kaboré DPA, Drabo SF, Coulibaly AY, Fournet F, Baldet T, Diabaté A, Dabiré RK, Gnankiné O. Insecticide resistance mechanisms in Anopheles gambiae complex populations from Burkina Faso, West Africa. Acta Trop 2019; 197:105054. [PMID: 31175862 DOI: 10.1016/j.actatropica.2019.105054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
Vector control constitutes a fundamental approach in reducing vector density and the efficient option to break malaria transmission in Africa. Malaria vectors developed resistance to almost all classes of insecticides recommended by WHO for vector control in most places of African countries and may compromise the vector control strategies. This study updated the resistance status of Anopheles gambiae complex populations to insecticides recommended for vector control in the western part of Burkina Faso. Insecticide susceptibility bioassays were performed on seven natural populations of An. gambiae complex from western Burkina Faso in the 2016 rainy season using the WHO protocol. Biochemical assays were carried out according to the WHO protocol on the same populations to estimate detoxifying enzymes activities including non-specific esterases (NSEs), oxidases (cytochrome P450) and Glutathione-S-Transferases (GSTs). Polymerase Chain Reactions (PCRs) were performed for the identification of the An. gambiae complex species as well as the detection of kdr-west and ace-1 mutations. Susceptibility bioassays showed that An. gambiae complex was multi-resistant to pyrethroids, DDT and carbamates in almost all areas. The mortality rates ranged from 10 to 38%, 2.67 to 59.57% and 64.38 to 98.02% for Deltamethrin, DDT and Bendiocarb respectively. A full susceptibility (100%) to an organophosphate, the Chlorpyrifos-methyl, was observed at the different sites. Three (3) species of the An. gambiae complex were identified: An. gambiae s.s, An. coluzzii and An. arabiensis. The frequencies of the kdr-w mutation were highly widespread (0.66 to 0.98) among the three species of the complex. The ace-1 mutation was detected at low frequencies (0 to 0.12) in An. gambiae s.s and An. coluzzii. A high level of GSTs and NSEs were observed within the different populations of the An. gambiae complex. Several mechanisms of insecticide resistance were found simultaneously in the same populations of An. gambiae complex conferring high multi-resistance to DDT, Carbamate and Pyrethroids. The full susceptibility of An. gambiae complex to organophosphates is a useful data for the national malaria control program in selecting the most appropriate products to both maintain the effectiveness of vector control strategies and best manage insecticide resistance as well as developing new alternative strategies for the control of major malaria vectors in Burkina Faso.
Collapse
|
35
|
Amoudji AD, Ahadji-Dabla KM, Hien AS, Apétogbo YG, Yaméogo B, Soma DD, Bamogo R, Atcha-Oubou RT, Dabiré RK, Ketoh GK. Insecticide resistance profiles of Anopheles gambiae s.l. in Togo and genetic mechanisms involved, during 3-year survey: is there any need for resistance management? Malar J 2019; 18:177. [PMID: 31118032 PMCID: PMC6530008 DOI: 10.1186/s12936-019-2813-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/15/2019] [Indexed: 11/11/2022] Open
Abstract
Background Malaria, one of the world’s greatest public health challenges, is an endemic disease with stable transmission in Togo. Combating malaria requires an effective vector control. This study provides temporal data on insecticide resistance status in the major malaria vector Anopheles gambiae sensu lato (s.l.) from Togo. Methods Two to 5 days old females of An. gambiae s.l., originating from three localities (Baguida, Kovié, Kolokopé) were subjected to insecticide-impregnated papers during 3 years (2012, 2013, 2016) as follows: organochlorides (4% DDT), pyrethroids (0.05% deltamethrin, 0.75% permethrin, 0.05% lambdacyhalothrin), carbamates (0.4% bendiocarb and 0.1% propoxur), and organophosphates (5% malathion, 0.4% chlorpyrifos methyl, 1% fenitrothion) following the WHO standard protocol. Dead and surviving mosquitoes were stored separately in Eppendorf tubes containing silica gel for DNA extraction, species identification, and kdr and ace-1 genotyping. Results Knockdown times (KDT50 and KDT95) were high in An. gambiae s.l. The lowest KDTs were recorded at Baguida in 2013 for deltamethrin (KDT50 = 24.7, CI [22.4–27.12] and KDT95 = 90.78, CI [76.35–113.49]). No KDTs were recorded for DDT and in some instances for permethrin. In general, An. gambiae s.l. was resistant to most of the four classes of insecticides during the survey