1
|
Li J, Docile HJ, Fisher D, Pronyuk K, Zhao L. Current Status of Malaria Control and Elimination in Africa: Epidemiology, Diagnosis, Treatment, Progress and Challenges. J Epidemiol Glob Health 2024; 14:561-579. [PMID: 38656731 PMCID: PMC11442732 DOI: 10.1007/s44197-024-00228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
The African continent carries the greatest malaria burden in the world. Falciparum malaria especially has long been the leading cause of death in Africa. Climate, economic factors, geographical location, human intervention and unstable security are factors influencing malaria transmission. Due to repeated infections and early interventions, the proportion of clinically atypical malaria or asymptomatic plasmodium carriers has increased significantly, which easily lead to misdiagnosis and missed diagnosis. African countries have made certain progress in malaria control and elimination, including rapid diagnosis of malaria, promotion of mosquito nets and insecticides, intermittent prophylactic treatment in high-risk groups, artemisinin based combination therapies, and the development of vaccines. Between 2000 and 2022, there has been a 40% decrease in malaria incidence and a 60% reduction in mortality rate in the WHO African Region. However, many challenges are emerging in the fight against malaria in Africa, such as climate change, poverty, substandard health services and coverage, increased outdoor transmission and the emergence of new vectors, and the growing threat of resistance to antimalarial drugs and insecticides. Joint prevention and treatment, identifying molecular determinants of resistance, new drug development, expanding seasonal malaria chemo-prevention intervention population, and promoting the vaccination of RTS, S/AS01 and R21/Matrix-M may help to solve the dilemma. China's experience in eliminating malaria is conducive to Africa's malaria prevention and control, and China-Africa cooperation needs to be constantly deepened and advanced. Our review aims to help the global public develop a comprehensive understanding of malaria in Africa, thereby contributing to malaria control and elimination.
Collapse
Affiliation(s)
- Jiahuan Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Haragakiza Jean Docile
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - David Fisher
- Department of Medical Biosciences, Faculty of Natural Sciences, University of The Western Cape, Cape Town, South Africa
| | - Khrystyna Pronyuk
- Department of Infectious Diseases, O. Bogomolets National Medical University, Kyiv, Ukraine
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
2
|
Eneku W, Erima B, Byaruhanga AM, Atim G, Tugume T, Ukuli QA, Kibuuka H, Mworozi E, Douglas C, Koehler JW, Cleary NG, von Fricken ME, Tweyongyere R, Wabwire-Mangen F, Byarugaba DK. Wide distribution of Mediterranean and African spotted fever agents and the first identification of Israeli spotted fever agent in ticks in Uganda. PLoS Negl Trop Dis 2023; 17:e0011273. [PMID: 37498943 PMCID: PMC10409254 DOI: 10.1371/journal.pntd.0011273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/08/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Rickettsia microorganisms are causative agents of several neglected emerging infectious diseases in humans transmitted by arthropods including ticks. In this study, ticks were collected from four geographical regions of Uganda and pooled in sizes of 1-179 ticks based on location, tick species, life stage, host, and time of collection. Then, they were tested by real-time PCR for Rickettsia species with primers targeting gltA, 17kDa and ompA genes, followed by Sanger sequencing of the 17kDa and ompA genes. Of the 471 tick pools tested, 116 (24.6%) were positive for Rickettsia spp. by the gltA primers. The prevalence of Rickettsia varied by district with Gulu recording the highest (30.1%) followed by Luwero (28.1%) and Kasese had the lowest (14%). Tick pools from livestock (cattle, goats, sheep, and pigs) had the highest positivity rate, 26.9%, followed by vegetation, 23.1%, and pets (dogs and cats), 19.7%. Of 116 gltA-positive tick pools, 86 pools were positive using 17kDa primers of which 48 purified PCR products were successfully sequenced. The predominant Rickettsia spp. identified was R. africae (n = 15) in four tick species, followed by R. conorii (n = 5) in three tick species (Haemaphysalis elliptica, Rhipicephalus appendiculatus, and Rh. decoloratus). Rickettsia conorii subsp. israelensis was detected in one tick pool. These findings indicate that multiple Rickettsia spp. capable of causing human illness are circulating in the four diverse geographical regions of Uganda including new strains previously known to occur in the Mediterranean region. Physicians should be informed about Rickettsia spp. as potential causes of acute febrile illnesses in these regions. Continued and expanded surveillance is essential to further identify and locate potential hotspots with Rickettsia spp. of concern.
