1
|
de Queiroz LT, Baptista BDO, de Abreu-Fernandes R, Pereira CDSF, Lemos JADS, de Souza HADS, Martorano RM, Riccio EKP, Totino PRR, Oliveira-Ferreira J, Lima-Junior JDC, Daniel-Ribeiro CT, Pratt-Riccio LR. Novel isothermal nucleic acid amplification method for detecting malaria parasites. Appl Microbiol Biotechnol 2024; 108:544. [PMID: 39729108 DOI: 10.1007/s00253-024-13357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 12/28/2024]
Abstract
Malaria, a parasitic disease caused by Plasmodium spp. and transmitted by Anopheles mosquitoes, remains a major global health issue, with an estimated 249 million cases and 608,000 deaths in 2022. Rapid and accurate diagnosis and treatment are crucial for malaria control and elimination. However, limited access to sensitive molecular tests means that microscopic examination and rapid diagnostic tests (RDT) are the most used methods in endemic areas, despite their lower diagnostic accuracy. Therefore, there is a need for developing sensitive, simple, accurate, and rapid diagnostic tools suitable for field conditions. Herein, we aimed to explore the potential of the enzymatic recombinase amplification assay (ERA® Technology) as a remote laboratory test by evaluating and validating the GENEYE® ERA Plasmodium detection kit in Brazilian endemic areas. A cross-sectional cohort study was conducted between June and August of 2023 in the Brazilian Amazon. The study enrolled 323 participants residing in three malaria-affected regions: Cruzeiro do Sul and Mâncio Lima (Acre State) and Guajará (Amazonas State). The participants were tested for malaria by microscopy, rapid diagnostic tests (RDT), nested PCR (nPCR), quantitative real-time PCR (qPCR), and ERA. The sensitivity, specificity, and predictive values were assessed using nPCR as a gold standard. Plasmodium prevalence was 21.7%, 18.8%, 19.2%, 21.7%, and 21.7% by nPCR, microscopy, RDT, qPCR, and ERA respectively. Using nPCR as the standard, qPCR, and ERA showed a sensitivity of 100%. In comparison, microscopy and RDT showed a sensitivity of 87.1% and 88.6%, a negative predictive value (NPV) of 96.56 and 96.93, and kappa values of 0.91 and 0.92, respectively. For Plasmodium falciparum, the sensitivity of qPCR and ERA was 100% while the sensitivity of microscopy and RDT was 96.9% and 93.7%, and the NPV was 99.66 and 99.32, respectively. For Plasmodium vivax, only ERA showed the same sensitivity of nPCR. The sensitivity, NPV, and kappa values were 78.85%, 97.27, and 0.87 for qPCR and microscopy, and 84.21%, 97.94, and 0.9 for RDT. The data presented here show that the GENEYE® ERA Plasmodium detection kit offers a promising alternative to traditional malaria diagnostic methods. Its high sensitivity, specificity, fast processing time, and operational simplicity position it as a valuable point-of-care diagnostic tool, particularly in resource-limited and remote malaria-endemic areas. KEY POINTS: • GENEYE® ERA kit detects Plasmodium in under 25 min, no DNA purification needed. • The kit matches or exceeds the compared methods in sensitivity and specificity. • The kit is suitable for accurate testing in low-infrastructure, point-of-care settings.
Collapse
Affiliation(s)
- Lucas Tavares de Queiroz
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Barbara de Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Rebecca de Abreu-Fernandes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Carolina de Souza Faria Pereira
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Juliana Aline de Souza Lemos
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Hugo Amorim Dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | | | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | | | | | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Cherkos T, Derso A, Lemma W, Abere A, Deress T, Tegegne B, Mekonnen GG, Birhanu A, Tegegne Y. Microscopic prevalence and risk factors of asymptomatic malaria in Gorgora, western Dembia, Northwest Ethiopia: exploring hidden threats during minor transmission season. Malar J 2024; 23:375. [PMID: 39696502 DOI: 10.1186/s12936-024-05178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Malaria poses a significant public health threat globally, particularly in African regions, where asymptomatic malaria is a considerable logistic problem. Individuals with asymptomatic malaria do not seek treatment, and thus they are invisible to health facilities and represent a substantial hidden reservoir of Plasmodium species. This study aimed to determine the prevalence of asymptomatic malaria and its associated factors in Gorgora, western Dembia district, Northwest Ethiopia. METHODS A community-based cross-sectional study was conducted from May to June 2023 in the Gorgora area, Western Dembia district, Northwest Ethiopia. Data were collected using a semi-structured questionnaire. Giemsa-stained blood smear microscopy was employed for the diagnosis of Plasmodium species. The data were entered into Epi Data version 4.6 and exported to SPSS version 25 for analysis. Bivariate and multivariable binary logistic regression analyses were conducted to identify associated factors. RESULTS Among the 357 individuals who participated in this study, 9.2% (33/357) [95% CI 6.40-12.70: p = 0.000] were confirmed to be infected with Plasmodium species. Plasmodium falciparum and Plasmodium vivax accounted for 66.7% and 33.3%, respectively. Not using bed nets [AOR = 7.3, 95% CI 2.08-23.46, p = 0.006)], previous malaria history [AOR = 2.6, 95% CI 1.01-6.45, p = 0.041], outdoor activities at night [AOR = 8.3, 95% CI 3.21-21.30, p = 0.000], and family size [AOR = 3.3, 95% CI 1.18-9.22, p = 0.023] were significantly associated with asymptomatic malaria (p < 0.05). CONCLUSIONS A considerable proportion of asymptomatic Plasmodium infections was found which likely act as a reservoir of transmission. This has implications for ongoing malaria control programmes that are based on the treatment of symptomatic patients and highlight the need for intervention strategies targeting asymptomatic carriers. Not using bed nets, engaging in outdoor activities at night, and having a family size of more than five increased the odds of developing asymptomatic malaria. The district health office and health extension workers should collaborate to promote the regular use of mosquito bed nets among community residents.
