1
|
Jiang Z, Lin Z, Li Z, Yu M, He G, Hu J, Meng R, Hou Z, Zhu S, Zhou C, Xiao Y, Huang B, Xu X, Jin D, Qin M, Xu Y, Liu T, Ma W. Joint effects of heat-humidity compound events on drowning mortality in Southern China. Inj Prev 2024; 30:488-495. [PMID: 38443161 DOI: 10.1136/ip-2023-045036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Several previous studies have examined the association of ambient temperature with drowning. However, no study has investigated the effects of heat-humidity compound events on drowning mortality. METHODS The drowning mortality data and meteorological data during the five hottest months (May to September) were collected from 46 cities in Southern China (2013-2018 in Guangdong, Hunan and Zhejiang provinces). Distributed lag non-linear model was first conducted to examine the association between heat-humidity compound events and drowning mortality at city level. Then, meta-analysis was employed to pool the city-specific exposure-response associations. Finally, we analysed the additive interaction of heat and humidity on drowning mortality. RESULTS Compared with wet-non-hot days, dry-hot days had greater effects (excess rate (ER)=32.34%, 95% CI: 24.64 to 40.50) on drowning mortality than wet-hot days (ER=14.38%, 95%CI: 6.80 to 22.50). During dry-hot days, males (ER=42.40%, 95% CI: 31.92 to 53.72), adolescents aged 0-14 years (ER=45.00%, 95% CI: 21.98 to 72.35) and urban city (ER=36.91%, 95% CI: 23.87 to 51.32) showed higher drowning mortality risk than their counterparts. For wet-hot days, males, adolescents and urban city had higher ERs than their counterparts. Attributable fraction (AF) of drowning attributed to dry-hot days was 23.83% (95% CI: 21.67 to 26.99) which was significantly higher than that for wet-hot days (11.32%, 95% CI: 9.64 to 13.48%). We also observed that high temperature and low humidity had an additive interaction on drowning mortality. CONCLUSION We found that dry-hot days had greater drowning mortality risk and burden than wet-hot days, and high temperature and low humidity might have synergy on drowning mortality.
Collapse
Affiliation(s)
- Zhiying Jiang
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Zhixing Li
- Department of Public Health, Jinan University, Guangzhou, China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Min Yu
- Division of NCD Control, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Jianxiong Hu
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Ruilin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Zhulin Hou
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Chunliang Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Yize Xiao
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Biao Huang
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - Xiaojun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Donghui Jin
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Mingfang Qin
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Yiqing Xu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Zhang F, Yang C, Wang F, Li P, Zhang L. Health Co-Benefits of Environmental Changes in the Context of Carbon Peaking and Carbon Neutrality in China. HEALTH DATA SCIENCE 2024; 4:0188. [PMID: 39360234 PMCID: PMC11446102 DOI: 10.34133/hds.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
IMPORTANCE Climate change mitigation policies aimed at limiting greenhouse gas (GHG) emissions would bring substantial health co-benefits by directly alleviating climate change or indirectly reducing air pollution. As one of the largest developing countries and GHG emitter globally, China's carbon-peaking and carbon neutrality goals would lead to substantial co-benefits on global environment and therefore on human health. This review summarized the key findings and gaps in studies on the impact of China's carbon mitigation strategies on human health. HIGHLIGHTS There is a wide consensus that limiting the temperature rise well below 2 °C would markedly reduce the climate-related health impacts compared with high emission scenario, although heat-related mortalities, labor productivity reduction rates, and infectious disease morbidities would continue increasing over time as temperature rises. Further, hundreds of thousands of air pollutant-related mortalities (mainly due to PM2.5 and O3) could be avoided per year compared with the reference scenario without climate policy. Carbon reduction policies can also alleviate morbidities due to acute exposure to PM2.5. Further research with respect to morbidities attributed to nonoptimal temperature and air pollution, and health impacts attributed to precipitation and extreme weather events under current carbon policy in China or its equivalent in other developing countries is needed to improve our understanding of the disease burden in the coming decades. CONCLUSIONS This review provides up-to-date evidence of potential health co-benefits under Chinese carbon policies and highlights the importance of considering these co-benefits into future climate policy development in both China and other nations endeavoring carbon reductions.
