1
|
Tesfaye A, Fekede M, Getu F, Mekuria S, Abebe T, Tollosa D, Barsenga S, Tahir B, Kedir Roble A, Tesfaye S, Walle M. Vertical Transmission of Group B Streptococcus, Prevalence, Associated Factors, and Antimicrobial Susceptibility Profile among Newborns Delivered at Health Facilities in Jigjiga City, Ethiopia. Int J Microbiol 2024; 2024:5673366. [PMID: 39129911 PMCID: PMC11316908 DOI: 10.1155/2024/5673366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/09/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Background Group B Streptococcus (GBS) colonizes the rectovaginal area of women and vertically transmitted to neonates. This bacterium has been linked to severe neonatal complications including pneumonia, septicemia, and meningitis. GBS shows an increased resistance to commonly used antibiotics. Thus, we assessed the vertical transmission, contributing factors, and antimicrobial resistance patterns of GBS among newborns delivered at selected Hospitals in Jigjiga City. Methods Hospital-based cross-sectional study was conducted from 1st June 2022 to 30th April 2023. A total of 849 pregnant women admitted to delivery wards from two hospitals were screened for GBS colonization. Subsequently, 162 GBS-colonized pregnant women and their newborn babies were included. A semistructured questionnaire and a review of medical records were used to collect the sociodemographic and clinical characteristics of the study participants. Trained nurses collected swab samples from the vaginal-rectal area of pregnant women and the nasal, ear canal, and umbilical areas of newborn babies. Samples were inoculated on Todd Hewitt broth media supplemented with gentamycin and nalidixic acid and then subcultured on blood agar. Colony characteristics, Gram stain, and catalase test were used for identification. All gram-positive cocci, B-hemolytic, and catalase-negative isolates were further identified using Christie-Atkins-Munch-Petersen and a bacitracin test. The modified Kirby-Bauer disk diffusion method was used for antimicrobial susceptibility testing. Data were analyzed using SPSS version 26. Logistic regression analysis was used to determine the factors associated with vertical transmission of GBS, and statistical significance was set at p values <0.05. Result The overall vertical transmission rate was 41.4% (67/162). History of preterm labor (Adjusted odds ratio (AOR) = 2.25; 95% CI: 1.11, 4.59), history of urinary tract infection (UTI) at current pregnancy (AOR = 2.25; 95% CI: 1.11, 4.59), and prolonged rupture of membranes greater than 18 hours (AOR = 2.23; 95% CI: 1.13, 4.4) were significantly associated with vertical transmission of GBS from previously colonized mothers to their newborn babies. Regarding GBS antibiotic susceptibility profile, a significant degree of resistance was observed to penicillin (29.9%), tetracycline (22.4%), ampicillin (20.9%), and clindamycin (19.4%). Conclusion Our study documented a high prevalence of vertical transmission rate of GBS from pregnant women to their babies, with an overall transmission rate of 41.4%. The study identified the presence of antimicrobial-resistant GBS to penicillin, ampicillin, clindamycin, ciprofloxacin, and chloramphenicol. The organism was susceptible to vancomycin, followed by azithromycin, ceftriaxone, and erythromycin. Our study also reported MDR at 13.4%. Based on our findings, there is a need for antenatal culture-based GBS screening, maternal vaccination, and large-scale epidemiological and serotype identification studies to be put into practice in the study area.
Collapse
Affiliation(s)
- Addisu Tesfaye
- Department of Medical Laboratory ScienceCollege of Medicine and Health SciencesJigjiga University, Jigjiga, Ethiopia
| | - Mahlet Fekede
- Department of PediatricsCollege of Medicine and Health SciencesJigjiga University, Jigjiga, Ethiopia
| | - Fasil Getu
- Department of Medical Laboratory ScienceCollege of Medicine and Health SciencesJigjiga University, Jigjiga, Ethiopia
| | - Surafel Mekuria
- Department of Medical Laboratory ScienceCollege of Medicine and Health SciencesJigjiga University, Jigjiga, Ethiopia
| | - Tigist Abebe
- Department of Medical Laboratory ScienceCollege of Medicine and Health SciencesJigjiga University, Jigjiga, Ethiopia
| | - Daniel Tollosa
- Department of Medical Laboratory ScienceCollege of Medicine and Health SciencesJigjiga University, Jigjiga, Ethiopia
| | - Shamil Barsenga
- Department of Medical Laboratory ScienceCollege of Medicine and Health SciencesJigjiga University, Jigjiga, Ethiopia
| | - Bawlah Tahir
- Department of Medical Laboratory ScienceCollege of Medicine and Health SciencesJigjiga University, Jigjiga, Ethiopia
| | - Abdurahman Kedir Roble
- Department of MidwiferySchool of NursingCollege of Medicine and Health ScienceJigjiga University, Jigjiga, Ethiopia
| | - Sara Tesfaye
- Department of Medical Laboratory ScienceCollege of Medicine and Health SciencesJigjiga University, Jigjiga, Ethiopia
| | - Muluken Walle
- Department of Medical Laboratory ScienceCollege of Medicine and Health SciencesJigjiga University, Jigjiga, Ethiopia
| |
Collapse
|
2
|
Vaseghi A, Parchin RA, Chamanie KR, Herb M, Maleki H, Sadeghizadeh M. Encapsulation of propolis extracted with methylal in the chitosan nanoparticles and its antibacterial and cell cytotoxicity studies. BMC Complement Med Ther 2024; 24:165. [PMID: 38641781 PMCID: PMC11027551 DOI: 10.1186/s12906-024-04472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
In this study we develop novel type of antibacterial chitosan-propolis NPs to improve theantimicrobial activity against various pathogens. To this aim, we primarily extracted propolis with methylal and ethanol as green solvents and its encapsulation with chitosan NPs. The developed propolis loaded chitosan NPs indicated antimicrobial and anti-biofilm properties against various gram positive and negative. FTIR revealed the successful encapsulation of the propolis extract with Ethanol (PE) and Methylal (PM) into the chitosan nano career matrix. HPLC and GC-MASS also confirmed the presence of flavonoids and phenols compounds of propolis extracted with both solvents. In addition, we confirmed the total phenolic and flavonoid compounds in propolis by calorimetric method of Folin-Ciocalteu and aluminum trichloride complex formation assays, respectively. PE-CH and PM-CH were optimized regarding physicochemical properties such as particle size, zeta potential, and poly dispersity index (PDI) index. DLS and SEM micrographs confirmed a spherical morphology in a range of 360-420 nm with Z potential values of 30-48 mV and PDI of 0.105-0.166 for PE-CH and PM-CH, respectively. The encapsulation efficiency was evaluated using colorimetric analysis, with median values ranging from 90 to 92%. The MIC values within the range of 2 to 230 µg/ml and MBC values between 3 to 346 μg/ml against both gram-positive and negative bacteria. While both PE and PM showed a significant reduction in the number of E. coli, S. aureus, and S. epidermidis, the use of PE-CH and PM-CH led to a statistically significant and greater reduction in number of E. coli, S. aureus, and S. epidermidis strains on the biofilm, pre-formed biofilm and planktonic phases. Besides, the DPPH assay showed significant antioxidant activity for these NPs within the range of 36 to 92%. MTT assay for MHFB-1, HFF, L929, MDF, and MCF-7 cells exhibited statistically significant differences in each other that show the IC50 between 60-160 µg/ml for normal cells and 20 for cancer cells. Finally the present study indicated that both PM and PM-CH greater than PE and PE-CH in which contain high flavonoid and phenolic contents with a high antioxidation potential antioxidant properties, which could be beneficial for cell proliferation and antibiotic and anticancer applications.