Collapse
Affiliation(s)
- Wilfred Eneku
- Makerere University, College of Veterinary Medicine, Kampala, Uganda
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Bernard Erima
- Makerere University Walter Reed Project, Kampala, Uganda
| | | | - Gladys Atim
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Titus Tugume
- Makerere University Walter Reed Project, Kampala, Uganda
| | | | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Edison Mworozi
- Makerere University, College of Health Sciences, Kampala, Uganda
| | - Christina Douglas
- Diagnostic Systems Division, USAMRIID, Fort Detrick, Maryland, United States of America
| | - Jeffrey W. Koehler
- Diagnostic Systems Division, USAMRIID, Fort Detrick, Maryland, United States of America
| | - Nora G. Cleary
- Global and Community Health, George Mason University, Fairfax, Virginia, United States of America
| | - Michael E. von Fricken
- Global and Community Health, George Mason University, Fairfax, Virginia, United States of America
| | | | - Fred Wabwire-Mangen
- Makerere University Walter Reed Project, Kampala, Uganda
- Makerere University, School of Public Health, Kampala, Uganda
| | - Denis Karuhize Byarugaba
- Makerere University, College of Veterinary Medicine, Kampala, Uganda
- Makerere University Walter Reed Project, Kampala, Uganda
| |
Collapse
|
3
|
Seevaratnam D, Ansah F, Aniweh Y, Awandare GA, Hall EAH. Analysis and validation of silica-immobilised BST polymerase in loop-mediated isothermal amplification (LAMP) for malaria diagnosis. Anal Bioanal Chem 2022; 414:6309-6326. [PMID: 35657389 PMCID: PMC9163865 DOI: 10.1007/s00216-022-04131-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
Bacillus stearothermophilus large fragment (BSTLF) DNA polymerase is reported, isolated on silica via a fused R5 silica-affinity peptide and used in nucleic acid diagnostics. mCherry (mCh), included in the fusion construct, was shown as an efficient fluorescent label to follow the workflow from gene to diagnostic. The R5 immobilisation on silica from cell lysate was consistent with cooperative R5-specific binding of R52-mCh-FL-BSTLF or R52-mCh-H10-BSTLF fusion proteins followed by non-specific protein binding (including E. coli native proteins). Higher R5-binding could be achieved in the presence of phosphate, but phosphate residue reduced loop-mediated isothermal amplification (LAMP) performance, possibly blocking sites on the BSTLF for binding of β- and γ-phosphates of the dNTPs. Quantitative assessment showed that cations (Mg2+ and Mn2+) that complex the PPi product optimised enzyme activity. In malaria testing, the limit of detection depended on Plasmodium species and primer set. For example, 1000 copies of P. knowlesi 18S rRNA could be detected with the P.KNO-LAU primer set with Si-R52-mCh-FL-BSTLF , but 10 copies of P. ovale 18S rRNA could be detected with the P.OVA-HAN primer set using the same enzyme. The Si-immobilised BSTLF outperformed the commercial enzyme for four of the nine Plasmodium LAMP primer sets tested. Si-R52-mCh-FL-BSTLF production was transferred from Cambridge to Accra and set up de novo for a trial with clinical samples. Different detection limits were found, targeting the mitochondrial DNA or the 18S rRNA gene for P. falciparum. The results are discussed in comparison with qPCR and sampling protocol and show that the Si-BSTLF polymerase can be optimised to meet the WHO recommended guidelines.
