1
|
Obaldía N, Da Silva Filho JL, Núñez M, Glass KA, Oulton T, Achcar F, Wirjanata G, Duraisingh M, Felgner P, Tetteh KK, Bozdech Z, Otto TD, Marti M. Sterile protection against P. vivax malaria by repeated blood stage infection in the Aotus monkey model. Life Sci Alliance 2024; 7:e202302524. [PMID: 38158220 PMCID: PMC10756917 DOI: 10.26508/lsa.202302524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
The malaria parasite Plasmodium vivax remains a major global public health challenge, and no vaccine is approved for use in humans. Here, we assessed whether P. vivax strain-transcendent immunity can be achieved by repeated infection in Aotus monkeys. Sterile immunity was achieved after two homologous infections, whereas subsequent heterologous challenge provided only partial protection. IgG levels based on P. vivax lysate ELISA and protein microarray increased with repeated infections and correlated with the level of homologous protection. Parasite transcriptional profiles provided no evidence of major antigenic switching upon homologous or heterologous challenge. However, we observed significant sequence diversity and transcriptional differences in the P. vivax core gene repertoire between the two strains used in the study, suggesting that partial protection upon heterologous challenge is due to molecular differences between strains rather than immune evasion by antigenic switching. Our study demonstrates that sterile immunity against P. vivax can be achieved by repeated homologous blood stage infection in Aotus monkeys, thus providing a benchmark to test the efficacy of candidate blood stage P. vivax malaria vaccines.
Collapse
Affiliation(s)
- Nicanor Obaldía
- Departamento de Investigaciones en Parasitologia, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Republic of Panamá
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- https://ror.org/00vtgdb53 Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Joao Luiz Da Silva Filho
- https://ror.org/00vtgdb53 Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- https://ror.org/02crff812 Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Marlon Núñez
- Departamento de Investigaciones en Parasitologia, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Republic of Panamá
| | - Katherine A Glass
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Tate Oulton
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Fiona Achcar
- https://ror.org/00vtgdb53 Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- https://ror.org/02crff812 Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Manoj Duraisingh
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Philip Felgner
- Institute for Immunology, University of California, Irvine, CA, USA
| | - Kevin Ka Tetteh
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thomas D Otto
- https://ror.org/00vtgdb53 Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- https://ror.org/00vtgdb53 Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- https://ror.org/02crff812 Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
López AR, Martins EB, de Pina-Costa A, Pacheco-Silva AB, Ferreira MT, Mamani RF, Detepo PJT, Lupi O, Bressan CS, Calvet GA, Silva MFB, de Fátima Ferreira-da-Cruz M, de Bruycker-Nogueira F, Filippis AMB, Daniel-Ribeiro CT, Siqueira A, Brasil P. A fatal respiratory complication of malaria caused by Plasmodium vivax. Malar J 2023; 22:303. [PMID: 37814260 PMCID: PMC10563287 DOI: 10.1186/s12936-023-04720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Malaria is endemic and represents an important public health issue in Brazil. Knowledge of risk factors for disease progression represents an important step in preventing and controlling malaria-related complications. Reports of severe forms of Plasmodium vivax malaria are now becoming a common place, but respiratory complications are described in less than 3% of global literature on severe vivax malaria. CASE PRESENTATION A severe respiratory case of imported vivax malaria in a previously healthy 40-year-old woman has been reported. The patient died after the fifth day of treatment with chloroquine and primaquine due to acute respiratory distress syndrome. CONCLUSIONS Respiratory symptoms started 48 h after the initiation of anti-malarial drugs, raising the hypothesis that the drugs may have been involved in the genesis of the complication. The concept that vivax malaria is a benign disease that can sometimes result in the development of serious complications must be disseminated. This report highlights, once more, the crucial importance of malaria early diagnosis, a true challenge in non-endemic areas, where health personnel are not familiar with the disease and do not consider its diagnosis promptly.