Collapse
Affiliation(s)
- Akbar Vaseghi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Ashrafi Parchin
- Excir Faravaran Sabalan Company, Ardabil Science and Technology Park, Ardabil, Iran
| | | | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, 50935, Germany
| | - Hajar Maleki
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne, 50939, Germany
- Center for Molecular Medicine Cologne, CMMC Research Center, Cologne, 50931, Germany
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal AleAhmad St, Tehran, Iran.
| |
Collapse
|
3
|
Dwivedi GR, Pathak N, Tiwari N, Negi AS, Kumar A, Pal A, Sharma A, Darokar MP. Synergistic Antibacterial Activity of Gallic Acid Based Chalcone Indl 2 by Inhibiting Efflux Pump Transporters. Chem Biodivers 2024; 21:e202301820. [PMID: 38372508 DOI: 10.1002/cbdv.202301820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/20/2024]
Abstract
As a part of novel discovery of drugs from natural resources, present study was undertaken to explore the antibacterial potential of chalcone Indl-2 in combination with different group of antibiotics. MIC of antibiotics was reduced up to eight folds against the different cultures of E. coli by both chalcones. Among the two compounds, the i. e. 1-(3', 4,'5'-trimethoxyphenyl)-3-(3-Indyl)-prop-2-enone (6, Indl-2), a chalcone derivative of gallic acid (Indl-2) was better along with tetracycline (TET) worked synergistically and was found to inhibit efflux transporters as obvious by ethidium bromide efflux confirmed by ATPase assays and docking studies. In combination, Indl-2 kills the MDREC-KG4 cells, post-antibiotic effect (PAE) of TET was prolonged and mutant prevention concentration (MPC) of TET was also decreased. In-vivo studies revealed that Indl-2 reduces the concentration of TNF-α. In acute oral toxicity study, Indl-2 was non-toxic and well tolerated up-to dose of 2000 mg/kg. Perhaps, the study is going to report gallic acid derived chalcone as synergistic agent acting via inhibiting the primary efflux pumps.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Microbiology Department, ICMR-Regional Medical Research Centre, Gorakhpur, 273013, U.P., India
| | - Nandini Pathak
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Nimisha Tiwari
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
| | - Arvind Singh Negi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
| | - Anirban Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| |
Collapse
|
4
|
Zhang N, Li T, Pan H, Wang Y, Li Q, Luan J, He X, Shi W, Li Y, Wang C, Zhang F, Hu W. Genetic components of Escherichia coli involved in its complex prey-predator interaction with Myxococcus xanthus. Front Microbiol 2023; 14:1304874. [PMID: 38116529 PMCID: PMC10728724 DOI: 10.3389/fmicb.2023.1304874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Myxococcus xanthus and Escherichia coli represent a well-studied microbial predator-prey pair frequently examined in laboratory settings. While significant progress has been made in comprehending the mechanisms governing M. xanthus predation, various aspects of the response and defensive mechanisms of E. coli as prey remain elusive. In this study, the E. coli MG1655 large-scale chromosome deletion library was screened, and a mutant designated as ME5012 was identified to possess significantly reduced susceptibility to predation by M. xanthus. Within the deleted region of ME5012 encompassing seven genes, the significance of dusB and fis genes in driving the observed phenotype became apparent. Specifically, the deletion of fis resulted in a notable reduction in flagellum production in E. coli, contributing to a certain level of resistance against predation by M. xanthus. Meanwhile, the removal of dusB in E. coli led to diminished inducibility of myxovirescin A production by M. xanthus, accompanied by a slight decrease in susceptibility to myxovirescin A. These findings shed light on the molecular mechanisms underlying the complex interaction between M. xanthus and E. coli in a predatory context.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Tingyi Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yipeng Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Qi Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Jia Luan
- Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Wenyuan Shi
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, United States
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Busila M, Musat V, Alexandru P, Romanitan C, Brincoveanu O, Tucureanu V, Mihalache I, Iancu AV, Dediu V. Antibacterial and Photocatalytic Activity of ZnO/Au and ZnO/Ag Nanocomposites. Int J Mol Sci 2023; 24:16939. [PMID: 38069261 PMCID: PMC10706707 DOI: 10.3390/ijms242316939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The use of a combination of nanoparticles as antimicrobial agents can be one strategy to overcome the tendency of microbes to become resistant to antibiotic action. Also, the optimization of nano-photocatalysts to efficiently remove persistent pollutants from wastewater is a hot topic. In this study, two composites ZnO/Au (1% wt.) and ZnO/Ag (1% wt.) were synthesized by simple aqueous solution methods. The structure and morphology of the r nanocomposites were analyzed by structural and optical characterization methods. The formation of AuNPs and AgNPs in these experiments was also discussed. The antimicrobial properties of ZnO, ZnO/Au, and ZnO/Ag nanomaterials were investigated against Gram-negative bacteria (Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus). The results showed an increase of 80% in the antimicrobial activity of ZnO/Au against Pseudomonas aeruginosa compared with 30% in the case of ZnO/Ag. Similarly, in the case of the S. aureus strain tests, ZnO/Au increased the antimicrobial activity by 55% and ZnO/Ag by 33%. The photocatalytic tests indicated an improvement in the photocatalytic degradation of methylene blue (MB) under UV irradiation using ZnO/Au and ZnO/Ag nanocomposites compared to bare ZnO. The photocatalytic degradation efficiency of ZnO after 60 min of UV irradiation was ∼83%, while the addition of AuNPs enhanced the degradation rate to ∼95% (ZP2), and AgNP presence enhanced the efficiency to ∼98%. The introduction of noble metallic nanoparticles into the ZnO matrix proved to be an effective strategy to increase their antimicrobial activity against P. aeruginosa and S. aureus, and their photocatalytic activity was evaluated through the degradation of MB dye. Comparing the enhancing effects of Au and Ag, it was found that ZnO/Au was a better antimicrobial agent while ZnO/Ag was a more effective photocatalyst under UV irradiation.
