1
|
Chatterjee S, Adhikary S, Bhattacharya S, Chakraborty A, Dutta S, Roy D, Ganguly A, Nanda S, Rajak P. Parabens as the double-edged sword: Understanding the benefits and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176547. [PMID: 39357765 DOI: 10.1016/j.scitotenv.2024.176547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Parabens are globally employed as important preservatives in pharmaceutical, food, and personal care products. Nonetheless, improper disposal of commercial products comprising parabens can potentially contaminate various environmental components, including the soil and water. Residues of parabens have been detected in surface water, ground water, packaged food materials, and other consumer items. Long-term exposure to parabens through numerous consumer products and contaminated water can harm human health. Paraben can modulate the hormonal and immune orchestra of the body. Recent findings have correlated paraben use with hypersensitivity, obesity, and infertility. Notably, parabens have also been detected in the samples of breast cancer patients, suggesting a potential cross-talk between parabens and carcinogenesis. Therefore, the present article aims to dissect the significance of parabens as a preservative in several consumer products and their impact of chronic exposure to human health. This review encompasses various facets of paraben, including its sources, mechanism of action at the molecular level, and sheds light on its toxicological implications on human health.
Collapse
Affiliation(s)
- Sovona Chatterjee
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India
| | | | - Aritra Chakraborty
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sohini Dutta
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Dipsikha Roy
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
2
|
Ding C, Zhu H, Tang Y, Ying Y, Zhu Y, Lin H, Ge RS, Li H. Structural determinants of parabens in inhibiting human and rat gonadal 3β-hydroxysteroid dehydrogenase. Toxicol Appl Pharmacol 2024; 492:117133. [PMID: 39454967 DOI: 10.1016/j.taap.2024.117133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
This study delved into the impacts of 10 parabens on the activity of human and rat gonadal 3β-hydroxysteroid dehydrogenase (3β-HSD) within human KGN cell and rat testicular microsomes, as well as on the secretion of progesterone in KGN cells and the inhibitory potency was compared between human and rats. Intriguingly, the outcomes revealed that ethyl, propyl, butyl, hexyl, heptyl, nonyl, phenyl, and benzyl parabens displayed varying IC50 values for human 3β-HSD2, from 4.15 to 139.96 μM, demonstrating characteristics of mixed inhibitors. Notably, within KGN cells, all examined parabens, excluding nonyl and phenyl parabens, significantly inhibited progesterone secretion at 5-50 μM. In the case of rats, the IC50 values for these parabens on gonadal 3β-HSD1 fluctuated between 7.15 and 110.76 μM, likewise functioning as mixed inhibitors. Through docking analysis, it was proposed that most parabens effectively bind to NAD+ and/or steroid binding site. Moreover, bivariate correlation analysis unveiled an inverse correlation between IC50 values and structural characteristics such as LogP, molecular weight, heavy atom number, and carbon number within the alcohol moiety of parabens. 3D-QSAR elucidated pivotal regions, comprising hydrogen bond donor, hydrogen bond acceptor, and hydrophobic region, with the most potent inhibitor nonyl paraben engaging with all regions, while the weakest inhibitor ethyl paraben interacted with the regions except for the hydrophobic region. In conclusion, this investigation underscored the inhibitory effects imparted by several parabens on both human and rat gonadal 3β-HSD activity, with their inhibitory potency being modulated by aspects of hydrophobicity and carbon chain length.
Collapse
Affiliation(s)
- Chentao Ding
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - He Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yang Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Han Lin
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Male Health and Environment of Wenzhou, 325000, Zhejiang Province, China.
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children's Hospital, Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
3
|
Pulcastro H, Ziv-Gal A. Parabens effects on female reproductive health - Review of evidence from epidemiological and rodent-based studies. Reprod Toxicol 2024; 128:108636. [PMID: 38876430 DOI: 10.1016/j.reprotox.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Parabens have been used as antimicrobial preservatives since the 1920s. The prevalent use of parabens increases their detection in the environment and in women's biological samples including reproductive tissues. Recent studies suggest parabens may alter endocrine function and thus female reproductive health may be affected. In this literature review, we summarize findings on parabens and female reproduction while focusing on epidemiological and rodent-based studies. The topics reviewed include paraben effects on cyclicity, pregnancy, newborn and pubertal development, reproductive hormones, and ovarian and uterine specific outcomes. Overall, the scientific literature on paraben effects on female reproduction is limited and with some conflicting results. Yet, some epidemiological and/or rodent-based experimental studies report significant findings in relation to paraben effects on cyclicity, fertility, gestation length, birth weight, postnatal development and pubertal onset, hormone levels, and hormone signaling in reproductive tissues. Future epidemiological and experimental studies are needed to better understand paraben effects on female reproduction while focusing on human related exposures including mixtures, physiologic concentrations of parabens, and multi-generational studies.
Collapse
Affiliation(s)
- Hannah Pulcastro
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ayelet Ziv-Gal
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Wang J, Zhao C, Feng J, Sun P, Zhang Y, Han A, Zhang Y, Ma H. Advances in understanding the reproductive toxicity of endocrine-disrupting chemicals in women. Front Cell Dev Biol 2024; 12:1390247. [PMID: 38606320 PMCID: PMC11007058 DOI: 10.3389/fcell.2024.1390247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Recently, there has been a noticeable increase in disorders of the female reproductive system, accompanied by a rise in adverse pregnancy outcomes. This trend is increasingly being linked to environmental pollution, particularly through the lens of Endocrine Disrupting Chemicals (EDCs). These external agents disrupt natural processes of hormones, including synthesis, metabolism, secretion, transport, binding, as well as elimination. These disruptions can significantly impair human reproductive functions. A wealth of animal studies and epidemiological research indicates that exposure to toxic environmental factors can interfere with the endocrine system's normal functioning, resulting in negative reproductive outcomes. However, the mechanisms of these adverse effects are largely unknown. This work reviews the reproductive toxicity of five major environmental EDCs-Bisphenol A (BPA), Phthalates (PAEs), Triclocarban Triclosan and Disinfection Byproducts (DBPs)-to lay a foundational theoretical basis for further toxicological study of EDCs. Additionally, it aims to spark advancements in the prevention and treatment of female reproductive toxicity caused by these chemicals.
Collapse
Affiliation(s)
- Jinguang Wang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Chunwu Zhao
- Gastrointestinal Surgery Center of Weifang People’s Hospital, Weifang, China
| | - Jie Feng
- Gynecology and Obstetrics Department, Fangzi District People’s Hospital, Weifang, China
| | - Pingping Sun
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuhua Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Ailing Han
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Yuemin Zhang
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| | - Huagang Ma
- Reproductive Medicine Center of Weifang People’s Hospital, Weifang, China
| |
Collapse
|
5
|
Gonkowski S, Tzatzarakis M, Vakonaki E, Meschini E, Könyves L, Rytel L. Biomonitoring of parabens in wild boars through hair samples analysis. PLoS One 2024; 19:e0297938. [PMID: 38381722 PMCID: PMC10880979 DOI: 10.1371/journal.pone.0297938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Parabens are compounds widely utilized in the industry as preservative additives to personal care products, cosmetics and food. They pollute the environment and penetrate to the living organisms through the digestive tract, respiratory system and skin. Till now the knowledge about exposure of terrestrial wild mammals to parabens is extremely scarce. Therefore, this study for the first time assessed the concentration levels of five parabens commonly used in industry (methylparaben-MeP, ethylparaben-EtP propylparaben-PrP, benzylparaben -BeP and butylparaben-BuP). Substances have been analyzed in hair samples collected from wild boars using liquid chromatography-mass spectrometry (LC-MS) method. The hair is a matrix, which allows to study long-term exposure of organisms to parabens. During this study MeP was noted in 96.3% of samples with mean 88.3±72.9 pg/mg, PrP in 87.0% of samples with mean 8.5±3.3 pg/mg, BeP in 44.4% of samples with mean 17.2±12.3 pg/mg and EtP in 11.1% of samples with mean 17.2±4.8 pg/mg. In turn BuP was noted only in 3.7% of samples with concentration levels below limit of quantification (2.6 pg/mg). Statistically significant intragender differences in parabens levels have not been noted. Only BeP concentration levels depended on industrialization and density of human population of area, where the animals lived. This study indicates that wild boars are exposed to parabens, especially to MeP and PrP, and analysis of the hair seems to be a useful tool of biomonitoring of parabens in wild mammals.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Elena Meschini
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - László Könyves
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - Liliana Rytel
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
6
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
7
|
Li Y, Zheng N, Sun S, Wang S, Li X, Pan J, Li M, Lang L, Yue Z, Zhou B. Exposure estimates of parabens from personal care products compared with biomonitoring data in human hair from Northeast China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115635. [PMID: 37897980 DOI: 10.1016/j.ecoenv.2023.115635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Parabens (PBs), a class of endocrine-disrupting chemicals (EDCs), are extensively used as additives in personal care products (PCPs); however, distinguishing between endogenous and exogenous contamination from PCPs in hair remains a challenge. We conducted a comprehensive analysis of the levels, distribution patterns, impact factors, and sources of PBs in 119 human hair samples collected from Changchun, northeast China. The detection rates of methylparaben (MeP), propylparaben (PrP), and ethylparaben (EtP) in hair samples were found to be 100%. The concentration of PBs in hair followed the order of MeP (57.48 ng/g) > PrP (46.40 ng/g) > EtP (6.80 ng/g). The concentration of PrP in female hair was significantly higher (65.38 ng/g) than that observed in male hair (7.82 ng/g) (p < 0.05). The levels of excretion rates of MeP (ERMeP) and excretion rates of PrP (ERPrP) in the hair-dying samples (ERMeP: 17.89 ng/day; ERPrP: 14.15 ng/day) were found to be 2.52 and 2.40 times higher, respectively, compared to the non-hair-dying samples (ERMeP: 7.09 ng/day; ERPrP: 6.05 ng/day). However, the system exposure dosage (SED) results revealed that although hair dyes exhibited higher PBs, human exposure was found to be lower than certain PCPs. The results of the correlation analysis revealed that toner, face cream, body lotion, and hair conditioner were identified as the primary sources of PBs in male hair. Furthermore, the human exposure resulting from the utilization of female hair dye and serum exhibited a positive correlation with hair ERMeP and ERPrP levels, indicating in the screening of samples, excluding hair samples using hair dye and haircare essential oil can effectively avoid the interference caused by exogenous contamination from PCPs.