periods regardless of locality and year, except to chlorpyrifos methyl. In some instances, mosquitoes were fully susceptible to fenitrothion (Kolokopé: 100% and Kovié: 98.05%, CI [95.82–100.26]) and malathion (100% at both Kolokopé and Kovié) in 2013, and malathion only (Kolokopé; 100%) in 2016. Anopheles coluzzii, An. gambiae and Anopheles arabiensis were the three sibling species identified at the three localities with some hybrids at Baguida (2013), and Kovié (2012 and 2016), respectively. Anopheles gambiae was relatively dominant (61.6%). The kdr 1014F allele frequency was > 0.9 in most of the cases, except at Kolokopé (f (1014F) = 0.63, CI [0.55–0.71]) in 2013. The kdr 1014S allele frequency was below 0.02. The highest ace-1 frequencies were identified in An. gambiae at Baguida (2012: 0.52, CI [0.34–0.69] and 2013: 0.66, CI [0.46–0.86]). Conclusion The resistance status is worrying in Togo and should be considered in future malaria vector resistance management programmes by decision-makers. Electronic supplementary material The online version of this article (10.1186/s12936-019-2813-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adjovi D Amoudji
- Department of Zoology and Animal Biology, Faculty of Sciences, University of Lomé, 01 B.P. 1515, Lomé 01, Togo.
| | - Koffi M Ahadji-Dabla
- Department of Zoology and Animal Biology, Faculty of Sciences, University of Lomé, 01 B.P. 1515, Lomé 01, Togo. .,Biodiversity Institute & Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| | - Aristide Sawdetuo Hien
- Institut de Recherche en Sciences de la Santé/Centre Muraz, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Yawo Georges Apétogbo
- Department of Zoology and Animal Biology, Faculty of Sciences, University of Lomé, 01 B.P. 1515, Lomé 01, Togo
| | - Bienvenu Yaméogo
- Institut de Recherche en Sciences de la Santé/Centre Muraz, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Diloma Dieudonné Soma
- Institut de Recherche en Sciences de la Santé/Centre Muraz, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Rabila Bamogo
- Institut de Recherche en Sciences de la Santé/Centre Muraz, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | | | - Roch Kounbobr Dabiré
- Institut de Recherche en Sciences de la Santé/Centre Muraz, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Guillaume Koffivi Ketoh
- Department of Zoology and Animal Biology, Faculty of Sciences, University of Lomé, 01 B.P. 1515, Lomé 01, Togo
| |
Collapse
|
36
|
Chen S, Qin Q, Zhong D, Fang X, He H, Wang L, Dong L, Lin H, Zhang M, Cui L, Yan G. Insecticide Resistance Status and Mechanisms of Anopheles sinensis (Diptera: Culicidae) in Wenzhou, an Important Coastal Port City in China. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:803-810. [PMID: 30715428 PMCID: PMC6467641 DOI: 10.1093/jme/tjz001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 06/04/2023]
Abstract
Although scaled-up interventions and effective control efforts have drastically reduced malaria morbidity and mortality, malaria remains a serious threat to public health worldwide. Anopheles sinensis Wiedemann 1828 is a historically important vector of Plasmodium vivax (Haemosporida: Plasmodiidae) malaria in China. Insecticide resistance has become a major obstacle to vector-borne disease control. However, little is known about the insecticide resistance of An. sinensis in Wenzhou, an important coastal port city in Zhejiang province, China. The aim of this study was to examine insecticide resistance and mechanisms in An. sinensis field mosquito populations. Evidence of multiple insecticide resistance was found in An. sinensis adult female populations. Medium to high frequencies of target site kdr together with fixed ace-1 mutations was detected in both the Ruian and Yongjia populations. Both populations showed an association between kdr L1014 mutation and resistance phenotype when tested against deltamethrin and DDT. Significantly different metabolic enzyme activities were found between the susceptible laboratory strain and field-collected mosquitoes from both Ruian and Yongjia. Both field collected An. sinensis populations exhibited significantly higher P450 enzyme activity compared with the laboratory strain, while the field-collected resistant mosquitoes exhibited various GST and COE enzyme activities. These results indicate multiple resistance mechanisms in An. sinensis field populations. Effective implementation of insecticide resistance management strategies is urgently needed. The data collected in this study will be valuable for modeling insecticide resistance spread and vector-control interventions.