Collapse
Affiliation(s)
- Feifei Zhang
- National Institute of Health Data Science at Peking University, Health Science Center of Peking University, Beijing 100191, China
- Institute of Medical Technology, Health Science Center of Peking University, Beijing 100191, China
| | - Chao Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
| | - Fulin Wang
- National Institute of Health Data Science at Peking University, Health Science Center of Peking University, Beijing 100191, China
- Institute of Medical Technology, Health Science Center of Peking University, Beijing 100191, China
| | - Pengfei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
| | - Luxia Zhang
- National Institute of Health Data Science at Peking University, Health Science Center of Peking University, Beijing 100191, China
- Institute of Medical Technology, Health Science Center of Peking University, Beijing 100191, China
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
- Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
| |
Collapse
|
3
|
Yin B, Fang W, Liu L, Guo Y, Ma X, Di Q. Effect of extreme high temperature on cognitive function at different time scales: A national difference-in-differences analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116238. [PMID: 38518609 DOI: 10.1016/j.ecoenv.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Mounting evidence has demonstrated that high temperature was associated with adverse health outcomes, especially morbidity and mortality. Nonetheless, the impact of extreme high temperature on cognitive performance, which is the fundamental capacity for interpreting one's surroundings, decision-making, and acquiring new abilities, has not been thoroughly investigated. METHODS We aimed to assess associations between extreme high temperature at different time scales and poor cognitive function. We used longitudinal survey data from the three waves of data from China Family Panel Study, providing an 8-year follow-up of 53,008 participants from China. We assessed temperature and extreme high temperature exposure for each participant based on the residential area and date of cognitive test. We defined the proportion of days/hours above 32 °C as the metric of the exposure to extreme high temperature. Then we used generalized additive model and difference-in-differences approach to explore the associations between extreme high temperature and cognitive function. RESULTS Our results demonstrated that either acute exposure or long-term exposure to extreme high temperature was associated with cognitive decline. At hourly level, 0-1 hour acute exposure to extreme high temperature would induce -0.93 % (95 % CI: -1.46 %, -0.39 %) cognitive change. At annual level, 10 percentage point increase in the hours proportion exceeding 32 °C in the past two years induced -9.87 % (95 % CI: -13.99 %, -5.75 %) cognitive change. Furthermore, subgroup analyses indicated adaptation effect: for the same 10 percentage increase in hours proportion exceeding 32 °C, people in warmer areas had cognitive change of -6.41 % (-11.22 %, -1.61 %), compared with -15.30 % (-21.07 %, -9.53 %) for people in cool areas. CONCLUSION Our results demonstrated that extreme high temperature was associated with reduced cognitive function at hourly, daily and annual levels, warning that people should take better measures to protect the cognitive function in the context of climate change.
Collapse
Affiliation(s)
- Bo Yin
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wen Fang
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China
| | - Linfeng Liu
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Xindong Ma
- Division of Sports Science & Physical Education, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Sun Y, Zhu S, Wang D, Duan J, Lu H, Yin H, Tan C, Zhang L, Zhao M, Cai W, Wang Y, Hu Y, Tao S, Guan D. Global supply chains amplify economic costs of future extreme heat risk. Nature 2024; 627:797-804. [PMID: 38480894 PMCID: PMC10972753 DOI: 10.1038/s41586-024-07147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
Evidence shows a continuing increase in the frequency and severity of global heatwaves1,2, raising concerns about the future impacts of climate change and the associated socioeconomic costs3,4. Here we develop a disaster footprint analytical framework by integrating climate, epidemiological and hybrid input-output and computable general equilibrium global trade models to estimate the midcentury socioeconomic impacts of heat stress. We consider health costs related to heat exposure, the value of heat-induced labour productivity loss and indirect losses due to economic disruptions cascading through supply chains. Here we show that the global annual incremental gross domestic product loss increases exponentially from 0.03 ± 0.01 (SSP 245)-0.05 ± 0.03 (SSP 585) percentage points during 2030-2040 to 0.05 ± 0.01-0.15 ± 0.04 percentage points during 2050-2060. By 2060, the expected global economic losses reach a total of 0.6-4.6% with losses attributed to health loss (37-45%), labour productivity loss (18-37%) and indirect loss (12-43%) under different shared socioeconomic pathways. Small- and medium-sized developing countries suffer disproportionately from higher health loss in South-Central Africa (2.1 to 4.0 times above global average) and labour productivity loss in West Africa and Southeast Asia (2.0-3.3 times above global average). The supply-chain disruption effects are much more widespread with strong hit to those manufacturing-heavy countries such as China and the USA, leading to soaring economic losses of 2.7 ± 0.7% and 1.8 ± 0.5%, respectively.
Collapse
Affiliation(s)
- Yida Sun
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
| | - Shupeng Zhu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, China
- Advanced Power and Energy Program, University of California Irvine, Irvine, CA, USA
| | - Daoping Wang
- Department of Geography, King's College London, London, UK
- Centre for Climate Engagement, Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Jianping Duan
- State Key Laboratory of Earth Surface and Ecological Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Hui Lu
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
- Tsinghua University (Department of Earth System Science)-Xi'an Institute of Surveying and Mapping Joint Research Center for Next-Generation Smart Mapping, Beijing, China
| | - Hao Yin
- Department of Economics, University of Southern California, Los Angeles, CA, USA
| | - Chang Tan
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
| | - Lingrui Zhang
- Department of Economics, University of Waterloo, Waterloo, Ontario, Canada
| | - Mengzhen Zhao
- School of Management and Economics, Beijing Institute of Technology, Beijing, China
| | - Wenjia Cai
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
| | - Yong Wang
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
| | - Yixin Hu
- School of Economics and Management, Southeast University, Nanjing, China
| | - Shu Tao
- College of Urban Environment, Peking University, Beijing, China
| | - Dabo Guan
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China.