Collapse
Affiliation(s)
- Mariana Busila
- Centre of Nanostructures and Functional Materials-CNMF, Faculty of Engineering, “Dunarea de Jos” University of Galati, Romania, Domneasca Street 111, 800201 Galati, Romania (P.A.)
| | - Viorica Musat
- Centre of Nanostructures and Functional Materials-CNMF, Faculty of Engineering, “Dunarea de Jos” University of Galati, Romania, Domneasca Street 111, 800201 Galati, Romania (P.A.)
| | - Petrica Alexandru
- Centre of Nanostructures and Functional Materials-CNMF, Faculty of Engineering, “Dunarea de Jos” University of Galati, Romania, Domneasca Street 111, 800201 Galati, Romania (P.A.)
| | - Cosmin Romanitan
- National Research and Development Institute in Microtechnologies–IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania; (C.R.); (O.B.); (I.M.)
| | - Oana Brincoveanu
- National Research and Development Institute in Microtechnologies–IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania; (C.R.); (O.B.); (I.M.)
| | - Vasilica Tucureanu
- National Research and Development Institute in Microtechnologies–IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania; (C.R.); (O.B.); (I.M.)
| | - Iuliana Mihalache
- National Research and Development Institute in Microtechnologies–IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania; (C.R.); (O.B.); (I.M.)
| | - Alina-Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania
- Medical Laboratory Department, Clinical Hospital for Infectious Diseases “Sf. Cuvioasa Parascheva”, 800179 Galati, Romania
| | - Violeta Dediu
- National Research and Development Institute in Microtechnologies–IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania; (C.R.); (O.B.); (I.M.)
| |
Collapse
|
6
|
Kapley A, Sheeraz MS, Kukade S, Ansari A, Qureshi A, Bajaj A, Khan NA, Tandon S, Jain R, Dudhwadkar S, Sharma S, Siva AB. Antibiotic resistance in wastewater: Indian scenario. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122586. [PMID: 37741538 DOI: 10.1016/j.envpol.2023.122586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
The surge of Antibiotic Resistant Bacteria (ARB) in the environment is poised to be the next health threat. World Health Organisation's (WHO's) Global Antimicrobial Surveillance System (GLASS) report indicates that developing countries may be at a greater risk. Among various factors, the major driver here could be untreated wastewater and poor sanitation. Bacteria are extremely adaptable to their surroundings and develop Antimicrobial Resistance (AMR) when exposed to antibiotics and other pollutants that cause microbial stress. Thus, untreated domestic wastewater drains could easily become hotspots for the occurrence of ARBs. This study reports surveillance of sewage-carrying drains across four urban cities in India and demonstrated the presence of ARBs in the bacterial community against 7 classes of antibiotics, namely, β-Lactams, Chloramphenicol, Glycopeptides, Macrolides, Tetracycline, Third Generation Cephalosporin, and Quinolones. Untreated domestic wastewater flowing in target drains was collected twice a month, for a period of six months and the microbial community was subjected to Antibiotic Susceptibility Testing (AST) by plate assays. The zone of inhibition was recorded and interpreted as per the interpretive chart of The Clinical & Laboratory Standards Institute (CLSI) & The European Committee on Antimicrobial Susceptibility Testing (EUCAST). The total number of samples showing resistance against antibiotics was used to define an Antibiotic Resistance Index (ARI), calculated for all 20 sampling sites (drains). Results demonstrated that the highest ARI was observed in Delhi and Mumbai, ranging from 0.81 to 0.92 in Delhi and 0.49-0.56 in Mumbai. This surveillance study reveals the antibiotic resistance pattern of the representative bacterial community in the drains and goes beyond few targeted bacterial species. The alarming presence of antibiotic resistant bacterial community highlights the concern of ARBs being the next looming health threat. This report aims to demonstrates the importance of considering sewage surveillance on routine basis by state authorities.
Collapse
Affiliation(s)
- Atya Kapley
- CSIR- National Environmental Engineering Research Institute, Nagpur, 440020, India.
| | | | - Sushrut Kukade
- CSIR- National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Aamir Ansari
- CSIR- National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Asifa Qureshi
- CSIR- National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Abhay Bajaj
- CSIR- National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Noor Afshan Khan
- CSIR- National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Shalini Tandon
- CSIR- National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Rachana Jain
- CSIR- National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Swapnil Dudhwadkar
- CSIR- National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Shubhi Sharma
- CSIR- National Environmental Engineering Research Institute, Nagpur, 440020, India
| | | |
Collapse
|
7
|
Tao JJ, Li SH, Wu JH, Peng XX, Li H. pts promoter influences antibiotic resistance via proton motive force and ROS in Escherichia coli. Front Microbiol 2023; 14:1276954. [PMID: 38029124 PMCID: PMC10661408 DOI: 10.3389/fmicb.2023.1276954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Glucose level is related to antibiotic resistance. However, underlying mechanisms are largely unknown. Methods Since glucose transport is performed by phosphotransferase system (PTS) in bacteria, pts promoter-deleted K12 (Δpts-P) was used as a model to investigate effect of glucose metabolism on antibiotic resistance. Gas chromatography-mass spectrometry based metabolomics was employed to identify a differential metabolome in Δpts-P compared with K12, and with glucose as controls. Results Δpts-P exhibits the resistance to β-lactams and aminoglycosides but not to quinolones, tetracyclines, and macrolide antibiotics. Inactivated pyruvate cycle was determined as the most characteristic feature in Δpts-P, which may influence proton motive force (PMF), reactive oxygen species (ROS), and nitric oxide (NO) that are related to antibiotic resistance. Thus, they were regarded as three ways for the following study. Glucose promoted PMF and β-lactams-, aminoglycosides-, quinolones-mediated killing in K12, which was inhibited by carbonyl cyanide 3-chlorophenylhydrazone. Exogenous glucose did not elevated ROS in K12 and Δpts-P, but the loss of pts promoter reduced ROS by approximately 1/5, which was related to antibiotic resistance. However, NO was neither changed nor related to antibiotic resistance. Discussion These results reveal that pts promoter regulation confers antibiotic resistance via PMF and ROS in Escherichia coli.
