1
|
Li Y, Yang HS, Klasse PJ, Zhao Z. The significance of antigen-antibody-binding avidity in clinical diagnosis. Crit Rev Clin Lab Sci 2025; 62:9-23. [PMID: 39041650 DOI: 10.1080/10408363.2024.2379286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Immunoglobulin G (IgG) and immunoglobulin M (IgM) testing are commonly used to determine infection status. Typically, the detection of IgM indicates an acute or recent infection, while the presence of IgG alone suggests a chronic or past infection. However, relying solely on IgG and IgM antibody positivity may not be sufficient to differentiate acute from chronic infections. This limitation arises from several factors. The prolonged presence of IgM can complicate diagnostic interpretations, and false positive IgM results often arise from antibody cross-reactivity with various antigens. Additionally, IgM may remain undetectable in prematurely collected samples or in individuals who are immunocompromised, further complicating accurate diagnosis. As a result, additional diagnostic tools are required to confirm infection status. Avidity is a measure of the strength of the binding between an antigen and antibody. Avidity-based assays have been developed for various infectious agents, including toxoplasma, cytomegalovirus (CMV), SARS-CoV-2, and avian influenza, and are promising tools in clinical diagnostics. By measuring the strength of antibody binding, they offer critical insights into the maturity of the immune response. These assays are instrumental in distinguishing between acute and chronic or past infections, monitoring disease progression, and guiding treatment decisions. The development of automated platforms has optimized the testing process by enhancing efficiency and minimizing the risk of manual errors. Additionally, the recent advent of real-time biosensor immunoassays, including the label-free immunoassays (LFIA), has further amplified the capabilities of these assays. These advances have expanded the clinical applications of avidity-based assays, making them useful tools for the diagnosis and management of various infectious diseases. This review is structured around several key aspects of IgG avidity in clinical diagnosis, including: (i) a detailed exposition of the IgG affinity maturation process; (ii) a thorough discussion of the IgG avidity assays, including the recently emerged biosensor-based approaches; and (iii) an examination of the applications of IgG avidity in clinical diagnosis. This review is intended to contribute toward the development of enhanced diagnostic tools through critical assessment of the present landscape of avidity-based testing, which allows us to identify the existing knowledge gaps and highlight areas for future investigation.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - He S Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Yu X, Min H, Yao S, Yao G, Zhang D, Zhang B, Chen M, Liu F, Cui L, Zheng L, Cao Y. Evaluation of different types of adjuvants in a malaria transmission-blocking vaccine. Int Immunopharmacol 2024; 131:111817. [PMID: 38460299 PMCID: PMC11090627 DOI: 10.1016/j.intimp.2024.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Adjuvants are critical components for vaccines, which enhance the strength and longevity of the antibody response and influence the types of immune response. Limited research has been conducted on the immunogenicity and protective efficacy of various adjuvants in malaria transmission-blocking vaccines (TBVs). In this study, we formulated a promising TBV candidate antigen, the P. berghei ookinete surface antigen PSOP25, with different types of adjuvants, including the TLR4 agonist monophosphoryl lipid A (MPLA), the TLR9 agonist cytosine phosphoguanosine oligodeoxynucleotides (CpG ODN 1826) (CpG), a saponin adjuvant QS-21, aluminum hydroxide (Alum), and two combination adjuvants MPLA + QS-21 and QS-21 + CpG. We demonstrated that adjuvanted vaccines results in elevated elicited antibody levels, increased proliferation of plasma cells, and efficient formation of germinal centers (GCs), leading to enhanced long-term protective immune responses. Furthermore, CpG group exhibited the most potent inhibition of ookinete formation and transmission-blocking activity. We found that the rPSOP25 with CpG adjuvant was more effective than MPLA, QS-21, MPLA + QS-21, QS-21 + CpG adjuvants in dendritic cells (DCs) activation and differentiation. Additionally, the CpG adjuvant elicited more rubust immune memory response than Alum adjuvant. CpG and QS-21 adjuvants could activate the Th1 response and promote the secretion of IFN-γ and TNF-α. PSOP25 induced a higher number of Tfh cells in splenocytes when combined with MPLA, CpG, and QS-21 + CpG; and there was no increase in these cell populations when PSOP25 was administered with Alum. In conclusion, CpG may confer enhanced efficacy for the rPSOP25 vaccine, as evidenced by the ability of the elicited antisera to induce protective immune responses and improved transmission-blocking activity.
