1
|
Corsaro L, Sacco D, Corbetta C, Gentilini D, Faversani A, Ferrara F, Costantino L. A new approach to study stochastic epigenetic mutations in sperm methylome of Vietnam war veterans directly exposed to Agent Orange. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae020. [PMID: 39664489 PMCID: PMC11631699 DOI: 10.1093/eep/dvae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/16/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Among the various environmental pollutants, dioxin, a highly toxic and widely used compound, is associated with numerous adverse health effects, including a potentially toxic multigenerational effect. Understanding the mechanisms by which dioxin exposure can affect sperm epigenetics is critical to comprehending the potential consequences for offspring health and development. This study investigates the possible association between weighted epimutations, hypothesized as markers of epigenetic drift, and dioxin exposure in sperm tissues. We used a public online methylation dataset consisting of 37 participants: 26 Vietnam veterans exposed to Agent Orange, an herbicide contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and 11 individuals not directly exposed to TCDD but whose serum dioxin levels are equivalent to the background. In our study, conducted at the gene level, 437 epimutated genes were identified as significantly associated with each single-digit increase in serum dioxin levels. We found no significant association between the rise in total epimutation load and serum dioxin levels. The pathway analysis performed on the genes reveals biological processes mainly related to changes in embryonic morphology, development, and reproduction. Results from our current study suggest the importance of further investigations on the consequences of dioxin exposure in humans with specific reference to germinal tissue and related heredity.
Collapse
Affiliation(s)
- Luigi Corsaro
- Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy
- Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, PV 27100, Italy
| | - Davide Sacco
- Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy
- Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, PV 27100, Italy
| | - Carlo Corbetta
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano, Milan, MI 20147, Italy
| | - Davide Gentilini
- Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, PV 27100, Italy
| | - Alice Faversani
- Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy
| | - Fulvio Ferrara
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano, Milan, MI 20147, Italy
| | - Lucy Costantino
- Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy
| |
Collapse
|
2
|
Seo S, Kim YA, Lee Y, Kim YJ, Kim BJ, An JH, Jin H, Do AR, Park K, Won S, Seo JH. Epigenetic link between Agent Orange exposure and type 2 diabetes in Korean veterans. Front Endocrinol (Lausanne) 2024; 15:1375459. [PMID: 39072272 PMCID: PMC11272593 DOI: 10.3389/fendo.2024.1375459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Conflicting findings have been reported regarding the association between Agent Orange (AO) exposure and type 2 diabetes. This study aimed to examine whether AO exposure is associated with the development of type 2 diabetes and to verify the causal relationship between AO exposure and type 2 diabetes by combining DNA methylation with DNA genotype analyses. An epigenome-wide association study and DNA genotype analyses of the blood of AO-exposed and AO-unexposed individuals with type 2 diabetes and that of healthy controls were performed. Methylation quantitative trait locus and Mendelian randomisation analyses were performed to evaluate the causal effect of AO-exposure-identified CpGs on type 2 diabetes. AO-exposed individuals with type 2 diabetes were associated with six hypermethylated CpG sites (cg20075319, cg21757266, cg05203217, cg20102280, cg26081717, and cg21878650) and one hypo-methylated CpG site (cg07553761). Methylation quantitative trait locus analysis showed the methylation levels of some CpG sites (cg20075319, cg20102280, and cg26081717) to be significantly different. Mendelian randomisation analysis showed that CpG sites that were differentially methylated in AO-exposed individuals were causally associated with type 2 diabetes; the reverse causal effect was not significant. These findings reflect the need for further epigenetic studies on the causal relationship between AO exposure and type 2 diabetes.
