1
|
Cissoko M, Sagara I, Guindo A, Maiga M, Dembélé P, Bationo CS, Dieng S, Diarra I, Katilé A, Traoré D, Dessay N, Gaudart J. Impact of Control Interventions on Malaria Incidence in the General Population of Mali. J Epidemiol Glob Health 2025; 15:40. [PMID: 40072686 PMCID: PMC11903980 DOI: 10.1007/s44197-025-00381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The increase in malaria incidence and the reduction of funding for malaria control have highlighted the need to step up efforts in the fight against malaria in Mali. To further refine the malaria control strategy implemented in the country, this study aimed to evaluate the impact of control interventions at the health district level on malaria incidence in the general population. METHOD Malaria, rainfall, and intervention data were collected for the 75 health districts of Mali for the period from April 2017 to March 2022. The impact of the different control interventions on malaria incidence in the general population was assessed at the health district level with a Generalized Additive Mixed Model considering rainfall. RESULTS Although coverage rates varied widely between health districts, most interventions showed an improvement in coverage over the study period. Two interventions had a small impact on incidence: long-lasting insecticidal net mass distribution (LLIN), with a reduction rate of 2.2 ‰ for an adjusted coverage rate from 30.0 to 79.0% (odds ratio (OR): 0.998; 95% confidence interval (CI) 0.997-0.999), and seasonal malaria chemoprevention (SMC), with a reduction rate of 1.9 ‰ for an adjusted coverage rate from 30.0 to 80.0% (OR: 0.9979; 95% CI 0.996-0.998). CONCLUSION The analysis found a small impact of LLIN and SMC on malaria incidence at the district level. Malaria control should be reinforced by improving coverage and utilization rates in the general population and in the most vulnerable groups and by deploying larger numbers of community health workers where needed.
Collapse
Affiliation(s)
- Mady Cissoko
- Malaria Research and Training Centre Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université des Sciences, des Techniques et des Technologies de Bamako, 1805, Bamako, Mali.
- Aix Marseille Univ, INSERM, IRD, ISSPAM, UM1252, 13005, Marseille, France.
- Programme National de la Lutte contre le Paludisme (PNLP Mali), 233, Bamako, Mali.
| | - Issaka Sagara
- Malaria Research and Training Centre Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université des Sciences, des Techniques et des Technologies de Bamako, 1805, Bamako, Mali
- Aix Marseille Univ, INSERM, IRD, ISSPAM, UM1252, 13005, Marseille, France
| | - Abdoulaye Guindo
- Malaria Research and Training Centre Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université des Sciences, des Techniques et des Technologies de Bamako, 1805, Bamako, Mali
| | - Mahamane Maiga
- Malaria Research and Training Centre Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université des Sciences, des Techniques et des Technologies de Bamako, 1805, Bamako, Mali
| | - Pascal Dembélé
- Programme National de la Lutte contre le Paludisme (PNLP Mali), 233, Bamako, Mali
| | - Cedric S Bationo
- Aix Marseille Univ, INSERM, IRD, ISSPAM, UM1252, 13005, Marseille, France
| | - Sokhna Dieng
- Aix Marseille Univ, INSERM, IRD, ISSPAM, UM1252, 13005, Marseille, France
| | - Issa Diarra
- Laboratoire de Biologie Moléculaire Appliquée, Bamako, Mali
| | - Abdoulaye Katilé
- Malaria Research and Training Centre Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université des Sciences, des Techniques et des Technologies de Bamako, 1805, Bamako, Mali
| | - Diahara Traoré
- Programme National de la Lutte contre le Paludisme (PNLP Mali), 233, Bamako, Mali
| | - Nadine Dessay
- ESPACE-DEV, UMR228 IRD/UM/UR/UG/UA, Institut de Recherche pour le Développement (IRD), 34093, Montpellier, France
| | - Jean Gaudart
- Malaria Research and Training Centre Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université des Sciences, des Techniques et des Technologies de Bamako, 1805, Bamako, Mali
- Aix Marseille Univ, AP-HM, INSERM, IRD, SESSTIM, ISSPAM, Hop Timone, BioSTIC, Biostatistic & ICT, 13005, Marseille, France
| |
Collapse
|
2
|
Davis KM, Worku A, Balkew M, Mumba P, Chibsa S, Tongren JE, Assefa G, Sisay A, Teshome D, Tegegne B, Worku M, Yimer M, Yewhalaw D, Yoshimizu M, Zohdy S, Swamidoss I, Mapp C, Hwang J, Inouye W, Seyoum A, Flatley C, Hilton ER, Dengela D, Burnett SM. An observational study evaluating the epidemiological and entomological impacts of piperonyl butoxide insecticide-treated nets (ITNs) compared to a combination of indoor residual spraying (IRS) plus standard pyrethroid-only ITNs in Amhara Region, Ethiopia, 2019-2023. BMJ Glob Health 2025; 10:e016617. [PMID: 39880414 PMCID: PMC11781093 DOI: 10.1136/bmjgh-2024-016617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
INTRODUCTION National malaria programmes must weigh the relative benefits of different vector control and elimination tools to prioritise resource allocation with the greatest impact. This study assesses the epidemiological and entomological impacts of piperonyl butoxide insecticide-treated nets (PBO ITN-only arm) compared with the combination of two annual non-pyrethroid indoor residual spraying (IRS) campaigns and standard pyrethroid ITNs (IRS+Standard Pyrethroid ITN arm) in the Amhara region of Ethiopia. METHODS An open-label, stratified block-cluster randomised trial was designed to compare the impacts of the two intervention arms. ITN distribution took place from June to July 2021. IRS campaigns took place from June to July 2021 and again in June 2022. Confirmed malaria cases reported during the high transmission season (September to December) were compared in the 2 years before (2019 and 2020) vs the 2 years after (2021 and 2022) the 2021 campaigns. The difference in An. gambiae s.l. vector density per trap and indoor resting density (IRD) was assessed between the two arms during the high transmission seasons 2 years after the 2021 campaigns. RESULTS Estimated malaria cases decreased significantly by 53.6% in the postintervention period compared with preintervention in the IRS+Standard Pyrethroid ITN arm (95% CI -72.9%, -29.8%) and by 55.9% in the PBO ITN arm (95% CI -73.0%, -32.5%), with no significant difference between these two arms (95% CI -30.9%, 24.0%). From the first to the second season postintervention, cases decreased non-significantly in the IRS+Standard Pyrethroid ITN arm (incidence rate ratio (IRR) 0.94; 95% CI 0.66, 1.47) but increased significantly in the PBO ITN arm (IRR 1.98; 95% CI 1.49, 2.67). Postintervention vector density and IRD were not found to be significantly different between intervention arms in either 2021 (vector density: IRR 0.78; 95% CI 0.47, 1.31; IRD: IRR 0.80; 95% CI 0.37, 1.75) or 2022 (vector density: IRR 1.27; 95% CI 0.75, 2.12; IRD: IRR 1.02; 95% CI 0.45, 2.28). CONCLUSION These findings suggest a positive impact of non-pyrethroid IRS deployed annually alongside standard pyrethroid ITNs in a setting of confirmed pyrethroid resistance. While an overall positive impact of PBO ITNs was detected, a waning impact of the nets 2 years postdistribution was observed.
Collapse
Affiliation(s)
- Kelly M Davis
- PMI Evolve Project, PATH, Washington, District of Columbia, USA
| | - Amha Worku
- PMI Evolve Project, Abt Global, Addis Ababa, Ethiopia
| | | | - Peter Mumba
- U.S. President's Malaria Initiative, Addis Ababa, Ethiopia
| | - Sheleme Chibsa
- U.S. President's Malaria Initiative, Addis Ababa, Ethiopia
| | - Jon Eric Tongren
- U.S. President's Malaria Initiative, Addis Ababa, Ethiopia
- U.S. President's Malaria Initiative, Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gudissa Assefa
- Malaria and Other Vector-Borne Diseases Prevention and Control Desk, Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Achamyelesh Sisay
- Malaria and Other Vector-Borne Diseases Prevention and Control Desk, Federal Ministry of Health, Addis Ababa, Ethiopia
| | - Dawit Teshome
- PMI Evolve Project, Abt Global, Addis Ababa, Ethiopia
| | | | | | | | - Delenasaw Yewhalaw
- Tropical and Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | - Melissa Yoshimizu
- US President's Malaria Initiative, US Agency for International Development, Washington, District of Columbia, USA
| | - Sarah Zohdy
- US President's Malaria Initiative, US Centers for Disease Control and Prevention, Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Atlanta, Georgia, USA
| | - Isabel Swamidoss
- US President's Malaria Initiative, US Centers for Disease Control and Prevention, Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Atlanta, Georgia, USA
| | - Carla Mapp
- US President's Malaria Initiative, US Centers for Disease Control and Prevention, Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Atlanta, Georgia, USA
| | - Jimee Hwang
- U.S. President's Malaria Initiative, Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Aklilu Seyoum
- PMI Evolve Project, Abt Global, Rockville, Maryland, USA
| | | | | | | | - Sarah M Burnett
- PMI Evolve Project, PATH, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Burnett SM, Davis KM, Assefa G, Gogue C, Hinneh LD, Littrell M, Mwesigwa J, Okoko OO, Rabeherisoa S, Sillah-Kanu M, Sheahan W, Slater HC, Uhomoibhi P, Yamba F, Ambrose K, Stillman K. Process and Methodological Considerations for Observational Analyses of Vector Control Interventions in Sub-Saharan Africa Using Routine Malaria Data. Am J Trop Med Hyg 2025; 112:17-34. [PMID: 37604476 PMCID: PMC11720682 DOI: 10.4269/ajtmh.22-0757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/21/2023] [Indexed: 08/23/2023] Open
Abstract
Progress in malaria control has stalled in recent years. With growing resistance to existing malaria vector control insecticides and the introduction of new vector control products, national malaria control programs (NMCPs) increasingly need to make data-driven, subnational decisions to inform vector control deployment. As NMCPs are increasingly conducting subnational stratification of malaria control interventions, including malaria vector control, country-specific frameworks and platforms are increasingly needed to guide data use for vector control deployment. Integration of routine health systems data, entomological data, and vector control program data in observational longitudinal analyses offers an opportunity for NMCPs and research institutions to conduct evaluations of existing and novel vector control interventions. Drawing on the experience of implementing 22 vector control evaluations across 14 countries in sub-Saharan Africa, as well as published and gray literature on vector control impact evaluations using routine health information system data, this article provides practical guidance on the design of these evaluations, makes recommendations for key variables and data sources, and proposes methods to address challenges in data quality. Key recommendations include appropriate parameterization of impact and coverage indicators, incorporating explanatory covariates and contextual factors from multiple sources (including rapid diagnostic testing stockouts; insecticide susceptibility; vector density measures; vector control coverage, use, and durability; climate and other malaria and non-malaria health programs), and assessing data quality before the evaluation through either on-the-ground or remote data quality assessments. These recommendations may increase the frequency, rigor, and utilization of routine data sources to inform national program decision-making for vector control.