Collapse
|
4
|
Abstract
BACKGROUND Plasmodium vivax (P vivax) is a focus of malaria elimination. It is important because P vivax and Plasmodium falciparum infection are co-endemic in some areas. There are asymptomatic carriers of P vivax, and the treatment for P vivax and Plasmodium ovale malaria differs from that used in other types of malaria. Rapid diagnostic tests (RDTs) will help distinguish P vivax from other malaria species to help treatment and elimination. There are RDTs available that detect P vivax parasitaemia through the detection of P vivax-specific lactate dehydrogenase (LDH) antigens. OBJECTIVES To assess the diagnostic accuracy of RDTs for detecting P vivax malaria infection in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria; and to identify which types and brands of commercial tests best detect P vivax malaria. SEARCH METHODS We undertook a comprehensive search of the following databases up to 30 July 2019: Cochrane Infectious Diseases Group Specialized Register; Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (OVID); Science Citation Index Expanded (SCI-EXPANDED) and Conference Proceedings Citation Index-Science (CPCI-S), both in the Web of Science. SELECTION CRITERIA Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction (PCR)) in blood samples from patients attending ambulatory health facilities with symptoms suggestive of malaria in P vivax-endemic areas. DATA COLLECTION AND ANALYSIS For each included study, two review authors independently extracted data using a pre-piloted data extraction form. The methodological quality of the studies were assessed using a tailored Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. We grouped studies according to commercial brand of the RDT and performed meta-analysis when appropriate. The results given by the index tests were based on the antibody affinity (referred to as the strength of the bond between an antibody and an antigen) and avidity (referred to as the strength of the overall bond between a multivalent antibody and multiple antigens). All analyses were stratified by the type of reference standard. The bivariate model was used to estimate the pooled sensitivity and specificity with 95% confidence intervals (CIs), this model was simplified when studies were few. We assessed the certainty of the evidence using the GRADE approach. MAIN RESULTS We included 10 studies that assessed the accuracy of six different RDT brands (CareStart Malaria Pf/Pv Combo test, Falcivax Device Rapid test, Immuno-Rapid Malaria Pf/Pv test, SD Bioline Malaria Ag Pf/Pv test, OnSite Pf/Pv test and Test Malaria Pf/Pv rapid test) for detecting P vivax malaria. One study directly compared the accuracy of two RDT brands. Of the 10 studies, six used microscopy, one used PCR, two used both microscopy and PCR separately and one used microscopy corrected by PCR as the reference standard. Four of the studies were conducted in Ethiopia, two in India, and one each in Bangladesh, Brazil, Colombia and Sudan. The studies often did not report how patients were selected. In the patient selection domain, we judged the risk of bias as unclear for nine studies. We judged all studies to be of unclear applicability concern. In the index test domain, we judged most studies to be at low risk of bias, but we judged nine studies to be of unclear applicability concern. There was poor reporting on lot testing, how the RDTs were stored, and background parasitaemia density (a key variable determining diagnostic accuracy of RDTs). Only half of the included studies were judged to be at low risk of bias in the reference standard domain, Studies often did not report whether the results of the reference standard could classify the target condition or whether investigators knew the results of the RDT when interpreting the results of the reference standard. All 10 studies were judged to be at low risk of bias in the flow and timing domain. Only two brands were evaluated by more than one study. Four studies evaluated the CareStart Malaria Pf/Pv Combo test against microscopy and two studies evaluated the Falcivax Device Rapid test against microscopy. The pooled sensitivity and specificity were 99% (95% CI 94% to 100%; 251 patients, moderate-certainty evidence) and 99% (95% CI 99% to 100%; 2147 patients, moderate-certainty evidence) for CareStart Malaria Pf/Pv Combo test. For a prevalence of 20%, about 206 people will have a positive CareStart Malaria Pf/Pv Combo test result and the remaining 794 people will have a negative result. Of the 206 people with positive results, eight will be incorrect (false positives), and of the 794 people with a negative result, two would be incorrect (false negative). For the Falcivax Device Rapid test, the pooled sensitivity was 77% (95% CI: 53% to 91%, 89 patients, low-certainty evidence) and the pooled specificity was 99% (95% CI: 98% to 100%, 621 patients, moderate-certainty evidence), respectively. For a prevalence of 20%, about 162 people will have a positive Falcivax Device Rapid test result and the remaining 838 people will have a negative result. Of the 162 people with positive results, eight will be incorrect (false positives), and of the 838 people with a negative result, 46 would be incorrect (false negative). AUTHORS' CONCLUSIONS The CareStart Malaria Pf/Pv Combo test was found to be highly sensitive and specific in comparison to microscopy for detecting P vivax in ambulatory healthcare in endemic settings, with moderate-certainty evidence. The number of studies included in this review was limited to 10 studies and we were able to estimate the accuracy of 2 out of 6 RDT brands included, the CareStart Malaria Pf/Pv Combo test and the Falcivax Device Rapid test. Thus, the differences in sensitivity and specificity between all the RDT brands could not be assessed. More high-quality studies in endemic field settings are needed to assess and compare the accuracy of RDTs designed to detect P vivax.