Collapse
Affiliation(s)
- Jian-jun Tao
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shao-hua Li
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-han Wu
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Guangdong Litai Pharmaceutical Co. LTD, Jieyang, China
| | - Hui Li
- State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Karagiannidou S, Kopsidas I, Polemis M, Tryfinopoulou K, Zaoutis T. Antimicrobial susceptibility testing and reporting practices of public hospital microbiology laboratories in Greece, 2022: A national observational survey and call for action. Euro Surveill 2023; 28:2200766. [PMID: 37616113 PMCID: PMC10451010 DOI: 10.2807/1560-7917.es.2023.28.34.2200766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/08/2023] [Indexed: 08/25/2023] Open
Abstract
Antimicrobial resistance (AMR) in Greece is among the highest across the European Union/European Economic Area (EU/EEA), with high AMR rates even to last-line antibiotics. To better understand the clinical microbiology laboratory practices and capacities in species identification and antimicrobial susceptibility testing (AST) across public healthcare establishments in Greece, we sent a questionnaire to 98 of 128 public hospital microbiology laboratories between 1 February and 1 April 2022. Of the 73.5% (72/98) that responded, 51.4% (37/72) reported using EUCAST guidelines. Two of three laboratories used an automated instrument for species identification and AST for all laboratory samples. Broth microdilution for colistin susceptibility testing was used by 46 of the laboratories, more frequently in larger (> 400 beds) versus smaller (< 400 beds) hospitals (90.5% (19/21) vs 52.9% (27/51) respectively, p = 0.011). MALDI-TOF mass spectrometry was available in one of 10 laboratories, and more often in larger compared to smaller hospitals (p = 0.035). Although the majority of laboratories had a laboratory information system (LIS) in place, only half had the capacity to extract data directly from the LIS for the purpose of AMR surveillance; 73.6% (53/72) used restrictive antibiograms. Public microbiology laboratory AMR capacities in Greece require improvement, prioritising interventions for EUCAST guidelines implementation.
Collapse
Affiliation(s)
| | - Ioannis Kopsidas
- Center for Clinical Epidemiology and Outcomes Research (CLEO), Non-Profit Civil Partnership, Athens, Greece
| | - Michalis Polemis
- Central Public Health Laboratory, National Public Health Organization (NPHO), Vari, Greece
| | - Kyriaki Tryfinopoulou
- Central Public Health Laboratory, National Public Health Organization (NPHO), Vari, Greece
| | - Theoklis Zaoutis
- National Public Health Organization (NPHO), Athens, Greece
- The 2nd Department of Pediatrics, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece
| |
Collapse
|
9
|
Abdulmanea AA, Alharbi NS, Somily AM, Khaled JM, Algahtani FH. The Prevalence of the Virulence Genes of Staphylococcus aureus in Sickle Cell Disease Patients at KSUMC, Riyadh, Saudi Arabia. Antibiotics (Basel) 2023; 12:1221. [PMID: 37508317 PMCID: PMC10416153 DOI: 10.3390/antibiotics12071221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Staphylococcus aureus in the blood of sickle cell disease (SCD) patients may result in a significant increase in morbidity and mortality. S. aureus strains contain various virulence characteristics, including the ability to create a variety of toxins and develop drug resistance. The current study sought to assess the prevalence of S. aureus in SCD patients and to identify the pathogen's virulence characteristics. Between 2017 and 2021, blood samples and data were collected at King Saud University Medical City (KSUMC) in Riyadh, Saudi Arabia. The Vitek system PCR and gene sequencing methods were used for identification, antibiotic resistance patterns, and genetic analysis. During the study period, 47 S. aureus blood isolates (methicillin-resistant S. aureus (MRSA) 41.6% and non-MRSA 58.4%) were isolated from 2406 SCD patients. The prevalence percentages of virulence genes (finbB, sdrC, sdrD, icaA, coa, nuc, hlg, hla, finbA, clfA, efb, pvl, agr, spa, seb, sea, sec, tst, and sed) among all the isolates from the SCD patients compared with non-SCD patients (control group) were as follows: (100% vs. 100%), (100% vs. 100%), (100% vs. 100%), (100% vs. 87.5%), (100% vs. 81.3%), (100% vs. 100%), (100% vs. 100%), (100% vs. 100%), (97.9% vs. 81.3%), (97.9% vs. 100%), (97.9% vs. 87.5%), (54.3% vs. 56.3%), (46.8% vs. 75%), (42.6% vs. 43.8%), (27.7% vs. 0%), (25.5% vs. 12.5%), (12.8% vs. 6.3%), (4.3% vs. 12.5%), and (4.3% vs. 0%). Regarding the resistance genes (plaZ, mecA, ermA, ermC, tetK, tetM, and ermB) of the S. aureus strains isolated from the SCD patients compared with non-SCD patients (control group), the prevalence percentages were as follows: (100% vs. 100%), (100% vs. 56.3%), (0% vs. 31.3%), (31.9% vs. 18.8%), (40.4% vs. 25%), (0% vs. 0%), and (0% vs. 0%). As for the antibiotic (ampicillin, penicillin, amoxicillin, cefazolin, imipenem, oxacillin, erythromycin, tetracycline, azithromycin, ciprofloxacin, moxifloxacin, and levofloxacin) resistance of the S. aureus strains isolated from the SCD patients compared with non-SCD patients (control group), the prevalence percentages were as follows: (100% vs. 100%), (97.9% vs. 100%), (72.3% vs. 25%), (68.1% vs. 37.5%), (68.1% vs. 25%), (66% vs. 25%), (36.2% vs. 18.8%), (23.4% vs. 12.5%), (19.1% vs. 12.5%), (17% vs. 12.5%), (14.9% vs. 25%), and (10.6% vs. 18.7%). This study concluded that several virulence genes were present in the S. aureus strains recovered from the SCD patients at KSUMC, with all the isolates containing the finbB, sdrC, sdrD, icaA, coa, nuc, hlg, and hla genes.
Collapse
Affiliation(s)
- Adel A. Abdulmanea
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.S.A.); (J.M.K.)