Collapse
Affiliation(s)
- Sarah M. Burnett
- U.S. President’s Malaria Initiative (PMI) VectorLink Project, PATH, Washington, District of Columbia
| | - Kelly M. Davis
- U.S. President’s Malaria Initiative (PMI) VectorLink Project, PATH, Washington, District of Columbia
| | - Gudissa Assefa
- National Malaria Elimination Programme, Addis Ababa, Ethiopia
| | | | | | | | | | | | - Saraha Rabeherisoa
- Programme National de Lutte Contre le Paludisme, Antananarivo, Madagascar
| | | | | | | | | | | | - Kelley Ambrose
- President’s Malaria Initiative (PMI) VectorLink Project, Abt Associates, Rockville, Maryland
| | - Kathryn Stillman
- President’s Malaria Initiative (PMI) VectorLink Project, Abt Associates, Rockville, Maryland
| |
Collapse
|
4
|
Tiedje KE, Zhan Q, Ruybal-Pesantez S, Tonkin-Hill G, He Q, Tan MH, Argyropoulos DC, Deed SL, Ghansah A, Bangre O, Oduro AR, Koram KA, Pascual M, Day KP. Measuring changes in Plasmodium falciparum census population size in response to sequential malaria control interventions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.18.23290210. [PMID: 37292908 PMCID: PMC10246142 DOI: 10.1101/2023.05.18.23290210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here we introduce a new endpoint ″census population size″ to evaluate the epidemiology and control of Plasmodium falciparum infections, where the parasite, rather than the infected human host, is the unit of measurement. To calculate census population size, we rely on a definition of parasite variation known as multiplicity of infection (MOI var ), based on the hyper-diversity of the var multigene family. We present a Bayesian approach to estimate MOI var from sequencing and counting the number of unique DBLα tags (or DBLα types) of var genes, and derive from it census population size by summation of MOI var in the human population. We track changes in this parasite population size and structure through sequential malaria interventions by indoor residual spraying (IRS) and seasonal malaria chemoprevention (SMC) from 2012 to 2017 in an area of high-seasonal malaria transmission in northern Ghana. Following IRS, which reduced transmission intensity by > 90% and decreased parasite prevalence by ~40-50%, significant reductions in var diversity, MOI var , and population size were observed in ~2,000 humans across all ages. These changes, consistent with the loss of diverse parasite genomes, were short lived and 32-months after IRS was discontinued and SMC was introduced, var diversity and population size rebounded in all age groups except for the younger children (1-5 years) targeted by SMC. Despite major perturbations from IRS and SMC interventions, the parasite population remained very large and retained the var population genetic characteristics of a high-transmission system (high var diversity; low var repertoire similarity) demonstrating the resilience of P. falciparum to short-term interventions in high-burden countries of sub-Saharan Africa.
Collapse
|
5
|
Hilton ER, Rabeherisoa S, Ramandimbiarijaona H, Rajaratnam J, Belemvire A, Kapesa L, Zohdy S, Dentinger C, Gandaho T, Jacob D, Burnett S, Razafinjato C. Using routine health data to evaluate the impact of indoor residual spraying on malaria transmission in Madagascar. BMJ Glob Health 2023; 8:e010818. [PMID: 37463785 PMCID: PMC10357738 DOI: 10.1136/bmjgh-2022-010818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/17/2023] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION Indoor residual spraying (IRS) and insecticide-treated bed nets (ITNs) are cornerstone malaria prevention methods in Madagascar. This retrospective observational study uses routine data to evaluate the impacts of IRS overall, sustained IRS exposure over multiple years and level of spray coverage (structures sprayed/found) in nine districts where non-pyrethroid IRS was deployed to complement standard pyrethroid ITNs from 2017 to 2020. METHODS Multilevel negative-binomial generalised linear models were fit to estimate the effects of IRS exposure overall, consecutive years of IRS exposure and spray coverage level on monthly all-ages population-adjusted malaria cases confirmed by rapid diagnostic test at the health facility level. The study period extended from July 2016 to June 2021. Facilities with missing data and non-geolocated communes were excluded. Facilities in IRS districts were matched with control facilities by propensity score analysis. Models were controlled for ITN survivorship, mass drug administration coverage, precipitation, enhanced vegetation index, seasonal effects and district. Predicted cases under a counterfactual no IRS scenario and number of cases averted by IRS were estimated using the fitted models. RESULTS Exposure to IRS overall reduced case incidence by an estimated 30.3% from 165.8 cases per 1000 population (95% CI=139.7 to 196.7) under a counterfactual no IRS scenario, to 114.3 (95% CI=96.5 to 135.3) over 12 months post-IRS campaign in nine districts. A third year of IRS reduced malaria cases 30.9% more than a first year (incidence rate ratio (IRR)=0.578, 95% CI=0.578 to 0.825, p<0.001) and 26.7% more than a second year (IRR=0.733, 95% CI=0.611 to 0.878, p=0.001). There was no significant difference between the first and second year (p>0.05). Coverage of 86%-90% was associated with a 19.7% reduction in incidence (IRR=0.803, 95% CI=0.690 to 0.934, p=0.005) compared with coverage ≤85%, although these results were not robust to sensitivity analysis. CONCLUSION This study demonstrates that non-pyrethroid IRS appears to substantially reduce malaria incidence in Madagascar and that sustained implementation of IRS over three years confers additional benefits.
Collapse
Affiliation(s)
| | - Saraha Rabeherisoa
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé Publique, Antananarivo, Madagascar
| | - Herizo Ramandimbiarijaona
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé Publique, Antananarivo, Madagascar
| | - Julie Rajaratnam
- Center for Digital and Data Excellence, PATH, Seattle, Washington, USA
| | - Allison Belemvire
- US Agency for International Development, US President's Malaria Initiative, Washington, District of Columbia, USA
| | - Laurent Kapesa
- US Agency for International Development, US President's Malaria Initiative, Antananarivo, Madagascar
| | - Sarah Zohdy
- Entomology Branch, US Centers for Disease Control and Prevention, US President's Malaria Initiative, Atlanta, Georgia, USA
| | - Catherine Dentinger
- Entomology Branch, US Centers for Disease Control and Prevention, US President's Malaria Initiative, Atlanta, Georgia, USA
| | - Timothee Gandaho
- PMI VectorLink Project, Abt Associates, Rockville, Maryland, USA
| | - Djenam Jacob
- PMI VectorLink Project, Abt Associates, Rockville, Maryland, USA
| | - Sarah Burnett
- PMI VectorLink Project, PATH, Washington, District of Columbia, USA
| | - Celestin Razafinjato
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé Publique, Antananarivo, Madagascar
| |
Collapse
|
6
|
Van Bortel W, Mariën J, Jacobs BKM, Sinzinkayo D, Sinarinzi P, Lampaert E, D’hondt R, Mafuko JM, De Weggheleire A, Vogt F, Alexander N, Wint W, Maes P, Vanlerberghe V, Leclair C. Long-lasting insecticidal nets provide protection against malaria for only a single year in Burundi, an African highland setting with marked malaria seasonality. BMJ Glob Health 2022; 7:bmjgh-2022-009674. [PMID: 36455989 PMCID: PMC9772646 DOI: 10.1136/bmjgh-2022-009674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/08/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) are one of the key interventions in the global fight against malaria. Since 2014, mass distribution campaigns of LLINs aim for universal access by all citizens of Burundi. In this context, we assess the impact of LLINs mass distribution campaigns on malaria incidence, focusing on the endemic highland health districts. We also explored the possible correlation between observed trends in malaria incidence with any variations in climate conditions. METHODS Malaria cases for 2011-2019 were obtained from the National Health Information System. We developed a generalised additive model based on a time series of routinely collected data with malaria incidence as the response variable and timing of LLIN distribution as an explanatory variable to investigate the duration and magnitude of the LLIN effect on malaria incidence. We added a seasonal and continuous-time component as further explanatory variables, and health district as a random effect to account for random natural variation in malaria cases between districts. RESULTS Malaria transmission in Burundian highlands was clearly seasonal and increased non-linearly over the study period. Further, a fast and steep decline of malaria incidence was noted during the first year after mass LLIN distribution (p<0.0001). In years 2 and 3 after distribution, malaria cases started to rise again to levels higher than before the control intervention. CONCLUSION This study highlights that LLINs did reduce the incidence in the first year after a mass distribution campaign, but in the context of Burundi, LLINs lost their impact after only 1 year.