- The Bartlett School of Sustainable Construction, University College London, London, UK.
| |
Collapse
|
5
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 4: evolution, thermal adaptation and unsupported theories of thermoregulation. Eur J Appl Physiol 2024; 124:147-218. [PMID: 37796290 DOI: 10.1007/s00421-023-05262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 10/06/2023]
Abstract
This review is the final contribution to a four-part, historical series on human exercise physiology in thermally stressful conditions. The series opened with reminders of the principles governing heat exchange and an overview of our contemporary understanding of thermoregulation (Part 1). We then reviewed the development of physiological measurements (Part 2) used to reveal the autonomic processes at work during heat and cold stresses. Next, we re-examined thermal-stress tolerance and intolerance, and critiqued the indices of thermal stress and strain (Part 3). Herein, we describe the evolutionary steps that endowed humans with a unique potential to tolerate endurance activity in the heat, and we examine how those attributes can be enhanced during thermal adaptation. The first of our ancestors to qualify as an athlete was Homo erectus, who were hairless, sweating specialists with eccrine sweat glands covering almost their entire body surface. Homo sapiens were skilful behavioural thermoregulators, which preserved their resource-wasteful, autonomic thermoeffectors (shivering and sweating) for more stressful encounters. Following emigration, they regularly experienced heat and cold stress, to which they acclimatised and developed less powerful (habituated) effector responses when those stresses were re-encountered. We critique hypotheses that linked thermoregulatory differences to ancestry. By exploring short-term heat and cold acclimation, we reveal sweat hypersecretion and powerful shivering to be protective, transitional stages en route to more complete thermal adaptation (habituation). To conclude this historical series, we examine some of the concepts and hypotheses of thermoregulation during exercise that did not withstand the tests of time.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. Eur J Appl Physiol 2024; 124:1-145. [PMID: 37796292 DOI: 10.1007/s00421-023-05276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
In this third installment of our four-part historical series, we evaluate contributions that shaped our understanding of heat and cold stress during occupational and athletic pursuits. Our first topic concerns how we tolerate, and sometimes fail to tolerate, exercise-heat stress. By 1900, physical activity with clothing- and climate-induced evaporative impediments led to an extraordinarily high incidence of heat stroke within the military. Fortunately, deep-body temperatures > 40 °C were not always fatal. Thirty years later, water immersion and patient treatments mimicking sweat evaporation were found to be effective, with the adage of cool first, transport later being adopted. We gradually acquired an understanding of thermoeffector function during heat storage, and learned about challenges to other regulatory mechanisms. In our second topic, we explore cold tolerance and intolerance. By the 1930s, hypothermia was known to reduce cutaneous circulation, particularly at the extremities, conserving body heat. Cold-induced vasodilatation hindered heat conservation, but it was protective. Increased metabolic heat production followed, driven by shivering and non-shivering thermogenesis, even during exercise and work. Physical endurance and shivering could both be compromised by hypoglycaemia. Later, treatments for hypothermia and cold injuries were refined, and the thermal after-drop was explained. In our final topic, we critique the numerous indices developed in attempts to numerically rate hot and cold stresses. The criteria for an effective thermal stress index were established by the 1930s. However, few indices satisfied those requirements, either then or now, and the surviving indices, including the unvalidated Wet-Bulb Globe-Thermometer index, do not fully predict thermal strain.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Gao S, Wang Y. Anticipating older populations' health risk exacerbated by compound disasters based on mortality caused by heart diseases and strokes. Sci Rep 2023; 13:16810. [PMID: 37798365 PMCID: PMC10556062 DOI: 10.1038/s41598-023-43717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
The health of older populations in the Southeastern U.S. receives threats from recurrent tropical cyclones and extreme heat, which may exacerbate the mortality caused by heart diseases and strokes. Such threats can escalate when these extremes form compound disasters, which may be more frequent under climate change. However, a paucity of empirical evidence exists concerning the health threats of compound disasters, and anticipations regarding the health risks of older populations under future compound disaster scenarios are lacking. Focusing on Florida, which has 67 counties and the second-largest proportion of older populations among U.S. states, we calibrate Poisson regression models to explore older populations' mortality caused by heart diseases and strokes under single and compound disasters. The models are utilized to estimate the mortality across future disaster scenarios, the changing climate, and the growing population. We identify that under multiple hurricanes or heat, current-month hurricanes or heat can affect mortality more heavily than previous-month hurricanes or heat. Under future scenarios, co-occurring hurricanes and extreme heat can exacerbate the mortality more severely than other disaster scenarios. The same types of compound disasters can coincide with an average of 20.5% higher mortality under RCP8.5-SSP5 than under RCP4.5-SSP2. We assess older populations' future health risks, alerting health agencies to enhance preparedness for future "worst-case" scenarios of compound disasters and proactively adapt to climate change.
Collapse
Affiliation(s)
- Shangde Gao
- Department of Urban and Regional Planning and Florida Institute for Built Environment Resilience, University of Florida, Gainesville, FL, 32611, USA
| | - Yan Wang
- Department of Urban and Regional Planning and Florida Institute for Built Environment Resilience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
8
|
Guo Y, Yan X, Xie W, Gao Z, Song S. Spatiotemporal changes in summer days (SU25) in China from 1961 to 2017 and associated circulation factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100770-100784. [PMID: 37639088 DOI: 10.1007/s11356-023-29052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
Understanding the spatiotemporal variations in climate extremes indices, as well as the influencing factors, is critical to the scientific response to climate change. The temporal and spatial variations of SU25 (annual count of days when daily maximum temperature > 25 °C) were discussed in this study, based on daily maximum temperature data from 2398 meteorological stations in China from 1961 to 2017. The contributions of associated large-scale circulation factors to SU25 were quantitatively assessed by using the geographical detector method (GMD). The overall spatial distribution of SU25 was marked by a considerable increase from north to south. The SU25 increased significantly over time, with the national SU25 increasing at a rate of 2.5 days/decade. The Tibet Plateau (TP) had the slowest growth rate, with an average increase rate of 1.4 days/decade. The Hurst values of SU25 in all the subregions were generally high, indicating that most stations of SU25 would continue to increase in the future. Except for TP, the tipping years of other subregions were concentrated in the 1990s, and SU25 increased after the years. Among the large-scale circulation factors affecting SU25 in each subregion, Atlantic Multidecadal Oscillation (AMO) played a major role in SU25 variability. As a whole, the result of the pairwise interaction of each circulation factor was mainly nonlinear enhancement. The joint contributions of multiple factors to SU25 were larger than the contribution of each individual factor.