Collapse
Affiliation(s)
- Tena Cherkos
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Adane Derso
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Wossenseged Lemma
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Aberham Abere
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Teshiwal Deress
- Department of Quality Assurance and Laboratory Management, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | | | - Gebeyaw Getnet Mekonnen
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Birhanu
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yalewayker Tegegne
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
O'Mahony E, Ryan F, Hemandas H, Al-Sabbagh A, Cunnington A, Fitzgerald F. Cryptic Congenital Malaria Infection Causing Fever of Unknown Origin in an Infant. J Pediatr 2024; 275:114237. [PMID: 39151606 DOI: 10.1016/j.jpeds.2024.114237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/25/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Affiliation(s)
| | | | | | - Afraa Al-Sabbagh
- North West Anglia Foundation Trust, Peterborough, United Kingdom
| | - Aubrey Cunnington
- Department of Infectious Disease and Centre for Paediatrics and Child Health Imperial College London, London, United Kingdom
| | - Felicity Fitzgerald
- Department of Infectious Disease and Centre for Paediatrics and Child Health Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Lebel PM, Jeyakumar I, Khoo MW, Charlton C, Saxena A, Jacobsen A, James E, Huynh E, Wu W, Courville G, Fu PC, Raghavan M, Puccinelli R, Peter O, Dorsey G, Rosenthal P, DeRisi J, Gomez-Sjoberg R. Remoscope: a label-free imaging cytometer for malaria diagnostics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.12.24317184. [PMID: 39606416 PMCID: PMC11601755 DOI: 10.1101/2024.11.12.24317184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Malaria diagnostic testing in high transmission settings remains a burden on healthcare systems. Here we present Remoscope, a portable automated imaging cytometer that scans fresh, unstained whole blood using a custom neural network on low-cost hardware. By screening up to two million red blood cells, Remoscope performs label-free quantitative stage-specific detection of Plasmodium falciparum (Pf) in 1-12 minutes without sample fixation, staining, or slide scanning. Flow is used to achieve high cellular throughput, with blood confined to a 4.5 μm monolayer in low-cost disposable flow cartridges. Remoscope performance was benchmarked in vitro by titration of cultured parasites into uninfected whole blood at concentrations of 17.1-710,000 parasites/μL. Counts generated by Remoscope demonstrated a linear response across the entire range. Considering drug susceptibility assays, the half-maximal effective concentration (EC50) of chloroquine (CQ) for the W2 strain of Pf was 211 nM by Remoscope, compared to 191 nM for conventional flow cytometry. Remoscope's real-world diagnostic accuracy was evaluated in a cohort of 500 individuals in eastern Uganda, comprising 601 unique clinic visits. Parallel measurements of parasitemia were performed using Remoscope, qPCR targeting the multicopy conserved var gene acidic terminal sequence, and microscopic evaluation of Giemsa-stained thick blood smears. Remoscope's limit of detection with respect to qPCR was 95.1 parasites/μL. At this threshold, the system had a sensitivity of 83%, specificity of 96%, Positive Predictive Value (PPV) of 91%, and a Negative Predictive Value (NPV) of 93%. Remoscope's speed, accuracy, low cost, and ease of use address practical challenges in malaria diagnostic settings around the world. As a general imaging flow cytometer, Remoscope may also inform the development of recognition models for the diagnosis of other infectious and noninfectious blood disorders.
Collapse
Affiliation(s)
- Paul M. Lebel
- Chan Zuckerberg Biohub SF, 499 Illinois Street, San Francisco, CA
| | | | | | - Chris Charlton
- Chan Zuckerberg Biohub SF, 499 Illinois Street, San Francisco, CA
| | - Aditi Saxena
- Chan Zuckerberg Biohub SF, 499 Illinois Street, San Francisco, CA
| | - Axel Jacobsen
- Chan Zuckerberg Biohub SF, 499 Illinois Street, San Francisco, CA
| | - Emorut James
- Infectious Disease Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Emily Huynh
- University of Pennsylvania, Philadelphia, PA
| | - William Wu
- Chan Zuckerberg Biohub SF, 499 Illinois Street, San Francisco, CA
| | - Greg Courville
- Chan Zuckerberg Biohub SF, 499 Illinois Street, San Francisco, CA
| | - Pei-Chuan Fu
- Chan Zuckerberg Biohub SF, 499 Illinois Street, San Francisco, CA
| | - Madhura Raghavan
- Dept. of Biochemistry and Biophysics, University of California, San Francisco
| | | | - Olwoch Peter
- Infectious Disease Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Grant Dorsey
- Dept. of Medicine, University of California, San Francisco
| | - Phil Rosenthal
- Dept. of Medicine, University of California, San Francisco
| | - Joseph DeRisi
- Chan Zuckerberg Biohub SF, 499 Illinois Street, San Francisco, CA
- Dept. of Biochemistry and Biophysics, University of California, San Francisco
| | | |
Collapse
|
5
|
Akafity G, Kumi N, Ashong J. Diagnosis and management of malaria in the intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2024; 4:3-15. [PMID: 38263976 PMCID: PMC10800773 DOI: 10.1016/j.jointm.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 01/25/2024]
Abstract
Malaria is responsible for approximately three-quarters of a million deaths in humans globally each year. Most of the morbidity and mortality reported are from Sub-Saharan Africa and Asia, where the disease is endemic. In non-endemic areas, malaria is the most common cause of imported infection and is associated with significant mortality despite recent advancements and investments in elimination programs. Severe malaria often requires intensive care unit admission and can be complicated by cerebral malaria, respiratory distress, acute kidney injury, bleeding complications, and co-infection. Intensive care management includes prompt diagnosis and early initiation of effective antimalarial therapy, recognition of complications, and appropriate supportive care. However, the lack of diagnostic capacities due to limited advances in equipment, personnel, and infrastructure presents a challenge to the effective diagnosis and management of malaria. This article reviews the clinical classification, diagnosis, and management of malaria as relevant to critical care clinicians, highlighting the role of diagnostic capacity, treatment options, and supportive care.