Collapse
Affiliation(s)
- Xinxin Yu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Shijie Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Guixiang Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Di Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Biying Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Muyan Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
3
|
Pastor Y, Reynard O, Iampietro M, Surenaud M, Picard F, El Jahrani N, Lefebvre C, Hammoudi A, Dupaty L, Brisebard É, Reynard S, Moureaux É, Moroso M, Durand S, Gonzalez C, Amurri L, Gallouët AS, Marlin R, Baize S, Chevillard E, Raoul H, Hocini H, Centlivre M, Thiébaut R, Horvat B, Godot V, Lévy Y, Cardinaud S. A vaccine targeting antigen-presenting cells through CD40 induces protective immunity against Nipah disease. Cell Rep Med 2024; 5:101467. [PMID: 38471503 PMCID: PMC10983108 DOI: 10.1016/j.xcrm.2024.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Nipah virus (NiV) has been recently ranked by the World Health Organization as being among the top eight emerging pathogens likely to cause major epidemics, whereas no therapeutics or vaccines have yet been approved. We report a method to deliver immunogenic epitopes from NiV through the targeting of the CD40 receptor of antigen-presenting cells by fusing a selected humanized anti-CD40 monoclonal antibody to the Nipah glycoprotein with conserved NiV fusion and nucleocapsid peptides. In the African green monkey model, CD40.NiV induces specific immunoglobulin A (IgA) and IgG as well as cross-neutralizing responses against circulating NiV strains and Hendra virus and T cell responses. Challenge experiments using a NiV-B strain demonstrate the high protective efficacy of the vaccine, with all vaccinated animals surviving and showing no significant clinical signs or virus replication, suggesting that the CD40.NiV vaccine conferred sterilizing immunity. Overall, results obtained with the CD40.NiV vaccine are highly promising in terms of the breadth and efficacy against NiV.
Collapse
Affiliation(s)
- Yadira Pastor
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Olivier Reynard
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Mathieu Iampietro
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Mathieu Surenaud
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Florence Picard
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Nora El Jahrani
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Cécile Lefebvre
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Adele Hammoudi
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Léa Dupaty
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | | | - Stéphanie Reynard
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France; Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | | | - Marie Moroso
- Laboratoire P4 Inserm Jean Mérieux, Lyon, France
| | - Stéphanie Durand
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Claudia Gonzalez
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Lucia Amurri
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, autoimmunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, autoimmunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses, France
| | - Sylvain Baize
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France; Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | | | - Hervé Raoul
- Laboratoire P4 Inserm Jean Mérieux, Lyon, France
| | - Hakim Hocini
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Mireille Centlivre
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Rodolphe Thiébaut
- Vaccine Research Institute (VRI), Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, Bordeaux, France; CHU Bordeaux, Department of Medical Information, Bordeaux, France
| | - Branka Horvat
- Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR5308, Lyon, France
| | - Véronique Godot
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Yves Lévy
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| | - Sylvain Cardinaud
- INSERM U955 - Équipe 16, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), Créteil, France; Vaccine Research Institute (VRI), Créteil, France.
| |
Collapse
|
4
|
Partey FD, Dowuona JNN, Pobee ANA, Walker MR, Aculley B, Prah DA, Ofori MF, Barfod LK. Atypical memory B cell frequency correlates with antibody breadth and function in malaria immune adults. Sci Rep 2024; 14:4888. [PMID: 38418831 PMCID: PMC10902325 DOI: 10.1038/s41598-024-55206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Clinical immunity to malaria develops slowly after repeated episodes of infection and antibodies are essential in naturally acquired immunity against malaria. However, chronic exposure to malaria has been linked to perturbation in B-cell homeostasis with the accumulation of atypical memory B cells. It is unclear how perturbations in B cell subsets influence antibody breadth, avidity, and function in individuals naturally exposed to malaria. We show that individuals living in high malaria transmission regions in Ghana have higher Plasmodium falciparum merozoite antigen-specific antibodies and an increased antibody breadth score but lower antibody avidities relative to low transmission regions. The frequency of circulating atypical memory B cells is positively associated with an individual's antibody breadth. In vitro growth inhibition is independent of the ability to bind to free merozoites but associated with the breadth of antibody reactivity in an individual. Taken together, our data shows that repeated malaria episodes hamper the development of high avid antibodies which is compensated for by an increase in antibody breadth. Our results provide evidence to reinforce the idea that in regions with high malaria prevalence, repeated malaria infections lead to the broadening of antibody diversity and the continued presence of atypical memory B cell populations.