Collapse
Affiliation(s)
- Yunyang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China.
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Jiamin Pan
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Muyang Li
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Le Lang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Zelin Yue
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China
| | - Binbin Zhou
- Changchun Sci-Tech University, Shuangyang District, Changchun, China
| |
Collapse
|
8
|
Zhu Q, Li Y, Ma J, Ma H, Liang X. Potential factors result in diminished ovarian reserve: a comprehensive review. J Ovarian Res 2023; 16:208. [PMID: 37880734 PMCID: PMC10598941 DOI: 10.1186/s13048-023-01296-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
The ovarian reserve is defined as the quantity of oocytes stored in the ovary or the number of oocytes that can be recruited. Ovarian reserve can be affected by many factors, including hormones, metabolites, initial ovarian reserve, environmental problems, diseases, and medications, among others. With the trend of postponing of pregnancy in modern society, diminished ovarian reserve (DOR) has become one of the most common challenges in current clinical reproductive medicine. Attributed to its unclear mechanism and complex clinical features, it is difficult for physicians to administer targeted treatment. This review focuses on the factors associated with ovarian reserve and discusses the potential influences and pathogenic factors that may explain the possible mechanisms of DOR, which can be improved or built upon by subsequent researchers to verify, replicate, and establish further study findings, as well as for scientists to find new treatments.
Collapse
Affiliation(s)
- Qinying Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jianhong Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hao Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, Key Laboratory for Gynecologic Oncology Gansu Province, The First Hospital of Lanzhou University, No.1, Donggangxi Rd, Chengguan District, 730000, Lanzhou, China.
| |
Collapse
|
9
|
Zhang X, Zhang Y, Lu H, Yu F, Shi X, Ma B, Zhou S, Wang L, Lu Q. Environmental exposure to paraben and its association with blood pressure: A cross-sectional study in China. CHEMOSPHERE 2023; 339:139656. [PMID: 37499807 DOI: 10.1016/j.chemosphere.2023.139656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Parabens (PBs) are the most widely used preservatives. Recent epidemiological studies have indicated that environmental exposure to parabens has adverse health effects, such as increased metabolic diseases risk. However, limited information is available on the cardiovascular effect of paraben exposure. Hence, we conducted a cross-sectional study investigating the associations between exposure to parabens with high blood pressure risk and blood pressure levels among the general Chinese population. In this study, we enrolled 1405 individuals from a medical center in Wuhan, China. Urinary methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP) and butylparaben (BuP) concentrations were determined. Multivariable logistic and linear regression models were applied to analyze the associations between urinary parabens and high blood pressure risk and blood pressure level changes. Bayesian kernel machine regression (BKMR) models were applied to estimate the combined effect of the four parabens. Compared with the first quartile group, participants with the fourth quartile of EtP, PrP, and ∑parabens (∑PBs) concentrations had a 2.10-fold (95% CI: 1.40, 3.00), 1.83-fold (95% CI: 1.27, 2.62) and 1.84-fold (95% CI: 1.27, 2.65) increased the risk of hypertension, respectively. High urinary EtP, PrP, and ∑PBs levels were found to increase the levels of systolic and diastolic blood pressure (SBP and DBP), mean arterial pressure (MAP), and mid-blood pressure (MBP). BKMR models indicated the overall effects of the paraben mixture were significantly associated with high blood pressure risk and blood pressure level changes. Furthermore, after stratification by sex, the associations of EtP exposure and blood pressure levels were more pronounced in males. Our results suggest that environmental exposure to parabens might elevate blood pressure levels and increase the risk of high blood pressure.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Ying Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Hao Lu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Fan Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xueting Shi
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Bingchan Ma
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Shuang Zhou
- Hubei Provincial Hospital of Traditional Chinese & Western Medicine, #11 Lingjiaohu Road, Wuhan, Hubei, 430015, China.
| | - Lin Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qing Lu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
10
|
Muzeza C, Ngole-Jeme V, Msagati TAM. The Mechanisms of Plastic Food-Packaging Monomers' Migration into Food Matrix and the Implications on Human Health. Foods 2023; 12:3364. [PMID: 37761073 PMCID: PMC10529129 DOI: 10.3390/foods12183364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The development of packaging technology has become a crucial part of the food industry in today's modern societies, which are characterized by technological advancements, industrialization, densely populated cities, and scientific advancements that have increased food production over the past 50 years despite the lack of agricultural land. Various types of food-packaging materials are utilized, with plastic being the most versatile. However, there are certain concerns with regards to the usage of plastic packaging because of unreacted monomers' potential migration from the polymer packaging to the food. The magnitude of monomer migration depends on numerous aspects, including the monomer chemistry, type of plastic packaging, physical-chemical parameters such as the temperature and pH, and food chemistry. The major concern for the presence of packaging monomers in food is that some monomers are endocrine-disrupting compounds (EDCs) with a capability to interfere with the functioning of vital hormonal systems in the human body. For this reason, different countries have resolved to enforce guidelines and regulations for packaging monomers in food. Additionally, many countries have introduced migration testing procedures and safe limits for packaging monomer migration into food. However, to date, several research studies have reported levels of monomer migration above the set migration limits due to leaching from the food-packaging materials into the food. This raises concerns regarding possible health effects on consumers. This paper provides a critical review on plastic food-contact materials' monomer migration, including that from biodegradable plastic packaging, the monomer migration mechanisms, the monomer migration chemistry, the key factors that affect the migration process, and the associated potential EDC human health risks linked to monomers' presence in food. The aim is to contribute to the existing knowledge and understanding of plastic food-packaging monomer migration.
Collapse
Affiliation(s)
- Celia Muzeza
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Veronica Ngole-Jeme
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
| |
Collapse
|
11
|
Rosen Vollmar AK, Rattray NJW, Cai Y, Jain A, Yan H, Deziel NC, Calafat AM, Wilcox AJ, Jukic AMZ, Johnson CH. Urinary Paraben Concentrations and Associations with the Periconceptional Urinary Metabolome: Untargeted and Targeted Metabolomics Analyses of Participants from the Early Pregnancy Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97006. [PMID: 37702489 PMCID: PMC10498870 DOI: 10.1289/ehp12125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Parabens, found in everyday items from personal care products to foods, are chemicals with endocrine-disrupting activity, which has been shown to influence reproductive function. OBJECTIVES This study investigated whether urinary concentrations of methylparaben, propylparaben, or butylparaben were associated with the urinary metabolome during the periconceptional period, a critical window for female reproductive function. Changes to the periconceptional urinary metabolome could provide insights into the mechanisms by which parabens could impact fertility. METHODS Urinary paraben concentrations were measured in paired pre- and postconception urine samples from 42 participants in the Early Pregnancy Study, a prospective cohort of 221 women attempting to conceive. We performed untargeted and targeted metabolomics analyses using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. We used principal component analysis, orthogonal partial least-squares discriminant analysis, and permutation testing, coupled with univariate statistical analyses, to find metabolites associated with paraben concentration at the two time points. Potential confounders were identified with a directed acyclic graph and used to adjust results with multivariable linear regression. Metabolites were identified using fragmentation data. RESULTS Seven metabolites were associated with paraben concentration (variable importance to projection score > 1 , false discovery rate-corrected q -value < 0.1 ). We identified four diet-related metabolites to the Metabolomics Standards Initiative (MSI) certainty of identification level 2, including metabolites from smoke flavoring, grapes, and olive oil. One metabolite was identified to the class level only (MSI level 3). Two metabolites were unidentified (MSI level 4). After adjustment, three metabolites remained associated with methylparaben and propylparaben, two of which were diet-related. No metabolomic markers of endocrine disruption were associated with paraben concentrations. DISCUSSION This study identified novel relationships between urinary paraben concentrations and diet-related metabolites but not with metabolites on endocrine-disrupting pathways, as hypothesized. It demonstrates the feasibility of integrating untargeted metabolomics data with environmental exposure information and epidemiological adjustment for confounders. The findings underscore a potentially important connection between diet and paraben exposure, with applications to nutritional epidemiology and dietary exposure assessment. https://doi.org/10.1289/EHP12125.