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.S.A.); (J.M.K.)
| | - Ali M. Somily
- Department of Pathology, College of Medicine, King Saud University and King Saud University Medical City, P.O. Box 2925, Riyadh 11451, Saudi Arabia;
| | - Jamal M. Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (N.S.A.); (J.M.K.)
| | - Farjah H. Algahtani
- Department of Hematology, College of Medicine, King Saud University and King Saud University Medical City, P.O. Box 2925, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
10
|
Gaur P, Hada V, Rath RS, Mohanty A, Singh P, Rukadikar A. Interpretation of Antimicrobial Susceptibility Testing Using European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute (CLSI) Breakpoints: Analysis of Agreement. Cureus 2023; 15:e36977. [PMID: 37139290 PMCID: PMC10149341 DOI: 10.7759/cureus.36977] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVES Breakpoints provided by European Committee on Antimicrobial Susceptibility Testing (EUCAST) are now being used in many countries. This study was planned to ascertain the agreement in antimicrobial susceptibility using the Clinical and Laboratory Standards Institute (CLSI) and EUCAST breakpoints during the Kirby-Bauer disk diffusion method. METHODS This was a prospective observational study. Clinical isolates belonging to the family Enterobacteriaceae recovered between January and December, 2022, were included in the analysis. The diameter of the zone of inhibition of the 14 antimicrobials (viz. amoxicillin/clavulanic acid, cefazolin, ceftriaxone, cefuroxime, cefixime, aztreonam, meropenem, gentamicin, amikacin, ciprofloxacin, levofloxacin, norfloxacin, trimethoprim/sulfamethoxazole and fosfomycin) was analysed. Antimicrobial susceptibility was interpreted using CLSI 2022 and EUCAST 2022 guidelines. Results: Susceptibility data from a total of 356 isolates showed a slight increase in the percentage of resistant isolates with most of the drugs using EUCAST guidelines. The level of agreement varied from almost perfect to slight. For two drugs, i.e., fosfomycin and cefazolin, the agreement was least among the drug analysed (kappa (κ) value < 0.5, p < 0.001). For Ceftriaxone and Aztreonam, with EUCAST, susceptible (S) isolates would have been categorised in the newly redefined "I" category. It would have indicated the use of higher dosages of drugs. Conclusion: Change in the breakpoints impacts the interpretation of the susceptibility. It can also lead to a change in the dosage of the drug used for treatment. Therefore, there is an urgent need to see the impact of recent modifications "I" category of EUCAST on the clinical outcome and usage of antimicrobials.
Collapse
|
11
|
Sharma T, Kumar R, Kalra JS, Singh S, Bhalla GS, Bhardwaj A. Galaxy ASIST: A web-based platform for mapping and assessment of global standards of antimicrobial susceptibility: A case study in Acinetobacter baumannii genomes. Front Microbiol 2023; 13:1041847. [PMID: 36817105 PMCID: PMC9933921 DOI: 10.3389/fmicb.2022.1041847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/21/2022] [Indexed: 01/28/2023] Open
Abstract
Introduction Antimicrobial susceptibility testing (AST) is used to determine the susceptibility of an organism to antibiotics. The determination of susceptibility is based on MIC breakpoints and is provided by EUCAST and CLSI. Likewise, phenotypic classification criteria developed by CDC/ECDC are used for the classification of pathogens into susceptible, multidrug-resistant, extremely drug-resistant, or totally drug-resistant categories. Whole-genome sequencing (WGS)-based diagnosis is now supplementing existing gold-standard microbiology methods for rapid and more precise AST, and therefore, EUCAST recommended quality criteria to assess whole-genome sequence for reporting the same. In this study, these three global standards, MIC breakpoints, phenotypic classification, and genome quality, are applied to the largest publicly available data for Acinetobacter baumannii (AB), the most critical priority pathogen identified by WHO. Materials and Methods The drug sensitivity profile and genomes for isolates of AB were obtained from PATRIC and evaluated with respect to AST standards (CLSI and EUCAST). Whole genome quality assessment and antimicrobial resistance mapping is performed with QUAST and ABRicate, respectively. Four in-house methods are developed for mapping standards and are integrated into a Galaxy workflow based system, Galaxy-ASIST. Analysis of the extent of agreement between CLSI 2022 and EUCAST 2022 for antibiotics was carried out using Cohen's kappa statistics. Results and Discussion An automated pipeline, Galaxy-ASIST, is designed and developed for the characterization of clinical isolates based on these standards. Evaluation of over 6,500 AB strains using Galaxy-ASIST indicated that only 10% of the publicly available datasets have metadata to implement these standards. Furthermore, given that CLSI and EUCAST have different MIC breakpoints, discrepancies are observed in the classification of resistant and susceptible isolates following these standards. It is, therefore, imperative that platforms are developed that allow the evaluation of ever increasing phenotypic and genome sequence datasets for AST. Galaxy-ASIST offers a centralized repository and a structured metadata architecture to provide a single globally acceptable framework for AST profiling of clinical isolates based on global standards. The platform also offers subsequent fine mapping of antimicrobial-resistant determinants. Galaxy-ASIST is freely available at https://ab-openlab.csir.res.in/asist.
Collapse
Affiliation(s)
- Tina Sharma
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Shreya Singh
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Anshu Bhardwaj
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Anshu Bhardwaj, ✉
| |
Collapse
|
12
|
Sebola DC, Oguttu JW, Kock MM, Qekwana DN. Hospital-acquired and zoonotic bacteria from a veterinary hospital and their associated antimicrobial-susceptibility profiles: A systematic review. Front Vet Sci 2023; 9:1087052. [PMID: 36699325 PMCID: PMC9868922 DOI: 10.3389/fvets.2022.1087052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background Hospital-acquired infections (HAIs) are associated with increased mortality, morbidity, and an economic burden due to costs associated with extended hospital stays. Furthermore, most pathogens associated with HAIs in veterinary medicine are zoonotic. This study used published data to identify organisms associated with HAIs and zoonosis in veterinary medicine. Furthermore, the study also investigated the antimicrobial-susceptibility profile of these bacterial organisms. Methods A systematic literature review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Search terms and five electronic databases were used to identify studies published over 20 years (2000-2020). The risk of bias was assessed using the "Strengthening the Reporting of Observational Studies in Epidemiology-Vet" (STROBE-Vet) checklist. Results Out of the identified 628 papers, 27 met the inclusion criteria for this study. Most studies (63%, 17/27) included were either from small animal or companion animal clinics/hospitals, while 5% (4/27) were from large animal clinics/hospitals inclusive of bovine and equine hospitals. Hospital-acquired bacteria were reported from environmental surfaces (33%, 9/27), animal clinical cases (29.6%, 8/27), and fomites such as cell phones, clippers, stethoscopes, and computers (14.8%, 4/27). Staphylococcus spp. was the most (63%; 17/27) reported organism, followed by Escherichia coli (19%; 5/27), Enterococcus spp. (15%, 4/27), Salmonella spp. (15%; 4/27), Acinetobacter baumannii (15%, 4/27), Clostridioides difficile (4%, 1/27), and Pseudomonas aeruginosa (4%; 1/27). Multidrug-resistant (MDR) organisms were reported in 71% (12/17) of studies linked to Methicillin-resistant Staphylococcus aureus (MRSA), Methicillin-resistant Staphylococcus pseudintermedius (MRSP), Enterococcus spp., Salmonella Typhimurium, A. baumannii, and E. coli. The mecA gene was identified in both MRSA and MRSP, the blaCMY-2 gene in E. coli and Salmonella spp., and the vanA gene in E. faecium isolate. Six studies reported organisms from animals with similar clonal lineage to those reported in human isolates. Conclusion Organisms associated with hospital-acquired infections and zoonosis have been reported from clinical cases, environmental surfaces, and items used during patient treatment and care. Staphylococcus species is the most reported organism in cases of HAIs and some isolates shared similar clonal lineage to those reported in humans. Some organisms associated with HAIs exhibit a high level of resistance and contain genes associated with antibiotic resistance.