Collapse
Affiliation(s)
- Wim Van Bortel
- Outbreak Research Team, Institute of Tropical Medicine, Antwerpen, Belgium,Unit Entomology, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Joachim Mariën
- Outbreak Research Team, Institute of Tropical Medicine, Antwerpen, Belgium,Evolutionary Ecology Group, University of Antwerp, Antwerpen, Belgium
| | - Bart K M Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Denis Sinzinkayo
- National Malaria Control Programme, Bujumbura, Burundi,Doctoral School, University of Burundi, Bujumbura, Burundi
| | | | - Emmanuel Lampaert
- Department of Operations – Central African Regional Support Team, Médecins Sans Frontières, Kinshasa, Congo (the Democratic Republic of the)
| | - Rob D’hondt
- Medical Department, Environmental Health Unit, Médecins Sans Frontières, Brussels, Belgium
| | - Jean-Marie Mafuko
- Department of Operations, Médecins Sans Frontières, Bujumbura, Burundi
| | - Anja De Weggheleire
- Outbreak Research Team, Institute of Tropical Medicine, Antwerpen, Belgium,Unit of Mycobacterial Diseases and Neglected Tropical Diseases, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Florian Vogt
- Outbreak Research Team, Institute of Tropical Medicine, Antwerpen, Belgium,The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia,National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Neil Alexander
- Environmental Research Group Oxford Ltd, c/o Department of Biology, University of Oxford, Oxford, UK
| | - William Wint
- Environmental Research Group Oxford Ltd, c/o Department of Biology, University of Oxford, Oxford, UK
| | - Peter Maes
- Chief of WASH (Water, Sanitation and Hygiene), UNICEF, Kinshasa, Congo (the Democratic Republic of the)
| | - Veerle Vanlerberghe
- Tropical Infectious Diseases Group, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Corey Leclair
- Medical Department, Environmental Health Unit, Médecins Sans Frontières, Brussels, Belgium
| |
Collapse
|
7
|
Yukich J, Digre P, Scates S, Boydens L, Obi E, Moran N, Belemvire A, Chamorro M, Johns B, Malm KL, Kolyada L, Williams I, Asiedu S, Fomba S, Mihigo J, Boko D, Candrinho B, Muthoni R, Opigo J, Maiteki-Sebuguzi C, Rutazaana D, Shililu J, Muhanguzi A, Belay K, Kisubi J, Atuhairwe JA, Musonda P, Iwuchukwu N, Ngosa J, Chizema E, Zulu R, Kooma E, Miller J, Bennett A, Arnett K, Tynuv K, Gogue C, Wagman J, Richardson JH, Slutsker L, Robertson M. Incremental cost and cost-effectiveness of the addition of indoor residual spraying with pirimiphos-methyl in sub-Saharan Africa versus standard malaria control: results of data collection and analysis in the Next Generation Indoor Residual Sprays (NgenIRS) project, an economic-evaluation. Malar J 2022; 21:185. [PMID: 35690756 PMCID: PMC9188086 DOI: 10.1186/s12936-022-04160-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Malaria is a major cause of morbidity and mortality globally, especially in sub-Saharan Africa. Widespread resistance to pyrethroids threatens the gains achieved by vector control. To counter resistance to pyrethroids, third-generation indoor residual spraying (3GIRS) products have been developed. This study details the results of a multi-country cost and cost-effectiveness analysis of indoor residual spraying (IRS) programmes using Actellic®300CS, a 3GIRS product with pirimiphos-methyl, in sub-Saharan Africa in 2017 added to standard malaria control interventions including insecticide-treated bed nets versus standard malaria control interventions alone. METHODS An economic evaluation of 3GIRS using Actellic®300CS in a broad range of sub-Saharan African settings was conducted using a variety of primary data collection and evidence synthesis methods. Four IRS programmes in Ghana, Mali, Uganda, and Zambia were included in the effectiveness analysis. Cost data come from six IRS programmes: one in each of the four countries where effect was measured plus Mozambique and a separate programme conducted by AngloGold Ashanti Malaria Control in Ghana. Financial and economic costs were quantified and valued. The main indicator for the cost was cost per person targeted. Country-specific case incidence rate ratios (IRRs), estimated by comparing IRS study districts to adjacent non-IRS study districts or facilities, were used to calculate cases averted in each study area. A deterministic analysis and sensitivity analysis were conducted in each of the four countries for which effectiveness evaluations were available. Probabilistic sensitivity analysis was used to generate plausibility bounds around the incremental cost-effectiveness ratio estimates for adding IRS to other standard interventions in each study setting as well as jointly utilizing data on effect and cost across all settings. RESULTS Overall, IRRs from each country indicated that adding IRS with Actellic®300CS to the local standard intervention package was protective compared to the standard intervention package alone (IRR 0.67, [95% CI 0.50-0.91]). Results indicate that Actellic®300CS is expected to be a cost-effective (> 60% probability of being cost-effective in all settings) or highly cost-effective intervention across a range of transmission settings in sub-Saharan Africa. DISCUSSION Variations in the incremental costs and cost-effectiveness likely result from several sources including: variation in the sprayed wall surfaces and house size relative to household population, the underlying malaria burden in the communities sprayed, the effectiveness of 3GIRS in different settings, and insecticide price. Programmes should be aware that current recommendations to rotate can mean variation and uncertainty in budgets; programmes should consider this in their insecticide-resistance management strategies. CONCLUSIONS The optimal combination of 3GIRS delivery with other malaria control interventions will be highly context specific. 3GIRS using Actellic®300CS is expected to deliver acceptable value for money in a broad range of sub-Saharan African malaria transmission settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Allison Belemvire
- US President's Malaria Initiative, US Agency for International Development, Washington, DC, USA
| | | | - Benjamin Johns
- PMI VectorLink Project, Abt Associates, Rockville, MD, USA
| | - Keziah L Malm
- National Malaria Control Programme, Ministry of Health, Accra, Ghana
| | - Lena Kolyada
- PMI VectorLink Ghana Project, Abt Associates, Accra, Ghana
| | | | - Samuel Asiedu
- AngloGold Ashanti Malaria Control Limited, Accra, Ghana
| | - Seydou Fomba
- Programme National de Lutte Contre le Paludisme, Bamako, Mali
| | - Jules Mihigo
- US President's Malaria Initiative, US Agency for International Development, Bamako, Mali
| | - Desire Boko
- PMI VectorLink Mali Project, Abt Associates, Bamako, Mali
| | - Baltazar Candrinho
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
| | - Rodaly Muthoni
- PMI VectorLink Mozambique, Abt Associates, Maputo, Mozambique
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | | | - Damian Rutazaana
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | | | - Asaph Muhanguzi
- PMI VectorLink Uganda Project, Abt Associates, Kampala, Uganda
| | - Kassahun Belay
- US President's Malaria Initiative, US Agency for International Development, Kampala, Uganda
| | - Joel Kisubi
- US President's Malaria Initiative, US Agency for International Development, Kampala, Uganda
| | | | - Presley Musonda
- PMI VectorLink Zambia Project, Abt Associates, Lusaka, Zambia
| | | | | | | | - Reuben Zulu
- National Malaria Elimination Centre, Lusaka, Zambia
| | | | | | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lusiyana N, Ahdika A. Evaluating recurrent episodes of malaria incidence in Timika, Indonesia, through a Markovian multiple-state model. Infect Dis Model 2022; 7:261-276. [PMID: 35754556 PMCID: PMC9201011 DOI: 10.1016/j.idm.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 10/27/2022] Open
|
9
|
Stratification at the health district level for targeting malaria control interventions in Mali. Sci Rep 2022; 12:8271. [PMID: 35585101 PMCID: PMC9117674 DOI: 10.1038/s41598-022-11974-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/22/2022] [Indexed: 01/13/2023] Open
Abstract
Malaria is the leading cause of morbidity and mortality in Mali. Between 2017 and 2020, the number of cases increased in the country, with 2,884,827 confirmed cases and 1454 reported deaths in 2020. We performed a malaria risk stratification at the health district level in Mali with a view to proposing targeted control interventions. Data on confirmed malaria cases were obtained from the District Health Information Software 2, data on malaria prevalence and mortality in children aged 6-59 months from the 2018 Demographic and Health Survey, entomological data from Malian research institutions working on malaria in the sentinel sites of the National Malaria Control Program (NMCP), and environmental data from the National Aeronautics and Space Administration. A stratification of malaria risk was performed. Targeted malaria control interventions were selected based on spatial heterogeneity of malaria incidence, malaria prevalence in children, vector resistance distribution, health facility usage, child mortality, and seasonality of transmission. These interventions were discussed with the NMCP and the different funding partners. In 2017-2019, median incidence across the 75 health districts was 129.34 cases per 1000 person-years (standard deviation = 86.48). Risk stratification identified 12 health districts in very low transmission areas, 19 in low transmission areas, 20 in moderate transmission areas, and 24 in high transmission areas. Low health facility usage and increased vector resistance were observed in high transmission areas. Eight intervention combinations were selected for implementation. Our work provides an updated risk stratification using advanced statistical methods to inform the targeting of malaria control interventions in Mali. This stratification can serve as a template for continuous malaria risk stratifications in Mali and other countries.
Collapse
|
10
|
Tiedje KE, Oduro AR, Bangre O, Amenga-Etego L, Dadzie SK, Appawu MA, Frempong K, Asoala V, Ruybal-Pésantez S, Narh CA, Deed SL, Argyropoulos DC, Ghansah A, Agyei SA, Segbaya S, Desewu K, Williams I, Simpson JA, Malm K, Pascual M, Koram KA, Day KP. Indoor residual spraying with a non-pyrethroid insecticide reduces the reservoir of Plasmodium falciparum in a high-transmission area in northern Ghana. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000285. [PMID: 35600674 PMCID: PMC9121889 DOI: 10.1371/journal.pgph.0000285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/11/2022] [Indexed: 11/19/2022]
Abstract
High-malaria burden countries in sub-Saharan Africa are shifting from malaria control towards elimination. Hence, there is need to gain a contemporary understanding of how indoor residual spraying (IRS) with non-pyrethroid insecticides when combined with long-lasting insecticidal nets (LLINs) impregnated with pyrethroid insecticides, contribute to the efforts of National Malaria Control Programmes to interrupt transmission and reduce the reservoir of Plasmodium falciparum infections across all ages. Using an interrupted time-series study design, four age-stratified malariometric surveys, each of ~2,000 participants, were undertaken pre- and post-IRS in Bongo District, Ghana. Following the application of three-rounds of IRS, P. falciparum transmission intensity declined, as measured by a >90% reduction in the monthly entomological inoculation rate. This decline was accompanied by reductions in parasitological parameters, with participants of all ages being significantly less likely to harbor P. falciparum infections at the end of the wet season post-IRS (aOR = 0.22 [95% CI: 0.19-0.26], p-value < 0.001). In addition, multiplicity of infection (MOI var ) was measured using a parasite fingerprinting tool, designed to capture within-host genome diversity. At the end of the wet season post-IRS, the prevalence of multi-genome infections declined from 75.6% to 54.1%. This study demonstrates that in areas characterized by high seasonal malaria transmission, IRS in combination with LLINs can significantly reduce the reservoir of P. falciparum infection. Nonetheless despite this success, 41.6% of the population, especially older children and adolescents, still harboured multi-genome infections. Given the persistence of this diverse reservoir across all ages, these data highlight the importance of sustaining vector control in combination with targeted chemotherapy to move high-transmission settings towards pre-elimination. This study also points to the benefits of molecular surveillance to ensure that incremental achievements are not lost and that the goals advocated for in the WHO's High Burden to High Impact strategy are realized.
