1
|
Arumugam G, Saravu K, Kotthapalli P, Nallapati VT, Bhat P, Achari M, Kulal N, Ananganallur Nagarajan S, S L H, Kumar A. Mosquito prevalence, resting habitat preference, and Plasmodium infection status of anophelines in coastal Karnataka during the declining phase of malaria-an exploratory study. Parasitol Res 2024; 123:308. [PMID: 39172181 PMCID: PMC11341726 DOI: 10.1007/s00436-024-08322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Malaria has a historical presence in the Dakshina Kannada (D.K.) and Udupi districts of Karnataka, India. To understand the potential involvement of anopheline fauna in malaria transmission, we conducted an exploratory entomological survey. The study is crucial given the decreasing malaria incidence in these districts in recent years. From September 2022 to August 2023, we collected indoor resting mosquitoes using a manual aspirator at 27 randomly chosen sites within three distinct resting habitats (human dwellings, cattle sheds, and construction sites) in the urban areas of Udupi and Dakshina Kannada districts. Mosquitoes were morphologically identified, and anopheline specimens were tested for the presence of malarial parasite by polymerase chain reaction (PCR) analysis. We collected a total of 1810 mosquitoes, comprising 21 species distributed across five genera. Culex emerged as the predominant genus, constituting 84.4% of the collected specimens, while Anopheles accounted for 5.4%. Among the observed species, Culex quinquefasciatus was predominant, comprising 77.9% of the mosquito specimens collected in this study. Two malaria vectors, An. stephensi and An. subpictus complex, constituted 16.3% and 1.0% of the total anophelines collected, respectively. None of the 96 female anophelines was tested positive for Plasmodium infection. Our findings suggest that Anopheles mosquitoes prefer resting in cattle sheds over human dwellings. While our study identified two malaria vectors, they were present at low densities. To gain a more comprehensive understanding of the dynamics of these vector mosquitoes, it is essential to conduct long-term surveillance to monitor their prevalence and role in malaria transmission.
Collapse
Affiliation(s)
- Gowthami Arumugam
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| | - Prashanth Kotthapalli
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Vishnu Teja Nallapati
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Prashanth Bhat
- Department of Health and Family Welfare, Government of Karnataka, Udupi District, India
| | - Muktha Achari
- Department of Health and Family Welfare, Government of Karnataka, Udupi District, India
| | - Naveenchandra Kulal
- Department of Health and Family Welfare, Government of Karnataka, Dakshina Kannada District, India
| | | | - Hoti S L
- ICMR-Vector Control Research Centre, Puducherry, India
| | - Ashwani Kumar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
2
|
Taylor R, Messenger LA, Abeku TA, Clarke SE, Yadav RS, Lines J. Invasive Anopheles stephensi in Africa: insights from Asia. Trends Parasitol 2024; 40:731-743. [PMID: 39054167 DOI: 10.1016/j.pt.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Anopheles stephensi is a highly competent urban malaria vector species, endemic in South Asia and the Persian Gulf, which has colonised eight countries in sub-Saharan Africa (SSA) since 2013 and is now spreading uncontrollably. In urban areas of Africa, where malaria transmission has previously been low or non-existent, the invasion of An. stephensi represents a significant problem, particularly to immunologically naïve populations. Despite this rapidly advancing threat, there is a paucity of information regarding the bionomics of An. stephensi in SSA. Here, we offer a critical synthesis of literature from An. stephensi's native range, focusing on the future of An. stephensi in a rapidly urbanising Africa, and highlighting key questions that warrant prioritisation by the global malaria vector control community.
Collapse
Affiliation(s)
- Roz Taylor
- RAFT (Resilience Against Future Threats Through Vector Control) Consortium, Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV 89154, USA; Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, NV 89154, USA
| | - Tarekegn A Abeku
- Malaria Consortium, Green House, 244-254 Cambridge Heath Road, London E2 9DA, UK
| | - Sian E Clarke
- RAFT (Resilience Against Future Threats Through Vector Control) Consortium, Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Rajpal S Yadav
- Academy of Public Health Entomology, Udaipur 313002, Rajasthan, India
| | - Jo Lines
- RAFT (Resilience Against Future Threats Through Vector Control) Consortium, Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| |
Collapse
|
3
|
Arif M, Rasheed SB, Ullah H, Shah TA, Rehman FU, Dawoud TM. Feeding Behavior and Plasmodium Detection in Anopheles stephensi, a Malaria Vector in District Khyber, Khyber Pakhtunkhwa, Pakistan. IRANIAN JOURNAL OF PARASITOLOGY 2024; 19:333-340. [PMID: 39318824 PMCID: PMC11417983 DOI: 10.18502/ijpa.v19i3.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/14/2024] [Indexed: 09/26/2024]
Abstract
Background Anopheles stephensi is a significant malaria vector in Pakistan, and understanding its feeding behavior is necessary to control the spread of malaria. However, limited information is available on the host preferences of A. stephensi in Pakistan. Therefore, we aimed to explore the feeding behavior of A. stephensi, a malaria vector, in the District Khyber, Khyber Pakhtunkhwa, Pakistan. Methods A total of 7462 mosquitoes were collected between March and September 2021, with 1674 (22.4%) identified as A. stephensi (952 female and 722 male). Among the female A. stephensi, 495 (52%) were blood-fed. DNA was extracted from the blood-fed female A. stephensi mosquitoes using the Ammonium Acetate Precipitation Method followed by PCR analysis, blood meal sources were identified. Nested PCR on 191 pooled samples was used to detect Plasmodium falciparum and Plasmodium vivax. Results Cattle blood meals were predominant (73%), followed by human (20%) and chicken (7%), with no dog blood meals detected. All individual mosquito samples were negative for Plasmodium falciparum, while two pooled samples (out of 191) tested positive for P. vivax. Conclusion A. stephensi in Khyber District primarily displayed anthropophagic feeding behavior, with a small portion of the population infected with P. vivax. The results underscore the importance of targeted vector control strategies, environmental management, community engagement and continuous monitoring to suppress malaria transmission.
Collapse
Affiliation(s)
- Mahnoor Arif
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Syed Basit Rasheed
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Habib Ullah
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Faiz Ur Rehman
- Department of Zoology, Government Superior Science College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Ashine T, Eyasu A, Asmamaw Y, Simma E, Zemene E, Epstein A, Brown R, Negash N, Kochora A, Reynolds AM, Bulto MG, Tafesse T, Dagne A, Lukus B, Esayas E, Behaksra SW, Woldekidan K, Kassa FA, Deressa JD, Assefa M, Dillu D, Assefa G, Solomon H, Zeynudin A, Massebo F, Sedda L, Donnelly MJ, Wilson AL, Weetman D, Gadisa E, Yewhalaw D. Spatiotemporal distribution and bionomics of Anopheles stephensi in different eco-epidemiological settings in Ethiopia. Parasit Vectors 2024; 17:166. [PMID: 38556881 PMCID: PMC10983662 DOI: 10.1186/s13071-024-06243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Malaria is a major public health concern in Ethiopia, and its incidence could worsen with the spread of the invasive mosquito species Anopheles stephensi in the country. This study aimed to provide updates on the distribution of An. stephensi and likely household exposure in Ethiopia. METHODS Entomological surveillance was performed in 26 urban settings in Ethiopia from 2021 to 2023. A kilometer-by-kilometer quadrant was established per town, and approximately 20 structures per quadrant were surveyed every 3 months. Additional extensive sampling was conducted in 50 randomly selected structures in four urban centers in 2022 and 2023 to assess households' exposure to An. stephensi. Prokopack aspirators and CDC light traps were used to collect adult mosquitoes, and standard dippers were used to collect immature stages. The collected mosquitoes were identified to species level by morphological keys and molecular methods. PCR assays were used to assess Plasmodium infection and mosquito blood meal source. RESULTS Catches of adult An. stephensi were generally low (mean: 0.15 per trap), with eight positive sites among the 26 surveyed. This mosquito species was reported for the first time in Assosa, western Ethiopia. Anopheles stephensi was the predominant species in four of the eight positive sites, accounting for 75-100% relative abundance of the adult Anopheles catches. Household-level exposure, defined as the percentage of households with a peridomestic presence of An. stephensi, ranged from 18% in Metehara to 30% in Danan. Anopheles arabiensis was the predominant species in 20 of the 26 sites, accounting for 42.9-100% of the Anopheles catches. Bovine blood index, ovine blood index and human blood index values were 69.2%, 32.3% and 24.6%, respectively, for An. stephensi, and 65.4%, 46.7% and 35.8%, respectively, for An. arabiensis. None of the 197 An. stephensi mosquitoes assayed tested positive for Plasmodium sporozoite, while of the 1434 An. arabiensis mosquitoes assayed, 62 were positive for Plasmodium (10 for P. falciparum and 52 for P. vivax). CONCLUSIONS This study shows that the geographical range of An. stephensi has expanded to western Ethiopia. Strongly zoophagic behavior coupled with low adult catches might explain the absence of Plasmodium infection. The level of household exposure to An. stephensi in this study varied across positive sites. Further research is needed to better understand the bionomics and contribution of An. stephensi to malaria transmission.
Collapse
Affiliation(s)
- Temesgen Ashine
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia.
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Adane Eyasu
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Yehenew Asmamaw
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Eba Simma
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Endalew Zemene
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Adrienne Epstein
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Rebecca Brown
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Nigatu Negash
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abena Kochora
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Alison M Reynolds
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | - Temesgen Tafesse
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Alemayehu Dagne
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Biniyam Lukus
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Endashaw Esayas
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Kidist Woldekidan
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Jimma Dinsa Deressa
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Muluken Assefa
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Dereje Dillu
- Disease Prevention and Control Directorate, Ethiopian Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Gudissa Assefa
- Disease Prevention and Control Directorate, Ethiopian Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Hiwot Solomon
- Disease Prevention and Control Directorate, Ethiopian Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Ahmed Zeynudin
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Fekadu Massebo
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Luigi Sedda
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Martin James Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Anne L Wilson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Endalamaw Gadisa
- Malaria and NTD Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
5
|
Afrane YA, Abdulai A, Mohammed AR, Akuamoah-Boateng Y, Owusu-Asenso CM, Sraku IK, Yanney SA, Malm K, Lobo NF. Detection of Invasive Anopheles stephensi Mosquitoes through Molecular Surveillance, Ghana. Emerg Infect Dis 2024; 30:605-608. [PMID: 38316032 PMCID: PMC10902527 DOI: 10.3201/eid3003.231638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
The invasive Anopheles stephensi mosquito has rapidly expanded in range in Africa over the past decade. Consistent with World Health Organization guidelines, routine entomologic surveillance of malaria vectors in Accra, Ghana, now includes morphologic and molecular surveillance of An. stephensi mosquitoes. We report detection of An. stephensi mosquitoes in Ghana.