Collapse
Affiliation(s)
- George Akafity
- Department of Research, Monitoring, and Evaluation, Cape Coast Teaching Hospital, Cape Coast, Ghana
| | - Nicholas Kumi
- Intensive Care Unit, Department of Critical Care and Anesthesia, Cape Coast Teaching Hospital, Cape Coast, Ghana
| | - Joyce Ashong
- Department of Paediatrics and Child Health, Cape Coast Teaching Hospital, Cape Coast, Ghana
| |
Collapse
|
6
|
Ivarsson AC, Fransén E, Broumou I, Färnert A, Persson KEM, Söbirk SK. Head-to-head comparison of two loop-mediated isothermal amplification (LAMP) kits for diagnosis of malaria in a non-endemic setting. Malar J 2023; 22:377. [PMID: 38093251 PMCID: PMC10717323 DOI: 10.1186/s12936-023-04809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Light microscopy and rapid diagnostic tests (RDT) have long been the recommended diagnostic methods for malaria. However, in recent years, loop-mediated isothermal amplification (LAMP) techniques have been shown to offer superior performance, in particular concerning low-grade parasitaemia, by delivering higher sensitivity and specificity with low laboratory capacity requirements in little more than an hour. In this study, the diagnostic performance of two LAMP kits were assessed head-to-head, compared to highly sensitive quantitative real time PCR (qPCR), in a non-endemic setting. METHODS In this retrospective validation study two LAMP kits; Alethia® Illumigene Malaria kit and HumaTurb Loopamp™ Malaria Pan Detection (PDT) kit, were evaluated head-to-head for detection of Plasmodium-DNA in 133 biobanked blood samples from suspected malaria cases at the Clinical Microbiology Laboratory of Region Skåne, Sweden to determine their diagnostic performance compared to qPCR. RESULTS Of the 133 samples tested, qPCR detected Plasmodium DNA in 41 samples (defined as true positives), and the two LAMP methods detected 41 and 37 of those, respectively. The results from the HumaTurb Loopamp™ Malaria PDT kit were in complete congruence with the qPCR, with a sensitivity of 100% (95% CI 91.40-100%) and specificity of 100% (95% CI 96.07-100%). The Alethia® Illumigene Malaria kit had a sensitivity of 90.24% (95% CI 76.87-97.28) and a specificity of 95.65% (95% CI 89.24-98.80) as compared to qPCR. CONCLUSIONS This head-to-head comparison showed higher performance indicators of the HumaTurb Loopamp™ Malaria PDT kit compared to the Alethia® illumigene Malaria kit for detection of malaria.
Collapse
Affiliation(s)
- Anna-Clara Ivarsson
- Clinical Microbiology, Infection Prevention and Control, Office for Medical Services, Region Skåne, Lund, Sweden.
| | - Elin Fransén
- Clinical Microbiology, Infection Prevention and Control, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Ioanna Broumou
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
- Centre for Molecular Medicine, Stockholm, Sweden
| | - Anna Färnert
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
- Centre for Molecular Medicine, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina E M Persson
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Sara Karlsson Söbirk
- Clinical Microbiology, Infection Prevention and Control, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Tripathi H, Bhalerao P, Singh S, Arya H, Alotaibi BS, Rashid S, Hasan MR, Bhatt TK. Malaria therapeutics: are we close enough? Parasit Vectors 2023; 16:130. [PMID: 37060004 PMCID: PMC10103679 DOI: 10.1186/s13071-023-05755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Malaria is a vector-borne parasitic disease caused by the apicomplexan protozoan parasite Plasmodium. Malaria is a significant health problem and the leading cause of socioeconomic losses in developing countries. WHO approved several antimalarials in the last 2 decades, but the growing resistance against the available drugs has worsened the scenario. Drug resistance and diversity among Plasmodium strains hinder the path of eradicating malaria leading to the use of new technologies and strategies to develop effective vaccines and drugs. A timely and accurate diagnosis is crucial for any disease, including malaria. The available diagnostic methods for malaria include microscopy, RDT, PCR, and non-invasive diagnosis. Recently, there have been several developments in detecting malaria, with improvements leading to achieving an accurate, quick, cost-effective, and non-invasive diagnostic tool for malaria. Several vaccine candidates with new methods and antigens are under investigation and moving forward to be considered for clinical trials. This article concisely reviews basic malaria biology, the parasite's life cycle, approved drugs, vaccine candidates, and available diagnostic approaches. It emphasizes new avenues of therapeutics for malaria.
Collapse
Affiliation(s)
- Himani Tripathi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Preshita Bhalerao
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Sujeet Singh
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia.
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| |
Collapse
|
8
|
van Dijk NJ, Menting S, Wentink-Bonnema EMS, Broekhuizen-van Haaften PE, Withycombe E, Schallig HDFH, Mens PF. Laboratory evaluation of the miniature direct-on-blood PCR nucleic acid lateral flow immunoassay (mini-dbPCR-NALFIA), a simplified molecular diagnostic test for Plasmodium. Malar J 2023; 22:98. [PMID: 36932372 PMCID: PMC10024383 DOI: 10.1186/s12936-023-04496-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/13/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Point-of-care diagnosis of malaria is currently based on microscopy and rapid diagnostic tests. However, both techniques have their constraints, including poor sensitivity for low parasitaemias. Hence, more accurate diagnostic tests for field use and routine clinical settings are warranted. The miniature direct-on-blood PCR nucleic acid lateral flow immunoassay (mini-dbPCR-NALFIA) is an innovative, easy-to-use molecular assay for diagnosis of malaria in resource-limited settings. Unlike traditional molecular methods, mini-dbPCR-NALFIA does not require DNA extraction and makes use of a handheld, portable thermal cycler that can run on a solar-charged power pack. Result read-out is done using a rapid lateral flow strip enabling differentiation of Plasmodium falciparum and non-falciparum malaria infections. A laboratory evaluation was performed to assess the performance of the mini-dbPCR-NALFIA for diagnosis of pan-Plasmodium and P. falciparum infections in whole blood. METHODS Diagnostic accuracy of the mini-dbPCR-NALFIA was determined by testing a set of Plasmodium-positive blood samples from returned travellers (n = 29), and Plasmodium-negative blood samples from travellers with suspected malaria (n = 23), the Dutch Blood Bank (n = 19) and intensive care patients at the Amsterdam University Medical Centers (n = 16). Alethia Malaria (LAMP) with microscopy for species differentiation were used as reference. Limit of detection for P. falciparum was determined by 23 measurements of a dilution series of a P. falciparum culture. A fixed sample set was tested three times by the same operator to evaluate the repeatability, and once by five different operators to assess the reproducibility. RESULTS Overall sensitivity and specificity of the mini-dbPCR-NALFIA were 96.6% (95% CI, 82.2%-99.9%) and 98.3% (95% CI, 90.8%-100%). Limit of detection for P. falciparum was 10 parasites per microlitre of blood. The repeatability of the assay was 93.7% (95% CI, 89.5%-97.8%) and reproducibility was 84.6% (95% CI, 79.5%-89.6%). CONCLUSIONS Mini-dbPCR-NALFIA is a sensitive, specific and robust method for molecular diagnosis of Plasmodium infections in whole blood and differentiation of P. falciparum. Incorporation of a miniature thermal cycler makes the assay well-adapted to resource-limited settings. A phase-3 field trial is currently being conducted to evaluate the potential implementation of this tool in different malaria transmission areas.