Collapse
Affiliation(s)
- Kathryn E. Tiedje
- School of BioSciences, The University of Melbourne, at the Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity and Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| | - Abraham R. Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Oscar Bangre
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Lucas Amenga-Etego
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Samuel K. Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Maxwell A. Appawu
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo Frempong
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Victor Asoala
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Shazia Ruybal-Pésantez
- School of BioSciences, The University of Melbourne, at the Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| | - Charles A. Narh
- School of BioSciences, The University of Melbourne, at the Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Samantha L. Deed
- School of BioSciences, The University of Melbourne, at the Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity and Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| | - Dionne C. Argyropoulos
- School of BioSciences, The University of Melbourne, at the Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity and Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| | - Anita Ghansah
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Samuel A. Agyei
- AngloGold Ashanti (Ghana) Malaria Control Programme, Obuasi, Ghana
| | | | - Kwame Desewu
- AngloGold Ashanti (Ghana) Malaria Control Programme, Obuasi, Ghana
| | | | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Keziah Malm
- Ghana National Malaria Control Programme, Public Health Division, Ghana Health Service, Accra, Ghana
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States of America
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Karen P. Day
- School of BioSciences, The University of Melbourne, at the Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity and Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| |
Collapse
|
11
|
Abstract
BACKGROUND Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are used to prevent malaria transmission. Both interventions use insecticides to kill mosquitoes that bite and rest indoors. Adding IRS to ITNs may improve malaria control simply because two interventions can be better than one. Furthermore, IRS may improve malaria control where ITNs are failing due to insecticide resistance. Pyrethroid insecticides are the predominant class of insecticide used for ITNs, as they are more safe than other insecticide classes when in prolonged contact with human skin. While many mosquito populations have developed some resistance to pyrethroid insecticides, a wider range of insecticides can be used for IRS. This review is an update of the previous Cochrane 2019 edition. OBJECTIVES To summarize the effect on malaria of additionally implementing IRS, using non-pyrethroid-like or pyrethroid-like insecticides, in communities currently using ITNs. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; CENTRAL; MEDLINE; and five other databases for records from 1 January 2000 to 8 November 2021, on the basis that ITN programmes did not begin to be implemented as policy before the year 2000. SELECTION CRITERIA We included cluster-randomized controlled trials (cRCTs), interrupted time series (ITS), or controlled before-after studies (CBAs) comparing IRS plus ITNs with ITNs alone. We included studies with at least 50% ITN ownership (defined as the proportion of households owning one or more ITN) in both study arms. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for eligibility, analyzed risk of bias, and extracted data. We used risk ratio (RR) and 95% confidence intervals (CI). We stratified by type of insecticide, 'pyrethroid-like' and 'non-pyrethroid-like'; the latter could improve malaria control better than adding IRS insecticides that have the same way of working as the insecticide on ITNs ('pyrethroid-like'). We used subgroup analysis of ITN usage in the studies to explore heterogeneity. We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS Eight cRCTs (10 comparisons), one CBA, and one ITS study, all conducted since 2008 in sub-Saharan Africa, met our inclusion criteria. The primary vectors in all sites were mosquitoes belonging to the Anopheles gambiae s.l. complex species; five studies in Benin, Mozambique, Ghana, Sudan, and Tanzania also reported the vector Anopheles funestus. Five cRCTs and both quasi-experimental design studies used insecticides with targets different to pyrethroids (two used bendiocarb, three used pirimiphos-methyl, and one used propoxur. Each of these studies were conducted in areas where the vectors were described as resistant or highly resistant to pyrethroids. Two cRCTs used dichloro-diphenyl-trichlorethane (DDT), an insecticide with the same target as pyrethroids. The remaining cRCT used both types of insecticide (pyrethroid deltamethrin in the first year, switching to bendiocarb for the second year). Indoor residual spraying using 'non-pyrethroid-like' insecticides Six studies were included (four cRCTs, one CBA, and one ITS). Our main analysis for prevalence excluded a study at high risk of bias due to repeated sampling of the same population. This risk did not apply to other outcomes. Overall, the addition of IRS reduced malaria parasite prevalence (RR 0.61, 95% CI 0.42 to 0.88; 4 cRCTs, 16,394 participants; high-certainty evidence). IRS may also reduce malaria incidence on average (rate ratio 0.86, 95% CI 0.61 to 1.23; 4 cRCTs, 323,631 child-years; low-certainty evidence) but the effect was absent in two studies. Subgroup analyses did not explain the qualitative heterogeneity between studies. One cRCT reported no effect on malaria incidence or parasite prevalence in the first year, when a pyrethroid-like insecticide was used for IRS, but showed an effect on both outcomes in the second year, when a non-pyrethroid-like IRS was used. The addition of IRS may also reduce anaemia prevalence (RR 0.71, 95% CI 0.38 to 1.31; 3 cRCTs, 4288 participants; low-certainty evidence). Four cRCTs reported the impact of IRS on entomological inoculation rate (EIR), with variable results; overall, we do not know if IRS had any effect on the EIR in communities using ITNs (very low-certainty evidence). Studies also reported the adult mosquito density and the sporozoite rate, but we could not summarize or pool these entomological outcomes due to differences in the reported data. Three studies measured the prevalence of pyrethroid resistance before and after IRS being introduced: there was no difference detected, but these data are limited. Indoor residual spraying using 'pyrethroid-like' insecticides Adding IRS using a pyrethroid-like insecticide did not appear to markedly alter malaria incidence (rate ratio 1.07, 95% CI 0.80 to 1.43; 2 cRCTs, 15,717 child-years; moderate-certainty evidence), parasite prevalence (RR 1.11, 95% CI 0.86 to 1.44; 3 cRCTs, 10,820 participants; moderate-certainty evidence), or anaemia prevalence (RR 1.12, 95% CI 0.89 to 1.40; 1 cRCT, 4186 participants; low-certainty evidence). Data on EIR were limited so no conclusion was made (very low-certainty evidence). AUTHORS' CONCLUSIONS in communities using ITNs, the addition of IRS with 'non-pyrethroid-like' insecticides was associated with reduced malaria prevalence. Malaria incidence may also be reduced on average, but there was unexplained qualitative heterogeneity, and the effect may therefore not be observed in all settings. When using 'pyrethroid-like' insecticides, there was no detectable additional benefit of IRS in communities using ITNs.
Collapse
Affiliation(s)
- Joseph Pryce
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Nancy Medley
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Leslie Choi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
12
|
Gansané A, Candrinho B, Mbituyumuremyi A, Uhomoibhi P, NFalé S, Mohammed AB, Guelbeogo WM, Sanou A, Kangoye D, Debe S, Kagone M, Hakizimana E, Uwimana A, Tuyishime A, Ingabire CM, Singirankabo JH, Koenker H, Marrenjo D, Abilio AP, Salvador C, Savaio B, Okoko OO, Maikore I, Obi E, Awolola ST, Adeogun A, Babarinde D, Ali O, Guglielmo F, Yukich J, Scates S, Sherrard-Smith E, Churcher T, Fornadel C, Shannon J, Kawakyu N, Beylerian E, Digre P, Tynuv K, Gogue C, Mwesigwa J, Wagman J, Adeleke M, Adeolu AT, Robertson M. Design and methods for a quasi-experimental pilot study to evaluate the impact of dual active ingredient insecticide-treated nets on malaria burden in five regions in sub-Saharan Africa. Malar J 2022; 21:19. [PMID: 35012559 PMCID: PMC8744060 DOI: 10.1186/s12936-021-04026-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Vector control tools have contributed significantly to a reduction in malaria burden since 2000, primarily through insecticidal-treated bed nets (ITNs) and indoor residual spraying. In the face of increasing insecticide resistance in key malaria vector species, global progress in malaria control has stalled. Innovative tools, such as dual active ingredient (dual-AI) ITNs that are effective at killing insecticide-resistant mosquitoes have recently been introduced. However, large-scale uptake has been slow for several reasons, including higher costs and limited evidence on their incremental effectiveness and cost-effectiveness. The present report describes the design of several observational studies aimed to determine the effectiveness and cost-effectiveness of dual-AI ITNs, compared to standard pyrethroid-only ITNs, at reducing malaria transmission across a variety of transmission settings. METHODS Observational pilot studies are ongoing in Burkina Faso, Mozambique, Nigeria, and Rwanda, leveraging dual-AI ITN rollouts nested within the 2019 and 2020 mass distribution campaigns in each country. Enhanced surveillance occurring in select study districts include annual cross-sectional surveys during peak transmission seasons, monthly entomological surveillance, passive case detection using routine health facility surveillance systems, and studies on human behaviour and ITN use patterns. Data will compare changes in malaria transmission and disease burden in districts receiving dual-AI ITNs to similar districts receiving standard pyrethroid-only ITNs over three years. The costs of net distribution will be calculated using the provider perspective including financial and economic costs, and a cost-effectiveness analysis will assess incremental cost-effectiveness ratios for Interceptor® G2, Royal Guard®, and piperonyl butoxide ITNs in comparison to standard pyrethroid-only ITNs, based on incidence rate ratios calculated from routine data. CONCLUSIONS Evidence of the effectiveness and cost-effectiveness of the dual-AI ITNs from these pilot studies will complement evidence from two contemporary cluster randomized control trials, one in Benin and one in Tanzania, to provide key information to malaria control programmes, policymakers, and donors to help guide decision-making and planning for local malaria control and elimination strategies. Understanding the breadth of contexts where these dual-AI ITNs are most effective and collecting robust information on factors influencing comparative effectiveness could improve uptake and availability and help maximize their impact.
Collapse
Affiliation(s)
- Adama Gansané
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Baltazar Candrinho
- National Malaria Control Programme, Ministry of Health, Maputo, Mozambique
| | | | - Perpetua Uhomoibhi
- National Malaria Elimination Programme, Federal Ministry of Health, Abuja, Nigeria
| | - Sagnon NFalé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Audu Bala Mohammed
- National Malaria Elimination Programme, Federal Ministry of Health, Abuja, Nigeria
| | | | - Antoine Sanou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - David Kangoye
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Siaka Debe
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Moubassira Kagone
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | - Aline Uwimana
- Rwanda Biomedical Centre, Ministry of Health, Kigali, Rwanda
| | | | | | | | | | | | | | | | | | - Okefu Oyale Okoko
- National Malaria Elimination Programme, Federal Ministry of Health, Abuja, Nigeria
| | - Ibrahim Maikore
- National Malaria Elimination Programme, Federal Ministry of Health, Abuja, Nigeria
| | - Emmanuel Obi
- National Malaria Elimination Programme, Federal Ministry of Health, Abuja, Nigeria
| | | | | | | | - Onoja Ali
- Ibolda Health International, Abuja, Nigeria
| | | | - Joshua Yukich
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Sara Scates
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Thomas Churcher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wagman JM, Varela K, Zulliger R, Saifodine A, Muthoni R, Magesa S, Chaccour C, Gogue C, Tynuv K, Seyoum A, Dengela D, Saúte F, Richardson JH, Fornadel C, Linton YM, Slutsker L, Candrinho B, Robertson M. Reduced exposure to malaria vectors following indoor residual spraying of pirimiphos-methyl in a high-burden district of rural Mozambique with high ownership of long-lasting insecticidal nets: entomological surveillance results from a cluster-randomized trial. Malar J 2021; 20:54. [PMID: 33478533 PMCID: PMC7819201 DOI: 10.1186/s12936-021-03583-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Background The need to develop new products and novel approaches for malaria vector control is recognized as a global health priority. One approach to meeting this need has been the development of new products for indoor residual spraying (IRS) with novel active ingredients for public health. While initial results showing the impact of several of these next-generation IRS products have been encouraging, questions remain about how to best deploy them for maximum impact. To help address these questions, a 2-year cluster-randomized controlled trial to measure the impact of IRS with a microencapsulated formulation of pirimiphos-methyl (PM) in an area with high ownership of long-lasting insecticidal nets (LLINs) was conducted in a high-transmission district of central Mozambique with pyrethroid resistant vectors. Presented here are the results of the vector surveillance component of the trial. Methods The 2 year, two-armed trial was conducted in Mopeia District, Zambezia Province, Mozambique. In ten sentinel villages, five that received IRS with PM in October–November 2016 and again in October–November 2017 and five that received no IRS, indoor light trap collections and paired indoor-outdoor human landing collections catches (HLCs) were conducted monthly from September 2016 through October 2018. A universal coverage campaign in June 2017, just prior to the second spray round, distributed 131,540 standard alpha-cypermethrin LLINs across all study villages and increased overall net usage rates in children under 5 years old to over 90%. Results The primary malaria vector during the trial was Anopheles funestus sensu lato (s.l.), and standard World Health Organization (WHO) tube tests with this population indicated variable but increasing resistance to pyrethroids (including alpha-cypermethrin, from > 85% mortality in 2017 to 7% mortality in 2018) and uniform susceptibility to PM (100% mortality in both years). Over the entire duration of the study, IRS reduced An. funestus s.l. densities by 48% (CI95 33–59%; p < 0.001) in indoor light traps and by 74% (CI95 38–90%; p = 0.010) during indoor and outdoor HLC, though in each study year reductions in vector density were consistently greatest in those months immediately following the IRS campaigns and waned over time. Overall there was no strong preference for An. funestus to feed indoors or outdoors, and these biting behaviours did not differ significantly across study arms: observed indoor-outdoor biting ratios were 1.10 (CI95 1.00–1.21) in no-IRS villages and 0.88 (CI95 0.67–1.15) in IRS villages. The impact of IRS was consistent in reducing HLC exposures both indoors (75% reduction: CI95 47–88%; p = 0. < 0.001) and outdoors (68% reduction: CI95 22–87%; p = 0.012). While substantially fewer Anopheles gambiae s.l. were collected during the study, trends show a similar impact of IRS on this key vector group as well, with a 33% (CI95 7–53%; p = 0.019) reduction in mosquitoes collected in light traps and a non-statistically significant 39% reduction (p = 0.249) in HLC landing rates. Conclusion IRS with PM used in addition to pyrethroid-only LLINs substantially reduced human exposures to malaria vectors during both years of the cluster-randomized controlled trial in Mopeia—a high-burden district where the primary vector, An. funestus s.l., was equally likely to feed indoors or outdoors and demonstrated increasing resistance to pyrethroids. Findings suggest that IRS with PM can provide effective vector control, including in some settings where pyrethroid-only ITNs are widely used. Trial registrationclinicaltrials.gov, NCT02910934. Registered 22 September 2016, https://www.clinicaltrials.gov/ct2/show/NCT02910934.