Collapse
Affiliation(s)
- Ridhi Agarwal
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Leslie Choi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Samuel Johnson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Mordecai EA, Ryan SJ, Caldwell JM, Shah MM, LaBeaud AD. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet Health 2020; 4:e416-e423. [PMID: 32918887 PMCID: PMC7490804 DOI: 10.1016/s2542-5196(20)30178-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 05/28/2023]
Abstract
Malaria is a long-standing public health problem in sub-Saharan Africa, whereas arthropod-borne viruses (arboviruses) such as dengue and chikungunya cause an under-recognised burden of disease. Many human and environmental drivers affect the dynamics of vector-borne diseases. In this Personal View, we argue that the direct effects of warming temperatures are likely to promote greater environmental suitability for dengue and other arbovirus transmission by Aedes aegypti and reduce suitability for malaria transmission by Anopheles gambiae. Environmentally driven changes in disease dynamics will be complex and multifaceted, but given that current public efforts are targeted to malaria control, we highlight Ae aegypti and dengue, chikungunya, and other arboviruses as potential emerging public health threats in sub-Saharan Africa.
Collapse
Affiliation(s)
- Erin A. Mordecai
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, United States
| | - Sadie J. Ryan
- Department of Geography, University of Florida, Gainesville, FL, United States; Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States; School of Life Sciences, College of Agriculture, Engineering, and Science, University of KwaZulu Natal, KwaZulu Natal, South Africa
| | - Jamie M. Caldwell
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, United States
| | - Melisa M. Shah
- Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - A. Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Disease, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
6
|
Yacouba A, Congo M, Dioma GK, Somlare H, Coulidiaty D, Ouattara K, Sangare L. Whatman FTA cards versus plasma specimens for the quantitation of HIV-1 RNA using two real-time PCR assays. Access Microbiol 2020; 2:acmi000138. [PMID: 32974600 PMCID: PMC7497827 DOI: 10.1099/acmi.0.000138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/17/2020] [Indexed: 11/24/2022] Open
Abstract
Background Several studies have compared the use of dried blot spot (DBS) as an alternative to plasma specimens, mainly using Whatman 903 cards as filter paper. The aim of this study was to evaluate the use of Whatman FTA card (FTA card) specimens for HIV-1 viral load testing compared to plasma specimens using two real-time PCR assays manufactured by Roche and Abbott. Methodology A cross-sectional study was conducted between April 2017 and September 2017 on HIV-1 patients admitted to Yalgado Ouédraogo Teaching Hospital. Paired FTA cards and plasma specimens were collected and analysed using the Abbott Real-Time HIV-1 assay (Abbott) and COBAS AmpliPrep/COBAS TaqMan v2.0 (Roche). Results In total, 107 patients were included. No statistical differences (P>0.05) were observed between the mean viral loads obtained from the FTA cards and those of the plasma specimens using the Roche and Abbott assays. In total, 29 samples with Roche and 15 samples with Abbott assay showed discrepant results. At viral loads of ≤1000 copies ml−1, the sensitivity and specificity of the FTA cards were 78.6 and 100% with Roche, and 92.3 and 95.9% with Abbott, respectively. Both the Roche and Abbott assays showed good correlation and agreement between the FTA cards and plasma values. Conclusion Our study demonstrates the feasibility of using FTA card filter paper for HIV-1 viral load testing. However, further studies will be required for the validation of the use of FTA card filter paper in HIV-1 treatment monitoring.