Collapse
Affiliation(s)
| | | | | | - Melanie Rose Walker
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Belinda Aculley
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Diana Ahu Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Michael Fokuo Ofori
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lea Klingenberg Barfod
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Lapidus S, Liu F, Casanovas-Massana A, Dai Y, Huck JD, Lucas C, Klein J, Filler RB, Strine MS, Sy M, Deme AB, Badiane AS, Dieye B, Ndiaye IM, Diedhiou Y, Mbaye AM, Diagne CT, Vigan-Womas I, Mbengue A, Sadio BD, Diagne MM, Moore AJ, Mangou K, Diallo F, Sene SD, Pouye MN, Faye R, Diouf B, Nery N, Costa F, Reis MG, Muenker MC, Hodson DZ, Mbarga Y, Katz BZ, Andrews JR, Campbell M, Srivathsan A, Kamath K, Baum-Jones E, Faye O, Sall AA, Vélez JCQ, Cappello M, Wilson M, Ben-Mamoun C, Tedder R, McClure M, Cherepanov P, Somé FA, Dabiré RK, Moukoko CEE, Ouédraogo JB, Boum Y, Shon J, Ndiaye D, Wisnewski A, Parikh S, Iwasaki A, Wilen CB, Ko AI, Ring AM, Bei AK. Plasmodium infection is associated with cross-reactive antibodies to carbohydrate epitopes on the SARS-CoV-2 Spike protein. Sci Rep 2022; 12:22175. [PMID: 36550362 PMCID: PMC9778468 DOI: 10.1038/s41598-022-26709-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Sero-surveillance can monitor and project disease burden and risk. However, SARS-CoV-2 antibody test results can produce false positive results, limiting their efficacy as a sero-surveillance tool. False positive SARS-CoV-2 antibody results are associated with malaria exposure, and understanding this association is essential to interpret sero-surveillance results from malaria-endemic countries. Here, pre-pandemic samples from eight malaria endemic and non-endemic countries and four continents were tested by ELISA to measure SARS-CoV-2 Spike S1 subunit reactivity. Individuals with acute malaria infection generated substantial SARS-CoV-2 reactivity. Cross-reactivity was not associated with reactivity to other human coronaviruses or other SARS-CoV-2 proteins, as measured by peptide and protein arrays. ELISAs with deglycosylated and desialated Spike S1 subunits revealed that cross-reactive antibodies target sialic acid on N-linked glycans of the Spike protein. The functional activity of cross-reactive antibodies measured by neutralization assays showed that cross-reactive antibodies did not neutralize SARS-CoV-2 in vitro. Since routine use of glycosylated or sialated assays could result in false positive SARS-CoV-2 antibody results in malaria endemic regions, which could overestimate exposure and population-level immunity, we explored methods to increase specificity by reducing cross-reactivity. Overestimating population-level exposure to SARS-CoV-2 could lead to underestimates of risk of continued COVID-19 transmission in sub-Saharan Africa.