Collapse
Affiliation(s)
- Shixin Chen
- College of Medical and Health, Lishui University, Lishui, China
| | - Qian Qin
- College of Medical and Health, Lishui University, Lishui, China
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA
| | - Xia Fang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Hanjiang He
- College of Medical and Health, Lishui University, Lishui, China
| | - Linlin Wang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Lingjun Dong
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Haiping Lin
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Mengqi Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA
| |
Collapse
|
37
|
da Cruz DL, Paiva MHS, Guedes DRD, Alves J, Gómez LF, Ayres CFJ. Detection of alleles associated with resistance to chemical insecticide in the malaria vector Anopheles arabiensis in Santiago, Cabo Verde. Malar J 2019; 18:120. [PMID: 30953531 PMCID: PMC6451206 DOI: 10.1186/s12936-019-2757-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquitoes of the Anopheles gambiae complex are the main malaria vectors worldwide. Due to the lack of a vaccine to prevent malaria, the principal way to reduce the impact of this disease relies on the use of chemical insecticides to control its vectors. However, the intensive use of such compounds has led to the emergence of insecticide resistance in several Anopheles populations in Africa. This study aimed to investigate the presence of resistance alleles in an Anopheles arabiensis population from the City of Praia, capital of the Archipelago Cabo Verde, one of the countries on the World Health Organization list of countries that are on a path to eliminate local transmission of malaria. METHODS Larvae from the Anopheles genus were collected using a one-pint dipper in three areas of City of Praia. Larvae were fed and maintained until the emergence of adult mosquitoes, and these were morphologically identified. In addition, molecular identification was performed using IGS markers and all An. arabiensis samples were subjected to PCR to screen for mutations associated to resistance in the Ace-1, Nav and GSTE2 genes. RESULTS From a total of 440 mosquitoes collected, 52.3% were morphologically identified as An. gambiae sensu lato (s.l.) and 46.7% as Anopheles pretoriensis. The molecular identification showed that 100% of the An. gambiae s.l. were An. arabiensis. The mutations G119S in the Ace-1 gene and L119F in the GSTE2 gene were screened but not found in any sample. However, sequencing analysis for GSTE2 revealed the presence of 37 haplotypes, 16 polymorphic sites and a high genetic diversity (π = 2.67). The L1014S mutation in the Nav (voltage-gated sodium channel gene) was detected at a frequency of 7.3%. CONCLUSION This is the first study to investigate the circulation of insecticide resistance alleles in An. arabiensis from Cabo Verde. The circulation of the L1014S allele in the population of An. arabiensis in the city of Praia suggests that pyrethroid resistance may arise, be quickly selected, and may affect the process of malaria elimination in Cabo Verde. Molecular monitoring of resistance should continue in order to guide the development of strategies to be used in vector control in the study region.
Collapse
Affiliation(s)
- Derciliano Lopes da Cruz
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.,Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, Rodovia BR-104, km 59 - Nova Caruaru, Caruaru, PE, 55002-970, Brazil
| | - Duschinka Ribeiro Duarte Guedes
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Joana Alves
- Instituto Nacional de Saúde Pública/Ministério da Saúde, Largo do Desastre da Assistência, CP-719, Praia, Cabo Verde
| | - Lara Ferrero Gómez
- Universidade Jean Piaget (UniPiaget), Caixa Postal 775, Praia, Cabo Verde
| | - Constância Flávia Junqueira Ayres
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
38
|
Doumbe-Belisse P, Ngadjeu CS, Sonhafouo-Chiana N, Talipouo A, Djamouko-Djonkam L, Kopya E, Bamou R, Toto JC, Mounchili S, Tabue R, Awono-Ambene P, Wondji CS, Njiokou F, Antonio-Nkondjio C. High malaria transmission sustained by Anopheles gambiae s.l. occurring both indoors and outdoors in the city of Yaoundé, Cameroon. Wellcome Open Res 2018; 3:164. [PMID: 30756096 PMCID: PMC6364383 DOI: 10.12688/wellcomeopenres.14963.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 11/20/2022] Open
Abstract