Collapse
Affiliation(s)
- Angie R. López
- Instituto Nacional de Infectologia Evandro Chagas Fiocruz, Rio de Janeiro, Brazil
| | - Ezequias B. Martins
- Instituto Nacional de Infectologia Evandro Chagas Fiocruz, Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária da Fiocruz e da Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil
| | - Anielle de Pina-Costa
- Instituto Nacional de Infectologia Evandro Chagas Fiocruz, Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária da Fiocruz e da Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil
| | | | - Marcel T. Ferreira
- Instituto Nacional de Infectologia Evandro Chagas Fiocruz, Rio de Janeiro, Brazil
| | - Roxana F. Mamani
- Instituto Nacional de Infectologia Evandro Chagas Fiocruz, Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária da Fiocruz e da Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil
| | - Paula J. T. Detepo
- Instituto Nacional de Infectologia Evandro Chagas Fiocruz, Rio de Janeiro, Brazil
| | - Otilia Lupi
- Instituto Nacional de Infectologia Evandro Chagas Fiocruz, Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária da Fiocruz e da Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil
| | - Clarisse S. Bressan
- Instituto Nacional de Infectologia Evandro Chagas Fiocruz, Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária da Fiocruz e da Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil
| | - Guilherme A. Calvet
- Instituto Nacional de Infectologia Evandro Chagas Fiocruz, Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária da Fiocruz e da Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil
| | - Michele F. B. Silva
- Instituto Nacional de Infectologia Evandro Chagas Fiocruz, Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária da Fiocruz e da Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil
| | - Maria de Fátima Ferreira-da-Cruz
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária da Fiocruz e da Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21045-900 Brazil
| | | | | | - Cláudio Tadeu Daniel-Ribeiro
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária da Fiocruz e da Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21045-900 Brazil
| | - André Siqueira
- Instituto Nacional de Infectologia Evandro Chagas Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21045-900 Brazil
| | - Patrícia Brasil
- Instituto Nacional de Infectologia Evandro Chagas Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, 21045-900 Brazil
| |
Collapse
|
3
|
Bansal V, Munjal J, Lakhanpal S, Gupta V, Garg A, Munjal RS, Jain R. Epidemiological shifts: the emergence of malaria in America. Proc AMIA Symp 2023; 36:745-750. [PMID: 37829240 PMCID: PMC10566419 DOI: 10.1080/08998280.2023.2255514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Plasmodium is a genus of parasites that comprises different species. The species falciparum, vivax, malariae, ovale, and knowlesi are known to cause a vector-borne illness called malaria, and among these, falciparum is known to cause major complications. The vector, the Anopheles mosquito, is commonly found in warmer regions close to the equator, and hence transmission and numbers of cases tend to be higher in Sub-Saharan Africa, South Asia, and Central America. The number of cases of malaria in the United States has remained stable over the years with low transmission rates, and the disease is mostly seen in the population with a recent travel history to endemic regions. The main reason behind this besides the weather conditions is that economically developed countries have eliminated mosquitos. However, there have been reports of locally reported cases with Plasmodium vivax in areas such as Florida and Texas in patients with no known travel history. This paper aims to familiarize US physicians with the pathophysiology, clinical features, and diagnostic modalities of malaria, as well as available treatment options.
Collapse
Affiliation(s)
- Vasu Bansal
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Jaskaran Munjal
- Internal Medicine, Shri Ram Murti Smarak Institute of Medical Sciences, Bareilly, Uttar Pradesh, India
| | | | - Vasu Gupta
- Department of Internal Medicine, Cleveland Clinic Akron General, Akron, OhioUSA
| | - Ashwani Garg
- Penn State Milton S. Hershey Medical Center, Hershey, PennsylvaniaUSA
| | | | - Rohit Jain
- Penn State Milton S. Hershey Medical Center, Hershey, PennsylvaniaUSA
| |
Collapse
|
4
|
Tashi T, Upadhye A, Kundu P, Wu C, Menant S, Soares RR, Ferreira MU, Longley RJ, Mueller I, Hoang QQ, Tham WH, Rayner JC, Scopel KKG, Lima-Junior JC, Tran TM. Longitudinal IgG antibody responses to Plasmodium vivax blood-stage antigens during and after acute vivax malaria in individuals living in the Brazilian Amazon. PLoS Negl Trop Dis 2022; 16:e0010773. [PMID: 36417454 PMCID: PMC9728838 DOI: 10.1371/journal.pntd.0010773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To make progress towards malaria elimination, a highly effective vaccine targeting Plasmodium vivax is urgently needed. Evaluating the kinetics of natural antibody responses to vaccine candidate antigens after acute vivax malaria can inform the design of serological markers of exposure and vaccines. METHODOLOGY/PRINCIPAL FINDINGS The responses of IgG antibodies to 9 P. vivax vaccine candidate antigens were evaluated in longitudinal serum samples from Brazilian individuals collected at the time of acute vivax malaria and 30, 60, and 180 days afterwards. Antigen-specific IgG correlations, seroprevalence, and half-lives were determined for each antigen using the longitudinal data. Antibody reactivities against Pv41 and PVX_081550 strongly correlated with each other at each of the four time points. The analysis identified robust responses in terms of magnitude and seroprevalence against Pv41 and PvGAMA at 30 and 60 days. Among the 8 P. vivax antigens demonstrating >50% seropositivity across all individuals, antibodies specific to PVX_081550 had the longest half-life (100 days; 95% CI, 83-130 days), followed by PvRBP2b (91 days; 95% CI, 76-110 days) and Pv12 (82 days; 95% CI, 64-110 days). CONCLUSION/SIGNIFICANCE This study provides an in-depth assessment of the kinetics of antibody responses to key vaccine candidate antigens in Brazilians with acute vivax malaria. Follow-up studies are needed to determine whether the longer-lived antibody responses induced by natural infection are effective in controlling blood-stage infection and mediating clinical protection.