Collapse
Affiliation(s)
- Norbert J van Dijk
- Department of Medical Microbiology and Infection Prevention, Experimental Parasitology. Meibergdreef 9, Amsterdam University Medical Centres, Academic Medical Centre at the University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases Programme, Amsterdam, The Netherlands.
| | - Sandra Menting
- Department of Medical Microbiology and Infection Prevention, Experimental Parasitology. Meibergdreef 9, Amsterdam University Medical Centres, Academic Medical Centre at the University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Ellen M S Wentink-Bonnema
- Department of Medical Microbiology and Infection Prevention, Clinical Parasitology. Meibergdreef 9, Amsterdam University Medical Centres, Academic Medical Centre at the University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Patricia E Broekhuizen-van Haaften
- Department of Medical Microbiology and Infection Prevention, Clinical Parasitology. Meibergdreef 9, Amsterdam University Medical Centres, Academic Medical Centre at the University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Elen Withycombe
- Abingdon Health. York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Henk D F H Schallig
- Department of Medical Microbiology and Infection Prevention, Experimental Parasitology. Meibergdreef 9, Amsterdam University Medical Centres, Academic Medical Centre at the University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases Programme, Amsterdam, The Netherlands
| | - Petra F Mens
- Department of Medical Microbiology and Infection Prevention, Experimental Parasitology. Meibergdreef 9, Amsterdam University Medical Centres, Academic Medical Centre at the University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases Programme, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Maturana CR, de Oliveira AD, Nadal S, Bilalli B, Serrat FZ, Soley ME, Igual ES, Bosch M, Lluch AV, Abelló A, López-Codina D, Suñé TP, Clols ES, Joseph-Munné J. Advances and challenges in automated malaria diagnosis using digital microscopy imaging with artificial intelligence tools: A review. Front Microbiol 2022; 13:1006659. [PMID: 36458185 PMCID: PMC9705958 DOI: 10.3389/fmicb.2022.1006659] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 09/03/2023] Open
Abstract
Malaria is an infectious disease caused by parasites of the genus Plasmodium spp. It is transmitted to humans by the bite of an infected female Anopheles mosquito. It is the most common disease in resource-poor settings, with 241 million malaria cases reported in 2020 according to the World Health Organization. Optical microscopy examination of blood smears is the gold standard technique for malaria diagnosis; however, it is a time-consuming method and a well-trained microscopist is needed to perform the microbiological diagnosis. New techniques based on digital imaging analysis by deep learning and artificial intelligence methods are a challenging alternative tool for the diagnosis of infectious diseases. In particular, systems based on Convolutional Neural Networks for image detection of the malaria parasites emulate the microscopy visualization of an expert. Microscope automation provides a fast and low-cost diagnosis, requiring less supervision. Smartphones are a suitable option for microscopic diagnosis, allowing image capture and software identification of parasites. In addition, image analysis techniques could be a fast and optimal solution for the diagnosis of malaria, tuberculosis, or Neglected Tropical Diseases in endemic areas with low resources. The implementation of automated diagnosis by using smartphone applications and new digital imaging technologies in low-income areas is a challenge to achieve. Moreover, automating the movement of the microscope slide and image autofocusing of the samples by hardware implementation would systemize the procedure. These new diagnostic tools would join the global effort to fight against pandemic malaria and other infectious and poverty-related diseases.
Collapse
Affiliation(s)
- Carles Rubio Maturana
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Allisson Dantas de Oliveira
- Computational Biology and Complex Systems Group, Physics Department, Universitat Politècnica de Catalunya (UPC), Castelldefels, Spain
| | - Sergi Nadal
- Data Base Technologies and Information Group, Engineering Services and Information Systems Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Besim Bilalli
- Data Base Technologies and Information Group, Engineering Services and Information Systems Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Francesc Zarzuela Serrat
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
| | - Mateu Espasa Soley
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Clinical Laboratories, Microbiology Department, Hospital Universitari Parc Taulí, Sabadell, Spain
| | - Elena Sulleiro Igual
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBERINFEC, ISCIII- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Alberto Abelló
- Data Base Technologies and Information Group, Engineering Services and Information Systems Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Daniel López-Codina
- Computational Biology and Complex Systems Group, Physics Department, Universitat Politècnica de Catalunya (UPC), Castelldefels, Spain
| | - Tomàs Pumarola Suñé
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Elisa Sayrol Clols
- Image Processing Group, Telecommunications and Signal Theory Group, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Joan Joseph-Munné
- Microbiology Department, Vall d’Hebron Research Institute, Vall d’Hebron Hospital Campus, Barcelona, Spain
| |
Collapse
|
10
|
Lin H, Zhao S, Liu Y, Shao L, Ye Y, Jiang N, Yang K. Rapid Visual Detection of Plasmodium Using Recombinase-Aided Amplification With Lateral Flow Dipstick Assay. Front Cell Infect Microbiol 2022; 12:922146. [PMID: 35811679 PMCID: PMC9263184 DOI: 10.3389/fcimb.2022.922146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Malaria is a global public health problem. China has had no case of indigenous malaria since 2016. However, imported cases of malaria remain an issue among travelers, overseas workers, and foreign traders. Although these cases are always asymptomatic, if they donate blood, there is a great risk of transfusion transmitted-malaria (TTM). Therefore, blood banks need a rapid screening tool to detect Plasmodium species. Methods We designed an assay using recombinase-aided amplification (RAA) and a lateral-flow dipstick (LFD) (RAA-LFD) to detect the 18S ribosomal RNA gene of Plasmodium species. Sensitivity was evaluated using a recombinant plasmid and Plasmodium genomic DNA. Specificity was evaluated using DNA extracted from the blood of patients with malaria or other infectious parasites. For clinical assessment, blood samples from patients with malaria and blood donors were evaluated. Results The RAA-LFD assay was performed in an incubator block at 37°C for 15 min, and the amplicons were visible to the naked eye on the flow dipsticks within 3 min. The sensitivity was 1 copy/μL of recombinant plasmid. For genomic DNA from whole blood of malaria patients infected with P. falciparum, P. vivax, P. ovale, and P. malariae, the sensitivity was 0.1 pg/μL, 10 pg/μL, 10-100 pg/μL, and 100pg/μL, respectively. The sensitivity of this assay was 100pg/μL. No cross-reaction with other transfusion-transmissible parasites was detected. Conclusions The results demonstrated that this RAA-LFD assay was suitable for reliable field detection of Plasmodium species in low-resource settings with limited laboratory capabilities.