Collapse
|
6
|
Santos-Vega M, Lowe R, Anselin L, Desai V, Vaishnav KG, Naik A, Pascual M. Quantifying climatic and socioeconomic drivers of urban malaria in Surat, India: a statistical spatiotemporal modelling study. Lancet Planet Health 2023; 7:e985-e998. [PMID: 38056969 DOI: 10.1016/s2542-5196(23)00249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Cities are becoming increasingly important habitats for mosquito vectors of disease. The pronounced heterogeneity of urban landscapes challenges our understanding of the effects of climate and socioeconomic factors on mosquito-borne disease dynamics at different spatiotemporal scales. Here, we quantify the impact of climatic and socioeconomic factors on urban malaria risk, using an extensive dataset in both space and time for reported Plasmodium falciparum cases in the city of Surat, northwest India. METHODS We analysed 10 years of monthly P falciparum cases resolved at three nested spatial resolutions (seven zones, 32 units, and 478 worker units) with a Bayesian hierarchical mixed model that incorporates the effects of population density, poverty, relative humidity, and temperature, in addition to random effects (structured and unstructured). To reduce dimensionality and avoid correlation of covariates, socioeconomic variables from survey data were summarised into main axes of variation using principal component analysis. With model selection, we identified the main drivers of spatiotemporal variation in malaria incidence rates at each of the three spatial resolutions. We also compared observations to model-fitted cases by quantifying the percentage of predictions within five discrete levels of malaria risk. FINDINGS The spatial variation of urban malaria cases was stationary over time, whereby locations with high and low yearly cases remained largely consistent across years. Local socioeconomic variation could be summarised with three principal components accounting for approximately 80% of the variance. The model that incorporated local temperature and relative humidity together with two of these principal components, largely representing population density and poverty, best explained monthly malaria patterns in models formulated at the three different spatial scales. As model resolution increased, the effect size of humidity decreased, whereas those of temperature and the principal component associated with population density increased. Model predictions accurately captured aggregated total monthly cases for the city; in space-time, they more closely matched observations at the intermediate scale, with around 57% of units estimated to fall in the observed category on average across years. The mean absolute error was lower at the intermediate level, showing that this is the best aggregation level to predict the space-time dynamics of malaria incidence rates across the city with the selected model. INTERPRETATION This statistical modelling framework provides a basis for development of a climate-driven early warning system for urban malaria for the units of Surat, including spatially explicit prediction of malaria risk several weeks to months in advance. Results indicate environmental and socioeconomic covariates for which further measurement at high resolution should lead to model improvement. Advanced warning combined with local surveillance and knowledge of disease hotspots within the city could inform targeted intervention as part of urban malaria elimination efforts. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
- Mauricio Santos-Vega
- Departamento de Ciencias Biológicas and Grupo de Investigación en Biología Matemática y Computacional BIOMAC, Universidad de los Andes, Bogotá, Colombia.
| | - Rachel Lowe
- Barcelona Supercomputing Center, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Centre on Climate Change & Planetary Health and Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Luc Anselin
- Center for Spatial Data Science, University of Chicago, Chicago, IL, USA
| | - Vikas Desai
- Urban Health and Climate Resilience Center of Excellence (UHCRCE), Surat, India
| | - Keshav G Vaishnav
- Vector Borne Diseases Control Department, Surat Municipal Corporation, Surat, India
| | | | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA; Department of Biology and Department of Environmental Studies, New York University, NY, USA
| |
Collapse
|
7
|
Afrane YA, Abdulai A, Mohammed AR, Akuamoah-Boateng Y, Owusu-Asenso CM, Sraku IK, Yanney SA, Malm K, Lobo NF. First detection of Anopheles stephensi in Ghana using molecular surveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569589. [PMID: 38076990 PMCID: PMC10705536 DOI: 10.1101/2023.12.01.569589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The invasive Anopheles stephensi mosquito has been rapidly expanding in range in Africa over the last decade, spreading from the Indian sub-continent to several East African countries (Djibouti, Ethiopia, Sudan, Somalia and Kenya) and now in West Africa, Nigeria. The rapid expansion of this invasive vector poses a major threat to current malaria control and elimination efforts. In line with the WHO's strategy to stop the spread of this invasive species by enhancing surveillance and control measures in Africa, we incorporated morphological and molecular surveillance of An. stephensi into routine entomological surveillance of malaria vectors in the city of Accra, Ghana. Here, we report on the first detection of An. stephensi in Ghana. An. stephensi mosquitoes were confirmed using PCR and sequencing of the ITS2 regions. These findings highlight the urgent need for increased surveillance and response strategies to mitigate the spread of An. stephensi in Ghana.
Collapse
|
8
|
Pathak AK, Shiau JC, Freitas RC, Kyle DE. Blood meals from 'dead-end' vertebrate hosts enhance transmission potential of malaria-infected mosquitoes. One Health 2023; 17:100582. [PMID: 38024285 PMCID: PMC10665158 DOI: 10.1016/j.onehlt.2023.100582] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 12/01/2023] Open
Abstract
Ingestion of an additional blood meal(s) by a hematophagic insect can accelerate development of several vector-borne parasites and pathogens. Most studies, however, offer blood from the same vertebrate host species as the original challenge (for e.g., human for primary and additional blood meals). Here, we show a second blood meal from bovine and canine hosts can also enhance sporozoite migration in Anopheles stephensi mosquitoes infected with the human- and rodent-restricted Plasmodium falciparum and P. berghei, respectively. The extrinsic incubation period (time to sporozoite appearance in salivary glands) showed more consistent reductions with blood from human and bovine donors than canine blood, although the latter's effect may be confounded by the toxicity, albeit non-specific, associated with the anticoagulant used to collect whole blood from donors. The complex patterns of enhancement highlight the limitations of a laboratory system but are nonetheless reminiscent of parasite host-specificity and mosquito adaptations, and the genetic predisposition of An. stephensi for bovine blood. We suggest that in natural settings, a blood meal from any vertebrate host could accentuate the risk of human infections by P. falciparum: targeting vectors that also feed on animals, via endectocides for instance, may reduce the number of malaria-infected mosquitoes and thus directly lower residual transmission. Since endectocides also benefit animal health, our results underscore the utility of the One Health framework, which postulates that human health and well-being is interconnected with that of animals. We posit this framework will be further validated if our observations also apply to other vector-borne diseases which together are responsible for some of the highest rates of morbidity and mortality in socio-economically disadvantaged populations.
Collapse
Affiliation(s)
- Ashutosh K. Pathak
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States of America
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA 30602, United States of America
- Center for the Ecology of Infectious Diseases (CEID), University of Georgia, Athens, GA 30602, United States of America
- The SporoCore, CTEGD, University of Georgia, Athens, GA 30602, United States of America
| | - Justine C. Shiau
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States of America
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA 30602, United States of America
- Center for the Ecology of Infectious Diseases (CEID), University of Georgia, Athens, GA 30602, United States of America
- The SporoCore, CTEGD, University of Georgia, Athens, GA 30602, United States of America
| | - Rafael C.S. Freitas
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA 30602, United States of America
- The SporoCore, CTEGD, University of Georgia, Athens, GA 30602, United States of America
| | - Dennis E. Kyle
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, United States of America
- Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA 30602, United States of America
- The SporoCore, CTEGD, University of Georgia, Athens, GA 30602, United States of America
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, United States of America
| |
Collapse
|
9
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
10
|
Hasyim H, Ihram MA, Fakhriyatiningrum, Misnaniarti, Idris H, Liberty IA, Flora R, Zulkifli H, Tessema ZT, Maharani FE, Syafrudin D, Dale P. Environmental determinants and risk behaviour in the case of indigenous malaria in Muara Enim Regency, Indonesia: A case-control design. PLoS One 2023; 18:e0289354. [PMID: 37535583 PMCID: PMC10399889 DOI: 10.1371/journal.pone.0289354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
INTRODUCTION Malaria is a significant public health concern in Indonesia. Muara Enim Regency is one of the districts in South Sumatra with the most important number of indigenous malaria cases in the last three years (2018-2020). Therefore, this study aimed to identify determinants of indigenous malaria in the Muara Enim Regency. METHODS This study was designed as a case-control study. A stratified random sample in 2018, 2019, and 2020 was used at the Primary Health Centres (PHCs) areas of Tanjung Enim and Tanjung Agung. The sample included 49 cases and 49 controls. Indigenous malaria determinants were discovered using both bivariable and multivariable logistic regression models. RESULT The multivariable logistic regression model results show that mosquito repellent reduces malaria risk by 71% (AOR = 0.29, 95% CI: 0.11-0.64). Besides, the presence of wire mesh on ventilation reduces the risk of malaria by 76% (AOR = 0.24, 95% CI: 0.10-0.57), and the distance from mosquito breeding sites near hundred meters and fewer increases the risk of malaria by 3.88 fold (AOR = 3.88; 95% CI: 1.67-8.97). CONCLUSIONS Multivariable analysis revealed distance from mosquito breeding sites as a risk factor for malaria. Besides, the study shows that using insect repellent, wire netting in ventilation, eliminating mosquito breeding sites, mosquito repellent or protective clothing, and improving house conditions were protective factors for indigenous malaria. Therefore, preventive and promotional efforts are essential as the first step toward malaria elimination at the study site, including avoiding direct contact between residents and vectors near mosquito breeding sites.