Collapse
Affiliation(s)
- Sarah Lapidus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - John D Huck
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Carolina Lucas
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Jon Klein
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Renata B Filler
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Madison S Strine
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Mouhamad Sy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Awa B Deme
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Aida S Badiane
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Baba Dieye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Younous Diedhiou
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Amadou Moctar Mbaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Cheikh Tidiane Diagne
- DiaTROPIX Rapid Diagnostic Tests Facility, Institut Pasteur de Dakar, Dakar, Senegal
| | - Inés Vigan-Womas
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Mbengue
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Bacary D Sadio
- Pôle Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Adam J Moore
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Khadidiatou Mangou
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Fatoumata Diallo
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Seynabou D Sene
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mariama N Pouye
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Rokhaya Faye
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Babacar Diouf
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Nivison Nery
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA, Brazil
- Department of Internal Medicine, Yale Occupational and Environmental Medicine Program, Yale School of Medicine, New Haven, CT, USA
| | - Federico Costa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, BA, Brazil
| | - Mitermayer G Reis
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, BA, Brazil
- Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - M Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Daniel Z Hodson
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | | | - Ben Z Katz
- Division of Infectious Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Melissa Campbell
- Yale Center for Clinical Investigation, Yale School of Medicine, New Haven, CT, USA
| | - Ariktha Srivathsan
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | | | | | - Ousmane Faye
- Pôle Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Juan Carlos Quintero Vélez
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Grupo de Investigación Ciencias Veterinarias Centauro, University of Antioquia, Medellín, Colombia
- Grupo de Investigación Microbiología Básica y Aplicada, University of Antioquia, Medellín, Colombia
| | - Michael Cappello
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Michael Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Choukri Ben-Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Richard Tedder
- Department of Infectious Disease, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- South London Specialist Virology Centre, Kings College Hospital NHS Foundation Trust, London, UK
| | - Myra McClure
- Department of Infectious Disease, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Peter Cherepanov
- Department of Infectious Disease, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Crick COVID19 Consortium, Francis Crick Institute, London, NW1 1AT, UK
| | - Fabrice A Somé
- Institut de Recherche en Sciences de La Santé (IRSS)/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Roch K Dabiré
- Institut de Recherche en Sciences de La Santé (IRSS)/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Carole Else Eboumbou Moukoko
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, 2701, BP, Cameroon
- Malaria Research Unit, Center Pasteur Cameroon, Yaoundé, Cameroon
| | - Jean Bosco Ouédraogo
- Institut de Recherche en Sciences de La Santé (IRSS)/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Yap Boum
- Médecins Sans Frontières, University of Yaoundé and Epicentre, Yaoundé, Cameroon
| | | | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Adam Wisnewski
- Department of Internal Medicine, Yale Occupational and Environmental Medicine Program, Yale School of Medicine, New Haven, CT, USA
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Akiko Iwasaki
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde, Salvador, BA, Brazil
| | - Aaron M Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Amy K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal.
- G4-Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal.
| |
Collapse
|
6
|
Tayipto Y, Liu Z, Mueller I, Longley RJ. Serology for Plasmodium vivax surveillance: A novel approach to accelerate towards elimination. Parasitol Int 2021; 87:102492. [PMID: 34728377 DOI: 10.1016/j.parint.2021.102492] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 01/13/2023]
Abstract
Plasmodium vivax is the most widespread causative agent of human malaria in the world. Despite the ongoing implementation of malaria control programs, the rate of case reduction has declined over the last 5 years. Hence, surveillance of malaria transmission should be in place to identify and monitor areas that require intensified malaria control interventions. Serological tools may offer additional insights into transmission intensity over parasite and entomological measures, especially as transmission levels decline. Antibodies can be detected in the host system for months to even years after parasite infections have been cleared from the blood, enabling malaria exposure history to be captured. Because the Plasmodium parasite expresses more than 5000 proteins, it is important to a) understand antibody longevity following infection and b) measure antibodies to more than one antigen in order to accurately inform on the exposure and/or immune status of populations. This review summarises current practices for surveillance of P. vivax malaria, the current state of research into serological exposure markers and their potential role for accelerating malaria elimination, and discusses further studies that need to be undertaken to see such technology implemented in malaria-endemic areas.