Collapse
Affiliation(s)
- Hong Lin
- Jiangsu Province Blood Center, Nanjing, China
- *Correspondence: Hong Lin, ; Kun Yang,
| | - Song Zhao
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yanhong Liu
- Jiangsu Qitian Gene Technology Co., Ltd., Wuxi, China
| | - Lei Shao
- Jiangsu Province Blood Center, Nanjing, China
| | - Yuying Ye
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | | | - Kun Yang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- *Correspondence: Hong Lin, ; Kun Yang,
| |
Collapse
|
11
|
Fluorescence In Situ Hybridization (FISH) Tests for Identifying Protozoan and Bacterial Pathogens in Infectious Diseases
. Diagnostics (Basel) 2022; 12:diagnostics12051286. [PMID: 35626441 PMCID: PMC9141552 DOI: 10.3390/diagnostics12051286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
Diagnosing and treating many infectious diseases depends on correctly identifying the causative pathogen. Characterization of pathogen-specific nucleic acid sequences by PCR is the most sensitive and specific method available for this purpose, although it is restricted to laboratories that have the necessary infrastructure and finance. Microscopy, rapid immunochromatographic tests for antigens, and immunoassays for detecting pathogen-specific antibodies are alternative and useful diagnostic methods with different advantages and disadvantages. Detection of ribosomal RNA molecules in the cytoplasm of bacterial and protozoan pathogens by fluorescence in-situ hybridization (FISH) using sequence-specific fluorescently labelled DNA probes, is cheaper than PCR and requires minimal equipment and infrastructure. A LED light source attached to most laboratory light microscopes can be used in place of a fluorescence microscope with a UV lamp for FISH. A FISH test hybridization can be completed in 30 min at 37 °C and the whole test in less than two hours. FISH tests can therefore be rapidly performed in both well-equipped and poorly-resourced laboratories. Highly sensitive and specific FISH tests for identifying many bacterial and protozoan pathogens that cause disease in humans, livestock and pets are reviewed, with particular reference to parasites causing malaria and babesiosis, and mycobacteria responsible for tuberculosis.
Collapse
|
12
|
Bhatt A, Fatima Z, Ruwali M, Misra CS, Rangu SS, Rath D, Rattan A, Hameed S. CLEVER assay: A visual and rapid RNA extraction free detection of SARS-CoV-2 based on CRISPR-Cas integrated RT-LAMP technology. J Appl Microbiol 2022; 133:410-421. [PMID: 35396760 PMCID: PMC9111511 DOI: 10.1111/jam.15571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022]
Abstract
Aim The current scenario of COVID‐19 pandemic has presented an almost insurmountable challenge even for the most sophisticated hospitals equipped with modern biomedical technology. There is an urgency to develop simple, fast and highly accurate methods for the rapid identification and isolation of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infected patients. To address the ongoing challenge, the present study offers a CLEVER assay (CRISPR‐Cas integrated RT‐LAMP Easy, Visual and Extraction‐free RNA) which will allow RNA extraction‐free method to visually diagnose COVID‐19. RNA extraction is a major hurdle in preventing rapid and large‐scale screening of samples particularly in low‐resource regions because of the logistics and costs involved. Method and Result Herein, the visual SARS‐CoV‐2 detection method consists of RNA extraction‐free method directly utilizing the patient's nasopharyngeal and oropharyngeal samples for reverse transcription loop‐mediated isothermal amplification (RT‐LAMP). Additionally, the assay also utilizes the integration of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)‐Cas12‐based system using different guide RNAs of N, E and an internal control POP7 (human RNase P) genes along with visual detection via lateral flow readout‐based dip sticks with unaided eye (~100 min). Overall, the clinical sensitivity and specificity of the CLEVER assay were 89.6% and 100%, respectively. Conclusion Together, our CLEVER assay offers a point‐of‐care tool with no equipment dependency and minimum technical expertise requirement for COVID‐19 diagnosis. Significance and Impact of the Study To address the challenges associated with COVID‐19 diagnosis, we need a faster, direct and more versatile detection method for an efficient epidemiological management of the COVID‐19 outbreak. The present study involves developing a method for detection of SARS‐CoV‐2 in human body without RNA isolation step that can visually be detected with unaided eye. Taken together, our assay offers to overcome one major defect of the prior art, that is, RNA extraction step, which could limit the deployment of the previous assays in a testing site having limited lab infrastructure.
Collapse
Affiliation(s)
- Akansha Bhatt
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), Haryana, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), Haryana, India
| | - Munindra Ruwali
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), Haryana, India
| | - Chitra Seetharam Misra
- CRISPR Biology Group, Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Shyam Sunder Rangu
- CRISPR Biology Group, Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Devashish Rath
- CRISPR Biology Group, Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | | | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), Haryana, India
| |
Collapse
|
13
|
Fitri LE, Widaningrum T, Endharti AT, Prabowo MH, Winaris N, Nugraha RYB. Malaria diagnostic update: From conventional to advanced method. J Clin Lab Anal 2022; 36:e24314. [PMID: 35247002 PMCID: PMC8993657 DOI: 10.1002/jcla.24314] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Update diagnostic methods play essential roles in dealing with the current global malaria situation and decreasing malaria incidence. AIM Global malaria control programs require the availability of adequate laboratory tests in the quick and convenient field. RESULTS There are several methods to find out the existence of parasites within the blood. The oldest one is by microscopy, which is still a gold standard, although rapid diagnostic tests (RDTs) have rapidly become a primary diagnostic test in many endemic areas. Because of microscopy and RDTs limitation, novel serological and molecular methods have been developed. Many kinds of polymerase chain reaction (PCR) provide rapid results and higher specificity and sensitivity. The loop-mediated isothermal amplification (LAMP) and biosensing-based molecular techniques as point of care tests (POCT) will become a cost-effective approach to advance diagnostic testing. CONCLUSION Despite conventional techniques are still being used in the field, the exploration and field implementation of advanced techniques for the diagnosis of malaria are still being developed rapidly.