Collapse
Affiliation(s)
- Sujin Seo
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Ye An Kim
- Division of Endocrinology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Jae Hoon An
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Ah Ra Do
- Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Sungho Won
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, Republic of Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| |
Collapse
|
3
|
Rohr P, Karen S, Francisco LFV, Oliveira MA, dos Santos Neto MF, Silveira HCS. Epigenetic processes involved in response to pesticide exposure in human populations: a systematic review and meta-analysis. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae005. [PMID: 38779494 PMCID: PMC11110075 DOI: 10.1093/eep/dvae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
In recent decades, the use of pesticides in agriculture has increased dramatically. This has resulted in these substances being widely dispersed in the environment, contaminating both exposed workers and communities living near agricultural areas and via contaminated foodstuffs. In addition to acute poisoning, chronic exposure to pesticides can lead to molecular changes that are becoming better understood. Therefore, the aim of this study was to assess, through a systematic review of the literature, what epigenetic alterations are associated with pesticide exposure. We performed a systematic review and meta-analysis including case-control, cohort and cross-sectional observational epidemiological studies to verify the epigenetic changes, such as DNA methylation, histone modification and differential microRNA expression, in humans who had been exposed to any type of pesticide. Articles published between the years 2005 and 2020 were collected. Two different reviewers performed a blind selection of the studies using the Rayyan QCRI software. Post-completion, the data of selected articles were extracted and analyzed. Most of the 28 articles included evaluated global DNA methylation levels, and the most commonly reported epigenetic modification in response to pesticide exposure was global DNA hypomethylation. Meta-analysis revealed a significant negative correlation between Alu methylation levels and β-hexachlorocyclohexane, p,p'-dichlorodiphenyldichloroethane and p,p'-dichlorodiphenylethylene levels. In addition, some specific genes were reported to be hypermethylated in promoter regions, such as CDKN2AIGF2, WRAP53α and CDH1, while CDKN2B and H19 were hypomethylated due to pesticide exposure. The expression of microRNAs was also altered in response to pesticides, as miR-223, miR-518d-3p, miR-597, miR-517b and miR-133b that are associated with many human diseases. Therefore, this study provides evidence that pesticide exposure could lead to epigenetic modifications, possibly altering global and gene-specific methylation levels, epigenome-wide methylation and microRNA differential expression.
Collapse
Affiliation(s)
- Paula Rohr
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Shimoyama Karen
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Luiza Flávia Veiga Francisco
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Marco Antônio Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Martins Fidelis dos Santos Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
| | - Henrique C S Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil
- Campus São Paulo, University of Anhanguera, São Paulo, SP 04119-901, Brazil
| |
Collapse
|
4
|
Liu Y, Gairola R, Kuiper JR, Papandonatos GD, Kelsey KT, Langevin SM, Buckley JP, Chen A, Lanphear BP, Cecil KM, Yolton K, Braun JM. Lifetime Postnatal Exposure to Perfluoroalkyl Substance Mixture and DNA Methylation at Twelve Years of Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:824-830. [PMID: 39831111 PMCID: PMC11741666 DOI: 10.1021/acs.estlett.3c00410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Per- and polyfluoroalkyl substance (PFAS) exposure has been linked to DNA methylation changes in neonates and adults. We previously reported that prenatal PFAS exposure may have a durable impact on DNA methylation from birth to adolescence. However, few studies have examined the association of postnatal PFAS exposure with alterations in DNA methylation. We examined the associations of lifetime postnatal PFAS mixture exposure with leukocyte DNA methylation in 154 adolescents from the HOME Study (2003-2006; Cincinnati, Ohio). Lifetime postnatal PFAS mixture exposure was estimated using latent profile analysis of four PFAS concentrations measured at birth, and ages 3, 8, and 12 years. We measured DNA methylation in peripheral leukocytes at 12 years using the Illumina HumanMethylation EPIC BeadChip. We estimated covariate-adjusted associations between postnatal PFAS mixture concentrations and DNA methylation measures using linear regression, and used KEGG enrichment analysis to identify molecular pathways. Four significant differentially methylated positions were observed in the higher vs. lower PFAS profile (FDR p-value <0.05). These PFAS-associated CpG sites annotated to gene regions related to various cancers, cognition, and cardiometabolic health. We identified 17 pathways (FDR p-value <0.05), which indicates possible mechanism linking PFAS exposure to several health effects.