Collapse
Affiliation(s)
- Yuhong Guo
- College of Tourism, Resources and Environment, Zaozhuang University, Zaozhuang, 277160, China
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xiaodong Yan
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Wenqiang Xie
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Zhibo Gao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Shuaifeng Song
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
9
|
Bhatti MT, Anwar AA, Hussain K. Characterization and outlook of climatic hazards in an agricultural area of Pakistan. Sci Rep 2023; 13:9958. [PMID: 37339992 DOI: 10.1038/s41598-023-36909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Many dimensions of human life and the environment are vulnerable to anthropogenic climate change and the hazards associated with it. There are several indices and metrics to quantify climate hazards that can inform preparedness and planning at different levels e.g., global, regional, national, and local. This study uses biased corrected climate projections of temperature and precipitation to compute characteristics of potential climate hazards that are pronounced in the Gomal Zam Dam Command Area (GZDCA)- an irrigated agricultural area in Khyber Pakhtunkhwa province of Pakistan. The results answer the question of what the future holds in the GZDCA regarding climate hazards of heatwaves, heavy precipitation, and agricultural drought. The results of heatwaves and agricultural drought present an alarming future and call for immediate actions for preparedness and adaptation. The magnitude of drought indices for the future is correlated with the crop yield response based on AquaCrop model simulations with observed climate data being used as input. This correlation provides insight into the suitability of various drought indices for agricultural drought characterization. The results elaborate on how the yield of wheat crop grown in a typical setting common in the South Asian region respond to the magnitude of drought indices. The findings of this study inform the planning process for changing climate and expected climate hazards in the GZDCA. Analyzing climate hazards for the future at the local level (administrative districts or contiguous agricultural areas) might be a more efficient approach for climate resilience due to its specificity and enhanced focus on the context.
Collapse
Affiliation(s)
- Muhammad Tousif Bhatti
- International Water Management Institute, 12 Km Multan Road Chowk Thokar Niaz Baig, Lahore, Pakistan.
| | - Arif A Anwar
- University of Birmingham, Dubai, United Arab Emirates
| | - Kashif Hussain
- International Water Management Institute, 12 Km Multan Road Chowk Thokar Niaz Baig, Lahore, Pakistan
| |
Collapse
|
10
|
Pan R, Xie M, Chen M, Zhang Y, Ma J, Zhou J. The impact of heat waves on the mortality of Chinese population: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e33345. [PMID: 37000079 PMCID: PMC10063284 DOI: 10.1097/md.0000000000033345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Many studies had shown that with global warming, heat waves may increase the mortality risk of Chinese populations. However, these findings are not consistent. Therefore, we elucidated the associations by meta-analysis and quantified the magnitude of these risks, as well as the underlying factors. METHODS We searched the China National Knowledge Infrastructure (CNKI), Wanfang database, PubMed, EMBASE, and Web of Science for literature screening up to Nov 10, 2022, to analyze the effect of heat waves on mortality in the Chinese population. Literature screening and data extraction were performed independently by two researchers and the data were merged by meta-analysis. In addition, we conducted subgroup analysis by sex, age, years of education, region, and number of events to explore the source of heterogeneity. RESULTS Fifteen related studies on the impact on heat waves of the death of Chinese people were included in this study. The results of the meta-analysis showed that heat waves were significantly associated with increased mortality from non-accidental deaths, cardiovascular diseases, stroke, respiratory diseases, and circulatory diseases in the Chinese population: non-accidental mortality (RR = 1.19, 95% CI: 1.13-1.27, P < .01), cardiovascular diseases (RR = 1.25, 95% CI: 1.14-1.38), stroke (RR = 1.11, 95% CI: 1.03-1.20), respiratory diseases (RR = 1.18, 95% CI: 1.09-1.28), and circulatory diseases (RR = 1.11, 95% CI: 1.06-1.17). Subgroup analyses showed that heat waves had a higher risk of non-accidental death for those with <6 years of education than for those with ≥6 years of education. Meta-regression analysis showed that the contribution of the study year to the inter studied heterogeneity was 50.57%. The sensitivity analysis showed that the exclusion of any single study did not materially alter the overall combined effect. The meta-analysis method indicated no obvious evidence of publication bias. CONCLUSIONS The results of the review indicated that heat waves were associated with increased mortality in the Chinese population, that attention should be paid to high-risk groups, and that public health policies and strategies should be implemented to more effectively respond to and adapt to climate change.