Collapse
Affiliation(s)
- Hamzah Hasyim
- Faculty of Public Health, Universitas Sriwijaya, Palembang, Indonesia
| | | | - Fakhriyatiningrum
- Faculty of Public Health, Universitas Sriwijaya, Palembang, Indonesia
| | - Misnaniarti
- Faculty of Public Health, Universitas Sriwijaya, Palembang, Indonesia
| | - Haerawati Idris
- Faculty of Public Health, Universitas Sriwijaya, Palembang, Indonesia
| | - Iche Andriyani Liberty
- Department of Public Health and Community Medicine, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Rostika Flora
- Faculty of Public Health, Universitas Sriwijaya, Palembang, Indonesia
| | - Hilda Zulkifli
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Palembang, Indonesia
| | - Zemenu Tadesse Tessema
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Fadhilah Eka Maharani
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Palembang, Indonesia
| | - Din Syafrudin
- Department Parasitology, Faculty of Medicine, Universitas Hasanuddin, Indonesia
| | - Patricia Dale
- Centre for Planetary Health and Food Security (CPHFS) School of Environment, and Science, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
11
|
Teshome A, Erko B, Golassa L, Yohannes G, Irish SR, Zohdy S, Yoshimizu M, Dugassa S. Resistance of Anopheles stephensi to selected insecticides used for indoor residual spraying and long-lasting insecticidal nets in Ethiopia. Malar J 2023; 22:218. [PMID: 37501142 PMCID: PMC10375616 DOI: 10.1186/s12936-023-04649-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Malaria, transmitted by the bite of infective female Anopheles mosquitoes, remains a global public health problem. The presence of invasive Anopheles stephensi, capable of transmitting Plasmodium vivax and Plasmodium falciparum, was first reported in Ethiopia in 2016. The ecology of this mosquito species differs from that of Anopheles arabiensis, the primary malaria vector in Ethiopia. This study aimed to evaluate the efficacy of selected insecticides, which are used in indoor residual spraying (IRS) and selected long-lasting insecticidal nets (LLINs) for malaria vector control against adult An. stephensi. METHODS Anopheles stephensi mosquitoes were collected as larvae and pupae from Awash Subah Kilo Town and Haro Adi village, Ethiopia. Adult female An. stephensi, reared from larvae and pupae collected from the field, aged 3-5 days were exposed to impregnated papers of IRS insecticides (propoxur 0.1%, bendiocarb 0.1%, pirimiphos-methyl 0.25%), and insecticides used in LLINs (alpha-cypermethrin 0.05%, deltamethrin 0.05% and permethrin 0.75%), using diagnostic doses and WHO test tubes in a bio-secure insectary at Aklilu Lemma Institute of Pathobiology, Addis Ababa University. For each test and control tube, batches of 25 female An. stephensi were used to test each insecticide used in IRS. Additionally, cone bioassay tests were conducted to expose An. stephensi from the reared population to four brands of LLINs, MAGNet™ (alpha-cypermethrin), PermaNet® 2.0 (deltamethrin), DuraNet© (alpha-cypermethrin) and SafeNet® (alpha-cypermethrin). A batch of ten sugar-fed female mosquitoes aged 2-5 days was exposed to samples taken from five positions/sides of a net. The data from all replicates were pooled and descriptive statistics were used to describe features of the data. RESULTS All An. stephensi collected from Awash Subah Kilo Town and Haro Adi village (around Metehara) were resistant to all tested insecticides used in both IRS and LLINs. Of the tested LLINs, only MAGNet™ (alpha-cypermethrin active ingredient) caused 100% knockdown and mortality to An. stephensi at 60 min and 24 h post exposure, while all other net brands caused mortality below the WHO cut-off points (< 90%). All these nets, except SafeNet®, were collected during LLIN distribution for community members through the National Malaria Programme, in December 2020. CONCLUSIONS Anopheles stephensi is resistant to all tested insecticides used in IRS and in the tested LLIN brands did not cause mosquito mortality as expected, except MAGNet. This suggests that control of this invasive vector using existing adult malaria vector control methods will likely be inadequate and that alternative strategies may be necessary.
Collapse
Affiliation(s)
- Abebe Teshome
- National Malaria Elimination Programme, Ministry of Health, Ethiopia, P.O._Box 1234, Addis Ababa, Ethiopia.
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O._Box 1176, Addis Ababa, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O._Box 1176, Addis Ababa, Ethiopia
| | - Gedeon Yohannes
- Department of Zoological Sciences, Addis Ababa University, P.O._Box 1176, Addis Ababa, Ethiopia
| | - Seth R Irish
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123, Allschwil, Switzerland
| | - Sarah Zohdy
- US President's Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Melissa Yoshimizu
- US President's Malaria Initiative, US Agency for International Development, Washington, DC, USA
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O._Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Brown JJ, Pascual M, Wimberly MC, Johnson LR, Murdock CC. Humidity - The overlooked variable in the thermal biology of mosquito-borne disease. Ecol Lett 2023; 26:1029-1049. [PMID: 37349261 DOI: 10.1111/ele.14228] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 06/24/2023]
Abstract
Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors experience a complex suite of environmental factors that affect fitness, population growth and species interactions across multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and temporal prediction of vector-borne pathogen transmission.
Collapse
Affiliation(s)
- Joel J Brown
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Michael C Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
13
|
Khan N, Awasthi G, Das A. How can the complex epidemiology of malaria in India impact its elimination? Trends Parasitol 2023; 39:432-444. [PMID: 37031071 PMCID: PMC10175201 DOI: 10.1016/j.pt.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 04/10/2023]
Abstract
Malaria is a human health hazard in the tropical and subtropical zones of the globe and is poised to be eliminated by the year 2030. Despite a decrease in incidence in the past two decades, many endemic countries, including India, report cases regularly. The epidemiology of malaria in India is unique owing to several features of the Plasmodium parasites, Anopheles vectors, ecoepidemiological situations conducive to disease transmission, and susceptible humans living in rural and forested areas. Limitations in public health reach, and poor health-seeking behaviour of vulnerable populations living in hard-to-reach areas, add to the problem. We bring all of these factors together in a comprehensive framework and opine that, in spite of complexities, targeted elimination of malaria in India is achievable with planned programmatic approaches.
Collapse
Affiliation(s)
- Nikhat Khan
- Molecular Epidemiology Laboratory, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | | | - Aparup Das
- Molecular Epidemiology Laboratory, ICMR-National Institute of Research in Tribal Health, Jabalpur, India.
| |
Collapse
|
14
|
Nasiri Z, Hosseinizadeh ZS, Sayyadi Z, Alipour H. Entomological survey of malaria vectors in Dashtestan County, South of Iran. J Parasit Dis 2023; 47:161-166. [PMID: 36910314 PMCID: PMC9998789 DOI: 10.1007/s12639-022-01555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Anopheline mosquitoes are responsible for transmission of some diseases such as malaria. This study was carried out in five villages of Dashtestan county, Bushehr province, south of Iran with mountainous and plain areas. Anopheles larvae were sampled once a month from May to July 2021 by dipping method using standard dippers. Adults were captured by the total catch technique. In this study, 1062 Anopheles mosquitoes were collected including 850 adults and 212 larvae. Samples were A. superpictus, A. stephensi, A. dthali and A. fluviatilis. The dominant species at all sites (larvae and adults) were A. dthali (31.35%), A. superpictus (28.93%), A. stephensi (27.77%), and A. fluviatilis (11.95%), respectively. Among adults, A. stephensi was the most frequent species, but among larvae, A. dthali was the dominant species. The highest number of A. dthali was captured from Dalaki village with 35%, while A. superpictus and A. fluviatilis were not caught at this station. The minimum collected adults of all species occurred in Bashirabad. This result showed that A. stephensi plays an important role in south Iran, which is under the elimination phase. The fauna and niches of Anopheles has different patterns depending on ecological, climatic, and topographic features. These items affect host preferences, feeding behaviors, and distribution of these species. A monthly or annual entomological survey is necessary in regions with mobile populations since imported malaria is a problematic issue in the elimination programs of Iran.
Collapse
Affiliation(s)
- Zahra Nasiri
- Student Research Committee and Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra-Sadat Hosseinizadeh
- Student Research Committee and Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Sayyadi
- Student Research Committee and Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Ahmed A, Irish SR, Zohdy S, Yoshimizu M, Tadesse FG. Strategies for conducting Anopheles stephensi surveys in non-endemic areas. Acta Trop 2022; 236:106671. [PMID: 36058292 PMCID: PMC11004664 DOI: 10.1016/j.actatropica.2022.106671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022]
Abstract
Anopheles stephensi, a malaria vector species previously only known from Asia, was first detected in Africa in Djibouti in 2012, has been subsequently collected in Ethiopia, Sudan, and Somalia, and may be spreading further. Countries may wish to implement mosquito surveys to determine if An. stephensi is present, or to determine the extent of its distribution, if present. Furthermore, mosquito surveys can provide data on the bionomics of An. stephensi and its adaptation to the local environment that can help plan and implement control activities. The present strategies provide suggestions on surveillance approaches for monitoring An. stephensi. The first step is to determine the aim of the study, as this will determine the specific activities conducted in each location. Challenges related to identification and detection of resistance and sporozoites are also discussed. Results should be communicated to relevant stakeholders in a timely manner, both in country and internationally, to help understand the introduction, distribution, and bionomics of An. stephensi in a given country and work towards cross-border and coordinated international response.
Collapse
Affiliation(s)
- Ayman Ahmed
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, 4123 Allschwil, Switzerland; Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland; Institute of Endemic Diseases, University of Khartoum, P.O. Box 102, 11111 Khartoum, Sudan; Molecular Biology Unit, Sirius Training and Research Centre, 47 Al Steen Street, 11111 Khartoum, Sudan; Directorate of Environmental Health, Federal Ministry of Health, P.O. Box 303, 11111 Khartoum, Sudan
| | - Seth R Irish
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, 4123 Allschwil, Switzerland; Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland; U.S. President's Malaria Initiative, Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, United States.
| | - Sarah Zohdy
- U.S. President's Malaria Initiative, Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, United States
| | - Melissa Yoshimizu
- U.S. President's Malaria Initiative, U.S. Agency for International Development, 500 D Street SW, Washington, DC 20547, United States
| | - Fitsum G Tadesse
- Malaria and NTD directorate, Armauer Hansen Research Institute, P.O. Box 1005, ALERT Hospital Compound, Addis Ababa, Ethiopia
| |
Collapse
|
16
|
Kweka EJ. Anopheles stephensi: a guest to watch in urban Africa. Trop Dis Travel Med Vaccines 2022; 8:7. [PMID: 35361266 PMCID: PMC8973991 DOI: 10.1186/s40794-022-00165-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022] Open
Abstract
Malaria vector control programs in Sub-Saharan Africa have invested many efforts and resources in the control of eight-sibling species of Anopheles gambiae complex and An. funestus group. The behaviour of sibling species of these vectors is well known and used for implementing the current intervention tools. The reports of An. stephensi in urban Africa with different habitats breeding behaviour is an alert on the success of malaria vector control efforts achieved so far. This communication intends to give an insight on what should be considered as a challenge for the management of An. stephensi in urban Africa to retain the achievement attained in malaria control.
Collapse
|
17
|
Kumar G, Gupta SK, Rahi M, Sharma A. Challenges in Understanding the Bionomics of Indian Malaria Vectors. Am J Trop Med Hyg 2022; 107:1005-1014. [PMID: 36096410 PMCID: PMC9709009 DOI: 10.4269/ajtmh.22-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/30/2022] [Indexed: 11/07/2022] Open
Abstract
Many factors influence the success or failure of malaria vector control program such as political will, leadership, sustained funding, robustness of healthcare system and others. In addition, updated knowledge and information about the triad of host, parasite, and vector is of paramount importance. Vector bionomics studies that determine mosquito behavior in terms of feeding, resting, biting, mating, breeding, longevity, vectorial capacity, and response to different insecticides are a step towards enhancing our understanding. In the present work, we have compiled studies conducted in India over the past two decades (2000-2020) to identify gaps in our knowledge of malaria vector bionomics and the research that needs to be done in the future. We retrieved district-level data of India's six primary malaria vector species. According to our findings, vector bionomics studies have been undertaken in ∼50% and ∼15% of the country's high (annual parasite index > 1) and low (annual parasite index < 1) malaria-endemic districts respectively. Most of the research studies focused on mosquito density, insecticide susceptibility status, and parasite detection, whereas other vital bionomics parameters were neglected. Surveys conducted were incomplete, and vector bionomics data were not captured sufficiently. The absence of vector bionomics data can be a blind spot and the lack or inadequate understanding of vector bionomics can lead to use of inappropriate vector control tools. Thus, there is an urgent need to initiate comprehensive bionomics studies on India's primary and secondary malaria vectors.