Collapse
Affiliation(s)
- Ana K Rosen Vollmar
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Yuping Cai
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Abhishek Jain
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Hong Yan
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Nicole C Deziel
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Antonia M Calafat
- Organic Analytical Toxicology Branch, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Allen J Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Anne Marie Z Jukic
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Caroline H Johnson
- Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Hao Y, Wang Y, Yan L, Xu X, Chen D, Zhao Y, Qiao J. Synthetic Phenolic Antioxidants and Their Metabolites in Follicular Fluid and Association with Diminished Ovarian Reserve: A Case-Control Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:67005. [PMID: 37267061 PMCID: PMC10237312 DOI: 10.1289/ehp11309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2023] [Accepted: 05/09/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Diminished/decreased ovarian reserve (DOR) is a disorder of ovarian function, which severely affects women's reproductive health. Accumulating evidence has found that adverse environmental factors can affect ovarian function. However, whether synthetic phenolic antioxidants (SPAs) exposure is associated with DOR is still unknown. OBJECTIVES We explored whether concentrations of SPAs and their metabolites are associated with DOR. METHODS A case-control study was conducted from January 2019 to January 2020 in China. One hundred eighty-one women 20-44 years of age, with (case group, n=63) and without DOR (control group, n=118) were included in our study. The follicular fluid concentrations of typical SPAs and their metabolites were measured, including butylated hydroxyanisole (BHA), tert-butylhydroquinone (TBHQ), butylated hydroxytoluene (BHT), and five BHT metabolites [3,5-di-tert-butyl-4-hydroxy-benzylalcohol (BHT-OH), 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHT-CHO), 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHT-COOH), 2,6-di-tert-butyl-1,4-benzoquinone (BHT-Q), and 2,6-di-tert-butyl-4-hydroxy-4-methylcyclohexa-2,5-dien-1-one (BHT-quinol)]. Information about serum basal concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and anti-Müllerian hormone (AMH) and the basal antral follicle count (AFC) was collected. RESULTS The measured frequencies of BHA, TBHQ, BHT, BHT-OH, BHT-CHO, BHT-COOH, BHT-Q, and BHT-quinol in follicular fluid were 1.7%, 2.2%, 40.3%, 46.4%, 57.5%, 100%, 64.6%, and 49.2%, respectively. The concentrations of BHT-CHO (0.49 ng/mL vs. 0.12 ng/mL, p=0.041), BHT-COOH (0.45 ng/mL vs. 0.28 ng/mL, p<0.001), BHT-Q (0.70 ng/mL vs. 0.13 ng/mL, p<0.001), and the sum of five BHT metabolites (Σ5metabolites; 1.79 ng/mL vs. 1.0 ng/mL, p<0.001) in the case group were significantly higher than those in the control group. The risk of DOR was further analyzed according to the tertiles of chemical concentration. Compared with the low levels of BHT metabolites, the adjusted odds ratios (ORs) for DOR were significantly increased in the high levels of BHT-CHO [OR=3.19, 95% confidence interval (CI): 1.22, 8.31, p=0.018], BHT-COOH [OR=4.73 (95% CI: 1.63, 13.71), p=0.004], and BHT-Q [OR=4.48 (95% CI: 1.69, 11.86), p=0.003] after adjusting for age, body mass index, education, infertility type, triglycerides, and total cholesterol. Moreover, compared with the low level of Σ5metabolites, increased adjusted ORs for DOR were found both in the middle level [OR=4.11 (95% CI: 1.44, 11.75), p=0.008] and high level [OR=5.51 (95% CI: 1.81, 16.77), p=0.003], showing an obvious dose-response relationship (pTrend=0.003). CONCLUSION In this study, we report the measured frequency and concentrations of BHA, TBHQ, BHT, and their metabolites in follicular fluid. Moreover, we found the concentrations of BHT metabolites, especially BHT-CHO, BHT-COOH, and BHT-Q, are positively associated with the increased risk of DOR. https://doi.org/10.1289/EHP11309.
Collapse
Affiliation(s)
- Yongxiu Hao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Yuanyuan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Da Chen
- School of Environment, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinery Studies, Peking University, Beijing, China
| |
Collapse
|
13
|
Mao W, Qu J, Zhong S, Wu X, Mao K, Liao K, Jin H. Associations between urinary parabens and lung cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66186-66194. [PMID: 37097579 DOI: 10.1007/s11356-023-26953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
Parabens are a family of endocrine-disrupting chemicals. Environmental estrogens may play a vital role in the development of lung cancer. To date, the association between parabens and lung cancer is unknown. Based on the 189 cases and 198 controls recruited between 2018 and 2021 in Quzhou, China, we measured 5 urinary parabens concentrations and examined the association between urinary concentrations of parabens and lung cancer risk. Cases showed significantly higher median concentrations of methyl-paraben (MeP) (2.1 versus 1.8 ng/mL), ethyl-paraben (0.98 versus 0.66 ng/mL), propyl-paraben (PrP) (2.2 versus 1.4 ng/mL), and butyl-paraben (0.33 versus 0.16 ng/mL) than controls. The detection rates of benzyl-paraben were only 8 and 6% in the control and case groups, respectively. Therefore, the compound was not considered in the further analysis. The significant correlation between urinary concentrations of PrP and the risk of lung cancer (odds ratio (OR)adjusted = 2.22, 95% confidence interval (CI): 1.76, 2.75; Ptrend < 0.001) was identified in the adjusted model. In the stratification analysis, we found that urinary concentrations of MeP were significantly associated with lung cancer risk (OR = 1.16, 95% CI: 1.01, 1.27 for the highest quartile group). Besides, comparing the second, third, and fourth quartile groups with the lowest group of PrP, we also observed urinary PrP concentrations associated with lung cancer risk, with the adjusted OR of 1.52 (95% CI: 1.29, 1.65, Ptrend = 0.007), 1.39 (95% CI: 1.15, 1.60, Ptrend = 0.010), and 1.85 (95% CI: 1.53, 2.30, Ptrend = 0.001), respectively. MeP and PrP exposure, reflected in urinary concentrations of parabens, may be positively associated with the risk of lung cancer in adults.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| | - Songyang Zhong
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China
| | - Xilin Wu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China
| | - Kaili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China.
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, People's Republic of China
| |
Collapse
|
14
|
Guo M, Zhu C. Associations between exposure to a mixture of phenols and sex steroid hormones among pre- and postmenopausal women: evidence from NHANES 2015-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57103-57113. [PMID: 36930311 DOI: 10.1007/s11356-023-26421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Environmental phenols are well known as emerging endocrine-disrupting chemicals; however, their impacts on sex hormone homeostasis among pre- and postmenopausal women remain unknown. Our objective was to evaluate independent and combined relationships between phenol levels in urine and sex steroid hormones among 323 premenopausal women and 263 postmenopausal women from National Health and Nutrition Examination Survey (NHANES) 2015-2016. A total of 10 phenol concentrations in urine were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Serum concentrations of estradiol and total testosterone were measured by LC-MS/MS and serum sex hormone-binding globulin (SHBG) concentrations were measured using an immunofluorometric assay. Multivariable linear regression models were conducted to explore associations of individual phenol concentration in urine with natural logarithm-transformed serum hormone levels. Bayesian kernel machine regression (BKMR) model was conducted to evaluate phenol mixtures exposure in association with sex hormones among pre- and postmenopausal women, respectively. Considering both single-chemical models and multiple-chemical models, each doubling of urinary BPS concentration was significantly inversely related to serum SHBG concentration in premenopausal women (percent change: -6.70%, 95% confidence interval, CI: -11.12%, -2.73%; P = 0.002). Moreover, every doubling of urinary BP-3 concentration was significantly positively associated with SHBG level in serum (percent change: 3.53%, 95%CI: 0.70%, 5.70%; P = 0.008). Regarding postmenopausal women, inverse associations between urinary BPS levels and serum estradiol concentrations were observed (percent change: -8.62%, 95% CI: -15.33%, -2.06%; P = 0.012). The results revealed that BPS and BP-3 exposure may adversely disrupt sex hormone homeostasis at the current exposure levels among women in the USA. The findings and their underlying mechanisms are warranted to be confirmed and comprehensively interpreted in further epidemiological and experimental studies.
Collapse
Affiliation(s)
- Menglu Guo
- Department of Medical Records and Statistics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, China
| | - Changlin Zhu
- Department of Medical Records and Statistics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, China.
| |
Collapse
|
15
|
Radwan P, Wielgomas B, Radwan M, Krasiński R, Bujak-Pietrek S, Polańska K, Kilanowicz A, Jurewicz J. Urinary concentration of selected nonpersistent endocrine disrupting chemicals-reproductive outcomes among women from a fertility clinic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45088-45096. [PMID: 36701050 PMCID: PMC10076394 DOI: 10.1007/s11356-023-25355-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Parabens and benzophenones are compounds widely used in cosmetics and personal care products. Although human exposure is widespread there is a limited number of epidemiological studies assessing the relationship between exposure to these chemicals and female reproductive health. The aim of the study is to explore the relationship between paraben and benzophenone concentrations and reproductive outcomes among women attending a fertility center. This prospective cohort included 450 women undergoing in vitro treatment (IVF) at fertility clinic in Poland. The validated gas chromatography ion-tap mass spectrometry to assess concentrations of parabens in urine (methyl (MP), ethyl (EP), propyl (PP), butyl paraben (BP)) and benzophenone-3 (BP-3) was used. To explore the relationship between concentrations of examined chemicals and reproductive outcomes (methaphase II (MII) oocyte yield, total oocyte yield, implantation rate, fertilization rate, clinical pregnancy, live births), multivariable generalized linear mixed model was used for the analysis. Increased exposure to butyl paraben was associated with a significant decrease in MII oocyte count (p = 0.007) when exposure to BP was treated as the continuous variable. Additionally, the exposure to BP in the highest quartile of exposure also decreases MII oocyte count (p = 0.02) compared to the lowest quartile. Urinary concentrations of BP were not related to total oocyte count, fertilization and implantation rate, clinical pregnancy, and live birth when the exposure variable was continuous variable or in the quartiles of exposure. Exposure to MP, EP, PP, the sum of examined parabens, and benzophenone-3 were not related to any of the examined reproductive outcomes. Exposure to butyl paraben was associated with a decrease in MII oocyte count among women attending fertility clinic rinsing concerns that exposure may have a potential adverse impact on embryological outcomes. The results emphasize the importance to reduce chemicals in the environment in order to minimize exposure. As this is the first study showing such an association, further research is needed to confirm these novel results in other populations.