Collapse
Affiliation(s)
- Ranran Pan
- Department of Science and Education, Shuyang Hospital of Traditional Chinese Medicine, Shuyang, China
| | - Ming Xie
- Department of Science and Education, The Third Hospital of Changsha, Changsha, China
| | - Mengxiang Chen
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yannan Zhang
- Jiangyin Center for Disease Control and Prevention, Jiangyin, China
| | - Jian Ma
- Huaian Center for Disease Control and Prevention, Huaian, China
| | - Junhua Zhou
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
11
|
Sun H, Wang X, Zhang X, Wang L, Tao M, Wang Y, Yang J, Lei Y, Jin C, Zhao S, Hu Y, Hu H. High ambient temperature increases the number of emergency visits for upper urolithiasis in Hefei City, China. Heliyon 2023; 9:e12856. [PMID: 36711317 PMCID: PMC9876836 DOI: 10.1016/j.heliyon.2023.e12856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Background Few studies have examined the effect of ambient temperature on upper urolithiasis in developing countries, with even fewer considering individual factors. Methods The present study analyzed data on emergency department visits for upper urolithiasis from three hospital sites of a large hospital in Hefei, China, during 2016-2020. Data on environmental factors during the same period were also analyzed. A time series analysis employing a generalized Poisson regression model (GPRM) combined with a distributed lag non-linear model (DLNM) was conducted to evaluate the effect of ambient temperature on the number of emergency department visits for upper urolithiasis. Results We found that ambient temperatures above 9 °C were positively associated with the frequency of upper urolithiasis visits, with the relationship being most significant on the current day and with a one-day lag. In the single-day lag effect, the most significant relative risk (RR) for mild heat (75th percentile) and high heat (95th percentile) was 1.229 (95% CI: 1.100-1.373) and 1.337 (95% CI: 1.134-1.577), respectively. The cumulative lag effect was significantly higher than the single-day lag effect, with maximum relative risks (RRs) of 1.779 (95% CI: 1.356-2.335) and 2.498 (95% CI: 1.688-3.697), respectively. The maximum lag time was 7 days. RRs were also higher among women and individuals aged 30-44 years. Conclusions Increased ambient temperature is a risk factor for upper urolithiasis, and there is a hysteresis effect. Women and individuals aged 30-44 years are the most susceptible.
Collapse
Affiliation(s)
- Haoxiang Sun
- Department of General Medicine, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province 230022, China
| | - Xiaosong Wang
- Outpatient Department, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province 230022, China
| | - Xiaoyu Zhang
- Department of Health Management Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province 230022, China
| | - Linlin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui Province 230032, China
| | - Min Tao
- Information Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province 230022, China
| | - Ying Wang
- Department of General Medicine, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province 230022, China
| | - Jidan Yang
- Department of General Medicine, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province 230022, China
| | - Yuting Lei
- Department of Health Management Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province 230022, China
| | - Changqing Jin
- Department of Health Management Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province 230022, China
| | - Shuang Zhao
- Outpatient Department, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province 230022, China
| | - Yue Hu
- Outpatient Department, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province 230022, China
| | - Huaqing Hu
- Department of General Medicine, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province 230022, China,Outpatient Department, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province 230022, China,Corresponding author. Outpatient Department of the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province 230022, China.
| |
Collapse
|
12
|
Fang W, Li Z, Gao J, Meng R, He G, Hou Z, Zhu S, Zhou M, Zhou C, Xiao Y, Yu M, Huang B, Xu X, Lin L, Xiao J, Jin D, Qin M, Yin P, Xu Y, Hu J, Liu T, Huang C, Ma W. The joint and interaction effect of high temperature and humidity on mortality in China. ENVIRONMENT INTERNATIONAL 2023; 171:107669. [PMID: 36508749 DOI: 10.1016/j.envint.2022.107669] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Although many studies have reported the mortality effect of temperature, there were few studies on the mortality risk of humidity, let alone the joint effect of temperature and humidity. This study aimed to investigate the joint and interaction effect of high temperature and relative humidity on mortality in China, which will deepen understanding the health risk of mixture climate exposure. METHODS The mortality and meteorological data were collected from 353 locations in China (2013-2017 in Jilin, Hunan, Guangdong and Yunnan provinces, 2009-2017 in Zhejiang province, and 2006-2011 in other Provinces). We defined location-specific daily mean temperature ≥ 75th percentile of distribution as high temperature, while minimum mortality relative humidity as the threshold of high relative humidity. A time-series model with a distributed lag non-linear model was first employed to estimate the location-specific associations between humid-hot events and mortality, then we conducted meta-analysis to pool the mortality effect of humid-hot events. Finally, an additive interaction model was used to examine the interactive effect between high temperature and relative humidity. RESULTS The excess rate (ER) of non-accidental mortality attributed to dry-hot events was 10.18% (95% confidence interval (CI): 8.93%, 11.45%), which was higher than that of wet-hot events (ER = 3.21%, 95% CI: 0.59%, 5.89%). The attributable fraction (AF) of mortality attributed to dry-hot events was 10.00% (95% CI: 9.50%, 10.72%) with higher burden for females, older people, central China, cardiovascular diseases and urban city. While for wet-hot events, AF was much lower (3.31%, 95% CI: 2.60%, 4.30%). We also found that high temperature and low relative humidity had synergistic additive interaction on mortality risk. CONCLUSION Dry-hot events may have a higher risk of mortality than wet-hot events, and the joint effect of high temperature and low relative humidity may be greater than the sum of their individual effects.