Collapse
Affiliation(s)
- Yun Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02903, USA
| | - Richa Gairola
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02903, USA
| | - Jordan R. Kuiper
- Department of Environmental and Occupational Health, George Washington University Milken Institute School of Public Health, Washington, D.C., 20037, USA
| | - George D. Papandonatos
- Department of Biostatistics, Brown University School of Public Health, Providence, RI, 02903, USA
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02903, USA
- Department of Laboratory Medicine & Pathology, Brown University, Providence, RI, 02903, USA
| | - Scott M. Langevin
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jessie P. Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Kim M. Cecil
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Kimberly Yolton
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02903, USA
| |
Collapse
|
5
|
Vuong NB, Quang HV, Linh Trang BN, Duong DH, Toan NL, Tong HV. Association of PKLR gene copy number, expression levels and enzyme activity with 2,3,7,8-TCDD exposure in individuals exposed to Agent Orange/Dioxin in Vietnam. CHEMOSPHERE 2023; 329:138677. [PMID: 37060958 DOI: 10.1016/j.chemosphere.2023.138677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) is the most toxic congener of dioxin and has serious long-term effects on the environment and human health. Pyruvate Kinase L/R (PKLR) gene expression levels and gene variants are associated with pyruvate kinase enzyme deficiency, which has been identified as the cause of several diseases linked to dioxin exposure. In this study, we estimated PKLR gene copy number and gene expression levels using real-time quantitative PCR (RT-qPCR) assays, genotyped PKLR SNP rs3020781 by Sanger sequencing, and quantified plasma pyruvate kinase enzyme activity in 100 individuals exposed to Agent Orange/Dioxin near Bien Hoa and Da Nang airfields in Vietnam and 100 healthy controls. The means of PKLR copy numbers and PKLR gene expression levels were significantly higher, while pyruvate kinase enzyme activity was significantly decreased in Agent Orange/Dioxin-exposed individuals compared to healthy controls (P < 0.0001). Positive correlations of PKLR gene copy number and gene expression with 2,3,7,8-TCDD concentrations were observed (r = 0.2, P = 0.045 and r = 0.54, P < 0.0001, respectively). In contrast, pyruvate kinase enzyme activity was inversely correlated with 2,3,7,8-TCDD concentrations (r = -0.52, P < 0.0001). PKLR gene copy number and gene expression levels were also inversely correlated with pyruvate kinase enzyme activity. Additionally, PKLR SNP rs3020781 was found to be associated with 2,3,7,8-TCDD concentrations and PKLR gene expression. In conclusion, PKLR copy number, gene expression levels, and pyruvate kinase enzyme activity are associated with 2,3,7,8-TCDD exposure in individuals living in Agent Orange/Dioxin-contaminated areas.
Collapse
Affiliation(s)
- Nguyen Ba Vuong
- Department of Haematology, Toxicology, Radiation, and Occupation, 103 Military Hospital, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Ha Van Quang
- The Center of Toxicological and Radiological Training and Research, Vietnam Military Medical University, Viet Nam
| | - Bui Ngoc Linh Trang
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Dao Hong Duong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Viet Nam
| | - Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Viet Nam; Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Viet Nam.