Collapse
Affiliation(s)
- Gaurav Kumar
- National Institute of Malaria Research, New Delhi, India
| | | | - Manju Rahi
- National Institute of Malaria Research, New Delhi, India
- Indian Council of Medical Research, New Delhi, India
| | - Amit Sharma
- National Institute of Malaria Research, New Delhi, India
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
18
|
Carlton JM, Sahu PK, Wassmer SC, Mohanty S, Kessler A, Eapen A, Tomko SS, Walton C, Joshi PL, Das D, Albert S, Peter BK, Pradhan MM, Dash AP, Das A. The Impact, Emerging Needs, and New Research Questions Arising from 12 Years of the Center for the Study of Complex Malaria in India. Am J Trop Med Hyg 2022; 107:90-96. [PMID: 36228922 PMCID: PMC9662226 DOI: 10.4269/ajtmh.21-1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/28/2022] [Indexed: 11/24/2022] Open
Abstract
The Center for the Study of Complex Malaria in India (CSCMi) was launched in 2010 with the overall goal of addressing major gaps in our understanding of "complex malaria" in India through projects on the epidemiology, transmission, and pathogenesis of the disease. The Center was mandated to adopt an integrated approach to malaria research, including building capacity, developing infrastructure, and nurturing future malaria leaders while conducting relevant and impactful studies to assist India as it moves from control to elimination. Here, we will outline some of the interactions and impacts the Center has had with malaria policy and control counterparts in India, as well as describe emerging needs and new research questions that have become apparent over the past 12 years.
Collapse
Affiliation(s)
- Jane M. Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
- Department of Epidemiology, School of Global Public Health, New York University, New York, New York
- Address correspondence to Jane M. Carlton, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003. E-mail:
| | - Praveen K. Sahu
- Department of Molecular and Infectious Diseases, Community Welfare Society Hospital, Rourkela, India
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sanjib Mohanty
- Department of Molecular and Infectious Diseases, Community Welfare Society Hospital, Rourkela, India
| | - Anne Kessler
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Alex Eapen
- IDVC Field Unit, National Institute of Malaria Research, Indian Council of Medical Research, National Institute of Epidemiology Campus, Chennai, India
| | - Sheena Shah Tomko
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Catherine Walton
- Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - Pyare L. Joshi
- Joint Scientific Advisory Committee, Indian Council of Medical Research, and Malaria No More, India Programme, New Delhi, India
| | - Deben Das
- District Headquarters Hospital, Keonjhar, India
| | - Sandra Albert
- Indian Institute of Public Health—Shillong, Shillong, India
- Martin Luther Christian University, Shillong, India
| | | | - Madan M. Pradhan
- Department of Health and Family Welfare, State Vector Borne Disease Control Programme, Bhubaneswar, India
| | - Aditya P. Dash
- Asian Institute of Public Health University, Bhubaneswar, India
| | - Aparup Das
- National Institute of Research in Tribal Health, Indian Council of Medical Research, Jabalpur, India
| |
Collapse
|
19
|
Anopheles stephensi in Africa requires a more integrated response. Malar J 2022; 21:156. [PMID: 35641958 PMCID: PMC9152833 DOI: 10.1186/s12936-022-04197-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
There are increasing reports of the Asian malaria mosquito, Anopheles stephensi invading and spreading in Eastern Africa. We discuss the importance of these invasions in the context of broader challenges facing malaria control in Africa and argue against addressing it as an isolated problem. Anopheles stephensi is only one of multiple biological threats facing malaria control in the region—and is itself an indication of wide-ranging weaknesses in vector surveillance and control programs. Expanded investigations are needed in both urban and rural areas, especially in countries serviced by the Indian Ocean trade routes, to establish the full extent and future trajectories of the problem. More importantly, instead of tackling this vector species as a stand-alone threat, affected countries should adopt more integrated and multi-sectorial initiatives that can sustainably drive and keep out malaria.
Collapse
|
20
|
Hamlet A, Dengela D, Tongren JE, Tadesse FG, Bousema T, Sinka M, Seyoum A, Irish SR, Armistead JS, Churcher T. The potential impact of Anopheles stephensi establishment on the transmission of Plasmodium falciparum in Ethiopia and prospective control measures. BMC Med 2022; 20:135. [PMID: 35440085 PMCID: PMC9020030 DOI: 10.1186/s12916-022-02324-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sub-Saharan Africa has seen substantial reductions in cases and deaths due to malaria over the past two decades. While this reduction is primarily due to an increasing expansion of interventions, urbanisation has played its part as urban areas typically experience substantially less malaria transmission than rural areas. However, this may be partially lost with the invasion and establishment of Anopheles stephensi. A. stephensi, the primary urban malaria vector in Asia, was first detected in Africa in 2012 in Djibouti and was subsequently identified in Ethiopia in 2016, and later in Sudan and Somalia. In Djibouti, malaria cases have increased 30-fold from 2012 to 2019 though the impact in the wider region remains unclear. METHODS Here, we have adapted an existing model of mechanistic malaria transmission to estimate the increase in vector density required to explain the trends in malaria cases seen in Djibouti. To account for the observed plasticity in An. stephensi behaviour, and the unknowns of how it will establish in a novel environment, we sample behavioural parameters in order to account for a wide range of uncertainty. This quantification is then applied to Ethiopia, considering temperature-dependent extrinsic incubation periods, pre-existing vector-control interventions and Plasmodium falciparum prevalence in order to assess the potential impact of An. stephensi establishment on P. falciparum transmission. Following this, we estimate the potential impact of scaling up ITN (insecticide-treated nets)/IRS (indoor residual spraying) and implementing piperonyl butoxide (PBO) ITNs and larval source management, as well as their economic costs. RESULTS We estimate that annual P. falciparum malaria cases could increase by 50% (95% CI 14-90) if no additional interventions are implemented. The implementation of sufficient control measures to reduce malaria transmission to pre-stephensi levels will cost hundreds of millions of USD. CONCLUSIONS Substantial heterogeneity across the country is predicted and large increases in vector control interventions could be needed to prevent a major public health emergency.
Collapse
Affiliation(s)
- Arran Hamlet
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK.
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London, UK.
| | - Dereje Dengela
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - J Eric Tongren
- U.S. President's Malaria Initiative (PMI), Addis Ababa, Ethiopia
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Fitsum G Tadesse
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Marianne Sinka
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Aklilu Seyoum
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Seth R Irish
- U.S. President's Malaria Initiative, Entomology Branch Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer S Armistead
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, D.C., USA
| | - Thomas Churcher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
21
|
Santos-Vega M, Martinez PP, Vaishnav KG, Kohli V, Desai V, Bouma MJ, Pascual M. The neglected role of relative humidity in the interannual variability of urban malaria in Indian cities. Nat Commun 2022; 13:533. [PMID: 35087036 PMCID: PMC8795427 DOI: 10.1038/s41467-022-28145-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
The rapid pace of urbanization makes it imperative that we better understand the influence of climate forcing on urban malaria transmission. Despite extensive study of temperature effects in vector-borne infections in general, consideration of relative humidity remains limited. With process-based dynamical models informed by almost two decades of monthly surveillance data, we address the role of relative humidity in the interannual variability of epidemic malaria in two semi-arid cities of India. We show a strong and significant effect of humidity during the pre-transmission season on malaria burden in coastal Surat and more arid inland Ahmedabad. Simulations of the climate-driven transmission model with the MLE (Maximum Likelihood Estimates) of the parameters retrospectively capture the observed variability of disease incidence, and also prospectively predict that of 'out-of-fit' cases in more recent years, with high accuracy. Our findings indicate that relative humidity is a critical factor in the spread of urban malaria and potentially other vector-borne epidemics, and that climate change and lack of hydrological planning in cities might jeopardize malaria elimination efforts.
Collapse
Affiliation(s)
- M Santos-Vega
- Department of Ecology and Evolution, University of Chicago, Chicago, USA
- Departamento de Ingeniería Biomédica, Grupo de Investigación en Biología Matemática y Computacional BIOMAC, Universidad de los Andes, Bogotá, Colombia
| | - P P Martinez
- Department of Microbiology and Department of Statistics, University of Illinois at Urbana, Champaign, Champaign, IL, USA
| | - K G Vaishnav
- Vector Borne Diseases Control Department, Health Department, Surat Municipal Corporation, Surat, India
| | - V Kohli
- Ahmedabad Municipal Corporation, Ahmedabad, India
| | - V Desai
- Urban Health and Climate Resilience Center of Excellence, (UHCRCE), Surat, India
| | | | - M Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, USA.
| |
Collapse
|
22
|
Ravishankaran S, Asokan A, Justin NAJA, Thomas S, Joshua V, Mathai MT, Eapen A. Does the roof type of a house influence the presence of adult Anopheles stephensi, urban malaria vector? - evidence from a few slum settings in Chennai, India. Parasitol Res 2022; 121:105-114. [PMID: 34773504 PMCID: PMC8995298 DOI: 10.1007/s00436-021-07376-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
In an urban setting, it is a difficult task to collect adult Anopheles stephensi, unlike the immature stages, due to various reasons. A longitudinal study was undertaken from January 2016 to April 2017, with CDC light traps to collect adult Anopheles stephensi and other mosquito species in houses located in a few slums of Chennai, India. A total of 203 trap collections were made indoors from human dwellings having different roof types, as well as outdoors. Three to four trap collections were made at night (18:00 to 06:00 h) once a week. Overall, Culex quinquefasciatus (64%) was the predominant mosquito species captured, followed by An. stephensi (24%). In 98 of the 203 trap collections (48.3%), at least one female An. stephensi was trapped. In all, 224 female An. stephensi were trapped, of which the majority were collected during monsoon and winter seasons. Compared to outdoors, 10% more An. stephensi, the majority of them unfed, were collected indoors, with relatively more contribution coming from asbestos-roofed houses (71.4%), followed by thatched-roof houses (47.3%). Overall, 2.2% positivity for Plasmodium vivax was detected in An. stephensi through Circumsporozoite-ELISA. Binary logistic regression model indicated that season (winter and monsoon), asbestos-roofed dwelling, lesser number of rooms in a house, and more members in a family were significant predictor variables for the odds of trapping an An. stephensi. The study brought out significant factors associated with the presence of An. stephensi in urban slums setting in Chennai, where malaria is declining. The findings would help in devising targeted, effective vector control interventions for malaria elimination in urban settings.