Collapse
Affiliation(s)
- Abdourahamane Yacouba
- Laboratoire National de Référence du VIH/Sida et des Infections Sexuellement Transmissibles, Centre Hospitalier Universitaire Yalgado Ouédraogo, 03 B.P. 7022 Ouaga 03, Ouagadougou, Burkina Faso
| | - Malika Congo
- Laboratoire National de Référence du VIH/Sida et des Infections Sexuellement Transmissibles, Centre Hospitalier Universitaire Yalgado Ouédraogo, 03 B.P. 7022 Ouaga 03, Ouagadougou, Burkina Faso
| | - Gérard Komonsira Dioma
- Laboratoire National de Référence du VIH/Sida et des Infections Sexuellement Transmissibles, Centre Hospitalier Universitaire Yalgado Ouédraogo, 03 B.P. 7022 Ouaga 03, Ouagadougou, Burkina Faso
| | - Hermann Somlare
- Laboratoire National de Référence du VIH/Sida et des Infections Sexuellement Transmissibles, Centre Hospitalier Universitaire Yalgado Ouédraogo, 03 B.P. 7022 Ouaga 03, Ouagadougou, Burkina Faso
| | - David Coulidiaty
- Laboratoire National de Référence du VIH/Sida et des Infections Sexuellement Transmissibles, Centre Hospitalier Universitaire Yalgado Ouédraogo, 03 B.P. 7022 Ouaga 03, Ouagadougou, Burkina Faso
| | - Kalifa Ouattara
- Laboratoire National de Référence du VIH/Sida et des Infections Sexuellement Transmissibles, Centre Hospitalier Universitaire Yalgado Ouédraogo, 03 B.P. 7022 Ouaga 03, Ouagadougou, Burkina Faso
| | - Lassana Sangare
- Unité de Formation et des Recherches en Sciences de la Santé, Université Ouaga I Pr Joseph KI-ZERBO, 03 B.P. 7021 Ouaga 03, Ouagadougou, Burkina Faso
- Laboratoire National de Référence du VIH/Sida et des Infections Sexuellement Transmissibles, Centre Hospitalier Universitaire Yalgado Ouédraogo, 03 B.P. 7022 Ouaga 03, Ouagadougou, Burkina Faso
| |
Collapse
|
7
|
A structure-based rationale for sialic acid independent host-cell entry of Sosuga virus. Proc Natl Acad Sci U S A 2019; 116:21514-21520. [PMID: 31591233 PMCID: PMC6815108 DOI: 10.1073/pnas.1906717116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The bat-borne paramyxovirus, Sosuga virus (SosV), is one of many paramyxoviruses recently identified and classified within the newly established genus Pararubulavirus, family Paramyxoviridae The envelope surface of SosV presents a receptor-binding protein (RBP), SosV-RBP, which facilitates host-cell attachment and entry. Unlike closely related hemagglutinin neuraminidase RBPs from other genera of the Paramyxoviridae, SosV-RBP and other pararubulavirus RBPs lack many of the stringently conserved residues required for sialic acid recognition and hydrolysis. We determined the crystal structure of the globular head region of SosV-RBP, revealing that while the glycoprotein presents a classical paramyxoviral six-bladed β-propeller fold and structurally classifies in close proximity to paramyxoviral RBPs with hemagglutinin-neuraminidase (HN) functionality, it presents a receptor-binding face incongruent with sialic acid recognition. Hemadsorption and neuraminidase activity analysis confirms the limited capacity of SosV-RBP to interact with sialic acid in vitro and indicates that SosV-RBP undergoes a nonclassical route of host-cell entry. The close overall structural conservation of SosV-RBP with other classical HN RBPs supports a model by which pararubulaviruses only recently diverged from sialic acid binding functionality.
Collapse
|
8
|
Ogden NH. Climate change and vector-borne diseases of public health significance. FEMS Microbiol Lett 2018; 364:4107775. [PMID: 28957457 DOI: 10.1093/femsle/fnx186] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
There has been much debate as to whether or not climate change will have, or has had, any significant effect on risk from vector-borne diseases. The debate on the former has focused on the degree to which occurrence and levels of risk of vector-borne diseases are determined by climate-dependent or independent factors, while the debate on the latter has focused on whether changes in disease incidence are due to climate at all, and/or are attributable to recent climate change. Here I review possible effects of climate change on vector-borne diseases, methods used to predict these effects and the evidence to date of changes in vector-borne disease risks that can be attributed to recent climate change. Predictions have both over- and underestimated the effects of climate change. Mostly under-estimations of effects are due to a focus only on direct effects of climate on disease ecology while more distal effects on society's capacity to control and prevent vector-borne disease are ignored. There is increasing evidence for possible impacts of recent climate change on some vector-borne diseases but for the most part, observed data series are too short (or non-existent), and impacts of climate-independent factors too great, to confidently attribute changing risk to climate change.