Collapse
Affiliation(s)
- Paweł Radwan
- Department of Gynecology and Reproduction, “Gameta” Health Centre, 7 Cybernetyki St, 02-677 Warsaw, Poland
- Department of Gynecology and Reproduction, “Gameta” Clinic, Kielce-Regional Science –Technology Centre, 45 Podzamcze St, 26-060 Chęciny, Poland
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, 107 Hallera St., 80-416, Gdańsk, Poland
| | - Michał Radwan
- Department of Gynecology and Reproduction, “Gameta” Hospital, 34/36 Rudzka St., 95-030 Rzgów, Poland
- Faculty of Health Sciences, Mazovian State University in Płock, 2 Dabrowskiego Sq., 09-402 Plock, Poland
| | - Rafał Krasiński
- Department of Gynecology and Reproduction, “Gameta” Hospital, 34/36 Rudzka St., 95-030 Rzgów, Poland
| | - Stella Bujak-Pietrek
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy St; 91-348, Łódź, Poland
| | - Kinga Polańska
- Department of Paediatrics and Allergy, Copernicus Memorial Hospital, Medical University of Lodz, Piłsudskiego 71; 90-329, Łódź, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1; 90-151, Łódź, Poland
| | - Joanna Jurewicz
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy St; 91-348, Łódź, Poland
| |
Collapse
|
16
|
Guerra MT, Erthal RP, Punhagui-Umbelino APF, Trinque CM, Torres de Bari MA, Nunes TDM, Costa WF, Cleto PH, Fernandes GSA. Reproductive toxicity of maternal exposure to di(2-ethylhexyl)phthalate and butyl paraben (alone or in association) on both male and female Wistar offspring. J Appl Toxicol 2023; 43:242-261. [PMID: 35962557 DOI: 10.1002/jat.4377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 01/17/2023]
Abstract
Parabens and phthalates are commonly found as contaminants in human fluids and are able to provoke reproductive toxicity, being considered endocrine disruptors. To evaluate the effects of phthalate and paraben, alone or in combination, on reproductive development of the offspring, female pregnant Wistar rats were allocated in six experimental groups: Three control groups (gavage [CG], subcutaneous [CS], and gavage + subcutaneous) received corn oil as vehicle, and the remaining groups were exposed to di(2-ethylhexyl)phthalate (DEHP) (500 mg/kg, gavage), butyl paraben (BP) (100 mg/kg, subcutaneously), or MIX (DEHP + BP), from Gestational Day 12 until Postnatal Day (PND) 21. The following parameters were assessed on the offspring: anogenital distance and weight at PND 1, nipple counting at PND 13, puberty onset, estrous cycle, weights of reproductive and detoxifying organs, histological evaluation of reproductive organs, and sperm evaluations (counts, morphology, and motility). Female pups from MIX group presented reduced body weight at PND 1, lower AGD, and decreased endometrium thickness. Male animals showed decreased body weight at PND 1 and lower number of Sertoli cells on DEHP and MIX groups, MIX group revealed increase of abnormal seminiferous tubules, DEHP animals presented delayed preputial separation and higher percentage of immotile sperms, and BP males presented diminished number of Leydig cells. In conclusion, the male offspring was more susceptible to DEHP toxicity; even when mixed to paraben, the main negative effects observed seem to be due to antiandrogenic phthalate action. On the other hand, DEHP seems to be necessary to improve the effects of BP on reducing estrogen-dependent and increasing androgen-dependent events.
Collapse
Affiliation(s)
| | - Rafaela Pires Erthal
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina-UEL, Londrina, Brazil
| | | | - Camila Moreira Trinque
- Department of General Biology, Biological Sciences Center, State University of Londrina-UEL, Londrina, Brazil
| | | | | | - Wagner Ferrari Costa
- Department of General Biology, Biological Sciences Center, State University of Londrina-UEL, Londrina, Brazil
| | - Pedro Horácio Cleto
- Department of General Biology, Biological Sciences Center, State University of Londrina-UEL, Londrina, Brazil
| | | |
Collapse
|
17
|
Gonkowski S, Martín J, Aparicio I, Santos JL, Alonso E, Rytel L. Evaluation of Parabens and Bisphenol A Concentration Levels in Wild Bat Guano Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1928. [PMID: 36767313 PMCID: PMC9916121 DOI: 10.3390/ijerph20031928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Parabens and bisphenol A are synthetic compounds found in many everyday objects, including bottles, food containers, personal care products, cosmetics and medicines. These substances may penetrate the environment and living organisms, on which they have a negative impact. Till now, numerous studies have described parabens and BPA in humans, but knowledge about terrestrial wild mammals' exposure to these compounds is very limited. Therefore, during this study, the most common concentration levels of BPA and parabens were selected (such as methyl paraben-MeP, ethyl paraben-EtP, propyl paraben-PrP and butyl paraben-BuP) and analyzed in guano samples collected in summer (nursery) colonies of greater mouse-eared bats (Myotis myotis) using liquid chromatography with the tandem mass spectrometry (LC-MS-MS) method. MeP has been found in all guano samples and its median concentration levels amounted to 39.6 ng/g. Other parabens were present in smaller number of samples (from 5% for BuP to 62.5% for EtP) and in lower concentrations. Median concentration levels of these substances achieved 0.95 ng/g, 1.45 ng/g and 15.56 ng/g for EtP, PrP and BuP, respectively. BPA concentration levels did not exceed the method quantification limit (5 ng/g dw) in any sample. The present study has shown that wild bats are exposed to parabens and BPA, and guano samples are a suitable matrix for studies on wild animal exposure to these substances.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Julia Martín
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 14, 10-719 Olsztyn, Poland
| |
Collapse
|
18
|
Rosen Vollmar AK, Weinberg CR, Baird DD, Wilcox AJ, Calafat AM, Deziel NC, Johnson CH, Jukic AMZ. Urinary phenol concentrations and fecundability and early pregnancy loss. Hum Reprod 2023; 38:139-155. [PMID: 36346334 PMCID: PMC10089295 DOI: 10.1093/humrep/deac230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
STUDY QUESTION Are urinary phenol concentrations of methylparaben, propylparaben, butylparaben, triclosan, benzophenone-3, 2,4-dichlorophenol or 2,5-dichlorophenol associated with fecundability and early pregnancy loss? SUMMARY ANSWER 2,5-dichlorophenol concentrations were associated with an increased odds of early pregnancy loss, and higher concentrations of butylparaben and triclosan were associated with an increase in fecundability. WHAT IS KNOWN ALREADY Phenols are chemicals with endocrine-disrupting potential found in everyday products. Despite plausible mechanisms of phenol reproductive toxicity, there are inconsistent results across few epidemiologic studies examining phenol exposure and reproductive function in non-fertility treatment populations. STUDY DESIGN, SIZE, DURATION Specimens and data were from the North Carolina Early Pregnancy Study prospective cohort of 221 women attempting to conceive naturally from 1982 to 1986. This analysis includes data from 221 participants across 706 menstrual cycles, with 135 live births, 15 clinical miscarriages and 48 early pregnancy losses (before 42 days after the last menstrual period). PARTICIPANTS/MATERIALS, SETTING, METHODS Participants collected daily first-morning urine specimens. For each menstrual cycle, aliquots from three daily specimens across the cycle were pooled within individuals and analyzed for phenol concentrations. To assess sample repeatability, we calculated intraclass correlation coefficients (ICCs) for each phenol. We evaluated associations between phenol concentrations from pooled samples and time to pregnancy using discrete-time logistic regression and generalized estimating equations (GEE), and early pregnancy loss using multivariable logistic regression and GEE. MAIN RESULTS AND THE ROLE OF CHANCE ICCs for within-person variability across menstrual cycles in pooled phenol concentrations ranged from 0.42 to 0.75. There was an increased odds of early pregnancy loss with 2,5-dichlorophenol concentrations although the CIs were wide (5th vs 1st quintile odds ratio (OR): 4.79; 95% CI: 1.06, 21.59). There was an increased per-cycle odds of conception at higher concentrations of butylparaben (OR: 1.62; 95% CI: 1.08, 2.44) and triclosan (OR: 1.49; 95% CI: 0.99, 2.26) compared to non-detectable concentrations. No associations were observed between these endpoints and concentrations of other phenols examined. LIMITATIONS, REASONS FOR CAUTION Limitations include the absence of phenol measurements for male partners and a limited sample size, especially for the outcome of early pregnancy loss, which reduced our power to detect associations. WIDER IMPLICATIONS OF THE FINDINGS This study is the first to use repeated pooled measures to summarize phenol exposure and the first to investigate associations with fecundability and early pregnancy loss. Within-person phenol concentration variability underscores the importance of collecting repeated samples for future studies. Exposure misclassification could contribute to differences between the findings of this study and those of other studies, all of which used one urine sample to assess phenol exposure. This study also contributes to the limited literature probing potential associations between environmental exposures and early pregnancy loss, which is a challenging outcome to study as it typically occurs before a pregnancy is clinically recognized. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health (award number F31ES030594), the Intramural Research Program of the National Institutes of Health, the National Institute of Environmental Health Sciences (project numbers ES103333 and ES103086) and a doctoral fellowship at the Yale School of Public Health. The authors declare they have no competing interests to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Ana K Rosen Vollmar
- Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Clarice R Weinberg
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Allen J Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| | - Antonia M Calafat
- Organic Analytical Toxicology Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicole C Deziel
- Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Caroline H Johnson
- Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Anne Marie Z Jukic
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle, NC, USA
| |
Collapse
|
19
|
Polycystic Ovary Syndrome and Endocrine Disruptors (Bisphenols, Parabens, and Triclosan)-A Systematic Review. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010138. [PMID: 36676087 PMCID: PMC9864804 DOI: 10.3390/life13010138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Exposure to endocrine disrupting chemicals (EDCs) can result in alterations of the female reproductive system, including polycystic ovary syndrome (PCOS). The aim of this review was to summarize the knowledge about the association of EDCs (bisphenols, parabens, and triclosan) with PCOS. We conducted an electronic literature search using PubMed for studies published between January 2007 and October 2022 on EDCs related to PCOS, and evaluated the association of PCOS with bisphenols, parabens and triclosan in 15 articles. Most studies revealed significantly higher plasma, urinary or follicular fluid levels of bisphenol A (BPA) in women with PCOS, and some showed a positive correlation of BPA with insulin resistance, polycystic morphology on ultrasound, hepatic steatosis, bilirubin levels, as well as free androgen index, androstenedione and testosterone serum levels, and markers of low-grade chronic inflammation. There was a negative correlation of BPA with markers of ovarian reserve, sex hormone binding globulin and vitamin D-binding protein. Parabens and triclosan have been studied in only one study each, with no significant associations with PCOS observed. Our review revealed an association of BPA with PCOS and negative effects of BPA on human ovaries; more research is needed to assess the potential associations of parabens and triclosan with PCOS.