Collapse
Affiliation(s)
| | | | - Rose Zulliger
- US President's Malaria Initiative, US Centers for Disease Control and Prevention, Maputo, Mozambique
| | - Abuchahama Saifodine
- US President's Malaria Initiative, US Agency for International Development, Maputo, Mozambique
| | - Rodaly Muthoni
- PMI VectorLink Project, Abt Associates, Maputo, Mozambique
| | - Stephen Magesa
- PMI VectorLink Project, Abt Associates, Maputo, Mozambique
| | - Carlos Chaccour
- Centro de Investigação Em Saúde de Manhiça, Maputo, Mozambique.,Barcelona Institute for Global Health, Barcelona, Spain
| | | | | | - Aklilu Seyoum
- PMI VectorLink Project, Abt Associates, Bethesda, MD, USA
| | - Dereje Dengela
- PMI VectorLink Project, Abt Associates, Bethesda, MD, USA
| | - Francisco Saúte
- Centro de Investigação Em Saúde de Manhiça, Maputo, Mozambique
| | | | | | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit, Suitland, MD, USA.,Smithsonian Institution-National Museum of Natural History, Washington, DC, USA
| | | | | | | |
Collapse
|
14
|
Evolution of Malaria Incidence in Five Health Districts, in the Context of the Scaling Up of Seasonal Malaria Chemoprevention, 2016 to 2018, in Mali. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020840. [PMID: 33478166 PMCID: PMC7844620 DOI: 10.3390/ijerph18020840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/26/2022]
Abstract
Context: In Mali, malaria transmission is seasonal, exposing children to high morbidity and mortality. A preventative strategy called Seasonal Malaria Chemoprevention (SMC) is being implemented, consisting of the distribution of drugs at monthly intervals for up to 4 months to children between 3 and 59 months of age during the period of the year when malaria is most prevalent. This study aimed to analyze the evolution of the incidence of malaria in the general population of the health districts of Kati, Kadiolo, Sikasso, Yorosso, and Tominian in the context of SMC implementation. Methods: This is a transversal study analyzing the routine malaria data and meteorological data of Nasa Giovanni from 2016 to 2018. General Additive Model (GAM) analysis was performed to investigate the relationship between malaria incidence and meteorological factors. Results: From 2016 to 2018, the evolution of the overall incidence in all the study districts was positively associated with the relative humidity, rainfall, and minimum temperature components. The average monthly incidence and the relative humidity varied according to the health district, and the average temperature and rainfall were similar. A decrease in incidence was observed in children under five years old in 2017 and 2018 compared to 2016. Conclusion: A decrease in the incidence of malaria was observed after the SMC rounds. SMC should be applied at optimal periods.
Collapse
|
15
|
Grau-Bové X, Lucas E, Pipini D, Rippon E, van ‘t Hof AE, Constant E, Dadzie S, Egyir-Yawson A, Essandoh J, Chabi J, Djogbénou L, Harding NJ, Miles A, Kwiatkowski D, Donnelly MJ, Weetman D, The Anopheles gambiae 1000 Genomes Consortium. Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus. PLoS Genet 2021; 17:e1009253. [PMID: 33476334 PMCID: PMC7853456 DOI: 10.1371/journal.pgen.1009253] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/02/2021] [Accepted: 11/03/2020] [Indexed: 12/30/2022] Open
Abstract
Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d'Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Eric Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emily Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Arjèn E. van ‘t Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Edi Constant
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Luc Djogbénou
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institut Régional de Santé Publique, Université d’Abomey-Calavi, Benin
| | - Nicholas J. Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Alistair Miles
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Dominic Kwiatkowski
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | |
Collapse
|
16
|
Nice J, Nahusenay H, Eckert E, Eisele TP, Ashton RA. Estimating malaria chemoprevention and vector control coverage using program and campaign data: A scoping review of current practices and opportunities. J Glob Health 2020; 10:020413. [PMID: 33110575 PMCID: PMC7568932 DOI: 10.7189/jogh.10.020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Accurate estimation of intervention coverage is a vital component of malaria program monitoring and evaluation, both for process evaluation (how well program targets are achieved), and impact evaluation (whether intervention coverage had an impact on malaria burden). There is growing interest in maximizing the utility of program data to generate interim estimates of intervention coverage in the periods between large-scale cross-sectional surveys (the gold standard). As such, this study aimed to identify relevant concepts and themes that may guide future optimization of intervention coverage estimation using routinely collected data, or data collected during and following intervention campaigns, with a particular focus on strategies to define the denominator. METHODS We conducted a scoping review of current practices to estimate malaria intervention coverage for insecticide-treated nets (ITNs); indoor residual spray (IRS); intermittent preventive treatment in pregnancy (IPTp); mass drug administration (MDA); and seasonal malaria chemoprevention (SMC) interventions; case management was excluded. Multiple databases were searched for relevant articles published from January 1, 2015 to June 1, 2018. Additionally, we identified and included other guidance relevant to estimating population denominators, with a focus on innovative techniques. RESULTS While program data have the potential to provide intervention coverage data, there are still substantial challenges in selecting appropriate denominators. The review identified a lack of consistency in how coverage was defined and reported for each intervention type, with denominator estimation methods not clearly or consistently reported, and denominator estimates rarely triangulated with other data sources to present the feasible range of denominator values and consequently the range of likely coverage estimates. CONCLUSIONS Though household survey-based estimates of intervention coverage remain the gold standard, efforts should be made to further standardize practices for generating interim measurements of intervention coverage from program data, and for estimating and reporting population denominators. This includes fully describing any projections or adjustments made to existing census or population data, exploring opportunities to validate available data by comparing with other sources, and explaining how the denominator has been restricted (or not) to reflect exclusion criteria.
Collapse
Affiliation(s)
- Johanna Nice
- MEASURE Evaluation, Centre for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Honelgn Nahusenay
- MEASURE Evaluation, Centre for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Erin Eckert
- U.S. President's Malaria Initiative, United States Agency for International Development, Washington, D.C., USA
- RTI International, Washington, D.C., USA
| | - Thomas P Eisele
- Centre for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Ruth A Ashton
- MEASURE Evaluation, Centre for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
17
|
Mpimbaza A, Sserwanga A, Rutazaana D, Kapisi J, Walemwa R, Suiyanka L, Kyalo D, Kamya M, Opigo J, Snow RW. Changing malaria fever test positivity among paediatric admissions to Tororo district hospital, Uganda 2012-2019. Malar J 2020; 19:416. [PMID: 33213469 PMCID: PMC7678291 DOI: 10.1186/s12936-020-03490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The World Health Organization (WHO) promotes long-lasting insecticidal nets (LLIN) and indoor residual house-spraying (IRS) for malaria control in endemic countries. However, long-term impact data of vector control interventions is rarely measured empirically. METHODS Surveillance data was collected from paediatric admissions at Tororo district hospital for the period January 2012 to December 2019, during which LLIN and IRS campaigns were implemented in the district. Malaria test positivity rate (TPR) among febrile admissions aged 1 month to 14 years was aggregated at baseline and three intervention periods (first LLIN campaign; Bendiocarb IRS; and Actellic IRS + second LLIN campaign) and compared using before-and-after analysis. Interrupted time-series analysis (ITSA) was used to determine the effect of IRS (Bendiocarb + Actellic) with the second LLIN campaign on monthly TPR compared to the combined baseline and first LLIN campaign periods controlling for age, rainfall, type of malaria test performed. The mean and median ages were examined between intervention intervals and as trend since January 2012. RESULTS Among 28,049 febrile admissions between January 2012 and December 2019, TPR decreased from 60% at baseline (January 2012-October 2013) to 31% during the final period of Actellic IRS and LLIN (June 2016-December 2019). Comparing intervention intervals to the baseline TPR (60.3%), TPR was higher during the first LLIN period (67.3%, difference 7.0%; 95% CI 5.2%, 8.8%, p < 0.001), and lower during the Bendiocarb IRS (43.5%, difference - 16.8%; 95% CI - 18.7%, - 14.9%) and Actellic IRS (31.3%, difference - 29.0%; 95% CI - 30.3%, - 27.6%, p < 0.001) periods. ITSA confirmed a significant decrease in the level and trend of TPR during the IRS (Bendicarb + Actellic) with the second LLIN period compared to the pre-IRS (baseline + first LLIN) period. The age of children with positive test results significantly increased with time from a mean of 24 months at baseline to 39 months during the final IRS and LLIN period. CONCLUSION IRS can have a dramatic impact on hospital paediatric admissions harbouring malaria infection. The sustained expansion of effective vector control leads to an increase in the age of malaria positive febrile paediatric admissions. However, despite large reductions, malaria test-positive admissions continued to be concentrated in children aged under five years. Despite high coverage of IRS and LLIN, these vector control measures failed to interrupt transmission in Tororo district. Using simple, cost-effective hospital surveillance, it is possible to monitor the public health impacts of IRS in combination with LLIN.
Collapse
Affiliation(s)
- Arthur Mpimbaza
- Child Health and Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda.