Background: Malaria remains a major public health problem in Cameroon; however, despite reports on the adaptation of anopheline species to urban habitats, there is still not enough information on malaria transmission pattern in urban settings. In the frame of a larval control trial in the city of Yaoundé, we conducted baseline surveys to assess malaria transmission dynamics in this city. Methods: Adult mosquitoes were collected indoors and outdoors using CDC light traps and human landing catches from March 2017 to March 2018 in 30 districts of Yaoundé, Cameroon. Mosquitoes were sorted by genus and identified to the species level using PCR. The TaqMan method and ELISA were used to determine mosquito infection status to Plasmodium. Bioassays were conducted to assess female Anopheles gambiae susceptibility to insecticides. Results: A total of 218,991 mosquitoes were collected. The main malaria vectors were An. gambiae s.l. (n=6154) and An. funestus s.l. (n=229). Of the 1476 An. gambiae s.l. processed by PCR, 92.19% were An. coluzzii and 7.81% An. gambiae. An. funestus s.l. was composed of 93.01% (173/186) An. funestus and 4.84% (13/186) An. leesoni. The average biting rate of anopheline was significantly high outdoor than indoor (P=0.013). Seasonal variation in mosquito abundance and biting rate was recorded. The infection rate by Plasmodium falciparum was 2.13% (104/4893 mosquitoes processed). The annual entomological inoculation rate was found to vary from 0 to 92 infective bites/man/year (ib/m/y). Malaria transmission risk was high outdoor (66.65 ib/m/y) compared to indoor (31.14 ib/m/y). An. gambiae s.l. was found highly resistant to DDT, permethrin and deltamethrin. High prevalence of the West Africa kdr allele 1014F was recorded and this was not found to influence An. gambiae s.l. infection status. Conclusion: The study suggests high malaria transmission occurring in the city of Yaoundé and call for immediate actions to improve control strategies.
Collapse
Affiliation(s)
- Patricia Doumbe-Belisse
- Malaria Research Laboratory, OCEAC, Yaoundé, Cameroon
- University of Yaoundé 1, Yaoundé, Cameroon
| | - Carmene Sandra Ngadjeu
- Malaria Research Laboratory, OCEAC, Yaoundé, Cameroon
- University of Yaoundé 1, Yaoundé, Cameroon
| | | | - Abdou Talipouo
- Malaria Research Laboratory, OCEAC, Yaoundé, Cameroon
- University of Yaoundé 1, Yaoundé, Cameroon
| | - Landre Djamouko-Djonkam
- Malaria Research Laboratory, OCEAC, Yaoundé, Cameroon
- University of Dschang, Dschang, Cameroon
| | - Edmond Kopya
- Malaria Research Laboratory, OCEAC, Yaoundé, Cameroon
- University of Yaoundé 1, Yaoundé, Cameroon
| | - Roland Bamou
- Malaria Research Laboratory, OCEAC, Yaoundé, Cameroon
- University of Dschang, Dschang, Cameroon
| | | | | | - Raymond Tabue
- National Malaria Control Programme, Yaoundé, Cameroon
| | | | | | | | - Christophe Antonio-Nkondjio
- Malaria Research Laboratory, OCEAC, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
39
|
Transcriptomic meta-signatures identified in Anopheles gambiae populations reveal previously undetected insecticide resistance mechanisms. Nat Commun 2018; 9:5282. [PMID: 30538253 PMCID: PMC6290077 DOI: 10.1038/s41467-018-07615-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/12/2018] [Indexed: 12/01/2022] Open
Abstract
Increasing insecticide resistance in malaria-transmitting vectors represents a public health threat, but underlying mechanisms are poorly understood. Here, a data integration approach is used to analyse transcriptomic data from comparisons of insecticide resistant and susceptible Anopheles populations from disparate geographical regions across the African continent. An unbiased, integrated analysis of this data confirms previously described resistance candidates but also identifies multiple novel genes involving alternative resistance mechanisms, including sequestration, and transcription factors regulating multiple downstream effector genes, which are validated by gene silencing. The integrated datasets can be interrogated with a bespoke Shiny R script, deployed as an interactive web-based application, that maps the expression of resistance candidates and identifies co-regulated transcripts that may give clues to the function of novel resistance-associated genes. Increasing insecticide resistance of mosquitoes represents a public health threat, and underlying mechanisms are poorly understood. Here, Ingham et al. identify putative insecticide resistance genes in Anopheles gambiae populations across Africa and develop a web-based application that maps their expression.