Collapse
|
20
|
Roggeman M, Gys C, Klimowska A, Bastiaensen M, Wielgomas B, Ait Bamai Y, Covaci A. Reviewing the variability in urinary concentrations of non-persistent organic chemicals: evaluation across classes, sampling strategies and dilution corrections. ENVIRONMENTAL RESEARCH 2022; 215:114332. [PMID: 36116496 DOI: 10.1016/j.envres.2022.114332] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Various biomonitoring studies have been carried out to investigate the exposure of populations by measuring non-persistent organic chemicals in urine. To accurately assess the exposure, study designs should be carefully developed to maximise reproducibility and achieve good characterization of the temporal variability. To test these parameters, the intraclass correlation coefficients (ICCs) are calculated from repeated measurements and range from poor (<0.4) to excellent (≥0.75). Several studies have reported ICCs based on diverse study designs, but an overview, including recommendations for future studies, was lacking. Therefore, this review aimed to collect studies describing ICCs of non-persistent organic chemicals, discuss variations due to study design and formulate recommendations for future studies. More than 60 studies were selected, considering various chemical classes: bisphenols, pyrethroids, parabens, phthalates, alternative plasticizers and phosphate flame retardants. The variation in ICCs for an individual chemical was high (e.g. ICC of propyl paraben = 0.28-0.91), showing the large impact of the study design and of the specific exposure sources. The highest ICCs were reported for parabens (median = 0.52), while lowest ICCs were for 3-phenoxybenzoic acid (median = 0.08) and bisphenol A (median = 0.20). Overall, chemicals that had an exposure source with high variation, such as the diet, showed lower ICCs than those with more stable exposure sources, such as indoor materials. Urine correction by specific gravity had an overall positive effect on reducing the variability of ICCs. However, this effect was mostly seen in the adult population, while specific compounds showed less variation with creatinine correction. Single samples might not accurately capture the exposure to most non-persistent organic chemicals, especially when small populations are sampled. Future studies that examine compounds with low ICCs should take adequate measures to improve accuracy, such as correcting dilution with specific gravity or collecting multiple samples for one participant.
Collapse
Affiliation(s)
- Maarten Roggeman
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Celine Gys
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Anna Klimowska
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium; Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, Gdańsk, 80-416, Poland
| | - Michiel Bastiaensen
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. Hallera 107, Gdańsk, 80-416, Poland
| | - Yu Ait Bamai
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium; Hokkaido University Center for Environmental and Health Sciences, Kita 12, Nishi 7, Kita-ku Sapporo, 060-0812, Japan
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium.
| |
Collapse
|
21
|
Land KL, Miller FG, Fugate AC, Hannon PR. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev 2022; 89:608-631. [PMID: 36580349 PMCID: PMC10100123 DOI: 10.1002/mrd.23652] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is unavoidable, which represents a public health concern given the ability of EDCs to target the ovary. However, there is a large gap in the knowledge about the impact of EDCs on ovarian function, including the process of ovulation. Defects in ovulation are the leading cause of infertility in women, and EDC exposures are contributing to the prevalence of infertility. Thus, investigating the effects of EDCs on the ovary and ovulation is an emerging area for research and is the focus of this review. The effects of EDCs on gametogenesis, uterine function, embryonic development, and other aspects of fertility are not addressed to focus on ovarian- and ovulation-related fertility issues. Herein, findings from epidemiological and basic science studies are summarized for several EDCs, including phthalates, bisphenols, per- and poly-fluoroalkyl substances, flame retardants, parabens, and triclosan. Epidemiological literature suggests that exposure is associated with impaired fecundity and in vitro fertilization outcomes (decreased egg yield, pregnancies, and births), while basic science literature reports altered ovarian follicle and corpora lutea numbers, altered hormone levels, and impaired ovulatory processes. Future directions include identification of the mechanisms by which EDCs disrupt ovulation leading to infertility, especially in women.
Collapse
Affiliation(s)
- Katie L. Land
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Frances G. Miller
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Ava C. Fugate
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Patrick R. Hannon
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
22
|
Kurowska P, Mlyczyńska E, Dawid M, Respekta N, Pich K, Serra L, Dupont J, Rak A. Endocrine disruptor chemicals, adipokines and reproductive functions. Endocrine 2022; 78:205-218. [PMID: 35476178 DOI: 10.1007/s12020-022-03061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
The prevalence of adult obesity has risen markedly in recent decades. The endocrine system precisely regulates energy balance, fat abundance and fat deposition. Interestingly, white adipose tissue is an endocrine gland producing adipokines, which regulate whole-body physiology, including energy balance and reproduction. Endocrine disruptor chemicals (EDCs) include natural substances or chemicals that affect the endocrine system by multiple mechanisms and increase the risk of adverse health outcomes. Numerous studies have associated exposure to EDCs with obesity, classifying them as obesogens by their ability to activate different mechanisms, including the differentiation of adipocytes, increasing the storage of triglycerides, or elevating the number of adipocytes. Moreover, in recent years, not only industrial deception and obesity have intensified but also the problem of human infertility. Reproductive functions depend on hormone interactions, the balance of which may be disrupted by various EDCs or obesity. This review gives a brief summary of common EDCs linked with obesity, the mechanisms of their action, and the effect on adipokine levels, reproduction and connected disorders, such as polycystic ovarian syndrome, decrease in sperm motility, preeclampsia, intrauterine growth restriction in females and decrease of sperm motility in males.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Loïse Serra
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
23
|
Pacyga DC, Chiang C, Li Z, Strakovsky RS, Ziv-Gal A. Parabens and Menopause-Related Health Outcomes in Midlife Women: A Pilot Study. J Womens Health (Larchmt) 2022; 31:1645-1654. [PMID: 35787012 PMCID: PMC10024061 DOI: 10.1089/jwh.2022.0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Parabens are antimicrobial agents prevalently found in daily-use products that can interfere with the endocrine and reproductive systems. In this study, we examined the cross-sectional associations of parabens with hot flashes, hormone concentrations, and ovarian volume in a subsample of 101 nonsmoking, non-Hispanic 45- to 54-year-old women from the Midlife Women's Health Study. Materials and Methods: Women self-reported their hot flash history and underwent a transvaginal ultrasound to measure ovarian volume. Participants provided blood for quantification of serum hormones (by enzyme-linked immunosorbent assay or radioimmunoassay) and urine samples for measurements of urinary paraben biomarker levels (by high-performance liquid chromatography negative-ion electrospray ionization-tandem mass spectrometry). Linear or logistic regression models evaluated associations of specific gravity-adjusted paraben biomarker concentrations with hot flashes, hormone concentrations, and ovarian volume. Results: We observed marginal associations of propylparaben, methylparaben, and ∑parabens biomarkers (molar sum of four parabens) with hot flashes and follicle-stimulating hormone (FSH) concentrations, and of these paraben biomarkers and ethylparaben with ovarian volume. For example, women tended to have 32% (95% confidence intervals [CI]: 0.9 to 1.81), 40% (95% CI: 1.0 to 1.95), and 40% (95% CI: 0.98 to 2.01) higher odds of having recent, monthly, and mild hot flashes, respectively, for every two-fold increase in ∑parabens. Similarly, women tended to have 14.54% (95% CI: -0.10 to 31.32) higher FSH concentrations, but 5.67% (95% CI: -12.54 to 1.75) reduced ovarian volume for every two-fold increase in ∑parabens Conclusions: Overall, our preliminary findings suggest that urinary paraben biomarkers may be associated with menopause-related outcomes in midlife women. Additional studies in larger and diverse populations are needed to expand on these findings.
Collapse
Affiliation(s)
- Diana C. Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Catheryne Chiang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhong Li
- Metabolomics Lab, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rita S. Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Ayelet Ziv-Gal
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
24
|
Santaliz Casiano A, Lee A, Teteh D, Madak Erdogan Z, Treviño L. Endocrine-Disrupting Chemicals and Breast Cancer: Disparities in Exposure and Importance of Research Inclusivity. Endocrinology 2022; 163:6553110. [PMID: 35325096 PMCID: PMC9391683 DOI: 10.1210/endocr/bqac034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Indexed: 01/09/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are known contributors to breast cancer development. Exposures to EDCs commonly occur through food packaging, cookware, fabrics, and personal care products, as well as external environmental sources. Increasing evidence highlights disparities in EDC exposure across racial/ethnic groups, yet breast cancer research continues to lack the inclusion necessary to positively impact treatment response and overall survival in socially disadvantaged populations. Additionally, the inequity in environmental exposures has yet to be remedied. Exposure to EDCs due to structural racism poses an unequivocal risk to marginalized communities. In this review, we summarize recent epidemiological and molecular studies on 2 lesser-studied EDCs, the per- and polyfluoroalkyl substances (PFAS) and the parabens, the health disparities that exist in EDC exposure between populations, and their association with breast carcinogenesis. We discuss the importance of understanding the relationship between EDC exposure and breast cancer development, particularly to promote efforts to mitigate exposures and improve breast cancer disparities in socially disadvantaged populations.