Collapse
Affiliation(s)
- Loeki Enggar Fitri
- Department of ParasitologyFaculty of Medicine Universitas BrawijayaMalangIndonesia
- Malaria Research GroupFaculty of Medicine Universitas BrawijayaMalangIndonesia
| | - Tarina Widaningrum
- Malaria Research GroupFaculty of Medicine Universitas BrawijayaMalangIndonesia
- Department of PharmacologyFaculty of Medicine Universitas BrawijayaMalangIndonesia
| | | | | | - Nuning Winaris
- Department of ParasitologyFaculty of Medicine Universitas BrawijayaMalangIndonesia
- Malaria Research GroupFaculty of Medicine Universitas BrawijayaMalangIndonesia
| | - Rivo Yudhinata Brian Nugraha
- Department of ParasitologyFaculty of Medicine Universitas BrawijayaMalangIndonesia
- Malaria Research GroupFaculty of Medicine Universitas BrawijayaMalangIndonesia
| |
Collapse
|
14
|
Antinori S, Ridolfo AL, Grande R, Galimberti L, Casalini G, Giacomelli A, Milazzo L. Loop-mediated isothermal amplification (LAMP) assay for the diagnosis of imported malaria: a narrative review. LE INFEZIONI IN MEDICINA 2022; 29:355-365. [PMID: 35146340 DOI: 10.53854/liim-2903-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/03/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is a molecular method to detect malaria recently introduced in the market. LAMP is simple to perform and does not require advanced equipment and training thus satisfying the qualification as a point-of-care diagnostic screening test. In this narrative review, we focus on the role of LAMP for malaria diagnosis in non-endemic settings. We searched PubMed, Embase, Scopus, and Google Scholar, using the following search terms: 'Malaria LAMP' in combination with 'imported malaria' or 'travellers' malaria' or 'non-endemic setting' or 'non-endemic region' or 'malaria screening' or 'malaria diagnosis'. References of each article were also reviewed for possible studies or reports not identified in our search. Overall, 18 studies encompassing 6289 tested samples with 1663 confirmed malaria diagnoses were retrieved. Most of these studies (13/18, 72.2%) were conducted in Europe, and almost half were retrospective. Fourteen studies (77.8%) employed real-time or nested-polymerase chain reaction as the reference method for confirming malaria diagnosis. Sensitivity of LAMP ranged from 93.9 to 100% and specificity from 93.8 to 100% with a negative predictive value of 99.6%-100%. The rate of reported invalid results requiring repeat of the test varied from 0.01% to 5.7%, but they were solved in the majority of cases with a secondary analysis. In non-endemic countries the adoption of LAMP malaria assay as the screening test for malaria diagnosis seems to perform better than conventional methods. However, blood microscopy remains essential to either identify Plasmodium species and quantify parasitaemia and adequately managing malaria cases.
Collapse
Affiliation(s)
- Spinello Antinori
- Department of Biomedical and Clinical Sciences "Luigi Sacco", Università degli Studi di Milano, Milano, Italy.,III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milano, Italy
| | - Anna Lisa Ridolfo
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milano, Italy
| | - Romualdo Grande
- Clinical Microbiology, Virology and Bioemergency, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milano, Italy
| | - Laura Galimberti
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milano, Italy
| | - Giacomo Casalini
- Department of Biomedical and Clinical Sciences "Luigi Sacco", Università degli Studi di Milano, Milano, Italy
| | - Andrea Giacomelli
- Department of Biomedical and Clinical Sciences "Luigi Sacco", Università degli Studi di Milano, Milano, Italy.,III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milano, Italy
| | - Laura Milazzo
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milano, Italy
| |
Collapse
|
15
|
Chen Z, Zhao K, He Z, Luo X, Qin Z, Tan Y, Zheng X, Wu Z, Deng Y, Chen H, Guo Y, Li S. Development and evaluation of a thermostatic nucleic acid testing device based on magnesium pyrophosphate precipitation for detecting Enterocytozoon hepatopenaei. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Garg N, Ahmad FJ, Kar S. Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100120. [PMID: 35909594 PMCID: PMC9325740 DOI: 10.1016/j.crmicr.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/01/2022] Open
Abstract
Significance of LAMP method in rapid disease diagnosis is highlighted. Different detection methods for amplicon visualization are explained. Advancements in LAMP technique for disease identification are summarized. Trends in development of LAMP disease diagnosis are discussed.
Loop-mediated isothermal amplification (LAMP) method has been demonstrated to bea reliable and robust method for detection and identification of viral and microbial pathogens. LAMP method of amplification, coupled with techniques for easy detection of amplicons, makes a simple-to-operate and easy-to-read molecular diagnostic tool for both laboratory and on-field settings. Several LAMP-based diagnostic kits and assays have been developed that are specifically targeted against a variety of pathogens. With the growing needs of the demanding molecular diagnostic industry, many technical advances have been made over the years by combining the basic LAMP principle with several other molecular approaches like real-time detection, multiplex methods, chip-based assays.This has resulted in enhancing thethe sensitivity and accuracy of LAMP for more rigorous and wide-ranging pathogen detection applications. This review summarizes the current developments in LAMP technique and their applicability in present and future disease diagnosis.
Collapse
|
17
|
Brilhante-da-Silva N, do Nascimento Martinez L, de Oliveira Sousa RM, dos Santos Pereira S, Teles CBG. Innovations in Plasmodium spp . diagnosis on diverse detection platforms. 3 Biotech 2021; 11:505. [PMID: 34881167 DOI: 10.1007/s13205-021-03054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022] Open
Abstract
In 2019, 229 million cases of malaria were recorded worldwide. For epidemiologic surveillance and proper treatment of persons infected with Plasmodium spp., rapid detection of infections by Plasmodium spp. is critical. Thus, Plasmodium spp. diagnosis is one of the indispensable measures for malaria control. Although microscopy is the gold standard for diagnosis, it has restrictions related mainly to the lack of qualified human resources, which is a problem in many regions. Thus, this review presents major innovations in diagnostic methods as alternatives to or complementary to microscopy. Detection platforms in lateral flow systems, electrochemical immunosensors, molecular biology and, more recently, those integrated with smartphones, are highlighted, among others. The advanced improvement of these tests aims to provide techniques that are sensitive and specific, but also quick, easy to handle and free from the laboratory environment. In this way, the tracking of malaria cases can become increasingly effective and contribute to controlling the disease.
Collapse
|
18
|
Guaman-Bautista LP, Moreta-Urbano E, Oña-Arias CG, Torres-Arias M, Kyriakidis NC, Malcı K, Jonguitud-Borrego N, Rios-Solis L, Ramos-Martinez E, López-Cortés A, Barba-Ostria C. Tracking SARS-CoV-2: Novel Trends and Diagnostic Strategies. Diagnostics (Basel) 2021; 11:1981. [PMID: 34829328 PMCID: PMC8621220 DOI: 10.3390/diagnostics11111981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
The COVID-19 pandemic has had an enormous impact on economies and health systems globally, therefore a top priority is the development of increasingly better diagnostic and surveillance alternatives to slow down the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In order to establish massive testing and contact tracing policies, it is crucial to have a clear view of the diagnostic options available and their principal advantages and drawbacks. Although classical molecular methods such as RT-qPCR are broadly used, diagnostic alternatives based on technologies such as LAMP, antigen, serological testing, or the application of novel technologies such as CRISPR-Cas for diagnostics, are also discussed. The present review also discusses the most important automation strategies employed to increase testing capability. Several serological-based diagnostic kits are presented, as well as novel nanotechnology-based diagnostic methods. In summary, this review provides a clear diagnostic landscape of the most relevant tools to track COVID-19.