Collapse
|
40
|
Tarimo BB, Law HCH, Tao D, Pastrana-Mena R, Kanzok SM, Buza JJ, Dinglasan RR. Paraquat-Mediated Oxidative Stress in Anopheles gambiae Mosquitoes Is Regulated by An Endoplasmic Reticulum (ER) Stress Response. Proteomes 2018; 6:47. [PMID: 30424486 PMCID: PMC6313908 DOI: 10.3390/proteomes6040047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
Paraquat is a potent superoxide (O₂-)-inducing agent that is capable of inducing an oxidative imbalance in the mosquito midgut. This oxidative imbalance can super-stress the malaria parasite, leading to arrested development in the mosquito midgut and reduced transmission. While several studies have explored the effect of paraquat on malaria parasites, a fundamental understanding of the mosquito response to this compound remains unknown. Here, we quantified the mosquito midgut proteomic response to a paraquat-laced sugar meal, and found that An. gambiae midguts were enriched in proteins that are indicative of cells under endoplasmic reticulum (ER) stress. We also carried out qRT-PCR analyses for nine prominent thioredoxin (Trx) and glutathione (GSH)-dependent genes in mosquito midguts post P. falciparum blood meal ingestion to evaluate the concordance between transcripts and proteins under different oxidative stress conditions. Our data revealed an absence of significant upregulation in the Trx and GSH-dependent genes following infected blood meal ingestion. These data suggest that the intrinsic tolerance of the mosquito midgut to paraquat-mediated oxidative stress is through an ER stress response. These data indicate that mosquitoes have at least two divergent pathways of managing the oxidative stress that is induced by exogenous compounds, and outline the potential application of paraquat-like drugs to act selectively against malaria parasite development in mosquito midguts, thereby blocking mosquito-to-human transmission.
Collapse
Affiliation(s)
- Brian B Tarimo
- School of Life Science and Bioengineering, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha 23302, Tanzania.
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Department of Health and Biomedical Sciences, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha 23302, Tanzania.
| | - Henry Chun Hin Law
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Dingyin Tao
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Rebecca Pastrana-Mena
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Stefan M Kanzok
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA.
| | - Joram J Buza
- Department of Health and Biomedical Sciences, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha 23302, Tanzania.
| | - Rhoel R Dinglasan
- School of Life Science and Bioengineering, Nelson Mandela-African Institution of Science and Technology, Tengeru, Arusha 23302, Tanzania.
- W. Harry Feinstone Department of Molecular Microbiology & Immunology & the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
- Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
41
|
Tmimi FZ, Faraj C, Bkhache M, Mounaji K, Failloux AB, Sarih M. Insecticide resistance and target site mutations (G119S ace-1 and L1014F kdr) of Culex pipiens in Morocco. Parasit Vectors 2018; 11:51. [PMID: 29357900 PMCID: PMC5778619 DOI: 10.1186/s13071-018-2625-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022] Open
Abstract
Background Control of the mosquito vector Culex pipiens with insecticides is the main way to control arboviruses that the species can transmit such as West Nile virus (WNV) and Rift Valley fever virus (RVFV). However, its efficiency has been hampered by the emergence of insecticide resistance. Little is known about the insecticide-resistance status and underlying resistance mechanisms of field-collected populations of Cx. pipiens in Morocco. Methods Mosquito adults from Mohammadia city in Morocco were reared from immature stages. The level of their susceptibility to insecticides was assessed using standard WHO bioassay. The two forms of the Cx. pipiens complex and their hybrids were identified by a multiplex PCR. Identified mosquitoes were then tested for the presence of the G119S ace-1 and L1014F kdr mutations using PCR-RFLP and PCR assays, respectively. Results WHO bioassays indicated that Cx. pipiens was resistant to all tested insecticides: lambda-cyhalothrin (49% mortality), permethrin (63% mortality), DDT (16% mortality), malation (52% mortality) and bendiocarb (39% mortality). The frequency of the 119S allele was almost identical in the pipiens form and hybrids (0.11 and 0.15, respectively) whereas it remained low in the molestus form (0.03). No significant correlation was observed between the G119S allele and the resistance phenotype to two tested insecticides (malathion and bendiocarb). The frequency of the L1014F allele was identical in the pipiens form and hybrids (0.44) whereas it was low in the molestus form (0.36) but no significant difference was detected (χ2 = 1.46, df = 1, P = 0.225). The presence of the L1014F kdr mutation was significantly associated with resistance to three tested insecticides in pipiens form (P = 0.0019, P = 0.0023 and P = 0.023, respectively, to lambda-cyhalothrin, permethrin and DDT) whereas no significant correlation was observed between the L1014F kdr mutation and resistance phenotype in molestus form and hybrids to the three tested insecticides. Conclusion These findings showed that wild populations of Cx. pipiens have developed resistance against the main insecticide families with different modes of action: organochlorines (DDT), organophosphates (malathion), carbamates (bendiocarb), pyrethroids (lambda-cyhalothrin, permethrin). Therefore, urgent action should be taken to manage the resistance in this species to maintain the effectiveness of arbovirus control.