Collapse
Affiliation(s)
- Nicholas H Ogden
- Public Health Risk Science Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
9
|
Salerno J, Ross N, Ghai R, Mahero M, Travis DA, Gillespie TR, Hartter J. Human-Wildlife Interactions Predict Febrile Illness in Park Landscapes of Western Uganda. ECOHEALTH 2017; 14:675-690. [PMID: 29181611 DOI: 10.1007/s10393-017-1286-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Fevers of unknown origin complicate treatment and prevention of infectious diseases and are a global health burden. We examined risk factors of self-reported fever-categorized as "malarial" and "nonmalarial"-in households adjacent to national parks across the Ugandan Albertine Rift, a biodiversity and emerging infectious disease hotspot. Statistical models fitted to these data suggest that perceived nonmalarial fevers of unknown origin were associated with more frequent direct contact with wildlife and with increased distance from parks where wildlife habitat is limited to small forest fragments. Perceived malarial fevers were associated with close proximity to parks but were not associated with direct wildlife contact. Self-reported fevers of any kind were not associated with livestock ownership. These results suggest a hypothesis that nonmalarial fevers in this area are associated with wildlife contact, and further investigation of zoonoses from wildlife is warranted. More generally, our findings of land use-disease relationships aid in hypothesis development for future research in this social-ecological system where emerging infectious diseases specifically, and rural public health provisioning generally, are important issues.
Collapse
Affiliation(s)
- Jonathan Salerno
- Environmental Studies Program, Sustainability, Energy and Environment Community, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, 80303, USA
| | - Noam Ross
- EcoHealth Alliance, New York, NY, USA
| | - Ria Ghai
- Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, GA, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael Mahero
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Dominic A Travis
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Thomas R Gillespie
- Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, GA, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Joel Hartter
- Environmental Studies Program, Sustainability, Energy and Environment Community, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, 80303, USA.
| |
Collapse
|
10
|
Dalrymple U, Cameron E, Bhatt S, Weiss DJ, Gupta S, Gething PW. Quantifying the contribution of Plasmodium falciparum malaria to febrile illness amongst African children. eLife 2017; 6:29198. [PMID: 29034876 PMCID: PMC5665646 DOI: 10.7554/elife.29198] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022] Open
Abstract
Suspected malaria cases in Africa increasingly receive a rapid diagnostic test (RDT) before antimalarials are prescribed. While this ensures efficient use of resources to clear parasites, the underlying cause of the individual's fever remains unknown due to potential coinfection with a non-malarial febrile illness. Widespread use of RDTs does not necessarily prevent over-estimation of clinical malaria cases or sub-optimal case management of febrile patients. We present a new approach that allows inference of the spatiotemporal prevalence of both Plasmodium falciparum malaria-attributable and non-malarial fever in sub-Saharan African children from 2006 to 2014. We estimate that 35.7% of all self-reported fevers were accompanied by a malaria infection in 2014, but that only 28.0% of those (10.0% of all fevers) were causally attributable to malaria. Most fevers among malaria-positive children are therefore caused by non-malaria illnesses. This refined understanding can help improve interpretation of the burden of febrile illness and shape policy on fever case management.