Collapse
Affiliation(s)
- Tenzin Tashi
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Prasun Kundu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Chunxiang Wu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sébastien Menant
- Infectious Diseases and Immune Defence Division, Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Roberta Reis Soares
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | - Rhea J. Longley
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Quyen Q. Hoang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wai-Hong Tham
- Infectious Diseases and Immune Defence Division, Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Julian C. Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Kézia KG Scopel
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Josué C. Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tuan M. Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
5
|
Parreira KS, Scarpelli P, Rezende Lima W, Garcia RS. Contribution of Transcriptome to Elucidate the Biology of Plasmodium spp. Curr Top Med Chem 2022; 22:169-187. [PMID: 35021974 DOI: 10.2174/1568026622666220111140803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/22/2022]
Abstract
In the present review, we discuss some of the new technologies that have been applied to elucidate how Plasmodium spp escape from the immune system and subvert the host physiology to orchestrate the regulation of its biological pathways. Our manuscript describes how techniques such as microarray approaches, RNA-Seq and single-cell RNA sequencing have contributed to the discovery of transcripts and changed the concept of gene expression regulation in closely related malaria parasite species. Moreover, the text highlights the contributions of high-throughput RNA sequencing for the current knowledge of malaria parasite biology, physiology, vaccine target and the revelation of new players in parasite signaling.
Collapse
Affiliation(s)
| | - Pedro Scarpelli
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| | - Wânia Rezende Lima
- Departamento de Medicina, Instituto de Biotecnologia-Universidade Federal de Catalão
| | - R S Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| |
Collapse
|
6
|
Alteration of Platelet Count in Patients with Severe Non-Plasmodium falciparum Malaria: A Systematic Review and Meta-Analysis. BIOLOGY 2021; 10:biology10121275. [PMID: 34943190 PMCID: PMC8698983 DOI: 10.3390/biology10121275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
The understanding of platelet biology under physiological and pathological conditions like malaria infection is critical importance in the context of the disease outcome or model systems used. The importance of severe thrombocytopenia (platelet count < 50,000 cells (µL) and profound thrombocytopenia (platelet count < 20,000 cells/µL) in malaria patients remains unclear. This study aimed to synthesize evidence regarding the risks of severe and profound thrombocytopenia in patients with severe non-Plasmodium falciparum malaria. Our overall aim was to identify potential indicators of severe non-P. falciparum malaria and the Plasmodium species that cause severe outcomes. This systematic review was registered at the International Prospective Register of Systematic Reviews (PROSPERO) under registration ID CRD42020196541. Studies were identified from previous systematic reviews (n = 5) and the MEDLINE, Scopus, and Web of Science databases from 9 June 2019 to 9 June 2020. Studies were included if they reported the outcome of severe non-Plasmodium species infection, as defined by the World Health Organization (WHO) criteria, in patients with known platelet counts and/or severe and profound thrombocytopenia. The risk of bias was assessed using the Newcastle–Ottawa Scale (NOS). Data were pooled, and pooled prevalence (PP) and pooled odds ratios (ORs) were calculated using random effects models. Of the 118 studies identified from previous meta-nalyses, 21 met the inclusion criteria. Of the 4807 studies identified from the databases, three met the inclusion criteria. Nine studies identified from reference lists and other sources also met the inclusion criteria. The results of 33 studies reporting the outcomes of patients with severe P. vivax and P. knowlesi infection were pooled for meta-analysis. The PP of severe thrombocytopenia (reported in 21 studies) was estimated at 47% (95% confidence interval (CI): 33–61%, I2: 96.5%), while that of profound thrombocytopenia (reported in 13 studies) was estimated at 20% (95% CI: 14–27%, 85.2%). The pooled weighted mean difference (WMD) in platelet counts between severe uncomplicated Plasmodium infections (reported in 11 studies) was estimated at −28.51% (95% CI: −40.35–61%, I2: 97.7%), while the pooled WMD in platelet counts between severe non-Plasmodium and severe P. falciparum infections (reported in eight studies) was estimated at −3.83% (95% CI: −13.90–6.25%, I2: 85.2%). The pooled OR for severe/profound thrombocytopenia comparing severe to uncomplicated Plasmodium infection was 2.92 (95% CI: 2.24–3.81, I2: 39.9%). The PP of death from severe and profound thrombocytopenia was estimated at 11% (95% CI: 0–22%). These results suggest that individuals with severe non-P. falciparum infection (particularly P. vivax and P. knowlesi) who exhibit severe or profound thrombocytopenia should be regarded as high risk, and should be treated for severe malaria according to current WHO guidelines. In addition, severe or profound thrombocytopenia coupled with other clinical and microscopic parameters can significantly improve malaria diagnosis, enhance the timely treatment of malaria infections, and reduce the morbidity and mortality of severe non-P. falciparum malaria.