Collapse
Affiliation(s)
- Linda P. Guaman-Bautista
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador; (L.P.G.-B.); (E.M.-U.); (C.G.O.-A.)
| | - Erick Moreta-Urbano
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador; (L.P.G.-B.); (E.M.-U.); (C.G.O.-A.)
| | - Claudia G. Oña-Arias
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador; (L.P.G.-B.); (E.M.-U.); (C.G.O.-A.)
| | - Marbel Torres-Arias
- Immunology and Virology Laboratory, Department of Life Science and Agriculture, Universidad de las Fuerzas Armadas, Quito 171103, Ecuador;
| | - Nikolaos C. Kyriakidis
- Grupo de Investigación en Biotecnología Aplicada a Biomedicina (BIOMED), Universidad de Las Américas, Quito 170125, Ecuador;
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9LE, UK; (K.M.); (N.J.-B.); (L.R.-S.)
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH8 9LE, UK
| | - Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9LE, UK; (K.M.); (N.J.-B.); (L.R.-S.)
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH8 9LE, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9LE, UK; (K.M.); (N.J.-B.); (L.R.-S.)
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH8 9LE, UK
| | - Espiridion Ramos-Martinez
- Experimental Medicine Research Unit, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 4510, Mexico;
| | - Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador;
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
19
|
Barazorda KA, Salas CJ, Braga G, Ricopa L, Ampuero JS, Siles C, Sanchez JF, Montano S, Lizewski SE, Joya CA, Bishop DK, Valdivia HO. Validation study of Boil & Spin Malachite Green Loop Mediated Isothermal Amplification (B&S MG-LAMP) versus microscopy for malaria detection in the Peruvian Amazon. PLoS One 2021; 16:e0258722. [PMID: 34695122 PMCID: PMC8544869 DOI: 10.1371/journal.pone.0258722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Malaria elimination efforts in Peru have dramatically reduced the incidence of cases in the Amazon Basin. To achieve the elimination, the detection of asymptomatic and submicroscopic carriers becomes a priority. Therefore, efforts should focus on tests sensitive enough to detect low-density parasitemia, deployable to resource-limited areas and affordable for large screening purposes. In this study, we assessed the performance of the Malachite–Green LAMP (MG-LAMP) using heat-treated DNA extraction (Boil & Spin; B&S MG-LAMP) on 283 whole blood samples collected from 9 different sites in Loreto, Peru and compared its performance to expert and field microscopy. A real-time PCR assay was used to quantify the parasite density. In addition, we explored a modified version of the B&S MG-LAMP for detection of submicroscopic infection in 500 samples and compared the turnaround time and cost of the MG-LAMP with microscopy. Compared to expert microscopy, the genus B&S MG-LAMP had a sensitivity of 99.4% (95%CI: 96.9%– 100%) and specificity of 97.1% (95%CI: 91.9%– 99.4%). The P. vivax specific B&S MG-LAMP had a sensitivity of 99.4% (96.6%– 100%) and specificity of 99.2% (95.5%– 100%) and the P. falciparum assay had a sensitivity of 100% (95%CI: 78.2%– 100%) and specificity of 99.3% (95%CI: 97.3%– 99.8%). The modified genus B&S MG-LAMP assay detected eight submicroscopic malaria cases (1.6%) which the species-specific assays did not identify. The turnaround time of B&S MG-LAMP was faster than expert microscopy with as many as 60 samples being processed per day by field technicians with limited training and utilizing a simple heat-block. The modified B&S MG-LAMP offers a simple and sensitive molecular test of choice for the detection of submicroscopic infections that can be used for mass screening in resources limited facilities in endemic settings nearing elimination and where a deployable test is required.
Collapse
Affiliation(s)
| | - Carola J. Salas
- Department of Parasitology, U.S. Naval Medical Research Unit N°6 (NAMRU-6), Lima, Peru
| | - Greys Braga
- Department of Parasitology, U.S. Naval Medical Research Unit N°6 (NAMRU-6), Lima, Peru
| | - Leonila Ricopa
- Department of Parasitology, U.S. Naval Medical Research Unit N°6 (NAMRU-6), Lima, Peru
| | - Julia S. Ampuero
- Department of Virology and Emerging infections, U.S. Naval Medical Research Unit N°6 (NAMRU-6), Lima, Peru
| | - Crystyan Siles
- Department of Virology and Emerging infections, U.S. Naval Medical Research Unit N°6 (NAMRU-6), Lima, Peru
| | - Juan F. Sanchez
- Department of Parasitology, U.S. Naval Medical Research Unit N°6 (NAMRU-6), Lima, Peru
| | - Silvia Montano
- Department of Parasitology, U.S. Naval Medical Research Unit N°6 (NAMRU-6), Lima, Peru
| | - Stephen E. Lizewski
- Department of Parasitology, U.S. Naval Medical Research Unit N°6 (NAMRU-6), Lima, Peru
| | - Christie A. Joya
- Department of Parasitology, U.S. Naval Medical Research Unit N°6 (NAMRU-6), Lima, Peru
| | - Danett K. Bishop
- Department of Parasitology, U.S. Naval Medical Research Unit N°6 (NAMRU-6), Lima, Peru
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit N°6 (NAMRU-6), Lima, Peru
- * E-mail:
| |
Collapse
|
20
|
Colbert AJ, Co K, Lima-Cooper G, Lee DH, Clayton KN, Wereley ST, John CC, Linnes JC, Kinzer-Ursem TL. Towards the use of a smartphone imaging-based tool for point-of-care detection of asymptomatic low-density malaria parasitaemia. Malar J 2021; 20:380. [PMID: 34563189 PMCID: PMC8466697 DOI: 10.1186/s12936-021-03894-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Globally, there are over 200 million cases of malaria annually and over 400,000 deaths. Early and accurate detection of low-density parasitaemia and asymptomatic individuals is key to achieving the World Health Organization (WHO) 2030 sustainable development goals of reducing malaria-related deaths by 90% and eradication in 35 countries. Current rapid diagnostic tests are neither sensitive nor specific enough to detect the low parasite concentrations in the blood of asymptomatic individuals. METHODS Here, an imaging-based sensing technique, particle diffusometry (PD), is combined with loop mediated isothermal amplification (LAMP) on a smartphone-enabled device to detect low levels of parasitaemia often associated with asymptomatic malaria. After amplification, PD quantifies the Brownian motion of fluorescent nanoparticles in the solution during a 30 s video taken on the phone. The resulting diffusion coefficient is used to detect the presence of Plasmodium DNA amplicons. The coefficients of known negative samples are compared to positive samples using a one-way ANOVA post-hoc Dunnett's test for confirmation of amplification. RESULTS As few as 3 parasite/µL of blood was detectable in 45 min without DNA extraction. Plasmodium falciparum parasites were detected from asymptomatic individuals' whole blood samples with 89% sensitivity and 100% specificity when compared to quantitative polymerase chain reaction (qPCR). CONCLUSIONS PD-LAMP is of value for the detection of low density parasitaemia especially in areas where trained personnel may be scarce. The demonstration of this smartphone biosensor paired with the sensitivity of LAMP provides a proof of concept to achieve widespread asymptomatic malaria testing at the point of care.