Collapse
Affiliation(s)
- Dikeledi C. Sebola
- Section Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - James W. Oguttu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa
| | - Marleen M. Kock
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa,Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - Daniel N. Qekwana
- Section Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa,*Correspondence: Daniel N. Qekwana ✉
| |
Collapse
|
13
|
Prack McCormick B, Quiroga MP, Álvarez VE, Centrón D, Tittonell P. Antimicrobial resistance dissemination associated with intensive animal production practices in Argentina: A systematic review and meta-analysis. Rev Argent Microbiol 2023; 55:25-42. [PMID: 36137889 DOI: 10.1016/j.ram.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 10/14/2022] Open
Abstract
Abuse and misuse of antimicrobial agents has accelerated the spread of antimicrobial-resistant bacteria. The association between antimicrobial-resistant infections in humans and antimicrobial use in agriculture is complex, but well-documented. This study provides a systematic review and meta-analysis of the dissemination of antimicrobial resistance (AMR) to antimicrobials defined as critically important by the WHO, in swine, chicken, and cattle from intensive and extensive production systems in Argentina. We conducted searches in electronic databases (MEDLINE-PubMed, Web of Science, SciELO, the National System of Digital Repositories from Argentina) as well as in the gray literature. Inclusion criteria were epidemiological studies on AMR in the main food-transmitted bacteria, Salmonella spp., Campylobacter spp., Escherichia coli and Enterococcus spp., and mastitis-causing bacteria, isolated from swine, chicken, dairy and beef cattle from Argentina. This study gives evidence for supporting the hypothesis that AMR of common food-transmitted bacteria in Argentina is reaching alarming levels. Meta-analyses followed by subgroup analyses confirmed the association between the prevalence of AMR and (a) animal species (p<0.01) for streptomycin, ampicillin and tetracycline or (b) the animal production system (p<0.05) for streptomycin, cefotaxime, nalidixic acid, ampicillin and tetracycline. Moreover, swine (0.47 [0.29; 0.66]) and intensive production (0.62 [0.34; 0.83]) showed the highest pooled prevalence of multidrug resistance while dairy (0.056 [0.003; 0.524]) and extensive production (0.107 [0.043; 0.240]) showed the lowest. A research gap regarding beef-cattle from feedlot was identified. Finally, there is an urgent need for political measures meant to coordinate and harmonize AMR surveillance and regulate antimicrobial use in animal production.
Collapse
Affiliation(s)
- Barbara Prack McCormick
- Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, RP N˚4 km 2 (1836), Llavallol, Buenos Aires, Argentina.
| | - María P Quiroga
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Paraguay 2157 (PC 1121), Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica E Álvarez
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Paraguay 2157 (PC 1121), Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Centrón
- Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos, Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Paraguay 2157 (PC 1121), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Pablo Tittonell
- Agroecology, Environment and Systems Group, Instituto de Investigaciones Forestales y Agropecuarias de Bariloche, Instituto Nacional de Tecnologia Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas (IFAB, INTA-CONICET), Modesta Victoria 4450 - CC 277 (8400), San Carlos de Bariloche, Río Negro, Argentina; Groningen Institute of Evolutionary Life Sciences, Groningen University, PO Box 11103, 9700 CC Groningen, The Netherlands
| |
Collapse
|
14
|
Tetz G, Tetz V. Overcoming Antibiotic Resistance with Novel Paradigms of Antibiotic Selection. Microorganisms 2022; 10:2383. [PMID: 36557636 PMCID: PMC9781420 DOI: 10.3390/microorganisms10122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Conventional antimicrobial susceptibility tests, including phenotypic and genotypic methods, are insufficiently accurate and frequently fail to identify effective antibiotics. These methods predominantly select therapies based on the antibiotic response of only the lead bacterial pathogen within pure bacterial culture. However, this neglects the fact that, in the majority of human infections, the lead bacterial pathogens are present as a part of multispecies communities that modulate the response of these lead pathogens to antibiotics and that multiple pathogens can contribute to the infection simultaneously. This discrepancy is a major cause of the failure of antimicrobial susceptibility tests to detect antibiotics that are effective in vivo. This review article provides a comprehensive overview of the factors that are missed by conventional antimicrobial susceptibility tests and it explains how accounting for these methods can aid the development of novel diagnostic approaches.
Collapse
Affiliation(s)
- George Tetz
- Human Microbiology Institute, New York, NY 100141, USA
| | | |
Collapse
|
15
|
Wypij M, Ostrowski M, Piska K, Wójcik-Pszczoła K, Pękala E, Rai M, Golińska P. Novel Antibacterial, Cytotoxic and Catalytic Activities of Silver Nanoparticles Synthesized from Acidophilic Actinobacterial SL19 with Evidence for Protein as Coating Biomolecule. J Microbiol Biotechnol 2022; 32:1195-1208. [PMID: 36116918 PMCID: PMC9628977 DOI: 10.4014/jmb.2205.05006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
Silver nanoparticles (AgNPs) have potential applications in medicine, photocatalysis, agriculture, and cosmetic fields due to their unique physicochemical properties and strong antimicrobial activity. Here, AgNPs were synthesized using actinobacterial SL19 strain, isolated from acidic forest soil in Poland, and confirmed by UV-vis and FTIR spectroscopy, TEM, and zeta potential analysis. The AgNPs were polydispersed, stable, spherical, and small, with an average size of 23 nm. The FTIR study revealed the presence of bonds characteristic of proteins that cover nanoparticles. These proteins were then studied by using liquid chromatography with tandem mass spectrometry (LC-MS/ MS) and identified with the highest similarity to hypothetical protein and porin with molecular masses equal to 41 and 38 kDa, respectively. Our AgNPs exhibited remarkable antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. The combined, synergistic action of these synthesized AgNPs with commercial antibiotics (ampicillin, kanamycin, streptomycin, and tetracycline) enabled dose reductions in both components and increased their antimicrobial efficacy, especially in the case of streptomycin and tetracycline. Furthermore, the in vitro activity of the AgNPs on human cancer cell lines (MCF-7, A375, A549, and HepG2) showed cancer-specific sensitivity, while the genotoxic activity was evaluated by Ames assay, which revealed a lack of mutagenicity on the part of nanoparticles in Salmonella Typhimurium TA98 strain. We also studied the impact of the AgNPs on the catalytic and photocatalytic degradation of methyl orange (MO). The decomposition of MO was observed by a decrease in intensity of absorbance within time. The results of our study proved the easy, fast, and efficient synthesis of AgNPs using acidophilic actinomycete SL19 strain and demonstrated the remarkable potential of these AgNPs as anticancer and antibacterial agents. However, the properties and activity of such particles can vary by biosynthesized batch.