| |
Collapse
|
6
|
Greeson KW, Crow KMS, Edenfield RC, Easley CA. Inheritance of paternal lifestyles and exposures through sperm DNA methylation. Nat Rev Urol 2023:10.1038/s41585-022-00708-9. [PMID: 36653672 DOI: 10.1038/s41585-022-00708-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Many different lifestyle factors and chemicals present in the environment are a threat to the reproductive tracts of humans. The potential for parental preconception exposure to alter gametes and for these alterations to be passed on to offspring and negatively affect embryo growth and development is of concern. The connection between maternal exposures and offspring health is a frequent focus in epidemiological studies, but paternal preconception exposures are much less frequently considered and are also very important determinants of offspring health. Several environmental and lifestyle factors in men have been found to alter sperm epigenetics, which can regulate gene expression during early embryonic development. Epigenetic information is thought to be a mechanism that evolved for organisms to pass on information about their lived experiences to offspring. DNA methylation is a well-studied epigenetic regulator that is sensitive to environmental exposures in somatic cells and sperm. The continuous production of sperm from spermatogonial stem cells throughout a man's adult life and the presence of spermatogonial stem cells outside of the blood-testis barrier makes them susceptible to environmental insults. Furthermore, altered sperm DNA methylation patterns can be maintained throughout development and ultimately result in impairments, which could predispose offspring to disease. Innovations in human stem cell-based spermatogenic models can be used to elucidate the paternal origins of health and disease.
Collapse
Affiliation(s)
- Katherine W Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Krista M S Crow
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - R Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA. .,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Abudahab S, Price ET, Dozmorov MG, Deshpande LS, McClay JL. The Aryl Hydrocarbon Receptor, Epigenetics and the Aging Process. J Nutr Health Aging 2023; 27:291-300. [PMID: 37170437 PMCID: PMC10947811 DOI: 10.1007/s12603-023-1908-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor, classically associated with the regulation of xenobiotic metabolism in response to environmental toxins. In recent years, transgenic rodent models have implicated AhR in aging and longevity. Moreover, several AhR ligands, such as resveratrol and quercetin, are compounds proven to extend the lifespan of model organisms. In this paper, we first review AhR biology with a focus on aging and highlight several AhR ligands with potential anti-aging properties. We outline how AhR-driven expression of xenobiotic metabolism genes into old age may be a key mechanism through which moderate induction of AhR elicits positive benefits on longevity and healthspan. Furthermore, via integration of publicly available datasets, we show that liver-specific AhR target genes are enriched among genes subject to epigenetic aging. Changes to epigenetic states can profoundly affect transcription factor binding and are a hallmark of the aging process. We suggest that the interplay between AhR and epigenetic aging should be the subject of future research and outline several key gaps in the current literature. Finally, we recommend that a broad range of non-toxic AhR ligands should be investigated for their potential to promote healthspan and longevity.
Collapse
Affiliation(s)
- S Abudahab
- Sara Abudahab, Smith Building, 410 North 12th Street, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0533, USA.
| | | | | | | | | |
Collapse
|
8
|
Liu Y, Eliot MN, Papandonatos GD, Kelsey KT, Fore R, Langevin S, Buckley J, Chen A, Lanphear BP, Cecil KM, Yolton K, Hivert MF, Sagiv SK, Baccarelli AA, Oken E, Braun JM. Gestational Perfluoroalkyl Substance Exposure and DNA Methylation at Birth and 12 Years of Age: A Longitudinal Epigenome-Wide Association Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37005. [PMID: 35266797 PMCID: PMC8911098 DOI: 10.1289/ehp10118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND DNA methylation alterations may underlie associations between gestational perfluoroalkyl substances (PFAS) exposure and later-life health outcomes. To the best of our knowledge, no longitudinal studies have