Collapse
Affiliation(s)
- Sangamithra Ravishankaran
- ICMR-National Institute of Malaria Research, Field Unit, NIE Campus, 2 Main Road, TNHB, Ayapakkam, Chennai-600 077, Tamil Nadu, India,Department of Zoology, Madras Christian College, Tambaram, Chennai-600 059, Tamil Nadu, India
| | - Aswin Asokan
- ICMR-National Institute of Malaria Research, Field Unit, NIE Campus, 2 Main Road, TNHB, Ayapakkam, Chennai-600 077, Tamil Nadu, India
| | - N A Johnson Amala Justin
- Regional Office for Health and Family Welfare, A-2A, Rajaji Bhavan, Besant Nagar, Chennai- 600 090, Tamil Nadu, India
| | - Shalu Thomas
- ICMR-National Institute of Malaria Research, Field Unit, NIE Campus, 2 Main Road, TNHB, Ayapakkam, Chennai-600 077, Tamil Nadu, India,Department of Zoology, Madras Christian College, Tambaram, Chennai-600 059, Tamil Nadu, India
| | - Vasna Joshua
- ICMR-National Institute of Epidemiology, 2 Main Road, TNHB, Ayapakkam, Chennai-600 077, Tamil Nadu, India
| | - Manu Thomas Mathai
- Department of Zoology, Madras Christian College, Tambaram, Chennai-600 059, Tamil Nadu, India
| | - Alex Eapen
- ICMR-National Institute of Malaria Research, Field Unit, NIE Campus, 2 Main Road, TNHB, Ayapakkam, Chennai-600 077, Tamil Nadu, India,Corresponding author:
| |
Collapse
|
23
|
Khan SA, Kassim NFA, Webb CE, Aqueel MA, Ahmad S, Malik S, Hussain T. Human blood type influences the host-seeking behavior and fecundity of the Asian malaria vector Anopheles stephensi. Sci Rep 2021; 11:24298. [PMID: 34934127 PMCID: PMC8692623 DOI: 10.1038/s41598-021-03765-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
The nutritional requirements of mosquitoes include both sugar (generally derived from the nectar of flowers) and blood (humans or animals). Mosquitoes express different degrees of preferences towards hosts depending on behavioral, ecological, and physiological factors. These preferences have implications for mosquito-borne disease risk. The present study is directed to reveal the effect of the human blood groups on the fecundity and fertility of the malaria vector Anopheles stephensi. In laboratory tests, mosquitoes were fed on ABO blood groups via artificial membrane feeders, and the level of attraction against different blood groups was tested by the electroantennogram and wind tunnel bioassay under control conditions. Results indicate that the female mosquitoes had a strong preference towards the blood group B, while in the case of females fed on O blood group had the highest digestibility rate. Overall, the human blood type had a significant impact on the fecundity and fertility of female An. stephensi. The highest numbers of eggs are laid, in the case of blood group B, (mean (± SD)) 216.3 (8.81) followed by the AB, 104.06 (7.67), and O, 98.01 (7.04). In the case of blood group B, females attain the highest fertility of about 92.1 (9.98). This study provides novel insight into the ABO blood type host choice of the mosquitoes that are still partially unknown and suggests encouraging personal protection for relevant individuals within communities at risk, which is a useful tool for preventing malaria where the An. stephensi is present as a dominant vector.
Collapse
Affiliation(s)
- Shahmshad Ahmed Khan
- Department of Entomology, University College of Agriculture, University of Sargodha, Sargodha, Pakistan
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Nur Faeza Abu Kassim
- 129 Medical Entomology Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang Malaysia
| | - Cameron Ewart Webb
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales Australia
| | - Muhammad Anjum Aqueel
- Department of Entomology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saboor Ahmad
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Sadia Malik
- Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Taimoor Hussain
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
24
|
Carter TE, Yared S, Getachew D, Spear J, Choi SH, Samake JN, Mumba P, Dengela D, Yohannes G, Chibsa S, Murphy M, Dissanayake G, Flately C, Lopez K, Janies D, Zohdy S, Irish SR, Balkew M. Genetic diversity of Anopheles stephensi in Ethiopia provides insight into patterns of spread. Parasit Vectors 2021; 14:602. [PMID: 34895319 PMCID: PMC8665610 DOI: 10.1186/s13071-021-05097-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recent detection of the South Asian malaria vector Anopheles stephensi in the Horn of Africa (HOA) raises concerns about the impact of this mosquito on malaria transmission in the region. Analysis of An. stephensi genetic diversity and population structure can provide insight into the history of the mosquito in the HOA to improve predictions of future spread. We investigated the genetic diversity of An. stephensi in eastern Ethiopia, where detection suggests a range expansion into this region, in order to understand the history of this invasive population. METHODS We sequenced the cytochrome oxidase subunit I (COI) and cytochrome B gene (CytB) in 187 An. stephensi collected from 10 sites in Ethiopia in 2018. Population genetic, phylogenetic, and minimum spanning network analyses were conducted for Ethiopian sequences. Molecular identification of blood meal sources was also performed using universal vertebrate CytB sequencing. RESULTS Six An. stephensi COI-CytB haplotypes were observed, with the highest number of haplotypes in the northeastern sites (Semera, Bati, and Gewana towns) relative to the southeastern sites (Kebridehar, Godey, and Degehabur) in eastern Ethiopia. We observed population differentiation, with the highest differentiation between the northeastern sites compared to central sites (Erer Gota, Dire Dawa, and Awash Sebat Kilo) and the southeastern sites. Phylogenetic and network analysis revealed that the HOA An. stephensi are more genetically similar to An. stephensi from southern Asia than from the Arabian Peninsula. Finally, molecular blood meal analysis revealed evidence of feeding on cows, goats, dogs, and humans, as well as evidence of multiple (mixed) blood meals. CONCLUSION We show that An. stephensi is genetically diverse in Ethiopia and with evidence of geographical structure. Variation in the level of diversity supports the hypothesis for a more recent introduction of An. stephensi into southeastern Ethiopia relative to the northeastern region. We also find evidence that supports the hypothesis that HOA An. stephensi populations originate from South Asia rather than the Arabian Peninsula. The evidence of both zoophagic and anthropophagic feeding support the need for additional investigation into the potential for livestock movement to play a role in vector spread in this region.
Collapse
Affiliation(s)
- Tamar E Carter
- Department of Biology, Baylor University, Waco, TX, USA.
| | - Solomon Yared
- Department of Biology, Jigjiga University, Jigjiga, Ethiopia
| | | | - Joseph Spear
- Department of Biology, Baylor University, Waco, TX, USA
| | - Sae Hee Choi
- Department of Biology, Baylor University, Waco, TX, USA
| | | | - Peter Mumba
- USAID, Addis Ababa, Ethiopia
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Dereje Dengela
- Abt Associates, PMI VectorLink Project, Rockville, MD, USA
| | - Gedeon Yohannes
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Sheleme Chibsa
- U.S President's Malaria Initiative (PMI) Program, Addis Ababa, Ethiopia
| | - Matthew Murphy
- USAID, Bureau for Global Health, Office of Infectious Disease, Malaria Division, 2100 Crystal Drive| 10082B, Arlington, VA, 22202, USA
| | | | - Cecilia Flately
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Karen Lopez
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Daniel Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Sarah Zohdy
- U.S. President's Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Seth R Irish
- U.S. President's Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meshesha Balkew
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| |
Collapse
|
25
|
Nambunga IH, Msugupakulya BJ, Hape EE, Mshani IH, Kahamba NF, Mkandawile G, Mabula DM, Njalambaha RM, Kaindoa EW, Muyaga LL, Hermy MRG, Tripet F, Ferguson HM, Ngowo HS, Okumu FO. Wild populations of malaria vectors can mate both inside and outside human dwellings. Parasit Vectors 2021; 14:514. [PMID: 34620227 PMCID: PMC8499572 DOI: 10.1186/s13071-021-04989-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wild populations of Anopheles mosquitoes are generally thought to mate outdoors in swarms, although once colonized, they also mate readily inside laboratory cages. This study investigated whether the malaria vectors Anopheles funestus and Anopheles arabiensis can also naturally mate inside human dwellings. METHOD Mosquitoes were sampled from three volunteer-occupied experimental huts in a rural Tanzanian village at 6:00 p.m. each evening, after which the huts were completely sealed and sampling was repeated at 11:00 p.m and 6 a.m. the next morning to compare the proportions of inseminated females. Similarly timed collections were done inside local unsealed village houses. Lastly, wild-caught larvae and pupae were introduced inside or outside experimental huts constructed inside two semi-field screened chambers. The huts were then sealed and fitted with exit traps, allowing mosquito egress but not entry. Mating was assessed in subsequent days by sampling and dissecting emergent adults caught indoors, outdoors and in exit traps. RESULTS Proportions of inseminated females inside the experimental huts in the village increased from approximately 60% at 6 p.m. to approximately 90% the following morning despite no new mosquitoes entering the huts after 6 p.m. Insemination in the local homes increased from approximately 78% to approximately 93% over the same time points. In the semi-field observations of wild-caught captive mosquitoes, the proportions of inseminated An. funestus were 20.9% (95% confidence interval [CI]: ± 2.8) outdoors, 25.2% (95% CI: ± 3.4) indoors and 16.8% (± 8.3) in exit traps, while the proportions of inseminated An. arabiensis were 42.3% (95% CI: ± 5.5) outdoors, 47.4% (95% CI: ± 4.7) indoors and 37.1% (CI: ± 6.8) in exit traps. CONCLUSION Wild populations of An. funestus and An. arabiensis in these study villages can mate both inside and outside human dwellings. Most of the mating clearly happens before the mosquitoes enter houses, but additional mating happens indoors. The ecological significance of such indoor mating remains to be determined. The observed insemination inside the experimental huts fitted with exit traps and in the unsealed village houses suggests that the indoor mating happens voluntarily even under unrestricted egress. These findings may inspire improved vector control, such as by targeting males indoors, and potentially inform alternative methods for colonizing strongly eurygamic Anopheles species (e.g. An. funestus) inside laboratories or semi-field chambers.