Collapse
Affiliation(s)
- Ashlie Santaliz Casiano
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Annah Lee
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
| | - Dede Teteh
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA 92866, USA
| | - Zeynep Madak Erdogan
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois, College of Medicine, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: Zeynep Madak Erdogan, PhD, Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801, USA.
| | - Lindsey Treviño
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
- Correspondence: Lindsey S. Treviño, PhD, Department of Population Sciences, Division of Health Equities, Duarte - Main Campus, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
25
|
Radwan P, Wielgomas B, Radwan M, Krasiński R, Kilanowicz-Sapota A, Banaszczyk R, Jurewicz J. Synthetic Pyrethroids Exposure and Embryological Outcomes: A Cohort Study in Women from Fertility Clinic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095117. [PMID: 35564520 PMCID: PMC9100335 DOI: 10.3390/ijerph19095117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Pyrethroids exposure has been associated with adverse reproductive outcome. However, there is no study that explores the effect of environmental exposure and embryological outcomes. This question was addressed in a prospective cohort of couples undergoing fertility treatment. The study aims to assess the association between urinary metabolites of synthetic pyrethroids and embryological outcomes (MII oocyte count, top quality embryo, fertilization and implantation rate). We included 450 women aged 25−45 undergoing assisted reproductive technology (ART) cycle at Infertility Clinic in Poland. Urine samples were collected at the time of fertility procedure(s) to assess four urinary synthetic pyrethroids concentrations (3-phenoxybenzoic acid (3PBA), cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA), trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-DCCA), cis-2,2-dibromovinyl-2,2-dimethylocyclopropane-1-carboxylic acid (DBCA)) using validated gas chromatography ion-tap mass spectrometry and calculated for each cycle-specific metabolite. To evaluate the effect of environmental exposure to synthetic pyrethroids and embryological outcomes (methaphase II (MII) oocyte yield, top quality embryo, fertilization rate, implantation rate), multivariable generalized linear mixed analyses with random intercepts were prepared. Urinary 3-PBA concentrations decrease MII oocyte count (p = 0.007) in the fourth quartile (>75 percentile) compared to women in the first quartile (≤25 percentile). Additionally, when 3-PBA was treated as continuous variable, the negative association between exposure to pyrethroids and MII oocyte count was also observed (p = 0.012). Exposure to other pyrethroid metabolities (CDCCA, TDCCA, DBCA) was not related to any of the examined embryological outcomes. Exposure to synthetic pyrethroids may be associated with poorer embryological outcome among couples seeking fertility treatments. As this is the first study on this topic, the results need to be confirmed in further studies.
Collapse
Affiliation(s)
- Paweł Radwan
- Gameta Health Centre, 7 Cybernetyki St., 02-677 Warsaw, Poland;
- Gameta, Kielce-Regional Science-Technology Centre, 45 Podzamcze St., Chęciny, 26-060 Kielce, Poland
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdansk, Poland;
| | - Michał Radwan
- Department of Gynecology and Reproduction, Gameta Hospital, 34/36 Rudzka St., 95-030 Rzgow, Poland; (M.R.); (R.K.); (R.B.)
- Faculty of Health Sciences, Mazovian State University in Plock, 2 Dabrowskiego Sq., 09-402 Plock, Poland
| | - Rafał Krasiński
- Department of Gynecology and Reproduction, Gameta Hospital, 34/36 Rudzka St., 95-030 Rzgow, Poland; (M.R.); (R.K.); (R.B.)
| | - Anna Kilanowicz-Sapota
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Renata Banaszczyk
- Department of Gynecology and Reproduction, Gameta Hospital, 34/36 Rudzka St., 95-030 Rzgow, Poland; (M.R.); (R.K.); (R.B.)
| | - Joanna Jurewicz
- Department of Chemical Safety, Nofer Institute of Occupational Medicine, 8 Teresy St., 91-348 Lodz, Poland
- Correspondence:
| |
Collapse
|
26
|
Yan W, Li M, Guo Q, Li X, Zhou S, Dai J, Zhang J, Wu M, Tang W, Wen J, Xue L, Jin Y, Luo A, Wang S. Chronic exposure to propylparaben at the humanly relevant dose triggers ovarian aging in adult mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113432. [PMID: 35325608 DOI: 10.1016/j.ecoenv.2022.113432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Parabens, a type of endocrine-disrupting chemicals, are widely used as antibacterial preservatives in food and cosmetics in daily life. Paraben exposure has gained particular attention in the past decades, owing to its harmful effects on reproductive function. Whether low-dose paraben exposure may cause ovarian damage has been ignored recently. Here, we investigated the effects of chronic low-dose propylparaben (PrPB) exposure on ovarian function. Female C57BL/6J mice were exposed to PrPB at a humanly relevant dose for 8 months. Our results showed that chronic exposure to PrPB at a humanly relevant dose significantly altered the estrus cycle, hormone levels, and ovarian reserve, accelerating ovarian aging in adult mice. These effects are accompanied by oxidative stress enrichment, leading to steroidogenesis dysfunction and acceleration of primordial follicle recruitment. Notably, melatonin supplementation has been shown to protect against PrPB-induced steroidogenesis dysfunction in granulosa cells. Here, we report that daily chronic PrPB exposure may contribute to ovarian aging by altering oxidative stress-mediated JNK and PI3K-AKT signaling regulation, and that melatonin may serve as a pharmaceutical candidate for PrPB-associated ovarian dysfunction.
Collapse
Affiliation(s)
- Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Milu Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Qingchun Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Xiangyi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Yan Jin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China.
| |
Collapse
|
27
|
Makowska K, Martín J, Rychlik A, Aparicio I, Santos JL, Alonso E, Gonkowski S. Biomonitoring parabens in dogs using fur sample analysis - Preliminary studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150757. [PMID: 34619184 DOI: 10.1016/j.scitotenv.2021.150757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Parabens are widely used in the food, cosmetics and pharmaceutical industry and are widespread in the environment. As endocrine disruptors, parabens have adverse effects on living organisms. However, knowledge of the exposure of domestic animals to parabens is extremely scarce. Therefore, this study assessed the exposure level of dogs to three parabens commonly used in industry (i.e. methylparaben - MeP, ethylparaben - EtP and propylparaben - PrP) using fur sample analysis in liquid chromatography-tandem mass spectrometry. The presence of parabens has been noted in the samples collected from all dogs included in the study (n = 30). Mean concentrations of MeP, EtP and PrP in the fur of dogs were 176 (relative standard deviation - RSD = 127.48%) ng/g dry weight (dw), 48.4 (RSD = 163.64%) ng/g dw and 79.8 ng/g dw (RSD = 151.89%), respectively. The highest concentrations were found for MeP (up to 1023 ng/g dw). Concentrations of MeP and EtP in males were statistically higher than those in females (p < 0.05). Statistically significantly higher concentration levels of PrP in young animals (up to three years old) were also found. This is the first study concerning the use of fur samples to evaluate the exposure of domestic animals to parabens. The results indicate that an analysis of the fur may be a useful tool of paraben biomonitoring in dogs. The presence of parabens in the canine fur also suggests that these substances may play a role in veterinary toxicology. However, many aspects connected with this issue are not clear and require further study.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland.
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Andrzej Rychlik
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Sevilla, Spain
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| |
Collapse
|
28
|
Concentrations of urinary parabens and reproductive hormones in Iranian women: Exposure and risk assessment. Toxicol Rep 2022; 9:1894-1900. [DOI: 10.1016/j.toxrep.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
|
29
|
Wojtkiewicz J, Tzatzarakis M, Vakonaki E, Makowska K, Gonkowski S. Evaluation of human exposure to parabens in north eastern Poland through hair sample analysis. Sci Rep 2021; 11:23673. [PMID: 34880378 PMCID: PMC8654909 DOI: 10.1038/s41598-021-03152-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Parabens (PBs) are a group of substances commonly used in industry. They also pollute the environment, penetrate into living organisms and adversely affect various internal organs. During this study, the degree of exposure of people living in Olsztyn, a city in north eastern Poland, to selected parabens most often used in industry was studied. The chemicals under investigation included: methyl paraben—MePB, ethyl paraben—EtPB, propyl paraben—PrPB, benzyl paraben BePB and butyl paraben -BuPB. To this aim, hair samples collected from the scalps of 30 volunteers were analyzed using a liquid chromatography–mass spectrometry technique. All PBs studied were present in a high percentage of analyzed samples (from 76.7% in the case of BePB to 100% in the case of MePB and PrPB). The mean concentration levels were 4425.3 pg/mg for MeBP, 704.0 pg/mg for EtPB, 825.7 pg/mg for PrPB, 135.2 pg/mg for BePB and 154.5 pg/mg for BuPB. Significant differences in PB concentration levels between particular persons were visible. On the other hand, gender, age and artificial hair coloring did not cause statistically significant differences in PB levels. Obtained results have clearly indicated that people living in north eastern Poland are exposed to various PBs, and therefore these substances may affect their health status. However, the evaluation of PBs influence on human health requires further research.