Collapse
Affiliation(s)
- Ashlee J Colbert
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Katrina Co
- Indiana University School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Giselle Lima-Cooper
- Indiana University School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Dong Hoon Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chandy C John
- Indiana University School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Tamara L Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
21
|
Gimenez AM, Marques RF, Regiart M, Bargieri DY. Diagnostic Methods for Non-Falciparum Malaria. Front Cell Infect Microbiol 2021; 11:681063. [PMID: 34222049 PMCID: PMC8248680 DOI: 10.3389/fcimb.2021.681063] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a serious public health problem that affects mostly the poorest countries in the world, killing more than 400,000 people per year, mainly children under 5 years old. Among the control and prevention strategies, the differential diagnosis of the Plasmodium-infecting species is an important factor for selecting a treatment and, consequently, for preventing the spread of the disease. One of the main difficulties for the detection of a specific Plasmodium sp is that most of the existing methods for malaria diagnosis focus on detecting P. falciparum. Thus, in many cases, the diagnostic methods neglect the other non-falciparum species and underestimate their prevalence and severity. Traditional methods for diagnosing malaria may present low specificity or sensitivity to non-falciparum spp. Therefore, there is high demand for new alternative methods able to differentiate Plasmodium species in a faster, cheaper and easier manner to execute. This review details the classical procedures and new perspectives of diagnostic methods for malaria non-falciparum differential detection and the possibilities of their application in different circumstances.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matías Regiart
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Nolasco O, Montoya J, Rosales Rosas AL, Barrientos S, Rosanas-Urgell A, Gamboa D. Multicopy targets for Plasmodium vivax and Plasmodium falciparum detection by colorimetric LAMP. Malar J 2021; 20:225. [PMID: 34011373 PMCID: PMC8135177 DOI: 10.1186/s12936-021-03753-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Loop-mediated isothermal amplification (LAMP) for malaria diagnosis at the point of care (POC) depends on the detection capacity of synthesized nucleic acids and the specificity of the amplification target. To improve malaria diagnosis, new colorimetric LAMP tests were developed using multicopy targets for Plasmodium vivax and Plasmodium falciparum detection. METHODS The cytochrome oxidase I (COX1) mitochondrial gene and the non-coding sequence Pvr47 for P. vivax, and the sub-telomeric sequence of erythrocyte membrane protein 1 (EMP1) and the non-coding sequence Pfr364 for P. falciparum were targeted to design new LAMP primers. The limit of detection (LOD) of each colorimetric LAMP was established and assessed with DNA extracted by mini spin column kit and the Boil & Spin method from 28 microscopy infections, 101 malaria submicroscopic infections detected by real-time PCR only, and 183 negatives infections by both microscopy and PCR. RESULTS The LODs for the colorimetric LAMPs were estimated between 2.4 to 3.7 parasites/µL of whole blood. For P. vivax detection, the colorimetric LAMP using the COX1 target showed a better performance than the Pvr47 target, whereas the Pfr364 target was the most specific for P. falciparum detection. All microscopic infections of P. vivax were detected by PvCOX1-LAMP using the mini spin column kit DNA extraction method and 81% (17/21) were detected using Boil & Spin sample preparation. Moreover, all microscopic infections of P. falciparum were detected by Pfr364-LAMP using both sample preparation methods. In total, PvCOX1-LAMP and Pfr364-LAMP detected 80.2% (81 samples) of the submicroscopic infections using the DNA extraction method by mini spin column kit, while 36.6% (37 samples) were detected using the Boil & Spin sample preparation method. CONCLUSION The colorimetric LAMPs with multicopy targets using the COX1 target for P. vivax and the Pfr364 for P. falciparum have a high potential to improve POC malaria diagnosis detecting a greater number of submicroscopic Plasmodium infections.
Collapse
Affiliation(s)
- Oscar Nolasco
- Instituto de Medicina Tropical "Alexander von Humboldt" Universidad Peruana Cayetano Heredia, Lima, Peru.
- Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Jhoel Montoya
- Unidad de Posgrado de la Facultad de Ciencias Biológicas Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ana L Rosales Rosas
- Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Scarlett Barrientos
- Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical "Alexander von Humboldt" Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares Y Moleculares, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
23
|
Performance and Application of Commercially Available Loop-Mediated Isothermal Amplification (LAMP) Kits in Malaria Endemic and Non-Endemic Settings. Diagnostics (Basel) 2021; 11:diagnostics11020336. [PMID: 33670618 PMCID: PMC7922894 DOI: 10.3390/diagnostics11020336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is a sensitive molecular tool suitable for use as a near point-of-care test for the diagnosis of malaria. Recent meta-analyses have detailed high sensitivity and specificity of malaria LAMP when compared to microscopy, rapid diagnostic tests, and polymerase chain reaction in both endemic and non-endemic settings. Despite this, the use of malaria LAMP has primarily been limited to research settings to date. In this review, we aim to assess to what extent commercially available malaria LAMP kits have been applied in different settings, and to identify possible obstacles that may have hindered their use from being adopted further. In order to address this, we conducted a literature search in PubMed.gov using the search terms (((LAMP) OR (Loop-mediated isothermal amplification)) AND ((Malaria) OR (Plasmodium))). Focusing primarily on studies employing one of the commercially available kits, we then selected three key areas of LAMP application for further review: the performance and application of LAMP in malaria endemic settings including low transmission areas; LAMP for malaria screening during pregnancy; and malaria LAMP in returning travelers in non-endemic settings.
Collapse
|