Collapse
Affiliation(s)
- Ismail H. Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Betwel J. Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
| | - Emmanuel E. Hape
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Issa H. Mshani
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Najat F. Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
| | - Gustav Mkandawile
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Daniel M. Mabula
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Rukiyah M. Njalambaha
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Emmanuel W. Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa
| | - Letus L. Muyaga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Marie R. G. Hermy
- Disease Vector Group, Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, UK
| | - Heather M. Ferguson
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Halfan S. Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Fredros O. Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa
| |
Collapse
|
26
|
Rani J, Chauhan C, Das De T, Kumari S, Sharma P, Tevatiya S, Patel K, Mishra AK, Pandey KC, Singh N, Dixit R. Hemocyte RNA-Seq analysis of Indian malarial vectors Anopheles stephensi and Anopheles culicifacies: From similarities to differences. Gene 2021; 798:145810. [PMID: 34224830 DOI: 10.1016/j.gene.2021.145810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 02/05/2023]
Abstract
Anopheles stephensi and Anopheles culicifacies are dominant malarial vectors in urban and rural India, respectively. Both species carry significant biological differences in their behavioral adaptation and immunity, but the genetic basis of these variations are still poorly understood. Here, we uncovered the genetic differences of immune blood cells, that influence several immune-physiological responses. We generated, analyzed and compared the hemocyte RNA-Seq database of both mosquitoes. A total of 5,837,223,769 assembled bases collapsed into 7,595 and 3,791 transcripts, originating from hemocytes of laboratory-reared 3-4 days old naïve (sugar-fed) mosquitoes, Anopheles stephensi and Anopheles culicifacies respectively. Comparative GO annotation analysis revealed that both mosquito hemocytes encode similar proteins. Furthermore, while An. stephensi hemocytes showed a higher percentage of immune transcripts encoding APHAG (Autophagy), IMD (Immune deficiency pathway), PRDX (Peroxiredoxin), SCR (Scavenger receptor), IAP (Inhibitor of apoptosis), GALE (galactoside binding lectins), BGBPs (1,3 beta D glucan binding proteins), CASPs (caspases) and SRRP (Small RNA regulatory pathway), An. culicifacies hemocytes yielded a relatively higher percentage of transcripts encoding CLIP (Clip domain serine protease), FREP (Fibrinogen related proteins), PPO (Prophenol oxidase), SRPN (Serpines), ML (Myeloid differentiation 2-related lipid recognition protein), Toll path and TEP (Thioester protein), family proteins. However, a detailed comparative Interproscan analysis showed An. stephensi mosquito hemocytes encode proteins with increased repeat numbers as compared to An. culicifacies. Notably, we observed an abundance of transcripts showing significant variability of encoded proteins with repeats such as LRR (Leucine rich repeat), WD40 (W-D dipeptide), Ankyrin, Annexin, Tetratricopeptide and Mitochondrial substrate carrier repeat-containing family proteins, which may have a direct influence on species-specific immune-physiological responses. Summarily, our deep sequencing analysis unraveled that An. stephensi evolved with an expansion of repeat sequences in hemocyte proteins as compared to An. culicifacies, possibly providing an advantage for better adaptation to diverse environments.
Collapse
Affiliation(s)
- Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India; Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Karan Patel
- DNA Xperts Private Limited, Sector 63, Noida, Uttar Pradesh 20130, India
| | - Ashwani K Mishra
- DNA Xperts Private Limited, Sector 63, Noida, Uttar Pradesh 20130, India
| | - Kailash C Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Namita Singh
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India.
| |
Collapse
|
27
|
Balkew M, Mumba P, Yohannes G, Abiy E, Getachew D, Yared S, Worku A, Gebresilassie A, Tadesse FG, Gadisa E, Esayas E, Ashine T, Ejeta D, Dugassa S, Yohannes M, Lemma W, Yewhalaw D, Chibsa S, Teka H, Murphy M, Yoshimizu M, Dengela D, Zohdy S, Irish S. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018-2020. Malar J 2021; 20:263. [PMID: 34107943 PMCID: PMC8189708 DOI: 10.1186/s12936-021-03801-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles stephensi, an invasive malaria vector, was first detected in Africa nearly 10 years ago. After the initial finding in Djibouti, it has subsequently been found in Ethiopia, Sudan and Somalia. To better inform policies and vector control decisions, it is important to understand the distribution, bionomics, insecticide susceptibility, and transmission potential of An. stephensi. These aspects were studied as part of routine entomological monitoring in Ethiopia between 2018 and 2020. METHODS Adult mosquitoes were collected using human landing collections, pyrethrum spray catches, CDC light traps, animal-baited tent traps, resting boxes, and manual aspiration from animal shelters. Larvae were collected using hand-held dippers. The source of blood in blood-fed mosquitoes and the presence of sporozoites was assessed through enzyme-linked immunosorbent assays (ELISA). Insecticide susceptibility was assessed for pyrethroids, organophosphates and carbamates. RESULTS Adult An. stephensi were collected with aspiration, black resting boxes, and animal-baited traps collecting the highest numbers of mosquitoes. Although sampling efforts were geographically widespread, An. stephensi larvae were collected in urban and rural sites in eastern Ethiopia, but An. stephensi larvae were not found in western Ethiopian sites. Blood-meal analysis revealed a high proportion of blood meals that were taken from goats, and only a small proportion from humans. Plasmodium vivax was detected in wild-collected An. stephensi. High levels of insecticide resistance were detected to pyrethroids, carbamates and organophosphates. Pre-exposure to piperonyl butoxide increased susceptibility to pyrethroids. Larvae were found to be susceptible to temephos. CONCLUSIONS Understanding the bionomics, insecticide susceptibility and distribution of An. stephensi will improve the quality of a national response in Ethiopia and provide additional information on populations of this invasive species in Africa. Further work is needed to understand the role that An. stephensi will have in Plasmodium transmission and malaria case incidence. While additional data are being collected, national programmes can use the available data to formulate and operationalize national strategies against the threat of An. stephensi.
Collapse
Affiliation(s)
- Meshesha Balkew
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Peter Mumba
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Gedeon Yohannes
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Ephrem Abiy
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sheleme Chibsa
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,United States Agency for International Development (USAID), Addis Ababa, Ethiopia
| | - Hiwot Teka
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.,US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,United States Agency for International Development (USAID), Addis Ababa, Ethiopia
| | - Matt Murphy
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Melissa Yoshimizu
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,US President's Malaria Initiative, USAID, Washington, DC, USA
| | - Dereje Dengela
- Abt Associates, PMI VectorLink Project, Rockville, MD, USA
| | - Sarah Zohdy
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,Entomology Branch Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Seth Irish
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia. .,Entomology Branch Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
28
|
Amuthavalli P, Hwang JS, Dahms HU, Wang L, Anitha J, Vasanthakumaran M, Gandhi AD, Murugan K, Subramaniam J, Paulpandi M, Chandramohan B, Singh S. Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects. Sci Rep 2021; 11:8837. [PMID: 33893349 PMCID: PMC8065047 DOI: 10.1038/s41598-021-88164-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
Microbes or parasites spread vector-borne diseases by mosquitoes without being affected themselves. Insecticides used in vector control produce a substantial problem for human health. This study synthesized zinc oxide nanoparticles (ZnO NPs) using Lawsonia inermis L. and were characterized by UV-vis, FT-IR, SEM with EDX, and XRD analysis. Green synthesized ZnO NPs were highly toxic against Anopheles stephensi, whose lethal concentrations values ranged from 5.494 ppm (I instar), 6.801 ppm (II instar), 9.336 ppm (III instar), 10.736 ppm (IV instar), and 12.710 ppm (pupae) in contrast to L. inermis treatment. The predation efficiency of the teleost fish Gambusia affinis and the copepod Mesocyclops aspericornis against A. stephensi was not affected by exposure at sublethal doses of ZnO NPs. The predatory potency for G. affinis was 45 (I) and 25.83% (IV), copepod M. aspericornis was 40.66 (I) and 10.8% (IV) while in an ZnO NPs contaminated environment, the predation by the fish G. affinis was boosted to 71.33 and 34.25%, and predation of the copepod M. aspericornis was 60.35 and 16.75%, respectively. ZnO NPs inhibited the growth of several microbial pathogens including the bacteria (Escherichia coli and Bacillus subtilis) and the fungi (Alternaria alternate and Aspergillus flavus), respectively. ZnO NPs decreased the cell viability of Hep-G2 with IC50 value of 21.63 µg/mL (R2 = 0.942; P < 0.001) while the concentration increased from 1.88 to 30 µg/mL. These outcomes support the use of L. inermis mediated ZnO NPs for mosquito control and drug development.
Collapse
Affiliation(s)
- Pandiyan Amuthavalli
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Lan Wang
- School of Life Science, Shanxi University, TaiyuanShanxi Province, 030006, China
| | - Jagannathan Anitha
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Murugan Vasanthakumaran
- Department of Zoology, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, 641029, India
| | - Arumugam Dhanesh Gandhi
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamil Nadu, 632 115, India
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India.
| | - Jayapal Subramaniam
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Manickam Paulpandi
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Balamurugan Chandramohan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Shivangi Singh
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Koahsiung, Taiwan
| |
Collapse
|
29
|
Ishtiaq F, Swain S, Kumar SS. Anopheles stephensi (Asian Malaria Mosquito). Trends Parasitol 2021; 37:571-572. [PMID: 33865712 DOI: 10.1016/j.pt.2021.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Farah Ishtiaq
- Tata Institute for Genetics and Society-Centre at inStem, inStem Building, NCBS Campus, GKVK Post, Bellary Road, Bangalore 560065, India.
| | - Sunita Swain
- Tata Institute for Genetics and Society-Centre at inStem, inStem Building, NCBS Campus, GKVK Post, Bellary Road, Bangalore 560065, India
| | - S Sampath Kumar
- Tata Institute for Genetics and Society-Centre at inStem, inStem Building, NCBS Campus, GKVK Post, Bellary Road, Bangalore 560065, India
| |
Collapse
|
30
|
Reinhold JM, Shaw R, Lahondère C. Beat the heat: Culex quinquefasciatus regulates its body temperature during blood feeding. J Therm Biol 2021; 96:102826. [PMID: 33627266 DOI: 10.1016/j.jtherbio.2020.102826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/09/2020] [Accepted: 12/28/2020] [Indexed: 11/19/2022]
Abstract
Mosquitoes are regarded as one of the most dangerous animals on earth. Because they are responsible for the spread of a wide range of both human and animal pathogens, research of the underlying mechanisms of their feeding behavior and physiology is critical. Among disease vector mosquitoes, Culex quinquefasciatus, a known carrier of West Nile virus and Western Equine Encephalitis, remains relatively understudied. As blood-sucking insects, adaptations (either at the molecular or physiological level) while feeding on warm blood are crucial to their survival, as overheating can result in death due to heat stress. Our research aims to determine how Cx. quinquefasciatus copes with the heat associated with warm blood meal ingestion and possibly uncover the adaptations this species uses to avoid thermal stress. Through the use of thermographic imaging, we analyzed the body temperature of Cx. quinquefasciatus while blood feeding. Infrared thermography has allowed us to identify a cooling strategy, evaporative cooling via the production of fluid droplets, and an overall low body temperature in comparison to the blood temperature during feeding. Understanding Cx. quinquefasciatus' adaptations and the strategies they employ to reduce their body temperature while blood feeding constitutes the first step towards discovering potential targets that could be used for their control.