Collapse
Affiliation(s)
- Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900, Olsztyn, Poland.
| | - Manolis Tzatzarakis
- Laboratory of Toxicology Science and Research, Medicine School, University of Crete, 70013, Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology Science and Research, Medicine School, University of Crete, 70013, Heraklion, Crete, Greece
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957, Olsztyn, Poland
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957, Olsztyn, Poland
| |
Collapse
|
30
|
Wesselink AK, Weuve J, Fruh V, Bethea TN, Claus Henn B, Harmon QE, Hauser R, Williams PL, Calafat AM, McClean M, Baird DD, Wise LA. Urinary concentrations of phenols, parabens, and triclocarban in relation to uterine leiomyomata incidence and growth. Fertil Steril 2021; 116:1590-1600. [PMID: 34366109 PMCID: PMC8627427 DOI: 10.1016/j.fertnstert.2021.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To examine the association of urinary concentrations of phenols, parabens, and triclocarban with incidence and growth of uterine leiomyomata (UL; fibroids). DESIGN Case-cohort study, nested within the Study of Environment, Lifestyle, and Fibroids, a prospective cohort study. SETTING Clinic visits at baseline and every 20 months for 60 months. PATIENT(S) 754 Black women aged 23-35 years residing in the Detroit, Michigan area (enrolled during 2010-2012). INTERVENTION None. MAIN OUTCOME MEASURE(S) At each study visit, women underwent transvaginal ultrasound for measurement of UL incidence and growth and provided urine specimens in which we quantified concentrations of seven phenols, four parabens, and triclocarban. We used Cox proportional hazards regression to estimate hazard ratios and 95% confidence intervals (CIs) characterizing the relation of urinary biomarker concentrations with UL incidence during the 60 months of follow-up. In a subset of UL detected and measured at multiple time points, we used linear regression to assess the associations between biomarker concentrations and UL growth. RESULT(S) Urinary biomarker concentrations were generally inversely associated with UL incidence, but the associations were weak and nonmonotonic. For example, hazard ratios comparing concentrations ≥90th with <50th percentile were 0.77 (95% CI: 0.46, 1.27) for bisphenol A, 0.72 (95% CI: 0.40, 1.28) for bisphenol S, and 0.76 (95% CI: 0.43, 1.33) for methylparaben. Biomarker concentrations were not strongly associated with UL growth. CONCLUSION(S) In this study of reproductive-aged Black women, urinary phenols, parabens, and triclocarban biomarkers were neither strongly nor consistently associated with UL incidence and growth.
Collapse
Affiliation(s)
- Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts.
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Victoria Fruh
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Traci N Bethea
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Quaker E Harmon
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Russ Hauser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Paige L Williams
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Michael McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
31
|
Li M, Zhou S, Wu Y, Li Y, Yan W, Guo Q, Xi Y, Chen Y, Li Y, Wu M, Zhang J, Wei J, Wang S. Prenatal exposure to propylparaben at human-relevant doses accelerates ovarian aging in adult mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117254. [PMID: 33957517 DOI: 10.1016/j.envpol.2021.117254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Embryonic exposure to environmental chemicals may result in specific chronic diseases in adulthood. Parabens, a type of environmental endocrine disruptors widely used in pharmaceuticals and cosmetics, have been shown to cause a decline in women's reproductive function. However, whether exposure to parabens during pregnancy also negatively affect the ovarian function of the female offspring in adulthood remains unclear. This study aims to investigate the effects of prenatal propylparaben (PrP) exposure on the ovarian function of adult mice aged 46 weeks, which is equivalent to the age of 40 years in women. Pregnant ICR mice were intraperitoneally injected with human-relevant doses of PrP (i.e., 0, 7.5, 90, and 450 mg/kg/day) during the fetal sex determination period-from embryonic day E7.5 to E13.5. Our results revealed that ovarian aging was accelerated in PrP-exposed mice at 46 weeks, with altered regularity of the estrous cycle, decreased serum estrogen (E2) and progesterone (P4) levels, reduced size of the primordial follicle pool, and increased number of atretic follicles. It was found that prenatal exposure to human-relevant doses of PrP exacerbated ovarian oxidative stress, inflammation, and fibrosis, which promoted follicular atresia by activating the mitochondrial apoptosis pathway. To compensate, the depletion of primordial follicles was also accelerated by activating the PI3K/AKT/mTOR signaling pathway in PrP-exposed mice. Moreover, PrP induced hypermethylation of CpG sites in the promoter region of Cyp11a1 (a 17.16-64.28% increase) partly led to the disrupted steroidogenesis, and the altered methylation levels of imprinted genes H19 and Peg3 may also contribute to the phenotypes observed. These remarkable findings highlight the embryonic origin of ovarian aging and suggest that a reduced use of PrP during pregnancy should be advocated.
Collapse
Affiliation(s)
- Milu Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yaling Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Qingchun Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yueyue Xi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Yuanyuan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Jia Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.
| |
Collapse
|
32
|
Jiao L, Li S, Zhai J, Wang D, Li H, Chu W, Geng X, Du Y. Propylparaben concentrations in the urine of women and adverse effects on ovarian function in mice in vivo and ovarian cells in vitro. J Appl Toxicol 2021; 41:1719-1731. [PMID: 34365652 DOI: 10.1002/jat.4225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023]
Abstract
Female reproduction is precisely regulated by hormones, and the ovary is easily affected by environmental endocrine disruptors (EDCs), which are ubiquitous in industrialized societies. Parabens are EDCs that are used as antibacterial preservatives in cosmetics, personal care products (PCPs), medicines, and food. We used ultrahigh-performance liquid chromatography-mass spectrometry to quantitatively detect methyl-, ethyl-, butyl-, and propylparaben (PP) concentrations in urine samples from 74 women of childbearing age. Balb/c mice were subcutaneously injected with 100 mg/kg/day of PP for 21 consecutive days or 100 or 1,000 mg/kg/day of PP during superovulation. Various concentrations of PP (ranging from 1 to 1,000 nM) were added to a human ovarian granulosa tumor-derived cell line (KGN) culture for 24 h. The urinary paraben concentrations of women who used cosmetics and other PCPs within 48 h prior to sample collection were significantly elevated, and the PP concentration was significantly positively correlated with the basal estradiol concentration. After PP injection, the mouse serum estradiol concentrations were significantly increased, estrus cycles were disordered, corpus luteum number was reduced, and number of oocytes retrieved was significantly reduced. In in vitro experiments, PP treatment increased estradiol synthesis and the expression levels of aromatase enzyme (CYP19A1) and steroidogenic acute regulatory protein. This study demonstrates the adverse effects of PP on ovarian estradiol secretion and ovulation, further evaluates the safety of PP as a preservative, and provides guidance for the use of PCPs and cosmetics by women of childbearing age.
Collapse
Affiliation(s)
- Luwei Jiao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Dongshuang Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hongwanyu Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Weiwei Chu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xueying Geng
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
33
|
Yu L, Peng F, Yuan D, Zhang L, Guo Y, Chang B, Shi X, Ding C, Liang X. Correlation study of parabens in urine, serum, and seminal plasma of adult men in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41120-41126. [PMID: 33774781 DOI: 10.1007/s11356-021-13625-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
The adverse effects of parabens raise concerns about their extensive use as preservatives in consumer products, especially in cosmetics. Until now, their distribution and excretion in humans have attracted little attention. Here, we quantified various agents including, for the first time, methyl-; ethyl-; n-propyl-; n-butyl-, and i-butylparaben (MeP, EtP, PrP, n-BuP, i-BuP); methyl- and ethyl-protocatechuate (OH-MeP and OH-EtP); hydroxybenzoic acid (4-HB); and 3,4-dihydroxybenzoic acid (3,4-DHB) in urine, serum, and seminal plasma samples from 50 healthy Chinese men in Beijing, China. Urine paraben concentrations were 1-2 orders of magnitudes higher than those in serum and seminal plasma. MeP and PrP were predominant and correlated with each other in the urine, serum, and seminal plasma. In urine, we observed a significant correlation between MeP and OH-MeP; EtP and OH-EtP; and 4-HB and 3,4-DHB concentrations. All these results provide new information on parabens as biomarkers for the assessment of exposure.
Collapse
Affiliation(s)
- Lijia Yu
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
| | - Fangda Peng
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
| | - Dong Yuan
- Department of Male Clinical Research, the Key Laboratory of Male Reproductive Health of National Health Commission of PRC, Human Sperm Bank, Research Institute of National Health Commission, Beijing, 100081, China
| | - Linyuan Zhang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Ying Guo
- Department of Male Clinical Research, the Key Laboratory of Male Reproductive Health of National Health Commission of PRC, Human Sperm Bank, Research Institute of National Health Commission, Beijing, 100081, China
| | - Bing Chang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Xiaodong Shi
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China.
| | - Xiaowei Liang
- Department of Male Clinical Research, the Key Laboratory of Male Reproductive Health of National Health Commission of PRC, Human Sperm Bank, Research Institute of National Health Commission, Beijing, 100081, China.
| |
Collapse
|
34
|
Fucic A, Duca RC, Galea KS, Maric T, Garcia K, Bloom MS, Andersen HR, Vena JE. Reproductive Health Risks Associated with Occupational and Environmental Exposure to Pesticides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126576. [PMID: 34207279 PMCID: PMC8296378 DOI: 10.3390/ijerph18126576] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
A marked reduction in fertility and an increase in adverse reproductive outcomes during the last few decades have been associated with occupational and environmental chemical exposures. Exposure to different types of pesticides may increase the risks of chronic diseases, such as diabetes, cancer, and neurodegenerative disease, but also of reduced fertility and birth defects. Both occupational and environmental exposures to pesticides are important, as many are endocrine disruptors, which means that even very low-dose exposure levels may have measurable biological effects. The aim of this review was to summarize the knowledge collected between 2000 and 2020, to highlight new findings, and to further interpret the mechanisms that may associate pesticides with infertility, abnormal sexual maturation, and pregnancy complications associated with occupational, environmental and transplacental exposures. A summary of current pesticide production and usage legislation is also included in order to elucidate the potential impact on exposure profile differences between countries, which may inform prevention measures. Recommendations for the medical surveillance of occupationally exposed populations, which should be facilitated by the biomonitoring of reduced fertility, is also discussed.