Collapse
Affiliation(s)
- Yanie Tayipto
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Zoe Liu
- The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong, Victoria, Australia; School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Rhea J Longley
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Cross-Reactivity of Two SARS-CoV-2 Serological Assays in a Setting Where Malaria Is Endemic. J Clin Microbiol 2021; 59:e0051421. [PMID: 33853839 DOI: 10.1128/jcm.00514-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accurate SARS-CoV-2 serological assays are critical for COVID-19 serosurveillance. However, previous studies have indicated possible cross-reactivity of these assays, including in areas where malaria is endemic. We tested 213 well-characterized prepandemic samples from Nigeria using two SARS-CoV-2 serological assays, Abbott Architect IgG and Euroimmun NCP IgG assay, both targeting SARS-CoV-2 nucleocapsid protein. To assess antibody binding strength, an avidity assay was performed on these samples and on plasma from SARS-CoV-2 PCR-positive persons. Thirteen (6.1%) of 212 samples run on the Abbott assay and 38 (17.8%) of 213 run on the Euroimmun assay were positive. Anti-Plasmodium IgG levels were significantly higher among false positives for both Abbott and Euroimmun; no association was found with active Plasmodium falciparum infection. An avidity assay using various concentrations of urea wash in the Euroimmun assay reduced loosely bound IgG: of 37 positive/borderline prepandemic samples, 46%, 86%, 89%, and 97% became negative using 2 M, 4 M, 5 M, and 8 M urea washes, respectively. The wash slightly reduced avidity of antibodies from SARS-CoV-2 patients within 28 days of PCR confirmation; thereafter, avidity increased for all urea concentrations except 8 M. This validation found moderate to substantial cross-reactivity on two SARS-CoV-2 serological assays using samples from a setting where malaria is endemic. A simple urea wash appeared to alleviate issues of cross-reactivity.
Collapse
|
8
|
Does Antibody Avidity to Plasmodium falciparum Merozoite Antigens Increase with Age in Individuals Living in Malaria-Endemic Areas? Infect Immun 2021; 89:IAI.00522-20. [PMID: 33722929 DOI: 10.1128/iai.00522-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/07/2021] [Indexed: 11/20/2022] Open
Abstract
High-avidity antibodies (Abs) are acquired after a few Plasmodium falciparum infections in low transmission areas, but it remains unclear if Ab avidity to different merozoite antigens increases with age in individuals with persistent antigenemia and, if so, when a fully mature Ab response occurs. The study used plasma samples collected between 1996 and 1998 from 566 individuals aged 4 to 84 years in Simbok, Cameroon, where residents received an estimated 1.6 infectious mosquito bites/person/night. Plasma samples were examined for Ab levels (median fluorescence intensity [MFI]) and Ab avidity index (AI) (where AI = [MFI after treatment with 2 M NH4SCN/MFI without salt] × 100) using a bead-based multiplex immunoassay for recombinant AMA1, EBA-175, MSP1-42 (3D7, FVO), MSP2 (3D7, Fc27), and MSP3. Blood-smear positivity for P. falciparum declined with age from 54.3% at 4 to 5 years to 18% at 16 to 40 years and <11% at >40 years of age, although most individuals had submicroscopic parasitemia. Ab affinity maturation, based on age-related patterns of median AI, percentage of individuals with AI of ≥50, and strength of association between MFI and AI, occurred at different rates among the antigens; they developed rapidly before age 4 years for AMA1, increased gradually with age for EBA-175 and MSP1 until ∼16 to 25 years, but occurred negligibly for MSP2 and MSP3. In a hyperendemic area with perennial transmission, affinity maturation resulting in an increase in the proportion of high-avidity Abs occurred for some merozoite antigens, in parallel with a decline in malaria slide passivity, but not for others.