examined the associations between gestational PFAS and DNA methylation. OBJECTIVES We examined associations of gestational PFAS exposure with longitudinal DNA methylation measures at birth and in adolescence using the Health Outcomes and Measures of the Environment (HOME) Study (2003-2006; Cincinnati, Ohio). METHODS We quantified serum concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), and perfluorohexane sulfonate (PFHxS) in mothers during pregnancy. We measured DNA methylation in cord blood (n=266) and peripheral leukocytes at 12 years of age (n=160) using the Illumina HumanMethylation EPIC BeadChip. We analyzed associations between log2-transformed PFAS concentrations and repeated DNA methylation measures using linear regression with generalized estimating equations. We included interaction terms between children's age and gestational PFAS. We performed Gene Ontology enrichment analysis to identify molecular pathways. We used Project Viva (1999-2002; Boston, Massachusetts) to replicate significant associations. RESULTS After adjusting for covariates, 435 cytosine-guanine dinucleotide (CpG) sites were associated with PFAS (false discovery rate, q<0.05). Specifically, we identified 2 CpGs for PFOS, 12 for PFOA, 8 for PFHxS, and 413 for PFNA; none overlapped. Among these, 2 CpGs for PFOA and 4 for PFNA were replicated in Project Viva. Some of the PFAS-associated CpG sites annotated to gene regions related to cancers, cognitive health, cardiovascular disease, and kidney function. We found little evidence that the associations between PFAS and DNA methylation differed by children's age. DISCUSSION In these longitudinal data, PFAS biomarkers were associated with differences in several CpGs at birth and at 12 years of age in or near genes linked to some PFAS-associated health outcomes. Future studies should examine whether DNA methylation mediates associations between gestational PFAS exposure and health. https://doi.org/10.1289/EHP10118.
Collapse
Affiliation(s)
- Yun Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Melissa N. Eliot
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - George D. Papandonatos
- Department of Biostatistics, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
- Department of Laboratory Medicine and Pathology, Brown University, Providence, Rhode Island, USA
| | - Ruby Fore
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Langevin
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jessie Buckley
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kim M. Cecil
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sharon K. Sagiv
- Department of Epidemiology, Berkeley School of Public Health, University of California, Berkeley, California, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| |
Collapse
|
9
|
Madhu NR, Sarkar B, Slama P, Jha NK, Ghorai SK, Jana SK, Govindasamy K, Massanyi P, Lukac N, Kumar D, Kalita JC, Kesari KK, Roychoudhury S. Effect of Environmental Stressors, Xenobiotics, and Oxidative Stress on Male Reproductive and Sexual Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:33-58. [PMID: 36472815 DOI: 10.1007/978-3-031-12966-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article examines the environmental factor-induced oxidative stress (OS) and their effects on male reproductive and sexual health. There are several factors that induce OS, i.e. radition, metal contamination, xenobiotic compounds, and cigarette smoke and lead to cause toxicity in the cells through metabolic or bioenergetic processes. These environmental factors may produce free radicals and enhance the reactive oxygen species (ROS). Free radicals are molecules that include oxygen and disbalance the amount of electrons that can create major chemical chains in the body and cause oxidation. Oxidative damage to cells may impair male fertility and lead to abnormal embryonic development. Moreover, it does not only cause a vast number of health issues such as ageing, cancer, atherosclerosis, insulin resistance, diabetes mellitus, cardiovascular diseases, ischemia-reperfusion injury, and neurodegenerative disorders but also decreases the motility of spermatozoa while increasing sperm DNA damage, impairing sperm mitochondrial membrane lipids and protein kinases. This chapter mainly focuses on the environmental stressors with further discussion on the mechanisms causing congenital impairments due to poor sexual health and transmitting altered signal transduction pathways in male gonadal tissues.