Collapse
Affiliation(s)
- Aleksandra Fucic
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-15682500; Fax: +3814673303
| | - Radu C. Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, National Health Laboratory, L-3555 Dudelange, Luxembourg;
- Centre for Environment and Health, KU Leuven, 3001 Leuven, Belgium
| | - Karen S. Galea
- Institute of Occupational Medicine, Edinburgh EH14 4AP, UK;
| | - Tihana Maric
- Medical School, University of Zagreb, 10000 Zagreb, Croatia;
| | - Kelly Garcia
- Department of Global and Community Health, George Mason University, Fairfax, VA 22030, USA; (K.G.); (M.S.B.)
| | - Michael S. Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA 22030, USA; (K.G.); (M.S.B.)
| | - Helle R. Andersen
- Department of Public Health, University of Southern Denmark, DK-5000 Odense C, Denmark;
| | - John E. Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
35
|
Tran TM, Tran-Lam TT, Mai HHT, Bach LHT, Nguyen HMN, Trinh HT, Dang LT, Minh TB, Quan TC, Hoang AQ. Parabens in personal care products and indoor dust from Hanoi, Vietnam: Temporal trends, emission sources, and non-dietary exposure through dust ingestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143274. [PMID: 33183808 DOI: 10.1016/j.scitotenv.2020.143274] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of seven typical parabens was investigated in several types of personal care products (PCPs) sold at supermarkets and in indoor dust samples collected from houses, laboratories, and medical stores in Hanoi, Vietnam. Parabens were frequently detected in PCPs regardless of the paraben indication in their ingredient labels. However, concentrations of parabens in labeled products (median 3280; range 1370-5610 μg/g) were much higher than those found in non-labeled products (69.4; not detected - 356 μg/g). Parabens were also measured in indoor dust samples of this study at elevated concentrations, ranging from not detected to 1650 (median 286 ng/g). Levels of parabens in the indoor dust samples collected in 2019 decreased in the order: house > medical store > laboratory dust, however, the difference was not statistically significant. Interestingly, levels of parabens in Vietnamese house dust exhibited an increasing trend over time, for example, mean/median concentrations of parabens in house dust samples collected in 2014, 2017, and 2019 were 245/205, 310/264, and 505/379 ng/g, respectively. Methylparaben was found at the highest frequency and concentrations in both PCPs and indoor dust samples. Mean exposure doses of total parabens through dust ingestion were estimated to be 2.02, 1.61, 0.968, 0.504, and 0.192 ng/kg-bw/d for infants, toddlers, children, teenagers, and adults, respectively. Further studies on the distribution, emission behavior, potential sources, and negative impacts of parabens in different environmental media in Vietnam are needed.
Collapse
Affiliation(s)
- Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam.
| | - Thanh-Thien Tran-Lam
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam
| | - Hang Hong Thi Mai
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Lan Hong Thi Bach
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Ha My Nu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam; Ha Tinh University, Cam Vinh Commune, Cam Xuyen District, Ha Tinh 45000, Viet Nam
| | - Hue Thi Trinh
- Institute of Theoretical and Applied Research, Duy Tan University, Hanoi 10000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 50000, Viet Nam
| | - Lieu Thi Dang
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10000, Viet Nam
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Thuy Cam Quan
- Viet Tri University of Industry (VUI), Viet Tri, Phu Tho 35000, Viet Nam
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam; Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| |
Collapse
|
36
|
Kim H, Choe SA, Kim OJ, Kim SY, Kim S, Im C, Kim YS, Yoon TK. Outdoor air pollution and diminished ovarian reserve among infertile Korean women. Environ Health Prev Med 2021; 26:20. [PMID: 33573606 PMCID: PMC7879617 DOI: 10.1186/s12199-021-00942-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mounting evidence implicates an association between ambient air pollution and impaired reproductive potential of human. Our study aimed to assess the association between air pollution and ovarian reserve in young, infertile women. Methods Our study included 2276 Korean women who attended a single fertility center in 2016–2018. Women’s exposure to air pollution was assessed using concentrations of particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3) that had been collected at 269 air quality monitoring sites. Exposure estimates were computed for 1, 3, 6, and 12 months prior to the ovarian reserve tests. Anti-Müllerian hormone (AMH) ratio (defined as an observed-to-expected AMH based on age) and low AMH (defined as < 0.5 ng/mL) were employed as indicators of ovarian reserve. We included a clustering effect of 177 districts in generalized estimating equations approach. A secondary analysis was conducted restricting the analyses to Seoul residents to examine the association in highly urbanized setting. Results The mean age was 36.6 ± 4.2 years and AMH level was 3.3 ± 3.1 ng/mL in the study population. Average AMH ratio was 0.8 ± 0.7 and low AMH was observed in 10.3% of women (n=235). The average concentration of six air pollutants was not different between the normal ovarian reserve and low AMH groups for all averaging periods. In multivariable models, an interquartile range (IQR)-increase in 1 month-average PM10 was associated with decrease in AMH ratio among total population (β= −0.06, 95% confidence interval: −0.11, 0.00). When we restrict our analysis to those living in Seoul, IQR-increases in 1 and 12 month-average PM2.5 were associated with 3% (95% CI: −0.07, 0.00) and 10% (95% CI: −0.18, −0.01) decrease in AMH ratio. The ORs per IQR increase in the six air pollutants were close to null in total population and Seoul residents. Conclusions In a cohort of infertile Korean women, there was a suggestive evidence of the negative association between ambient PM concentration and ovarian reserve, highlighting the potential adverse impact of air pollution on women’s fertility. Supplementary Information The online version contains supplementary material available at 10.1186/s12199-021-00942-4.
Collapse
Affiliation(s)
- Hannah Kim
- Department of Obstetrics and Gynecology, CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, Korea
| | - Seung-Ah Choe
- Department of Obstetrics and Gynecology, CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, Korea. .,Department of Preventive Medicine, Korea University College of Medicine, Seoul, 02841, South Korea. .,Department of Epidemiology & Health Informatics, Graduate School of Public Health, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Korea.
| | - Ok-Jin Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Korea
| | - Sun-Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Korea
| | - Seulgi Kim
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, 08826, Korea
| | - Changmin Im
- Department of Geography, Korea University, Seoul, 02841, South Korea
| | - You Shin Kim
- Department of Obstetrics and Gynecology, CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, Korea
| | - Tae Ki Yoon
- Department of Obstetrics and Gynecology, CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, 04637, Korea
| |
Collapse
|
37
|
Laws MJ, Neff AM, Brehm E, Warner GR, Flaws JA. Endocrine disrupting chemicals and reproductive disorders in women, men, and animal models. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:151-190. [PMID: 34452686 PMCID: PMC9743013 DOI: 10.1016/bs.apha.2021.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter covers the known effects of endocrine disrupting chemicals (EDCs) on reproductive disorders. The EDCs represented are highly studied, including plasticizers (bisphenols and phthalates), chemicals in personal care products (parabens), persistent environmental contaminants (polychlorinated biphenyls), and chemicals in pesticides or herbicides. Both female and male reproductive disorders are reviewed in the chapter. Female disorders include infertility/subfertility, irregular reproductive cycles, early menopause, premature ovarian insufficiency, polycystic ovarian syndrome, endometriosis, and uterine fibroids. Male disorders include infertility/subfertility, cryptorchidism, and hypospadias. Findings from both human and animal studies are represented.
Collapse
|
38
|
Guth M, Pollock T, Fisher M, Arbuckle TE, Bouchard MF. Concentrations of urinary parabens and reproductive hormones in girls 6-17 years living in Canada. Int J Hyg Environ Health 2020; 231:113633. [PMID: 33045491 DOI: 10.1016/j.ijheh.2020.113633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Parabens are chemical substances used as preservatives for their antibacterial and antifungal properties in many personal care products, and sometimes in pharmaceutical and food products. Concerns for adverse human health effects arise from animal studies showing endocrine disrupting effects, such as changes in the timing of puberty and alterations in reproductive hormone activity. Our objective was to examine the association between urinary concentrations of parabens and serum concentrations of estradiol, progesterone, follicle stimulating hormone [FSH], and luteinizing hormone [LH]) in girls from the general population. METHODS We conducted a cross-sectional study in girls ages 6-17 years, using data from the Canadian Health Measures Survey (2014-2015). The association between concentrations of creatinine-standardized urinary parabens and serum hormone concentrations was analyzed with multivariable linear regressions, adjusting for potential confounders (i.e., age, body mass index, ethnicity, household income, sampling season; prenatal exposure to cigarette smoke for girls 6-11 years). RESULTS The 382 girls and teens included in the study had a mean age of 11.0 years; 76% were white and 73% had a body mass index in the range normal/underweight. Most participants (92%) had least one paraben detected in their urine. Girls with higher urinary paraben concentrations had significantly lower serum concentrations of estradiol, LH, and FSH, but not of progesterone. A doubling in the sum of urinary parabens was associated with 5.8% lower estradiol (95% CI -9.3, -2.1), 4.2% lower FSH (95% CI -7.9, -0.3), and 10.8% lower LH (95% CI -17.4, -3.7). The analysis of individual compounds showed that all four parabens were similarly associated with lower concentrations of estradiol, FSH, and LH. We further analyzed younger girls (6-11 years) and found that urinary parabens were similarly associated with lower estradiol and LH (doubling in the sum of parabens associated with 5.9% lower estradiol [95% CI -10.5, -1.0] and 10.9% lower LH [95% CI -20.2, -0.6]). In this younger subgroup, the association estimate for FSH, however, was attenuated and no longer statistically significant. DISCUSSION We observed that exposure to parabens was associated with reduced concentrations of circulating reproductive hormones, suggesting that these chemicals could alter the development and function of the endocrine system in girls. Further prospective research using long-term assessment of parabens exposure and of reproductive development may better determine endocrine disrupting effects of parabens.
Collapse
Affiliation(s)
- Margot Guth
- Department of Environmental and Occupational Health, School of Public Health, Universite de Montreal, Montreal, Quebec, Canada
| | - Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mandy Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Maryse F Bouchard
- Department of Environmental and Occupational Health, School of Public Health, Universite de Montreal, Montreal, Quebec, Canada; CHU Sainte-Justine Research Centre Mother and Child University Hospital Center, Canada.
| |
Collapse
|