- Infectious Diseases Research Collaboration, Kampala, Uganda.
| | | | - Damian Rutazaana
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - James Kapisi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Richard Walemwa
- Department of Prevention, Care and Treatment, Infectious Diseases Institute, Kampala, Uganda
| | - Laurissa Suiyanka
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
| | - David Kyalo
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Robert W Snow
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Zinszer K, Charland K, Vahey S, Jahagirdar D, Rek JC, Arinaitwe E, Nankabirwa J, Morrison K, Sadoine ML, Tutt-Guérette MA, Staedke SG, Kamya MR, Greenhouse B, Rodriguez-Barraquer I, Dorsey G. The Impact of Multiple Rounds of Indoor Residual Spraying on Malaria Incidence and Hemoglobin Levels in a High-Transmission Setting. J Infect Dis 2020; 221:304-312. [PMID: 31599325 DOI: 10.1093/infdis/jiz453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/04/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is widely used as a vector control measure, although there are conflicting findings of its effectiveness in reducing malaria incidence. The objective of this study was to estimate the effect of multiple IRS rounds on malaria incidence and hemoglobin levels in a cohort of children in rural southeastern Uganda. METHODS The study was based upon a dynamic cohort of children aged 0.5-10 years enrolled from August 2011 to June 2017 in Nagongera Subcounty. Confirmed malaria infections and hemoglobin levels were recorded over time for each participant. After each of 4 rounds of IRS, malaria incidence, hemoglobin levels, and parasite density were evaluated and compared with pre-IRS levels. Analyses were carried out at the participant level while accounting for repeated measures and clustering by household. RESULTS Incidence rate ratios comparing post-IRS to pre-IRS incidence rates for age groups 0-3, 3-5, and 5-11 were 0.108 (95% confidence interval [CI], .078-.149), 0.173 (95% CI, .136-.222), and 0.226 (95% CI, .187-.274), respectively. The mean hemoglobin levels significantly increased from 11.01 (pre-IRS) to 12.18 g/dL (post-IRS). CONCLUSIONS Our study supports the policy recommendation of IRS usage in a stable and perennial transmission area to rapidly reduce malaria transmission.
Collapse
Affiliation(s)
- Kate Zinszer
- Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada.,Centre de recherche en santé publique, University of Montreal, Montreal, Quebec, Canada
| | - Katia Charland
- Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Sarah Vahey
- Centre de recherche en santé publique, University of Montreal, Montreal, Quebec, Canada
| | - Deepa Jahagirdar
- Institute for Health Metrics and Evaluation, Seattle, Washington, USA
| | - John C Rek
- Infectious Disease Research Collaboration, Makerere University, Kampala, Uganda
| | - Emmanuel Arinaitwe
- Infectious Disease Research Collaboration, Makerere University, Kampala, Uganda
| | - Joaniter Nankabirwa
- Infectious Disease Research Collaboration, Makerere University, Kampala, Uganda
| | | | - Margaux L Sadoine
- Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada.,Centre de recherche en santé publique, University of Montreal, Montreal, Quebec, Canada
| | - Marc-Antoine Tutt-Guérette
- Department of Social and Preventive Medicine, University of Montreal, Montreal, Quebec, Canada.,Centre de recherche en santé publique, University of Montreal, Montreal, Quebec, Canada
| | - Sarah G Staedke
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Moses R Kamya
- Infectious Disease Research Collaboration, Makerere University, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | | | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Wagman J, Cissé I, Kone D, Fomba S, Eckert E, Mihigo J, Bankineza E, Bah M, Diallo D, Gogue C, Tynuv K, Saibu A, Richardson JH, Fornadel C, Slutsker L, Robertson M. Rapid reduction of malaria transmission following the introduction of indoor residual spraying in previously unsprayed districts: an observational analysis of Mopti Region, Mali, in 2017. Malar J 2020; 19:340. [PMID: 32950056 PMCID: PMC7501620 DOI: 10.1186/s12936-020-03414-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/10/2020] [Indexed: 11/23/2022] Open
Abstract
Background The National Malaria Control Programme (NMCP) of Mali has had recent success decreasing malaria transmission using 3rd generation indoor residual spraying (IRS) products in areas with pyrethroid resistance, primarily in Ségou and Koulikoro Regions. In 2015, national survey data showed that Mopti Region had the highest under 5-year-old (u5) malaria prevalence at 54%—nearly twice the national average—despite having high access to long-lasting insecticidal nets (LLINs) and seasonal malaria chemoprevention (SMC). Accordingly, in 2016 the NMCP and other stakeholders shifted IRS activities from Ségou to Mopti. Here, the results of a series of observational analyses utilizing routine malaria indicators to evaluate the impact of this switch are presented. Methods A set of retrospective, eco-observational time-series analyses were performed using monthly incidence rates of rapid diagnostic test (RDT)-confirmed malaria cases reported in the District Health Information System 2 (DHIS2) from January 2016 until February 2018. Comparisons of case incidence rates were made between health facility catchments from the same region that differed in IRS status (IRS vs. no-IRS) to describe the general impact of the 2016 and 2017 IRS campaigns, and a difference-in-differences approach comparing changes in incidence from year-to-year was used to describe the effect of suspending IRS operations in Ségou and introducing IRS operations in Mopti in 2017. Results Compared to communities with no IRS, cumulative case incidence rates in IRS communities were reduced 16% in Ségou Region during the 6 months following the 2016 campaign and 31% in Mopti Region during the 6 months following the 2017 campaign, likely averting a total of more than 22,000 cases of malaria that otherwise would have been expected during peak transmission months. Across all comparator health facilities (HFs) where there was no IRS in either year, peak malaria case incidence rates fell by an average of 22% (CI95 18–30%) from 2016 to 2017. At HFs in communities of Mopti where IRS was introduced in 2017, peak incidence fell by an average of 42% (CI95 31–63%) between these years, a significantly greater decrease (p = 0.040) almost double what was seen in the comparator HFCAs. The opposite effect was observed in Ségou Region, where peak incidence at those HFs where IRS was withdrawn after the 2016 campaign increased by an average of 106% (CI95 63–150%) from year to year, also a significant difference-in-differences compared to the comparator no-IRS HFs (p < 0.0001). Conclusion Annual IRS campaigns continue to make dramatic contributions to the seasonal reduction of malaria transmission in communities across central Mali, where IRS campaigns were timed in advance of peak seasonal transmission and utilized a micro-encapsulated product with an active ingredient that was of a different class than the one found on the LLINs used throughout the region and to which local malaria vectors were shown to be susceptible. Strategies to help mitigate the resurgence of malaria cases that can be expected should be prioritized whenever the suspension of IRS activities in a particular region is considered.
Collapse
Affiliation(s)
| | - Idrissa Cissé
- Programme National de Lutte contre le Paludisme, Bamako, Mali
| | - Diakalkia Kone
- Programme National de Lutte contre le Paludisme, Bamako, Mali
| | - Seydou Fomba
- Programme National de Lutte contre le Paludisme, Bamako, Mali
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Combining next-generation indoor residual spraying and drug-based malaria control strategies: observational evidence of a combined effect in Mali. Malar J 2020; 19:293. [PMID: 32799873 PMCID: PMC7429948 DOI: 10.1186/s12936-020-03361-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ségou Region in central Mali is an area of high malaria burden with seasonal transmission. The region reports high access to and use of long-lasting insecticidal nets (LLINs), though the principal vector, Anopheles gambiae, is resistant to pyrethroids. From 2011 until 2016, several high-burden districts of Ségou also received indoor residual spraying (IRS), though in 2014 concerns about pyrethroid resistance prompted a shift in IRS products to a micro-encapsulated formulation of the organophosphate insecticide pirimiphos-methyl. Also in 2014, the region expanded a pilot programme to provide seasonal malaria chemoprevention (SMC) to children aged 3-59 months in two districts. The timing of these decisions presented an opportunity to estimate the impact of both interventions, deployed individually and in combination, using quality-assured passive surveillance data. METHODS A non-randomized, quasi-experimental time series approach was used to analyse monthly trends in malaria case incidence at the district level. Districts were stratified by intervention status: an SMC district, an IRS district, an IRS + SMC district, and control districts that received neither IRS nor SMC in 2014. The numbers of positive rapid diagnostic test (RDT +) results reported at community health facilities were aggregated and epidemiological curves showing the incidence of RDT-confirmed malaria cases per 10,000 person-months were plotted for the total all-ages and for the under 5 year old (u5) population. The cumulative incidence of RDT + malaria cases observed from September 2014 to February 2015 was calculated in each intervention district and compared to the cumulative incidence reported from the same period in the control districts. RESULTS Cumulative peak-transmission all-ages incidence was lower in each of the intervention districts compared to the control districts: 16% lower in the SMC district; 28% lower in the IRS district; and 39% lower in the IRS + SMC district. The same trends were observed in the u5 population: incidence was 15% lower with SMC, 48% lower with IRS, and 53% lower with IRS + SMC. The SMC-only intervention had a more moderate effect on incidence reduction initially, which increased over time. The IRS-only intervention had a rapid, comparatively large impact initially that waned over time. The impact of the combined interventions was both rapid and longer lasting. CONCLUSION Evaluating the impact of IRS with an organophosphate and SMC on reducing incidence rates of passive RDT-confirmed malaria cases in Ségou Region in 2014 suggests that combining the interventions had a greater effect than either intervention used individually in this high-burden region of central Mali with pyrethroid-resistant vectors and high rates of household access to LLINs.
Collapse
|
21
|
Kané F, Keïta M, Traoré B, Diawara SI, Bane S, Diarra S, Sogoba N, Doumbia S. Performance of IRS on malaria prevalence and incidence using pirimiphos-methyl in the context of pyrethroid resistance in Koulikoro region, Mali. Malar J 2020; 19:286. [PMID: 32787938 PMCID: PMC7425591 DOI: 10.1186/s12936-020-03357-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background Koulikoro Health District is one of three districts of Mali where the indoor residual spray (IRS) has been implemented from 2008 to 2016. With widespread of resistance to pyrethroid, IRS was shifted from pyrethroid to pirimiphos-methyl from 2014 to 2016. The objective of this study was to assess the added value of IRS to LLINs on the prevalence of parasitaemia and malaria incidence among children under 10 years old. Methods A comparative study was carried out to assess the effects of pirimiphos-methyl based IRS on malaria prevalence and incidence among children from 6 months to 10 years old in selected pyrethroid resistance villages of two health districts in Mali: one where IRS was implemented in combination with LLINs (intervention area) and one with LLINs-only (control area). Two cross-sectional surveys were carried out at the beginning (June) and end of the rainy season (October) to assess seasonal changes in malaria parasitaemia by microscopy. A passive detection case (PCD) was set-up in each study village for 9 months to estimate the incidence of malaria using RDT. Results There was an increase of 220% in malaria prevalence from June to October in the control area (14% to 42%) versus only 53% in the IRS area (9.2% to 13.2%). Thus, the proportional rise in malaria prevalence from the dry to the rainy season in 2016 was 4-times greater in the control area compared to the IRS area. The overall malaria incidence rate was 2.7 per 100 person-months in the IRS area compared with 6.8 per 100 person-month in the control areas. The Log-rank test of Kaplan–Meier survival analysis showed that children living in IRS area remain much longer free from malaria (Hazard ratio (HR) = 0.45, CI 95% 0.37–0.54) than children of the control area (P < 0.0001). Conclusions IRS using pirimiphos-methyl has been successful in reducing substantially both the prevalence and the incidence of malaria in children under 10 years old in the area of pyrethroid resistance of Koulikoro, Mali. Pirimiphos-methyl is a better alternative than pyrethroids for IRS in areas with widespread of pyrethroid resistance.