Collapse
Affiliation(s)
- Fatim-Zohra Tmimi
- Institut Pasteur du Maroc, Service de Parasitologie et des Maladies Vectorielles, Place Louis Pasteur, 20360, Casablanca, Morocco.,Faculté des Sciences Ain-Chock, Laboratoire de Physiopathologie, Génétique Moléculaire et Biotechnologie, Casablanca, Morocco
| | - Chafika Faraj
- Institut National d'Hygiène, Laboratoire d'Entomologie Médicale, Rabat, Morocco
| | - Meriem Bkhache
- Institut Pasteur du Maroc, Service de Parasitologie et des Maladies Vectorielles, Place Louis Pasteur, 20360, Casablanca, Morocco
| | - Khadija Mounaji
- Faculté des Sciences Ain-Chock, Laboratoire de Physiopathologie, Génétique Moléculaire et Biotechnologie, Casablanca, Morocco
| | - Anna-Bella Failloux
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25-28 rue du Docteur Roux, 75724, Paris, France
| | - M'hammed Sarih
- Institut Pasteur du Maroc, Service de Parasitologie et des Maladies Vectorielles, Place Louis Pasteur, 20360, Casablanca, Morocco.
| |
Collapse
|
42
|
Antonio-Nkondjio C, Sonhafouo-Chiana N, Ngadjeu CS, Doumbe-Belisse P, Talipouo A, Djamouko-Djonkam L, Kopya E, Bamou R, Awono-Ambene P, Wondji CS. Review of the evolution of insecticide resistance in main malaria vectors in Cameroon from 1990 to 2017. Parasit Vectors 2017; 10:472. [PMID: 29017590 PMCID: PMC5635606 DOI: 10.1186/s13071-017-2417-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/01/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Malaria remains a major public health threat in Cameroon and disease prevention is facing strong challenges due to the rapid expansion of insecticide resistance in vector populations. The present review presents an overview of published data on insecticide resistance in the main malaria vectors in Cameroon to assist in the elaboration of future and sustainable resistance management strategies. METHODS A systematic search on mosquito susceptibility to insecticides and insecticide resistance in malaria vectors in Cameroon was conducted using online bibliographic databases including PubMed, Google and Google Scholar. From each peer-reviewed paper, information on the year of the study, mosquito species, susceptibility levels, location, insecticides, data source and resistance mechanisms were extracted and inserted in a Microsoft Excel datasheet. The data collected were then analysed for assessing insecticide resistance evolution. RESULTS Thirty-three scientific publications were selected for the analysis. The rapid evolution of insecticide resistance across the country was reported from 2000 onward. Insecticide resistance was highly prevalent in both An. gambiae (s.l.) and An. funestus. DDT, permethrin, deltamethrin and bendiocarb appeared as the most affected compounds by resistance. From 2000 to 2017 a steady increase in the prevalence of kdr allele frequency was noted in almost all sites in An. gambiae (s.l.), with the L1014F kdr allele being the most prevalent. Several detoxification genes (particularly P450 monooxygenase) were associated with DDT, pyrethroids and bendiocarb resistance. In An. funestus, resistance to DDT and pyrethroids was mainly attributed to the 119F-GSTe2 metabolic resistance marker and over-expression of P450 genes whereas the 296S-RDL mutation was detected in dieldrin-resistant An. funestus. CONCLUSIONS The review provides an update of insecticide resistance status in malaria vector populations in Cameroon and stresses the need for further actions to reinforce malaria control strategies in the coming years.
Collapse
Affiliation(s)
- Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | | | - C. S. Ngadjeu
- Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | | | - A. Talipouo
- Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | | | - E. Kopya
- Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - R. Bamou
- Faculty of Sciences, University of Dschang, Dschang, Cameroon
| | - P. Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | - Charles S. Wondji
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| |
Collapse
|
43
|
Genome-Wide Transcription and Functional Analyses Reveal Heterogeneous Molecular Mechanisms Driving Pyrethroids Resistance in the Major Malaria Vector Anopheles funestus Across Africa. G3-GENES GENOMES GENETICS 2017; 7:1819-1832. [PMID: 28428243 PMCID: PMC5473761 DOI: 10.1534/g3.117.040147] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes (CYP6P9a and CYP6P9b) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies.
Collapse
|