Collapse
Affiliation(s)
- Ursula Dalrymple
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Ewan Cameron
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Samir Bhatt
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom.,Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Daniel J Weiss
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Peter W Gething
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Waggoner J, Brichard J, Mutuku F, Ndenga B, Heath CJ, Mohamed-Hadley A, Sahoo MK, Vulule J, Lefterova M, Banaei N, Mukoko D, Pinsky BA, LaBeaud AD. Malaria and Chikungunya Detected Using Molecular Diagnostics Among Febrile Kenyan Children. Open Forum Infect Dis 2017; 4:ofx110. [PMID: 28702473 PMCID: PMC5505337 DOI: 10.1093/ofid/ofx110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/02/2017] [Accepted: 05/23/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In sub-Saharan Africa, malaria is frequently overdiagnosed as the cause of an undifferentiated febrile illness, whereas arboviral illnesses are presumed to be underdiagnosed. METHODS Sera from 385 febrile Kenyan children, who presented to 1 of 4 clinical sites, were tested using microscopy and real-time molecular assays for dengue virus (DENV), chikungunya virus (CHIKV), malaria, and Leptospira. RESULTS Malaria was the primary clinical diagnosis for 254 patients, and an arboviral infection (DENV or CHIKV) was the primary diagnosis for 93 patients. In total, 158 patients (41.0%) had malaria and 32 patients (8.3%) had CHIKV infections. Compared with real-time polymerase chain reaction, microscopy demonstrated a percent positive agreement of 49.7%. The percentage of malaria cases detected by microscopy varied significantly between clinical sites. Arboviral infections were the clinical diagnosis for patients on the Indian Ocean coast (91 of 238, 38.2%) significantly more often than patients in the Lake Victoria region (2 of 145, 1.4%; P < .001). However, detection of CHIKV infections was significantly higher in the Lake Victoria region (19 of 145 [13.1%] vs 13 of 239 [5.4%]; P = .012). CONCLUSIONS The clinical diagnosis of patients with an acute febrile illness, even when aided by microscopy, remains inaccurate in malaria-endemic areas, contributing to inappropriate management decisions.
Collapse
Affiliation(s)
- Jesse Waggoner
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Julie Brichard
- Department of Pediatrics, Division of Infectious Diseases
| | | | | | | | | | | | | | | | - Niaz Banaei
- Department of Pathology, and.,Ministry of Health, Nairobi, Kenya
| | | | - Benjamin A Pinsky
- Department of Pathology, and.,Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, California
| | | |
Collapse
|
12
|
Disparities between malaria infection and treatment rates: Evidence from a cross-sectional analysis of households in Uganda. PLoS One 2017; 12:e0171835. [PMID: 28241041 PMCID: PMC5328248 DOI: 10.1371/journal.pone.0171835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 01/26/2017] [Indexed: 12/04/2022] Open
Abstract
Background In Sub-Saharan Africa, both under-treatment and over-treatment of malaria are common since illnesses are often diagnosed and treated on the basis of symptoms. We investigate whether malaria treatment rates among febrile individuals correspond to observed patterns of malaria infection by age and by local prevalence. Methods and findings We use data on treatment of febrile illnesses from a household survey that was conducted between March and May 2012 in 92 villages in six districts in Eastern Uganda. All household members were also tested for malaria using a rapid diagnostic test. We show that both the age of the febrile individual and the village prevalence rate are strongly associated with the odds that a febrile patient was infected with malaria, but not with the odds of ACT treatment. Compared to individuals who were aged 15 or above, febrile individuals aged 5–14 had 3.21 times the odds of testing positive for malaria (95% CI: [2.36 4.37], P<0·001), and febrile individuals who were under age 5 had 2.66 times the odds of testing positive for malaria (95% CI: [1.99 3.56], P<0·001). However, ACT treatment rates for febrile illnesses were not significantly higher for either children ages 5–14 (Unadjusted OR: 1.19, 95% CI: [0.88 1.62], P = 0.255) or children under the age of 5 (Unadjusted OR: 1.24, 95% CI: [0.92 1.68], P = 0·154). A one standard deviation increase in the village malaria prevalence rate was associated with a 2.03 times higher odds that a febrile individual under the age of five tested positive for malaria (95% CI: [1.63 2.54], p<0·001), but was not significantly associated with the odds of ACT treatment (Un-adjusted OR: 0.83, 95% CI: [0.66 1.05], P = 0·113). We present some evidence that this discrepancy may be because caregivers do not suspect a higher likelihood of malaria infection, conditional on fever, in young children or in high-prevalence villages. Conclusion Our findings suggest that households have significant mis-perceptions about malaria likelihood that may contribute to the under-treatment of malaria. Policies are needed to encourage caregivers to seek immediate diagnostic testing and treatment for febrile illnesses, particularly among young children.