Collapse
Affiliation(s)
- Wen Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhixing Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jinghua Gao
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruilin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhulin Hou
- Jilin Provincial Center for Disease Control and Prevention, Changchun 130062, China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Maigeng Zhou
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing 100050, China
| | - Chunliang Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China
| | - Yize Xiao
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650034, China
| | - Min Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310009, China
| | - Biao Huang
- Jilin Provincial Center for Disease Control and Prevention, Changchun 130062, China
| | - Xiaojun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Lifeng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Donghui Jin
- Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China
| | - Mingfang Qin
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650034, China
| | - Peng Yin
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing 100050, China
| | - Yiqing Xu
- Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China
| | - Jianxiong Hu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Arsad FS, Hod R, Ahmad N, Ismail R, Mohamed N, Baharom M, Osman Y, Radi MFM, Tangang F. The Impact of Heatwaves on Mortality and Morbidity and the Associated Vulnerability Factors: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16356. [PMID: 36498428 PMCID: PMC9738283 DOI: 10.3390/ijerph192316356] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND This study aims to investigate the current impacts of extreme temperature and heatwaves on human health in terms of both mortality and morbidity. This systematic review analyzed the impact of heatwaves on mortality, morbidity, and the associated vulnerability factors, focusing on the sensitivity component. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 flow checklist. Four databases (Scopus, Web of Science, EBSCOhost, PubMed) were searched for articles published from 2012 to 2022. Those eligible were evaluated using the Navigation Guide Systematic Review framework. RESULTS A total of 32 articles were included in the systematic review. Heatwave events increased mortality and morbidity incidence. Sociodemographic (elderly, children, male, female, low socioeconomic, low education), medical conditions (cardiopulmonary diseases, renal disease, diabetes, mental disease), and rural areas were crucial vulnerability factors. CONCLUSIONS While mortality and morbidity are critical aspects for measuring the impact of heatwaves on human health, the sensitivity in the context of sociodemographic, medical conditions, and locality posed a higher vulnerability to certain groups. Therefore, further research on climate change and health impacts on vulnerability may help stakeholders strategize effective plans to reduce the effect of heatwaves.
Collapse
Affiliation(s)
- Fadly Syah Arsad
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Rohaida Ismail
- Environmental Health Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Shah Alam 40170, Malaysia
| | - Norlen Mohamed
- Environmental Health Unit, Disease Control Division, Ministry of Health Malaysia, Putrajaya 62590, Malaysia
| | - Mazni Baharom
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Yelmizaitun Osman
- Occupational and Environmental Health Unit, Kelantan State Health Department, Ministry of Health Malaysia, Kota Bharu 15590, Malaysia
| | - Mohd Firdaus Mohd Radi
- Surveillance Unit, Kedah State Health Department, Ministry of Health Malaysia, Alor Setar 05400, Malaysia
| | - Fredolin Tangang
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
14
|
Crews DE. Aging, frailty, and design of built environments. J Physiol Anthropol 2022; 41:2. [PMID: 34980249 PMCID: PMC8725353 DOI: 10.1186/s40101-021-00274-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/21/2021] [Indexed: 02/27/2023] Open
Abstract
Before developing agriculture, herding or metallurgy, humans occupied most of the world. Multiple socioculturally-based responses supported their migration, including building shelters and constructing niches to limit environmental stressors. Sheltered settings provided social support and security during stressful times, along with opportunities for injured, aging, and frail members to survive. Modern built environments are designed for similar purposes, to support human growth, development, reproduction, and maintenance. However, extended survival in modern settings has costs. With age, muscle (sarcopenia) and bone loss (osteopenia, osteoporosis), along with somatic, physiological, and sensory dysfunction, reduce our physical capabilities, increase our frailty, and impede our abilities to interface with built and natural environments and manufactured artifacts. Thereby, increasing our dependence on built environments to maintain autonomy and quality of life. What follows is a conceptual review of how frailty may limit seniors within modern built environments. It suggests age-related frailty among seniors provides specific data for those designing environments for accessibility to all users. It is based in human ecological theory, and physiological and gerontological research showing senescent alterations, including losses of muscle, bone, and sensory perceptions, produce a frail phenotype with increasing age limiting our mobility, activity, use of space, and physical abilities. As an individual phenotype, frailty leads to age-related physical and performance declines. As a physiological assessment, frailty indices amalgamate individual measures of functional abilities into a single score. Such frailty indices increase with age and differ betwixt individuals and across groups. To design built environments that improve access, usability, and safety for aging and frail citizens, today’s seniors provide living samples and evidence for determining their future abilities, limitations, and design needs. Designing built environments to accommodate and improve the quality of human-environment interactions for frail seniors will improve usability and accessibility for most user groups.
Collapse
|
15
|
Population Exposure Changes to One Heat Wave and the Influencing Factors Using Mobile Phone Data—A Case Study of Zhuhai City, China. SUSTAINABILITY 2022. [DOI: 10.3390/su14020997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The frequent occurrence of extreme high temperature weather and heat waves has greatly affected human life. This paper analyzes population exposure and its influencing factors during a heat wave incident in Zhuhai from 6 to 12 September 2021 based on real-time mobile phone data and meteorological data. The results show that the most areas of Zhuhai are affected by high temperature during this heat wave incident. The hourly population exposure is directly proportional to hourly heat wave coverage. In terms of time dimension, the overall population exposure shows a trend of decreasing and then increasing. In terms of spatial dimensions, high population exposure is concentrated in areas such as primary and secondary schools, colleges and universities, office buildings, and residential areas. Low exposure is distributed in most of the mountainous areas along the southern coast. In addition, the leading factors that cause changes in population exposure in different periods of the heat wave cycle are different, which rely more on either climatic factors or population factors.