Collapse
Affiliation(s)
- Magdalena Wypij
- Department of Microbiology, Nicolaus Copernicus University, Torun 87-100, Poland,Corresponding author Phone: +48 (611)31-79 Fax: +48 (611)31-79 E-mail:
| | - Maciej Ostrowski
- Department of Biochemistry, Nicolaus Copernicus University, Torun 87-100, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University, Torun 87-100, Poland,Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati 444602, India
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University, Torun 87-100, Poland
| |
Collapse
|
16
|
Clinical Prevalence, Antibiogram Profiling and Gompertz Growth Kinetics of Resistant Staphylococcus epidermidis Treated with Nanoparticles of Rosin Extracted from Pinus roxburghii. Antibiotics (Basel) 2022; 11:antibiotics11091270. [PMID: 36140049 PMCID: PMC9495812 DOI: 10.3390/antibiotics11091270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
The rise of methicillin-resistant Staphylococcus epidermidis (MRSE) makes it difficult to treat infections that increase morbidity and mortality rates in various parts of the world. The study’s objectives include identifying the clinical prevalence, antibiogram profile, and Gompertz growth kinetics of MRSE treated with synthetically created nanoparticles of rosin obtained from Pinus roxburghii. A total of 64 of 200 clinical isolates of S. epidermidis (32% of the total) displayed sensitivity (40.62%) and resistance (59.37%) to seven different antibiotic classes. The most sensitive patterns of antibiotic resistance were seen in 20 (78.95%) and 24 (94.74%) isolates of MRSE against piperacillin/tazobactam and cephradine, respectively. Fosfomycine was found to be the most effective antibiotic against MRSE in 34 (89.47%) isolates, followed by amoxicillin. Successfully produced, described, and used against MRSE were rosin maleic anhydride nanoparticles with a size range of 250 nm to 350 nm. Five different concentrations of 25, 50, 75, 100, and 150 mg mL−1 rosin maleic anhydride nanoparticles were investigated to treat MRSE resistance. According to Gompertz growth kinetics, the maximal growth response was 32.54% higher and the lag phase was also 10.26% longer compared to the control when the amount of rosin maleic anhydride nanoparticles was increased in the MRSE. Following the application of rosin maleic anhydride nanoparticles, the growth period is extended from 6 to 8 h. A potential mechanism for cell disintegration and distortion is put forth. This investigation came to the conclusion that rosin maleic anhydride nanoparticles better interfere with the surface of MRSE and demonstrated a preferred bacteriostatic action.
Collapse
|
17
|
Ashraf H, Gul H, Jamil B, Saeed A, Pasha M, Kaleem M, Khan AS. Synthesis, characterization, and evaluation of the antifungal properties of tissue conditioner incorporated with essential oils-loaded chitosan nanoparticles. PLoS One 2022; 17:e0273079. [PMID: 35984775 PMCID: PMC9390928 DOI: 10.1371/journal.pone.0273079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose This study aims to investigate new tissue conditioner (TC) formulations involving chitosan nanoparticles (CSNPs) and essential oils (EO) for their antifungal potential, release kinetics, and hardness. Materials and methods CSNPs were synthesized, and the separate solutions of CSNP were prepared with two types of EO, i.e., Oregano oil and Lemongrass. The EO was loaded separately in two concentrations (200 μL and 250 μL). The blank and EO-loaded CSNPs were screened against Candida albicans (C. albicans), and their minimum inhibitory concentration was established. GC Reline™ (GC corporation, USA) TC was considered a control group, whereby the four experimental groups were prepared by mixing CSNPs/EO solutions with TC powder. The antifungal effectiveness (C. albicans) and release kinetics behavior (1–6 h, 24 h, 48 h, and 72 h) was investigated. The Shore A hardness of control and experimental groups was evaluated in dry and wet modes (deionized water and artificial saliva). For statistical analysis, SPSS version 22 was used to do a one-way ANOVA post-hoc Tukey’s test. Results Compared to the control group, TCs containing blank CSNPs and CSNPs loaded with EO showed 3 and 5 log reductions in C. albicans growth, respectively. A significantly high antifungal effect was observed with TC containing lemongrass essential oil (200 μL). The continuous release of EO was detected for the first 6 hours, whereas completely stopped after 48 hours. Mean hardness values were highest for dry samples and lowest for samples stored in artificial saliva. The statistically significant difference within and between the study groups was observed in mean and cumulative essential oils release and hardness values of TCs over observed time intervals irrespective of storage media. Conclusion TCs containing essential-oil-loaded CSNPs seem a promising alternative treatment of denture-induced stomatitis, however, a further biological analysis should be taken.