Collapse
|
13
|
Yegorov S, Galiwango RM, Ssemaganda A, Muwanga M, Wesonga I, Miiro G, Drajole DA, Kain KC, Kiwanuka N, Bagaya BS, Kaul R. Low prevalence of laboratory-confirmed malaria in clinically diagnosed adult women from the Wakiso district of Uganda. Malar J 2016; 15:555. [PMID: 27842555 PMCID: PMC5109652 DOI: 10.1186/s12936-016-1604-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/07/2016] [Indexed: 11/15/2022] Open
Abstract
Background The malaria burden in sub-Saharan Africa (SSA) has fallen substantially. Nevertheless, malaria remains a serious health concern, and Uganda ranks third in SSA in total malaria burden. Epidemiological studies of adult malaria in Uganda are scarce and little is known about rates of malaria in non-pregnant adult women. This pilot study assessed malaria prevalence among adult women from Wakiso district, historically a highly malaria endemic region. Methods Adult women using public health services were screened for malaria, HIV and pregnancy. A physician-selected subset of women presenting to the Outpatient Department of Entebbe General Hospital (EGH) with current fever (axillary temperature ≥37.5 °C) or self-reporting fever during the previous 24 h, and a positive thick smear for malaria in the EGH laboratory were enrolled (n = 86). Women who self-identified as pregnant or HIV-positive were excluded from screening. Malaria infection was then assessed using HRP2/pLDH rapid diagnostic tests (RDTs) in all participants. Repeat microscopy and PCR were performed at a research laboratory for a subset of participants. In addition, 104 women without a history of fever were assessed for asymptomatic parasitaemia using RDT, and a subset of these women screened for parasitaemia using microscopy (40 women) and PCR (40 women). Results Of 86 women diagnosed with malaria by EGH, only two (2.3%) had malaria confirmed using RDT, subsequently identified as a Plasmodium falciparum infection by research microscopy and PCR. Subset analysis of hospital diagnosed RDT-negative participants detected one sub-microscopic infection with Plasmodium ovale. Compared to RDT, sensitivity, specificity and PPV of hospital microscopy were 100% (CI 19.8–100), 0% (CI 0–5.32) and 2.33% (CI 0.403–8.94) respectively. Compared to PCR, sensitivity, specificity and PPV of hospital microscopy were 100% (CI 31.0–100), 0% (CI 0–34.5) and 23.1% (CI 6.16–54.0), respectively. No malaria was detected among asymptomatic women using RDT, research microscopy or PCR. Conclusions Malaria prevalence among adult women appears to be low in Wakiso, but is masked by high rates of malaria overdiagnosis. More accurate malaria testing is urgently needed in public hospitals in this region to identify true causes of febrile illness and reduce unnecessary provision of anti-malarial therapy.
Collapse
Affiliation(s)
- Sergey Yegorov
- Departments of Medicine and Immunology, University of Toronto, 1 King's College Circle, 6356, Toronto, ON, M5S1A8, Canada.
| | - Ronald M Galiwango
- Departments of Medicine and Immunology, University of Toronto, 1 King's College Circle, 6356, Toronto, ON, M5S1A8, Canada
| | - Aloysious Ssemaganda
- UVRI-IAVI HIV Vaccine Program, Plot 50-55 Nakiwogo Road, Entebbe, Uganda.,Institute for Glycomics, Griffith University, Gold Coast, Parklands Drive, Southport, QLD, 4215, Australia
| | - Moses Muwanga
- Entebbe General Hospital, P.O. Box 29, Entebbe, Uganda
| | - Irene Wesonga
- Entebbe General Hospital, P.O. Box 29, Entebbe, Uganda
| | - George Miiro
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, Entebbe, Uganda
| | - David A Drajole
- Uganda Virus Research Institute, Plot 51-59 Nakiwogo Road, Entebbe, Uganda
| | - Kevin C Kain
- Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, MaRS Centre, University Health Network, 101 College St. TMDT 10-360A, Toronto, ON, M5G1L7, Canada.,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| | - Noah Kiwanuka
- UVRI-IAVI HIV Vaccine Program, Plot 50-55 Nakiwogo Road, Entebbe, Uganda.,Department of Epidemiology and Biostatistics, School of Public Health, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Bernard S Bagaya
- UVRI-IAVI HIV Vaccine Program, Plot 50-55 Nakiwogo Road, Entebbe, Uganda.,Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, 1 King's College Circle, 6356, Toronto, ON, M5S1A8, Canada
| |
Collapse
|