Collapse
|
16
|
Ren J, Huang G, Li Y, Zhou X, Xu J, Yang Z, Tian C, Wang F. A Stepwise-Clustered Simulation Approach for Projecting Future Heat Wave Over Guangdong Province. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.761251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A heat wave is an important meteorological extreme event related to global warming, but little is known about the characteristics of future heat waves in Guangdong. Therefore, a stepwise-clustered simulation approach driven by multiple global climate models (i.e., GCMs) is developed for projecting future heat waves over Guangdong under two representative concentration pathways (RCPs). The temporal-spatial variations of four indicators (i.e., intensity, total intensity, frequency, and the longest duration) of projected heat waves, as well as the potential changes in daily maximum temperature (i.e., Tmax) for future (i.e., 2006–2095) and historical (i.e., 1976–2005) periods, were analyzed over Guangdong. The results indicated that Guangdong would endure a notable increasing annual trend in the projected Tmax (i.e., 0.016–0.03°C per year under RCP4.5 and 0.027–0.057°C per year under RCP8.5). Evaluations of the multiple GCMs and their ensemble suggested that the developed approach performed well, and the model ensemble was superior to any single GCM in capturing the features of heat waves. The spatial patterns and interannual trends displayed that Guangdong would undergo serious heat waves in the future. The variations of intensity, total intensity, frequency, and the longest duration of heat wave are likely to exceed 5.4°C per event, 24°C, 25 days, and 4 days in the 2080s under RCP8.5, respectively. Higher variation of those would concentrate in eastern and southwestern Guangdong. It also presented that severe heat waves with stronger intensity, higher frequency, and longer duration would have significant increasing tendencies over all Guangdong, which are expected to increase at a rate of 0.14, 0.83, and 0.21% per year under RCP8.5, respectively. Over 60% of Guangdong would suffer the moderate variation of heat waves to the end of this century under RCP8.5. The findings can provide decision makers with useful information to help mitigate the potential impacts of heat waves on pivotal regions as well as ecosystems that are sensitive to extreme temperature.
Collapse
|
17
|
Seasonal Variations of Fine Particulate Matter and Mortality Rate in Seoul, Korea with a Focus on the Short-Term Impact of Meteorological Extremes on Human Health. ATMOSPHERE 2021. [DOI: 10.3390/atmos12020151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rapid industrialization of Korea’s economy has brought with it environmental pollution that threatens human health. Among various other pollutants, ambient fine particulate matter known to endanger human health often exceeds air quality standards in Seoul, South Korea’s capital. The goal of this research is to find the impact of meteorological extremes and particle levels on human health. The analysis was conducted using hourly air pollutant concentrations, meteorological variables, and the daily mortality from cerebrovascular disease. Results show that the effect of fine particulate matter on mortality from cerebrovascular disease was more noticeable during meteorological extremes. The linkage between extreme weather conditions and mortality was more apparent in winter than in summer. Comprehensive studies of various causes of diseases should be continued to more accurately analyze the effects of fine particulate matter on human health and meteorological extremes, and to further minimize the public health impact of air pollution and meteorological conditions.
Collapse
|
18
|
Heat Wave and Elderly Mortality: Historical Analysis and Future Projection for Metropolitan Region of São Paulo, Brazil. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Metropolitan Region of Sao Paulo (MRSP) is one of the main regions of Brazil that in recent years has shown an increase in the number of days with heat waves, mainly affecting the health of the most sensitive populations, such as the elderly. In this study, we identified the heat waves in the MRSP using three different definitions regarding the maximum daily temperature threshold. To analyze the impact of heat waves on elderly mortality, we used distributed lag nonlinear models (dlnm) and we quantified the heat wave-related excess mortality of elderly people from 1985 to 2005 and made projections for the near future (2030 to 2050) and the distant future (2079–2099) under the climate change scenarios RCP4.5 and RCP8.5 (RCP: Representative Concentration Paths). An important aspect of this research is that for the projections we take into account two assumptions: non-adaptation and adaptation to the future climate. Our projections show that the heat wave-related excess of elderly mortality will increase in the future, being highest when we consider no adaptation, mainly from cardiovascular diseases in women (up to 587 deaths per 100,000 inhabitants per year). This study can be used for public policies to implement preventive and adaptive measures in the MRSP.
Collapse
|
19
|
Elevated chronic bronchitis diagnosis risk among women in a local emergency department patient population associated with the 2012 heatwave and drought in Douglas county, NE USA. Heart Lung 2020; 49:934-939. [PMID: 32522416 DOI: 10.1016/j.hrtlng.2020.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Concerns about global climate change force local public health agencies to assess potential local disease risk. OBJECTIVE Determine if risk of an emergency department chronic bronchitis diagnosis in Douglas County, NE, was higher during the 2012 heatwave compared to the same calendar period in 2011. METHODS Retrospective, observational, case-control design selecting subjects from 2011 and 2012 emergency department (ED) admissions. Risk was estimated by conditional logistic regression. RESULTS The odds of an ED chronic bronchitis diagnosis among females was 3.77 (95% CI =1.37-10.21) times higher during the 2012 risk period compared to females admitted to the ED during the 2011 risk period. Chronic bronchitis ED diagnosis odds were 1.05 (95%CI=1.04 - 1.06) times higher for each year of age. ED, gender, and race modified the risk (i.e., effect). The overall chronic bronchitis ED risk estimate was 1.61 (95%CI=0.81 - 3.21) times higher during the 2012 risk period compared to the 2011 risk period. The mean ambient absolute humidity upon admission was 11.44 gr/m3 (95%CI; 10.40 - 12.47) among chronic bronchitis cases and 12.67 gr/m3 (95%CI; 12.63 - 12.71) among controls. CONCLUSION The odds of ED chronic bronchitis diagnosis was higher among female subjects admitted during the 2012 risk period compared to females admitted during the 2011 risk period. Age also increased chronic bronchitis ED diagnosis risk among 2012 risk period admissions compared to 2011 risk period admissions.