Collapse
Affiliation(s)
- Joanna M Reinhold
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ryan Shaw
- Departement of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
31
|
Nasir SMI, Amarasekara S, Wickremasinghe R, Fernando D, Udagama P. Prevention of re-establishment of malaria: historical perspective and future prospects. Malar J 2020; 19:452. [PMID: 33287809 PMCID: PMC7720033 DOI: 10.1186/s12936-020-03527-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
Prevention of re-establishment (POR) refers to the prevention of malaria outbreak/epidemic occurrence or preventing re-establishment of indigenous malaria in a malaria-free country. Understanding the effectiveness of the various strategies used for POR is, therefore, of vital importance to countries certified as "malaria-free" or to the countries to be thus certified in the near future. This review is based on extensive review of literature on both the POR strategies and elimination schemes of countries, (i) that have reached malaria-free status (e.g. Armenia, Mauritius, Sri Lanka), (ii) those that are reaching pre-elimination stage (e.g. South Korea), and (iii) countries at the control phase (e.g. India). History has clearly shown that poorly implemented POR programmes can result in deadly consequences (e.g. Sri Lanka); conversely, there are examples of robust POR programmes that have sustained malaria free status that can serve as examples to countries working toward elimination. Countries awaiting malaria elimination status should pre-plan their POR strategies. Malaria-free countries face the risk of resurgence mostly due to imported malaria cases; thus, a robust passenger screening programme and cross border collaborations are crucial in a POR setting. In addition, sustained vigilance, and continued funding for the national anti-malarial campaign programme and for related research is of vital importance for POR. With distinct intrinsic potential for malaria in each country, tailor-made POR programmes are built through continuous and robust epidemiological and entomological surveillance, particularly in countries such as Sri Lanka with increased receptivity and vulnerability for malaria transmission. In summary, across all five countries under scrutiny, common strengths of the POR programmes are (i) a multipronged approach, (ii) strong passive, active, and activated passive case detection, (iii) Indoor residual spraying (IRS), and (iv) health education/awareness programmes.
Collapse
Affiliation(s)
- S M Ibraheem Nasir
- Department of Zoology & Environment Sciences, Faculty of Science, University of Colombo, Colombo 3, Sri Lanka
| | - Sachini Amarasekara
- Department of Zoology & Environment Sciences, Faculty of Science, University of Colombo, Colombo 3, Sri Lanka
| | - Renu Wickremasinghe
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Deepika Fernando
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka
| | - Preethi Udagama
- Department of Zoology & Environment Sciences, Faculty of Science, University of Colombo, Colombo 3, Sri Lanka.
| |
Collapse
|
32
|
Escobar D, Ascencio K, Ortiz A, Palma A, Sánchez A, Fontecha G. Blood Meal Sources of Anopheles spp. in Malaria Endemic Areas of Honduras. INSECTS 2020; 11:insects11070450. [PMID: 32708582 PMCID: PMC7412045 DOI: 10.3390/insects11070450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/18/2022]
Abstract
Malaria remains a life-threatening disease in many tropical countries. Honduras has successfully reduced malaria transmission as different control methods have been applied, focusing mainly on indoor mosquitoes. The selective pressure exerted by the use of insecticides inside the households could modify the feeding behavior of the mosquitoes, forcing them to search for available animal hosts outside the houses. These animal hosts in the peridomicile could consequently become an important factor in maintaining vector populations in endemic areas. Herein, we investigated the blood meal sources and Plasmodium spp. infection on anophelines collected outdoors in endemic areas of Honduras. Individual PCR reactions with species-specific primers were used to detect five feeding sources on 181 visibly engorged mosquitoes. In addition, a subset of these mosquitoes was chosen for pathogen analysis by a nested PCR approach. Most mosquitoes fed on multiple hosts (2 to 4), and 24.9% of mosquitoes had fed on a single host, animal or human. Chicken and bovine were the most frequent blood meal sources (29.5% and 27.5%, respectively). The average human blood index (HBI) was 22.1%. None of the mosquitoes were found to be infected with Plasmodium spp. Our results show the opportunistic and zoophilic behavior of Anopheles mosquitoes in Honduras.
Collapse
Affiliation(s)
- Denis Escobar
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
| | - Krisnaya Ascencio
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
| | - Andrés Ortiz
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
| | - Adalid Palma
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
| | - Ana Sánchez
- Department of Health Sciences, Brock University, St. Catharines, ON L2V 5A2, Canada;
| | - Gustavo Fontecha
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
- Correspondence: ; Tel.: +504-33935443
| |
Collapse
|
33
|
Surendran SN, Jayadas TTP, Tharsan A, Thiruchenthooran V, Santhirasegaram S, Sivabalakrishnan K, Raveendran S, Ramasamy R. Anopheline bionomics, insecticide resistance and transnational dispersion in the context of controlling a possible recurrence of malaria transmission in Jaffna city in northern Sri Lanka. Parasit Vectors 2020; 13:156. [PMID: 32228675 PMCID: PMC7106892 DOI: 10.1186/s13071-020-04037-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/25/2020] [Indexed: 02/05/2023] Open
Abstract
Background Malaria was eliminated from Sri Lanka in 2013. However, the influx of infected travelers and the presence of potent anopheline vectors can re-initiate transmission in Jaffna city, which is separated by a narrow strait from the malaria-endemic Indian state of Tamil Nadu. Methods Anopheline larvae were collected from different habitats in Jaffna city and the susceptibility of emergent adults to DDT, malathion and deltamethrin investigated. Results Anopheline larvae were found in wells, surface-exposed drains, ponds, water puddles and water storage tanks, with many containing polluted, alkaline and brackish water. Anopheles culicifacies, An. subpictus, An. stephensi and An. varuna were identified in the collections. Adults of the four anopheline species were resistant to DDT. Anopheles subpictus and An. stephensi were resistant while An. culicifacies and An. varuna were possibly resistant to deltamethrin. Anopheles stephensi was resistant, An. subpictus possibly resistant while An. varuna and An. culicifacies were susceptible to malathion. DNA sequencing showed a L1014F (TTA to TTC) mutation in the IIS6 transmembrane segment of the voltage-gated sodium channel protein in deltamethrin-resistant An. subpictus—a mutation previously observed in India but not Sri Lanka. Conclusion Anopheles subpictus in Jaffna, like An. stephensi, may have recently originated in coastal Tamil Nadu. Besides infected overseas travelers, wind- and boat-borne carriage of Plasmodium-infected anophelines across the Palk Strait can potentially reintroduce malaria transmission to Jaffna city. Adaptation to diverse larval habitats and resistance to common insecticides in anophelines are identified as potential problems for vector control should this happen. ![]()
Collapse
Affiliation(s)
| | - Tibutius T P Jayadas
- Department of Zoology, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka
| | - Annathurai Tharsan
- Department of Zoology, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka
| | | | | | | | | | | |
Collapse
|
34
|
Balkew M, Mumba P, Dengela D, Yohannes G, Getachew D, Yared S, Chibsa S, Murphy M, George K, Lopez K, Janies D, Choi SH, Spear J, Irish SR, Carter TE. Geographical distribution of Anopheles stephensi in eastern Ethiopia. Parasit Vectors 2020; 13:35. [PMID: 31959237 PMCID: PMC6971998 DOI: 10.1186/s13071-020-3904-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/09/2020] [Indexed: 01/29/2023] Open
Abstract
Background The recent detection of the South Asian malaria vector Anopheles stephensi in Ethiopia and other regions in the Horn of Africa has raised concerns about its potential impact on malaria transmission. We report here the findings of a survey for this species in eastern Ethiopia using both morphological and molecular methods for species identification. Methods Adult and larval/pupal collections were conducted at ten sites in eastern Ethiopia and Anopheles specimens were identified using standard morphological keys and genetic analysis. Results In total, 2231 morphologically identified An. stephensi were collected. A molecular approach incorporating both PCR endpoint assay and sequencing of portions of the internal transcribed spacer 2 (ITS2) and cytochrome c oxidase subunit 1 (cox1) loci confirmed the identity of the An. stephensi in most cases (119/124 of the morphologically identified An. stephensi confirmed molecularly). Additionally, we observed Aedes aegypti larvae and pupae at many of the An. stephensi larval habitats. Conclusions Our findings show that An. stephensi is widely distributed in eastern Ethiopia and highlight the need for further surveillance in the southern, western and northern parts of the country and throughout the Horn of Africa.
Collapse
Affiliation(s)
- Meshesha Balkew
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia.
| | - Peter Mumba
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Dereje Dengela
- Abt Associates, PMI VectorLink Project, Rockville, MD, USA
| | - Gedeon Yohannes
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | | | | | - Sheleme Chibsa
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,United States Agency for International Development (USAID), Addis Ababa, Ethiopia
| | - Matthew Murphy
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kristen George
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,Bureau for Global Health, Office of Infectious Disease, Malaria Division, USAID, Arlington, VA, USA
| | - Karen Lopez
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Daniel Janies
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | | | - Seth R Irish
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
35
|
Identification of mixed and successive blood meals of mosquitoes using MALDI-TOF MS protein profiling. Parasitology 2019; 147:329-339. [PMID: 31840617 DOI: 10.1017/s003118201900163x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The accurate and rapid identification of mosquito blood meals is critical to study the interactions between vectors and vertebrate hosts and, subsequently, to develop vector control strategies. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has been shown to be a reliable and effective tool for identifying single blood meals from mosquitoes. METHODS In this study, we developed MALDI-TOF MS profiling protocols to identify Anopheles gambiae Giles, Anopheles coluzzii and Aedes albopictus mosquitoes' mixed blood meals and the last of successive blood meals. The mosquitoes were either successively artificially fed with distinct host bloods or engorged with mixed bloods from distinct vertebrate hosts, such as humans, sheep and dogs. RESULTS Blind test analyses revealed a correct identification of mixed blood meals from mosquitoes using MALDI-TOF MS profiling. The 353 MS spectra from mixed blood meals were identified using log score values >1.8. All MS spectra (n = 244) obtained from mosquitoes' successive blood meals were reproducible and specific to the last blood meal, suggesting that the previous blood meals do not have an impact on the identification of the last one. CONCLUSION MALDI-TOF MS profiling approach appears to be an effective and robust technique to identify the last and mixed blood meals during medical entomological surveys.