Collapse
Affiliation(s)
- Nithar Ranjan Madhu
- Department of Zoology, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, West Bengal, India
| | - Bhanumati Sarkar
- Department of Botany, Acharya Prafulla Chandra College, New Barrackpore, Kolkata, West Bengal, India
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | | | - Sandip Kumar Jana
- Department of Zoology, Bajkul Milani Mahavidyalaya, Purba Medinipur, West Bengal, India
| | - Kadirvel Govindasamy
- Animal Production Division, ICAR Research Complex for NEH Region, Indian Council of Agricultural Research, Umiam, Meghalaya, India
| | - Peter Massanyi
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Norbert Lukac
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Dhruv Kumar
- School of Health Sciences & Technology, UPES University, Dehradun, Uttarakhand, India
| | - Jogen C Kalita
- Department of Zoology, Gauhati University, Guwahati, India
| | | | | |
Collapse
|
10
|
Rytel MR, Butler R, Eliot M, Braun JM, Houseman EA, Kelsey KT. DNA methylation in the adipose tissue and whole blood of Agent Orange-exposed Operation Ranch Hand veterans: a pilot study. Environ Health 2021; 20:43. [PMID: 33849548 PMCID: PMC8045317 DOI: 10.1186/s12940-021-00717-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/08/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Between 1962 and 1971, the US Air Force sprayed Agent Orange across Vietnam, exposing many soldiers to this dioxin-containing herbicide. Several negative health outcomes have been linked to Agent Orange exposure, but data is lacking on the effects this chemical has on the genome. Therefore, we sought to characterize the impact of Agent Orange exposure on DNA methylation in the whole blood and adipose tissue of veterans enrolled in the Air Force Health Study (AFHS). METHODS We received adipose tissue (n = 37) and whole blood (n = 42) from veterans in the AFHS. Study participants were grouped as having low, moderate, or high TCDD body burden based on their previously measured serum levels of dioxin. DNA methylation was assessed using the Illumina 450 K platform. RESULTS Epigenome-wide analysis indicated that there were no FDR-significantly methylated CpGs in either tissue with TCDD burden. However, 3 CpGs in the adipose tissue (contained within SLC9A3, LYNX1, and TNRC18) were marginally significantly (q < 0.1) hypomethylated, and 1 CpG in whole blood (contained within PTPRN2) was marginally significantly (q < 0.1) hypermethylated with high TCDD burden. Analysis for differentially methylated DNA regions yielded SLC9A3, among other regions in adipose tissue, to be significantly differentially methylated with higher TCDD burden. Comparing whole blood data to a study of dioxin exposed adults from Alabama identified a CpG within the gene SMO that was hypomethylated with dioxin exposure in both studies. CONCLUSION We found limited evidence of dioxin associated DNA methylation in adipose tissue and whole blood in this pilot study of Vietnam War veterans. Nevertheless, loci in the genes of SLC9A3 in adipose tissue, and PTPRN2 and SMO in whole blood, should be included in future exposure analyses.
Collapse
Affiliation(s)
- Matthew R. Rytel
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912 USA
| | - Rondi Butler
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912 USA
- Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI 02912 USA
| | - Melissa Eliot
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912 USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912 USA
| | - E. Andres Houseman
- Statistical Bioinformatics, GlaxoSmithKline, 1250 S Collegeville Rd, Collegeville, PA 19426 USA
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912 USA
- Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI 02912 USA
| |
Collapse
|
11
|
Vidaki A, Montiel González D, Planterose Jiménez B, Kayser M. Male-specific age estimation based on Y-chromosomal DNA methylation. Aging (Albany NY) 2021; 13:6442-6458. [PMID: 33744870 PMCID: PMC7993701 DOI: 10.18632/aging.202775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
Although DNA methylation variation of autosomal CpGs provides robust age predictive biomarkers, no male-specific age predictor exists based on Y-CpGs yet. Since sex chromosomes play an important role in aging, a Y-chromosome-based age predictor would allow studying male-specific aging effects and would also be useful in forensics. Here, we used blood-based DNA methylation microarray data of 1,057 males from six cohorts aged 15-87 and identified 75 Y-CpGs with an interquartile range of ≥0.1. Of these, 22 and six were significantly hyper- and hypomethylated with age (p(cor)<0.05, Bonferroni), respectively. Amongst several machine learning algorithms, a model based on support vector machines with radial kernel performed best in male-specific age prediction. We achieved a mean absolute deviation (MAD) between true and predicted age of 7.54 years (cor=0.81, validation) when using all 75 Y-CpGs, and a MAD of 8.46 years (cor=0.73, validation) based on the most predictive 19 Y-CpGs. The accuracies of both age predictors did not worsen with increased age, in contrast to autosomal CpG-based age predictors that are known to predict age with reduced accuracy in the elderly. Overall, we introduce the first-of-its-kind male-specific epigenetic age predictor for future applications in aging research and forensics.