Collapse
|
9
|
Vanda K, Bobbili N, Matsunaga M, Chen JJ, Salanti A, Leke RFG, Taylor DW. The Development, Fine Specificity, and Importance of High-Avidity Antibodies to VAR2CSA in Pregnant Cameroonian Women Living in Yaoundé, an Urban City. Front Immunol 2021; 12:610108. [PMID: 33717094 PMCID: PMC7953046 DOI: 10.3389/fimmu.2021.610108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Pregnant women infected with Plasmodium falciparum often produce antibodies (Abs) to VAR2CSA, a ligand that binds to placental chondroitin sulfate A causing placental malaria (PM). Antibodies to VAR2CSA are associated with improved pregnancy outcomes. Antibody avidity is a surrogate marker for the extent of maturation of the humoral immune response. Little is known about high avidity Abs to VAR2CSA for women living in urban African cities. Therefore, this study sought to determine: i) if high avidity Abs to full-length VAR2CSA (FV2) increase with gravidity in women in Yaoundé, Cameroon exposed to ~ 0.3-1.1 infectious mosquito bites per month, ii) if high avidity Abs to FV2 are directed against a specific region of VAR2CSA, and iii) if having high avidity Abs to FV2 improve pregnancy outcomes. Plasma samples collected at delivery from 695 women who had Abs to FV2 were evaluated. Ab levels and the Avidity Index (AI), defined as the percent Abs remaining bound to FV2 after incubation with 3M NH4SCN, were determined. Similar Ab levels to FV2 were present in women of all gravidities (G1 through 6+; p=0.80), except significantly lower levels were detected in PM−negative (PM−) primigravidae (p <0.001). Median Ab avidities increased between gravidity 1 and 2 (p<0.001) and remained stable thereafter (G3-G6+: p=0.51). These results suggest that B cell clonal expansion began during the first pregnancy, with clonal selection primarily occurring during the second. However, the majority of women (84%) had AI <35, a level of high avidity Abs previously reported to be associated with improved pregnancy outcomes. When plasma from 107 Cameroonian women was tested against 8 different regions of FV2, high avidity Abs were predominately restricted to DBL5 with median AI of 50 compared to AI <25 for the other domains. The only significance influence of high avidity Abs on pregnancy outcome was that babies born to mothers with AI above the median were 104 g heavier than babies born to women with AI below the median (p=0.045). These results suggest that a vaccine that boosts maturation of the immune response to VAR2CSA may be beneficial for women residing in urban areas.
Collapse
Affiliation(s)
- Koko Vanda
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Naveen Bobbili
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Masako Matsunaga
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - John J Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Ali Salanti
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rose F G Leke
- Faculty of Medicine and Biomedical Research, The Biotechnology Center, University of Yaoundé 1, Yaoundé, Cameroon
| | - Diane Wallace Taylor
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
10
|
Damelang T, Aitken EH, Hasang W, Lopez E, Killian M, Unger HW, Salanti A, Shub A, McCarthy E, Kedzierska K, Lappas M, Kent SJ, Rogerson SJ, Chung AW. Antibody mediated activation of natural killer cells in malaria exposed pregnant women. Sci Rep 2021; 11:4130. [PMID: 33602987 PMCID: PMC7893158 DOI: 10.1038/s41598-021-83093-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Immune effector responses against Plasmodium falciparum include antibody-mediated activation of innate immune cells, which can induce Fc effector functions, including antibody-dependent cellular cytotoxicity, and the secretion of cytokines and chemokines. These effector functions are regulated by the composition of immunoglobulin G (IgG) Fc N-linked glycans. However, a role for antibody-mediated natural killer (NK) cells activation or Fc N-linked glycans in pregnant women with malaria has not yet been established. Herein, we studied the capacity of IgG antibodies from pregnant women, with placental malaria or non-placental malaria, to induce NK cell activation in response to placental malaria-associated antigens DBL2 and DBL3. Antibody-mediated NK cell activation was observed in pregnant women with malaria, but no differences were associated with susceptibility to placental malaria. Elevated anti-inflammatory glycosylation patterns of IgG antibodies were observed in pregnant women with or without malaria infection, which were not seen in healthy non-pregnant controls. This suggests that pregnancy-associated anti-inflammatory Fc N-linked glycans may dampen the antibody-mediated activation of NK cells in pregnant women with malaria infection. Overall, although anti-inflammatory glycans and antibody-dependent NK cell activation were detected in pregnant women with malaria, a definitive role for these antibody features in protecting against placental malaria remains to be proven.
Collapse
Affiliation(s)
- Timon Damelang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth H Aitken
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Wina Hasang
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ester Lopez
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Martin Killian
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Internal Medicine, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
- Groupe sur l'Immunité des Muqueuses et Agents Pathogènes, Université Jean Monnet Saint-Etienne, Saint-Etienne, France
| | - Holger W Unger
- Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Obstetrics and Gynaecology, Royal Darwin Hospital, Darwin, NT, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Ali Salanti
- Department for Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alexis Shub
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth McCarthy
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Infectious Diseases Department, Alfred Health, Melbourne Sexual Health Centre, Monash University, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|