Collapse
|
7
|
Differential Effect of Antioxidants Glutathione and Vitamin C on the Hepatic Injuries Induced by Plasmodium berghei ANKA Infection. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9694508. [PMID: 34527745 PMCID: PMC8437662 DOI: 10.1155/2021/9694508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/14/2021] [Indexed: 12/18/2022]
Abstract
Malaria is a life-threatening disease caused by Plasmodium and represents one of the main public health problems in the world. Among alterations associated with the disease, we highlight the hepatic impairment resulting from the generation of oxidative stress. Studies demonstrate that liver injuries caused by Plasmodium infection are associated with unbalance of the antioxidant system in hepatocytes, although little is known about the role of antioxidant molecules such as glutathione and vitamin C in the evolution of the disease and in the liver injury. To evaluate disease complications, murine models emerge as a valuable tool due to their similarities between the infectious species for human and mice. Herein, the aim of this study is to evaluate the effect of antioxidants glutathione and vitamin C on the evolution of murine malaria and in the liver damage caused by Plasmodium berghei ANKA infection. Mice were inoculated with parasitized erythrocytes and treated with glutathione and vitamin C, separately, both at 8 mg/kg during 7 consecutive days. Our data showed that during Plasmodium infection, treatment with glutathione promoted significant decrease in the survival of infected mice, accelerating the disease severity. However, treatment with vitamin C promoted an improvement in the clinical outcomes and prolonged the survival curve of infected animals. We also showed that glutathione promoted increase in the parasitemia rate of Plasmodium-infected animals, although treatment with vitamin C has induced significant decrease in parasitemia rates. Furthermore, histological analysis and enzyme biochemical measurement showed that treatment with glutathione exacerbates liver damage while treatment with vitamin C mitigates the hepatic injury induced by the infection. In summary, the current study provided evidences that antioxidant molecules could differently modulate the outcome of malaria disease; while glutathione aggravated the disease outcome and liver injury, the treatment with vitamin C protects the liver from damage and the evolution of the condition.
Collapse
|
8
|
Abstract
Imported malaria is the principal, preventable, life-threatening infection among US travelers. Using a case scenario, we discuss the most recent information on the management and treatment of Severe Malaria.
Collapse
|
9
|
Antonelli LR, Junqueira C, Vinetz JM, Golenbock DT, Ferreira MU, Gazzinelli RT. The immunology of Plasmodium vivax malaria. Immunol Rev 2019; 293:163-189. [PMID: 31642531 DOI: 10.1111/imr.12816] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Collapse
Affiliation(s)
- Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas T Golenbock
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcelo U Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
Peterson MS, Joyner CJ, Cordy RJ, Salinas JL, Machiah D, Lapp SA, Meyer EVS, Gumber S, Galinski MR. Plasmodium vivax Parasite Load Is Associated With Histopathology in Saimiri boliviensis With Findings Comparable to P vivax Pathogenesis in Humans. Open Forum Infect Dis 2019; 6:ofz021. [PMID: 30937329 PMCID: PMC6436601 DOI: 10.1093/ofid/ofz021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 02/03/2023] Open
Abstract
Background Plasmodium vivax can cause severe malaria with multisystem organ dysfunction and death. Clinical reports suggest that parasite accumulation in tissues may contribute to pathogenesis and disease severity, but direct evidence is scarce. Methods We present quantitative parasitological and histopathological analyses of tissue sections from a cohort of naive, mostly splenectomized Saimiri boliviensis infected with P vivax to define the relationship of tissue parasite load and histopathology. Results The lung, liver, and kidney showed the most tissue injury, with pathological presentations similar to observations reported from autopsies. Parasite loads correlated with the degree of histopathologic changes in the lung and liver tissues. In contrast, kidney damage was not associated directly with parasite load but with the presence of hemozoin, an inflammatory parasite byproduct. Conclusions This analysis supports the use of the S boliviensis infection model for performing detailed histopathological studies to better understand and potentially design interventions to treat serious clinical manifestations caused by P vivax.
Collapse
Affiliation(s)
| | | | - Regina J Cordy
- Emory Vaccine Center, Yerkes National Primate Research Center
| | - Jorge L Salinas
- Emory Vaccine Center, Yerkes National Primate Research Center.,Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Deepa Machiah
- Division of Pathology, Yerkes National Primate Research Center
| | - Stacey A Lapp
- Emory Vaccine Center, Yerkes National Primate Research Center
| | | | | | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center.,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center.,Division of Infectious Diseases, Department of Medicine, School of Medicine
| |
Collapse
|