Collapse
Affiliation(s)
- Fousseyni Kané
- Malaria Research and Training Centre; International Center for Excellence in Research (ICER-Mali); Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.
| | - Moussa Keïta
- Malaria Research and Training Centre; International Center for Excellence in Research (ICER-Mali); Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Boïssé Traoré
- Malaria Research and Training Centre; International Center for Excellence in Research (ICER-Mali); Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Sory Ibrahim Diawara
- Malaria Research and Training Centre; International Center for Excellence in Research (ICER-Mali); Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Sidy Bane
- Malaria Research and Training Centre; International Center for Excellence in Research (ICER-Mali); Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Souleymane Diarra
- Malaria Research and Training Centre; International Center for Excellence in Research (ICER-Mali); Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Nafomon Sogoba
- Malaria Research and Training Centre; International Center for Excellence in Research (ICER-Mali); Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Seydou Doumbia
- Malaria Research and Training Centre; International Center for Excellence in Research (ICER-Mali); Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| |
Collapse
|
22
|
Gogue C, Wagman J, Tynuv K, Saibu A, Yihdego Y, Malm K, Mohamed W, Akplu W, Tagoe T, Ofosu A, Williams I, Asiedu S, Richardson J, Fornadel C, Slutsker L, Robertson M. An observational analysis of the impact of indoor residual spraying in Northern, Upper East, and Upper West Regions of Ghana: 2014 through 2017. Malar J 2020; 19:242. [PMID: 32652994 PMCID: PMC7353711 DOI: 10.1186/s12936-020-03318-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/04/2020] [Indexed: 01/16/2023] Open
Abstract
Background Ghana has been implementing the indoor residual spraying (IRS) of insecticides since 2006, focusing operations in the north. Insecticide resistance concerns prompted a switch from pyrethroids to organophosphates, beginning gradually in 2011 and switching fully to the micro-encapsulated formulation of pirimiphosmethyl (PM CS), Actellic® 300CS, a third-generation indoor residual spraying (3GIRS) product, by 2014. Entomological surveillance studies have shown IRS to be a highly effective malaria control tool, but epidemiological evidence is needed as well. Countrywide prevalence surveys have shown that malaria parasite prevalence in children under 5 years of age in Northern, Upper East, and Upper West Regions had declined to less than 40% in each region by 2016. Similarly, malaria deaths in children under 5 years of age have also been declining nationally since 2009. Although IRS is suspected to have contributed to this decline, stronger evidence is needed to link the IRS interventions to the epidemiological impact. Methods To assess the epidemiological impact of Ghana’s IRS programmatic activities, a retrospective, observational analysis using routine epidemiological data was conducted to compare malaria incidence rates from IRS and non-IRS districts in Northern, Upper East, and Upper West Regions. Routine epidemiological data consisted of passive malaria case surveillance data reported in the District Health Information System 2 (DHIS2); with cases representing patients with suspected malaria who had sought care in the public health system and had received a confirmatory diagnosis with a positive malaria RDT result. Final routine data were extracted in September 2018. All districts that had received IRS were included in the analysis and compared to all non-IRS districts within the same region. In the Northern Region, only PMI districts were included in the analysis, as they had similar historical data. Results District-level analysis from Northern Region from 2015 to 2017 of the aggregate malaria incidence reported from IRS districts relative to non-IRS comparator districts showed 39%, 26%, and 58% fewer confirmed malaria cases reported from IRS districts in 2015, 2016, and 2017, respectively. This translates to approximately 257,000 fewer cases than expected over the three years. In Upper East Region, the effect on reported malaria cases of withdrawing IRS from the region was striking; after spray operations were suspended in 2015, incidence increased an average of 485% per district (95% confidence interval: 330% to 640%) compared to 2014. Conclusions The current observational analysis results are in line with the entomological studies in demonstrating the positive contribution of IRS with a 3GIRS product to malaria control programmes in northern Ghana and the value of using routine surveillance and implementation data to rapidly assess the impact of vector control interventions in operational settings, even in complex implementation environments.
Collapse
Affiliation(s)
| | | | | | | | - Yemane Yihdego
- Abt Associates Africa Indoor Residual Spraying Program, Accra, Ghana
| | - Keziah Malm
- National Malaria Control Programme, Accra, Ghana
| | | | | | | | | | | | - Samuel Asiedu
- AngloGold Ashanti Malaria Control Limited, Accra, Ghana
| | | | | | | | | |
Collapse
|
23
|
Sovi A, Keita C, Sinaba Y, Dicko A, Traore I, Cisse MBM, Koita O, Dengela D, Flatley C, Bankineza E, Mihigo J, Belemvire A, Carlson J, Fornadel C, Oxborough RM. Anopheles gambiae (s.l.) exhibit high intensity pyrethroid resistance throughout Southern and Central Mali (2016-2018): PBO or next generation LLINs may provide greater control. Parasit Vectors 2020; 13:239. [PMID: 32384907 PMCID: PMC7206711 DOI: 10.1186/s13071-020-04100-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/25/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Millions of pyrethroid LLINs have been distributed in Mali during the past 20 years which, along with agricultural use, has increased the selection pressure on malaria vector populations. This study investigated pyrethroid resistance intensity and susceptible status of malaria vectors to alternative insecticides to guide choice of insecticides for LLINs and IRS for effective control of malaria vectors. METHODS For 3 years between 2016 and 2018, susceptibility testing was conducted annually in 14-16 sites covering southern and central Mali. Anopheles gambiae (s.l.) were collected from larval sites and adult mosquitoes exposed in WHO tube tests to diagnostic doses of bendiocarb (0.1%) and pirimiphos-methyl (0.25%). Resistance intensity tests were conducted using CDC bottle bioassays (2016-2017) and WHO tube tests (2018) at 1×, 2×, 5×, and 10× the diagnostic concentration of permethrin, deltamethrin and alpha-cypermethrin. WHO tube tests were conducted with pre-exposure to the synergist PBO followed by permethrin or deltamethrin. Chlorfenapyr was tested in CDC bottle bioassays at 100 µg active ingredient per bottle and clothianidin at 2% in WHO tube tests. PCR was performed to identify species within the An. gambiae complex. RESULTS In all sites An. gambiae (s.l.) showed high intensity resistance to permethrin and deltamethrin in CDC bottle bioassay tests in 2016 and 2017. In 2018, the WHO intensity tests resulted in survivors at all sites for permethrin, deltamethrin and alpha-cypermethrin when tested at 10× the diagnostic dose. Across all sites mean mortality was 33.7% with permethrin (0.75%) compared with 71.8% when pre-exposed to PBO (4%), representing a 2.13-fold increase in mortality. A similar trend was recorded for deltamethrin. There was susceptibility to pirimiphos-methyl, chlorfenapyr and clothianidin in all surveyed sites, including current IRS sites in Mopti Region. An. coluzzii was the primary species in 4 of 6 regions. CONCLUSIONS Widespread high intensity pyrethroid resistance was recorded during 2016-2018 and is likely to compromise the effectiveness of pyrethroid LLINs in Mali. PBO or chlorfenapyr LLINs should provide improved control of An. gambiae (s.l.). Clothianidin and pirimiphos-methyl insecticides are currently being used for IRS as part of a rotation strategy based on susceptibility being confirmed in this study.
Collapse
Affiliation(s)
- Arthur Sovi
- Faculty of Agronomy, University of Parakou, BP123 Parakou, Benin
- Centre de Recherche Entomologique de Cotonou, 06BP2604 Cotonou, Benin
- Disease Control Department, Faculty of Infectious & Tropical Diseases, The London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
- PMI VectorLink Project, Abt Associates, Cite du Niger 1, Rue 30, Porte 612, Bamako, Mali
| | - Chitan Keita
- PMI VectorLink Project, Abt Associates, Cite du Niger 1, Rue 30, Porte 612, Bamako, Mali
| | - Youssouf Sinaba
- PMI VectorLink Project, Abt Associates, Cite du Niger 1, Rue 30, Porte 612, Bamako, Mali
| | - Abdourhamane Dicko
- Programme National de Lutte contre le Paludisme (PNLP), Ministère de la Santé, Bamako, Mali
| | - Ibrahim Traore
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Moussa B. M. Cisse
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Ousmane Koita
- Université des Sciences, des Techniques, et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Dereje Dengela
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD 20852 USA
| | - Cecilia Flatley
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD 20852 USA
| | - Elie Bankineza
- PMI VectorLink Project, Abt Associates, Cite du Niger 1, Rue 30, Porte 612, Bamako, Mali
| | - Jules Mihigo
- U.S. President’s Malaria Initiative, U.S. Agency for International Development, Bamako, Mali
| | - Allison Belemvire
- U.S. President’s Malaria Initiative, U.S. Agency for International Development, Washington, DC USA
| | - Jenny Carlson
- U.S. President’s Malaria Initiative, U.S. Agency for International Development, Washington, DC USA
| | - Christen Fornadel
- U.S. President’s Malaria Initiative, U.S. Agency for International Development, Washington, DC USA
- Innovative Vector Control Consortium (IVCC), Washington, D.C USA
| | - Richard M. Oxborough
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD 20852 USA
| |
Collapse
|
24
|
Tangena JAA, Hendriks CMJ, Devine M, Tammaro M, Trett AE, Williams I, DePina AJ, Sisay A, Herizo R, Kafy HT, Chizema E, Were A, Rozier J, Coleman M, Moyes CL. Indoor residual spraying for malaria control in sub-Saharan Africa 1997 to 2017: an adjusted retrospective analysis. Malar J 2020; 19:150. [PMID: 32276585 PMCID: PMC7149868 DOI: 10.1186/s12936-020-03216-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is a key tool for controlling and eliminating malaria by targeting vectors. To support the development of effective intervention strategies it is important to understand the impact of vector control tools on malaria incidence and on the spread of insecticide resistance. In 2006, the World Health Organization (WHO) stated that countries should report on coverage and impact of IRS, yet IRS coverage data are still sparse and unspecific. Here, the subnational coverage of IRS across sub-Saharan Africa for the four main insecticide classes from 1997 to 2017 were estimated. METHODS Data on IRS deployment were collated from a variety of sources, including the President's Malaria Initiative spray reports and National Malaria Control Programme reports, for all 46 malaria-endemic countries in sub-Saharan Africa from 1997 to 2017. The data were mapped to the applicable administrative divisions and the proportion of households sprayed for each of the four main insecticide classes; carbamates, organochlorines, organophosphates and pyrethroids was calculated. RESULTS The number of countries implementing IRS increased considerably over time, although the focal nature of deployment means the number of people protected remains low. From 1997 to 2010, DDT and pyrethroids were commonly used, then partly replaced by carbamates from 2011 and by organophosphates from 2013. IRS deployment since the publication of resistance management guidelines has typically avoided overlap between pyrethroid IRS and ITN use. However, annual rotations of insecticide classes with differing modes of action are not routinely used. CONCLUSION This study highlights the gaps between policy and practice, emphasizing the continuing potential of IRS to drive resistance. The data presented here can improve studies on the impact of IRS on malaria incidence and help to guide future malaria control efforts.