Collapse
Affiliation(s)
- Athina Vidaki
- Department of Genetic Identification, Erasmus University Medical Center Rotterdam, Rotterdam 3000, CA, The Netherlands
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus University Medical Center Rotterdam, Rotterdam 3000, CA, The Netherlands
| | - Benjamin Planterose Jiménez
- Department of Genetic Identification, Erasmus University Medical Center Rotterdam, Rotterdam 3000, CA, The Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus University Medical Center Rotterdam, Rotterdam 3000, CA, The Netherlands
| |
Collapse
|
12
|
Senaldi L, Smith-Raska M. Evidence for germline non-genetic inheritance of human phenotypes and diseases. Clin Epigenetics 2020; 12:136. [PMID: 32917273 PMCID: PMC7488552 DOI: 10.1186/s13148-020-00929-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
It is becoming increasingly apparent that certain phenotypes are inherited across generations independent of the information contained in the DNA sequence, by factors in germ cells that remain largely uncharacterized. As evidence for germline non-genetic inheritance of phenotypes and diseases continues to grow in model organisms, there are fewer reports of this phenomenon in humans, due to a variety of complications in evaluating this mechanism of inheritance in humans. This review summarizes the evidence for germline-based non-genetic inheritance in humans, as well as the significant challenges and important caveats that must be considered when evaluating this process in human populations. Most reports of this process evaluate the association of a lifetime exposure in ancestors with changes in DNA methylation or small RNA expression in germ cells, as well as the association between ancestral experiences and the inheritance of a phenotype in descendants, down to great-grandchildren in some cases. Collectively, these studies provide evidence that phenotypes can be inherited in a DNA-independent manner; the extent to which this process contributes to disease development, as well as the cellular and molecular regulation of this process, remain largely undefined.
Collapse
Affiliation(s)
- Liana Senaldi
- Division of Newborn Medicine, Department of Pediatrics, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Matthew Smith-Raska
- Division of Newborn Medicine, Department of Pediatrics, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA. .,Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Marcho C, Oluwayiose OA, Pilsner JR. The preconception environment and sperm epigenetics. Andrology 2020; 8:924-942. [PMID: 31901222 PMCID: PMC7346722 DOI: 10.1111/andr.12753] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/12/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Infertility is a common reproductive disorder, with male factor infertility accounting for approximately half of all cases. Taking a paternal perceptive, recent research has shown that sperm epigenetics, such as changes in DNA methylation, histone modification, chromatin structure, and noncoding RNA expression, can impact reproductive and offspring health. Importantly, environmental conditions during the preconception period has been demonstrated to shape sperm epigenetics. OBJECTIVES To provide an overview on epigenetic modifications that regulate normal gene expression and epigenetic remodeling that occurs during spermatogenesis, and to discuss the epigenetic alterations that may occur to the paternal germline as a consequence of preconception environmental conditions and exposures. MATERIALS AND METHODS We examined published literature available on databases (PubMed, Google Scholar, ScienceDirect) focusing on adult male preconception environmental exposures and sperm epigenetics in epidemiologic studies and animal models. RESULTS The preconception period is a sensitive developmental window in which a variety of exposures such as toxicants, nutrition, drugs, stress, and exercise, affects sperm epigenetics. DISCUSSION AND CONCLUSION Understanding the environmental legacy of the sperm epigenome during spermatogenesis will enhance our understanding of reproductive health and improve reproductive success and offspring well-being.
Collapse
Affiliation(s)
| | | | - J. Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|