Collapse
|
36
|
Subbarao SK, Nanda N, Rahi M, Raghavendra K. Biology and bionomics of malaria vectors in India: existing information and what more needs to be known for strategizing elimination of malaria. Malar J 2019; 18:396. [PMID: 31796010 PMCID: PMC6892149 DOI: 10.1186/s12936-019-3011-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/16/2019] [Indexed: 01/28/2023] Open
Abstract
India has committed to eliminate malaria by 2030. The national framework for malaria elimination released by the Government of India plans to achieve this goal through strategic planning in a phased manner. Since vector control is a major component of disease management and vector elimination, it requires a thorough understanding of the biology and bionomics of malaria vectors exhibiting definite distribution patterns in diverse ecosystems in the country. Although a wealth of information is available on these aspects, lesser-known data are on biting time and rhythm, and the magnitude of outdoor transmission by the vectors which are crucial for effective implementation of the key vector control interventions. Most of the data available for the vector species are at sensu lato level, while the major vectors are species complexes and their members distinctly differ in biological characters. Furthermore, the persistent use of insecticides in indoor residual spray and long-lasting insecticidal nets has resulted in widespread resistance in vectors and changes in their behaviour. In this document, challenges in vector control in the Indian context have been identified and possible solutions to overcome the problem are suggested. Adequate addressing of the issues raised would greatly help make a deep dent in malaria transmission and consequently result in disease elimination within the targeted time frame.
Collapse
Affiliation(s)
- Sarala K Subbarao
- Indian Council of Medical Research (ICMR), Ramalingaswami Bhavan, New Delhi, India. .,ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, Delhi, India. .,, Delhi, India.
| | - Nutan Nanda
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, Delhi, India.,, Delhi, India
| | - Manju Rahi
- Indian Council of Medical Research (ICMR), Ramalingaswami Bhavan, New Delhi, India
| | - Kamaraju Raghavendra
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, Delhi, India
| |
Collapse
|
37
|
Thomas S, Ravishankaran S, Justin NAJA, Asokan A, Kalsingh TMJ, Mathai MT, Valecha N, Montgomery J, Thomas MB, Eapen A. Microclimate variables of the ambient environment deliver the actual estimates of the extrinsic incubation period of Plasmodium vivax and Plasmodium falciparum: a study from a malaria-endemic urban setting, Chennai in India. Malar J 2018; 17:201. [PMID: 29769075 PMCID: PMC5956829 DOI: 10.1186/s12936-018-2342-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/07/2018] [Indexed: 01/07/2023] Open
Abstract
Background Environmental factors such as temperature, relative humidity and their daily variation influence a range of mosquito life history traits and hence, malaria transmission. The standard way of characterizing environmental factors with meteorological station data need not be the actual microclimates experienced by mosquitoes within local transmission settings. Methods A year-long study was conducted in Chennai, India to characterize local temperature and relative humidity (RH). Data loggers (Hobos) were placed in a range of probable indoor and outdoor resting sites of Anopheles stephensi. Recordings were taken hourly to estimate mean temperature and RH, together with daily temperature range (DTR) and daily relative humidity range. The temperature data were used to explore the predicted variation in extrinsic incubation period (EIP) of Plasmodium falciparum and Plasmodium vivax between microhabitats and across the year. Results Mean daily temperatures within the indoor settings were significantly warmer than those recorded outdoors. DTR in indoor environments was observed to be modest and ranged from 2 to 6 °C. Differences in EIP between microhabitats were most notable during the hottest summer months of April–June, with parasite development predicted to be impaired for tiled houses and overhead tanks. Overall, the prevailing warm and stable conditions suggest rapid parasite development rate regardless of where mosquitoes might rest. Taking account of seasonal and local environmental variation, the predicted EIP of P. falciparum varied from a minimum of 9.1 days to a maximum of 15.3 days, while the EIP of P. vivax varied from 8.0 to 24.3 days. Conclusions This study provides a detailed picture of the actual microclimates experienced by mosquitoes in an urban slum malaria setting. The data indicate differences between microhabitats that could impact mosquito and parasite life history traits. The predicted effects for EIP are often relatively subtle, but variation between minimum and maximum EIPs can play a role in disease transmission, depending on the time of year and where mosquitoes rest. Appropriate characterization of the local microclimate conditions would be the key to fully understand the effects of environment on local transmission ecology. Electronic supplementary material The online version of this article (10.1186/s12936-018-2342-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shalu Thomas
- ICMR-National Institute of Malaria Research, IDVC Field Unit, NIE Campus, 2nd Main Road, TNHB, Ayapakkam, Chennai, 600 077, India.,Department of Zoology, Madras Christian College, Tambaram, Chennai, 600 059, India
| | - Sangamithra Ravishankaran
- ICMR-National Institute of Malaria Research, IDVC Field Unit, NIE Campus, 2nd Main Road, TNHB, Ayapakkam, Chennai, 600 077, India
| | - N A Johnson Amala Justin
- ICMR-National Institute of Malaria Research, IDVC Field Unit, NIE Campus, 2nd Main Road, TNHB, Ayapakkam, Chennai, 600 077, India
| | - Aswin Asokan
- ICMR-National Institute of Malaria Research, IDVC Field Unit, NIE Campus, 2nd Main Road, TNHB, Ayapakkam, Chennai, 600 077, India
| | - T Maria Jusler Kalsingh
- ICMR-National Institute of Malaria Research, IDVC Field Unit, NIE Campus, 2nd Main Road, TNHB, Ayapakkam, Chennai, 600 077, India
| | - Manu Thomas Mathai
- Department of Zoology, Madras Christian College, Tambaram, Chennai, 600 059, India
| | - Neena Valecha
- ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110 077, India
| | - Jacqui Montgomery
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Matthew B Thomas
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alex Eapen
- ICMR-National Institute of Malaria Research, IDVC Field Unit, NIE Campus, 2nd Main Road, TNHB, Ayapakkam, Chennai, 600 077, India.
| |
Collapse
|
38
|
Barreaux P, Barreaux AMG, Sternberg ED, Suh E, Waite JL, Whitehead SA, Thomas MB. Priorities for Broadening the Malaria Vector Control Tool Kit. Trends Parasitol 2017; 33:763-774. [PMID: 28668377 PMCID: PMC5623623 DOI: 10.1016/j.pt.2017.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
Abstract
Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) have contributed substantially to reductions in the burden of malaria in the past 15 years. Building on this foundation, the goal is now to drive malaria towards elimination. Vector control remains central to this goal, but there are limitations to what is achievable with the current tools. Here we highlight how a broader appreciation of adult mosquito behavior is yielding a number of supplementary approaches to bolster the vector-control tool kit. We emphasize tools that offer new modes of control and could realistically contribute to operational control in the next 5 years. Promoting complementary tools that are close to field-ready is a priority for achieving the global malaria-control targets.
Collapse
Affiliation(s)
- Priscille Barreaux
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; Laboratory of Ecology and Epidemiology of Parasites, Université de Neuchatel, Avenue du 1er-Mars 26, 2000, Neuchatel, Switzerland
| | - Antoine M G Barreaux
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Eleanore D Sternberg
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Eunho Suh
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jessica L Waite
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Shelley A Whitehead
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
39
|
Balabaskaran Nina P, Mohanty AK, Ballav S, Vernekar S, Bhinge S, D'souza M, Walke J, Manoharan SK, Mascarenhas A, Gomes E, Chery L, Valecha N, Kumar A, Rathod PK. Dynamics of Plasmodium vivax sporogony in wild Anopheles stephensi in a malaria-endemic region of Western India. Malar J 2017; 16:284. [PMID: 28693607 PMCID: PMC5504555 DOI: 10.1186/s12936-017-1931-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/04/2017] [Indexed: 11/16/2022] Open
Abstract
Background In global efforts to track mosquito infectivity and parasite elimination, controlled mosquito-feeding experiments can help in understanding the dynamics of parasite development in vectors. Anopheles stephensi is often accepted as the major urban malaria vector that transmits Plasmodium in Goa and elsewhere in South Asia. However, much needs to be learned about the interactions of Plasmodium vivax with An. stephensi. As a component of the US NIH International Center of Excellence for Malaria Research (ICEMR) for Malaria Evolution in South Asia (MESA), a series of membrane-feeding experiments with wild An. stephensi and P. vivax were carried out to better understand this vector-parasite interaction. Methods Wild An. stephensi larvae and pupae were collected from curing water in construction sites in the city of Ponda, Goa, India. The larvae and pupae were reared at the MESA ICEMR insectary within the National Institute of Malaria Research (NIMR) field unit in Goa until they emerged into adult mosquitoes. Blood for membrane-feeding experiments was obtained from malaria patients at the local Goa Medical College and Hospital who volunteered for the study. Parasites were counted by Miller reticule technique and correlation between gametocytaemia/parasitaemia and successful mosquito infection was studied. Results A weak but significant correlation was found between patient blood gametocytaemia/parasitaemia and mosquito oocyst load. No correlation was observed between gametocytaemia/parasitaemia and oocyst infection rates, and between gametocyte sex ratio and oocyst load. When it came to development of the parasite in the mosquito, a strong positive correlation was observed between oocyst midgut levels and sporozoite infection rates, and between oocyst levels and salivary gland sporozoite loads. Kinetic studies showed that sporozoites appeared in the salivary gland as early as day 7, post-infection. Conclusions This is the first study in India to carry out membrane-feeding experiments with wild An. stephensi and P. vivax. A wide range of mosquito infection loads and infection rates were observed, pointing to a strong interplay between parasite, vector and human factors. Most of the present observations are in agreement with feeding experiments conducted with P. vivax elsewhere in the world. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1931-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ajeet Kumar Mohanty
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Shuvankar Ballav
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Smita Vernekar
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Sushma Bhinge
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Maria D'souza
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Jayashree Walke
- Departments of Chemistry and of Global Health, University of Washington, Seattle, WA, 98195, USA.,Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - Suresh Kumar Manoharan
- Departments of Chemistry and of Global Health, University of Washington, Seattle, WA, 98195, USA.,Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - Anjali Mascarenhas
- Departments of Chemistry and of Global Health, University of Washington, Seattle, WA, 98195, USA.,Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - Edwin Gomes
- Goa Medical College and Hospital, Bambolim, Goa, 403202, India
| | - Laura Chery
- Departments of Chemistry and of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Neena Valecha
- National Institute of Malaria Research (ICMR), Sector 8, Dwarka, New Delhi, 110077, India
| | - Ashwani Kumar
- National Institute of Malaria Research, Field Unit, Campal, Goa, 403001, India
| | - Pradipsinh K Rathod
- Departments of Chemistry and of Global Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|