Collapse
|
20
|
Lynch KM, Lyles RH, Waller LA, Abadi AM, Bell JE, Gribble MO. Drought severity and all-cause mortality rates among adults in the United States: 1968-2014. Environ Health 2020; 19:52. [PMID: 32423443 PMCID: PMC7236144 DOI: 10.1186/s12940-020-00597-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Little is known about the effect of drought on all-cause mortality, especially in higher income countries such as the United States. As the frequency and severity of droughts are likely to increase, understanding the connections between drought and mortality becomes increasingly important. METHODS Our exposure variable was an annual cumulative drought severity score based on the 1-month, county-level Standardized Precipitation Evapotranspiration Index. The outcome variables of demographic subgroup-specific all-cause mortality count data per year were obtained from the National Vital Statistics System. Any counts below 10 deaths were censored in that demographic group per county. We modeled county-stratum-year mortality using interval-censored negative binomial regression with county-level random intercepts, for each combined age-race-sex stratum either with or without further stratification by climate regions. Fixed effects meta-regression was used to test the associations between age, race, sex, and region with the drought-mortality regression coefficients. Predictive margins were then calculated from the meta-regression model to estimate larger subgroup (e.g., 'race' or 'sex') associations of drought with mortality. RESULTS Most of the results were null for associations between drought severity and mortality, across joint strata of race, age, sex and region, but incidence rate ratios (IRRs) for 17 subgroups were significant after accounting for the multiple testing; ten were < 1 indicating a possible protective effect of drought on mortality for that particular subpopulation. The meta-regression indicated heterogeneity in the association of drought with mortality according to race, climate region, and age, but not by sex. Marginal means of the estimated log-incidence rate ratios differed significantly from zero for age groups 25-34, 35-44, 45-54 and 55-64; for the white race group; and for the South, West and Southwest regions, in the analysis that included wet county-years. The margin of the meta-regression model suggested a slightly negative, but not statistically significant, association of drought with same-year mortality in the overall population. CONCLUSIONS There were significant, heterogeneous-direction associations in subpopulation-stratified models, after controlling for multiple comparisons, suggesting that the impacts of drought on mortality may not be monolithic across the United States. Meta-regression identified systematic differences in the associations of drought severity with all-cause mortality according to climate region, race, and age. These findings suggest there may be important contextual differences in the effects of drought severity on mortality, motivating further work focused on local mechanisms. We speculate that some of the estimated negative associations of drought severity with same-year mortality could be consistent with either a protective effect of drought on total mortality in the same year, or with a delayed health effect of drought beyond the same year. Further research is needed to clarify associations of drought with more specific causes of death and with sublethal health outcomes, for specific subpopulations, and considering lagged effects occurring beyond the same year as the drought.
Collapse
Affiliation(s)
- Katie M Lynch
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Robert H Lyles
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Lance A Waller
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Azar M Abadi
- Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jesse E Bell
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew O Gribble
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA.
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA.
| |
Collapse
|
21
|
Deng J, Hu X, Xiao C, Xu S, Gao X, Ma Y, Yang J, Wu M, Liu X, Ni J, Pan F. Ambient temperature and non-accidental mortality: a time series study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4190-4196. [PMID: 31828703 DOI: 10.1007/s11356-019-07015-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Under the background of global climate change, the present study aimed to evaluate the effects of daily mean temperature and diurnal temperature range (DTR) on the non-accidental mortality. Poisson generalized linear model (PGLM) combined with distributed lag non-linear model (DLNM) was used to evaluate these effects after adjusting the relative humidity and major air pollutants. All effects were presented as relative risk (RR), with 75th percentiles of daily mean temperature and DTR compare with their lowest RRs corresponding values. Daily mean temperature was associated with the non-accidental mortality with a U-shaped curve, and the non-accidental mortality increased by 1.8% (95% CI: 0.7~3.0%) when the temperature was 24.4 °C (20 °C as the reference). Additionally, the non-accidental mortality increased by 1.4% (95% CI: 0.1~2.7%) on lag6 day when DTR was 11.3 °C (7 °C as the reference). The elderly (≥ 65 years) were more susceptible to daily mean temperature and DTR, and females were more susceptible to high DTR effect than males. Our study provides evidence that daily mean temperature and DTR are significantly associated with non-accidental mortality and have delayed effects. Both females and elderly people are vulnerable to the potential adverse effects.
Collapse
Affiliation(s)
- Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xingxing Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Changchun Xiao
- Hefei Center for Disease Control and Prevention, 86 Luan Road, Hefei, 230032, Anhui Province, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Jiajia Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Meng Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xuxiang Liu
- Hefei Center for Disease Control and Prevention, 86 Luan Road, Hefei, 230032, Anhui Province, China
| | - Jindong Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Medical University, Xincheng Road, Guangdong Province, Dongguan, 523808, China.
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|