Collapse
Affiliation(s)
- Julie-Anne A Tangena
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Chantal M J Hendriks
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Maria Devine
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Meghan Tammaro
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Anna E Trett
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ignatius Williams
- Monitoring, & Evaluation Department, AngloGold Ashanti Malaria Limited, AO0540595 Obuasi Mine Road, P. O. Box 10, Obuasi, Ghana
| | - Adilson José DePina
- Malaria Pre-Elimination Program, CCS-SIDA/MSSS, Avenida Cidade Lisboa, "Prédio Bô Casa" 1º Andar, CP, 855, Praia, Cabo Verde
- Ecole Doctorale Des Sciences de La Vie, de la Santé et de l´Environnement (ED‑SEV), Université Cheikh Anta Diop (UCAD) de Dakar, BP 1386, Dakar, Sénégal
| | | | - Ramandimbiarijaona Herizo
- Programme national de lutte contre le paludisme, Androhibe en face ENAM, BP 101, Antananarivo, Madagascar
| | - Hmooda Toto Kafy
- Integrated Vector Management Department, Federal Ministry of Health, Khartoum, Sudan
| | - Elizabeth Chizema
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, Lusaka, Zambia
| | - Allan Were
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Jennifer Rozier
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Michael Coleman
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Catherine L Moyes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK.
| |
Collapse
|
25
|
Ngwej LM, Hattingh I, Mlambo G, Mashat EM, Kashala JCK, Malonga FK, Bangs MJ. Indoor residual spray bio-efficacy and residual activity of a clothianidin-based formulation (SumiShield ® 50WG) provides long persistence on various wall surfaces for malaria control in the Democratic Republic of the Congo. Malar J 2019; 18:72. [PMID: 30866934 PMCID: PMC6417189 DOI: 10.1186/s12936-019-2710-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bio-efficacy and residual activity of SumiShield® 50WG (50%, w/w) with active ingredient clothianidin, a neonicotinoid compound, was assessed using an insecticide-susceptible laboratory strain of Anopheles arabiensis. Implications of the findings are examined in the context of potential alternative insecticides for indoor residual spraying in Lualaba Province, Democratic Republic of the Congo. METHODS Contact surface bioassays were conducted for 48 weeks on four types of walls (unbaked clay, baked clay, cement, painted cement) in simulated semi-field experimental conditions using two different doses of clothianidin active ingredient (200 mg ai/sq m and 300 mg ai/sq m). Additionally, two types of walls (painted cement and baked clay) were examined in occupied houses using the 300-mg dosage. Laboratory-reared An. arabiensis were exposed to treated surfaces or untreated (controls) for 30 min. Mortality was recorded at 24-h intervals for 120 h. RESULTS Under semi-field experimental conditions, there was no significant difference in mortality over time between the two doses of clothianidin. The mortality rates remained above 60% up to 48 weeks on all four wall surface types. The formulation performed better on cement and unbaked clay with a mean final mortality rate above 90%. Under natural conditions, there was no significant difference in response between baked clay and painted cement walls with a mean final mortality rate above 90%. The insecticide also performed significantly better in natural settings compared to semi-field experimental conditions. CONCLUSION Depending on the type of experimental surface, the residual activity of the two doses of clothianidin was between 28 and 48 weeks based on a 60% mortality endpoint. Clothianidin at 300 mg ai/sq m applied on two house walls (baked clay or painted cement) performed equally well (> 80% mortality) on both surfaces up to week 41 (approximately 9.5 months). Extended bioassay holding periods (up to 120 h) may present with excess natural mortality in the untreated controls, thus complicating analysis.
Collapse
Affiliation(s)
- Leonard M Ngwej
- China Molybdenum Co., Ltd./International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of the Congo.
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
| | - Izak Hattingh
- China Molybdenum Co., Ltd./International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of the Congo
| | - Godwill Mlambo
- China Molybdenum Co., Ltd./International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of the Congo
| | - Emmanuel M Mashat
- China Molybdenum Co., Ltd./International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of the Congo
| | - Jean-Christophe K Kashala
- Faculty of Veterinary Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Françoise K Malonga
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Michael J Bangs
- China Molybdenum Co., Ltd./International SOS Malaria Control Programme, Tenke Fungurume Mining, Fungurume, Lualaba Province, Democratic Republic of the Congo
- Public Health & Malaria Control Department, PT Freeport Indonesia, International SOS, Jl. Kertajasa, Kuala Kencana, Papua, 99920, Indonesia
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
26
|
Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa. Nat Commun 2018; 9:4982. [PMID: 30478327 PMCID: PMC6255894 DOI: 10.1038/s41467-018-07357-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022] Open
Abstract
Indoor residual spraying (IRS) is an important part of malaria control. There is a growing list of insecticide classes; pyrethroids remain the principal insecticide used in bednets but recently, novel non-pyrethroid IRS products, with contrasting impacts, have been introduced. There is an urgent need to better assess product efficacy to help decision makers choose effective and relevant tools for mosquito control. Here we use experimental hut trial data to characterise the entomological efficacy of widely-used, novel IRS insecticides. We quantify their impact against pyrethroid-resistant mosquitoes and use a Plasmodium falciparum transmission model to predict the public health impact of different IRS insecticides. We report that long-lasting IRS formulations substantially reduce malaria, though their benefit over cheaper, shorter-lived formulations depends on local factors including bednet use, seasonality, endemicity and pyrethroid resistance status of local mosquito populations. We provide a framework to help decision makers evaluate IRS product effectiveness.
Collapse
|
27
|
Selvaraj P, Wenger EA, Gerardin J. Seasonality and heterogeneity of malaria transmission determine success of interventions in high-endemic settings: a modeling study. BMC Infect Dis 2018; 18:413. [PMID: 30134861 PMCID: PMC6104018 DOI: 10.1186/s12879-018-3319-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/07/2018] [Indexed: 11/15/2022] Open
Abstract
Background Malaria transmission is both seasonal and heterogeneous, and mathematical models that seek to predict the effects of possible intervention strategies should accurately capture realistic seasonality of vector abundance, seasonal dynamics of within-host effects, and heterogeneity of exposure, which may also vary seasonally. Methods Prevalence, incidence, asexual parasite and gametocyte densities, and infectiousness measurements from eight study sites in sub-Saharan Africa were used to calibrate an individual-based model with innate and adaptive immunity. Data from the Garki Project was used to fit exposure rates and parasite densities with month-resolution. A model capturing Garki seasonality and seasonal heterogeneity of exposure was used as a framework for characterizing the infectious reservoir of malaria, testing optimal timing of indoor residual spraying, and comparing four possible mass drug campaign implementations for malaria control. Results Seasonality as observed in Garki sites is neither sinusoidal nor box-like, and substantial heterogeneity in exposure arises from dry-season biting. Individuals with dry-season exposure likely account for the bulk of the infectious reservoir during the dry season even when they are a minority in the overall population. Spray campaigns offer the most benefit in prevalence reduction when implemented just prior to peak vector abundance, which may occur as late as a couple months into the wet season, and targeting spraying to homes of individuals with dry-season exposure can be particularly effective. Expanding seasonal malaria chemoprevention programs to cover older children is predicted to increase the number of cases averted per treatment and is therefore recommended for settings of seasonal and intense transmission. Conclusions Accounting for heterogeneity and seasonality in malaria transmission is critical for understanding transmission dynamics and predicting optimal timing and targeting of control and elimination interventions. Electronic supplementary material The online version of this article (10.1186/s12879-018-3319-y) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Williams YA, Tusting LS, Hocini S, Graves PM, Killeen GF, Kleinschmidt I, Okumu FO, Feachem RGA, Tatarsky A, Gosling RD. Expanding the Vector Control Toolbox for Malaria Elimination: A Systematic Review of the Evidence. ADVANCES IN PARASITOLOGY 2018; 99:345-379. [PMID: 29530309 DOI: 10.1016/bs.apar.2018.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Additional vector control tools (VCTs) are needed to supplement insecticide-treated nets (ITNs) and indoor residual spraying (IRS) to achieve malaria elimination in many settings. To identify options for expanding the malaria vector control toolbox, we conducted a systematic review of the availability and quality of the evidence for 21 malaria VCTs, excluding ITNs and IRS. METHODS Six electronic databases and grey literature sources were searched from January 1, 1980 to September 28, 2015 to identify systematic reviews, Phase I-IV studies, and observational studies that measured the effect of malaria VCTs on epidemiological or entomological outcomes across any age groups in all malaria-endemic settings. Eligible studies were summarized qualitatively, with quality and risk of bias assessments undertaken where possible. Of 17,912 studies screened, 155 were eligible for inclusion and were included in a qualitative synthesis. RESULTS Across the 21 VCTs, we found considerable heterogeneity in the volume and quality of evidence, with 7 VCTs currently supported by at least one Phase III community-level evaluation measuring parasitologically confirmed malaria incidence or infection prevalence (insecticide-treated clothing and blankets, insecticide-treated hammocks, insecticide-treated livestock, larval source management (LSM), mosquito-proofed housing, spatial repellents, and topical repellents). The remaining VCTs were supported by one or more Phase II (n=13) or Phase I evaluation (n=1). Overall the quality of the evidence base remains greatest for LSM and topical repellents, relative to the other VCTs evaluated, although existing evidence indicates that topical repellents are unlikely to provide effective population-level protection against malaria. CONCLUSIONS Despite substantial gaps in the supporting evidence, several VCTs may be promising supplements to ITNs and IRS in appropriate settings. Strengthening operational capacity and research to implement underutilized VCTs, such as LSM and mosquito-proofed housing, using an adaptive, learning-by-doing approach, while expanding the evidence base for promising supplementary VCTs that are locally tailored, should be considered central to global malaria elimination efforts.
Collapse
Affiliation(s)
- Yasmin A Williams
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, United States.
| | - Lucy S Tusting
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Sophia Hocini
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Patricia M Graves
- College of Public Health, Medical and Veterinary Sciences and Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Gerry F Killeen
- Ifakara Health Institute, Ifakara, Tanzania; Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Immo Kleinschmidt
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom; School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa; Elimination 8, Windhoek, Namibia
| | | | - Richard G A Feachem
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, United States
| | - Allison Tatarsky
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, United States
| | - Roly D Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|