Collapse
Affiliation(s)
- Hina Ashraf
- Department of Dental Materials, Army Medical College, National University of Medical Sciences, Islamabad, Pakistan
- Department of Dental Materials, Ayub Medical College, Abbottabad, Pakistan
- * E-mail:
| | - Hashmat Gul
- Department of Dental Materials, Army Medical College, National University of Medical Sciences, Islamabad, Pakistan
| | - Bushra Jamil
- Department of Dental Materials, Army Medical College, National University of Medical Sciences, Islamabad, Pakistan
- Department of Microbiology, BJ Micro Lab, Rawalpindi, Pakistan
| | - Asfia Saeed
- Department of Dental Materials, Army Medical College, National University of Medical Sciences, Islamabad, Pakistan
- Department of Dental Materials, Islamabad Medical & Dental College, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Mehwish Pasha
- Department of Dental Materials, Army Medical College, National University of Medical Sciences, Islamabad, Pakistan
- Department of Dental Materials, Shifa College of Dentistry, Shifa Tameer-e-Millat University, Rawalpindi, Pakistan
| | - Muhammad Kaleem
- Department of Dental Materials, Army Medical College, National University of Medical Sciences, Islamabad, Pakistan
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
18
|
Mary OG, Zaituni MS, Faith MP, Lughano KJ, Robinson MH, John OE. ANTIBACTERIAL EFFECTS OF SINGLE AND COMBINED CRUDE EXTRACTS OF SYNADENIUM GLAUCESCENS AND COMMIPHORA SWYNNERTONII. Afr J Infect Dis 2022; 16:9-16. [PMID: 36124327 PMCID: PMC9480890 DOI: 10.21010/ajid.v16i2s.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background Synadenium glaucescens and Commiphora swynnertonii are among the reported plants used traditionally for treatment of bacterial infections. This study reports antibacterial effects of single and combined extracts from leaves, stem and root barks of Commiphora swynnertonii and Synadenium glaucescens. Materials and Methods Plants were collected from Manyara and Njombe regions in Tanzania. Extraction was done using dichloromethane and methanol. The extracts were assessed for antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa). Minimum Inhibitory Concentrations (MIC) was determined by broth microdilution, while Fractional Inhibitory Concentration (FIC) indices were calculated from MIC values of combined extracts to determine combination effects. Results Strong antibacterial activities were demonstrated by all extracts of S. glaucescens (MIC 0.011-0.375mg/mL) against Gram-positive bacteria and methanol extracts of C. swynnertonii (MIC 0.047-0.375mg/mL). Synergistic effect was observed when combining methanol extracts of C. swynnertonii stem bark with S. glaucescens leaves against S. aureus (∑FIC 0.5), Other synergistic effects were observed against E. faecalis with dichloromethane extracts of C. swynnertonii stem bark and S. glaucescens stem bark (∑FIC 0.5), and C. swynnertonii root bark and S. glaucescens root bark (FIC index 0.3). For the remaining combinations, mainly additive effects were observed. Conclusion Synergistic effects on bacteria were observed by combining different plant parts of S. glaucescens and C. swynnertonii suggesting that it could be beneficial to combine such extracts when used for antibacterial purposes.
Collapse
Affiliation(s)
- Ochollah G. Mary
- Department of Chemistry and Physics, College of Natural and Applied Sciences, Sokoine University of Agriculture, P.O. Box 3038, Morogoro, Tanzania,Corresponding Author’s E-Mail:
| | - Msengwa S. Zaituni
- Department of Chemistry and Physics, College of Natural and Applied Sciences, Sokoine University of Agriculture, P.O. Box 3038, Morogoro, Tanzania
| | - Mabiki P. Faith
- Department of Chemistry and Physics, College of Natural and Applied Sciences, Sokoine University of Agriculture, P.O. Box 3038, Morogoro, Tanzania
| | | | - Mdegela H. Robinson
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, P.O. Box 3015, Morogoro, Tanzania
| | - Olsen E. John
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg C, Denmark
| |
Collapse
|
19
|
Synthesis, Characterization, Computational and Biological Activity of Some Schiff Bases and Their Fe, Cu and Zn Complexes. INORGANICS 2022. [DOI: 10.3390/inorganics10080112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Four new symmetrical Schiff bases derived from 2,2′-diamino-6,6′-dibromo-4,4′-dimethyl-1,1′-biphenyl or 2,2′-diamino-4,4′-dimethyl-1,1′-biphenyl, and 3,5-dichloro- or 5-nitro-salicylaldehyde, were synthesized and reacted with copper-, iron- and zinc-acetate, producing the corresponding complexes. The Schiff bases and their metal complexes were characterized by 1H-, 13C-NMR, IR and UV-Vis spectroscopy and elemental analysis. The structures of one Schiff base and the two zinc complexes were resolved by X-ray structure determination. Density functional theory (DFT) calculations at the B3LYP/6-31G(d) level of the latter compounds were carried out to optimize and examine their molecular geometries. The biomedical applications of the Schiff bases and their complexes were investigated as anticancer or antimicrobial agents.
Collapse
|
20
|
Phenolic Secondary Metabolites and Antiradical and Antibacterial Activities of Different Extracts of Usnea barbata (L.) Weber ex F.H.Wigg from Călimani Mountains, Romania. Pharmaceuticals (Basel) 2022; 15:ph15070829. [PMID: 35890128 PMCID: PMC9322614 DOI: 10.3390/ph15070829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Phenolic compounds represent an essential bioactive metabolites group with numerous pharmaceutical applications. Our study aims to identify and quantify phenolic constituents of various liquid and dry extracts of Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) from Calimani Mountains, Romania, and investigate their bioactivities. The extracts in acetone, 96% ethanol, and water with the same dried lichen/solvent ratio (w/v) were obtained through two conventional techniques: maceration (mUBA, mUBE, and mUBW) and Soxhlet extraction (dUBA, dUBE, and dUBW). High-performance liquid chromatography with diode-array detection (HPLC-DAD) was performed for usnic acid (UA) and different polyphenols quantification. Then, the total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging activity (AA) were determined through spectrophotometric methods. Using the disc diffusion method (DDM), the antibacterial activity was evaluated against Gram-positive and Gram-negative bacteria known for their pathogenicity: Staphylococcus aureus (ATCC 25923), Streptococcus pneumoniae (ATCC 49619), Pseudomonas aeruginosa (ATCC 27853), and Klebsiella pneumoniae (ATCC 13883). All extracts contain phenolic compounds expressed as TPC values. Five lichen extracts display various UA contents; this significant metabolite was not detected in dUBW. Six polyphenols from the standards mixture were quantified only in ethanol and water extracts; mUBE has all individual polyphenols, while dUBE shows only two. Three polyphenols were detected in mUBW, but none was found in dUBW. All U. barbata extracts had antiradical activity; however, only ethanol and acetone extracts proved inhibitory activity against P. aeruginosa, S. pneumoniae, and S. aureus. In contrast, K. pneumoniae was strongly resistant (IZD = 0). Data analysis evidenced a high positive correlation between the phenolic constituents and bioactivities of each U. barbata extract. Associating these extracts’ properties with both conventional techniques used for their preparation revealed the extraction conditions’ significant influence on lichen extracts metabolites profiling, with a powerful impact on their pharmacological potential.
Collapse
|
21
|
Pan D, Peng P, Fang Y, Lu J, Fang M. Distribution and Drug Resistance of Pathogenic Bacteria and Prognosis in Patients with Septicemia Bloodstream Infection with Renal Insufficiency. Infect Drug Resist 2022; 15:4109-4116. [PMID: 35924018 PMCID: PMC9342692 DOI: 10.2147/idr.s373665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
Objective The aim of this study was to investigate the distribution and drug resistance of pathogenic bacteria and the prognosis of patients with sepsis bloodstream infection with renal insufficiency. Methods One hundred and twelve patients with septicemic bloodstream infection with renal insufficiency and 112 patients with septic bloodstream infection without renal insufficiency were selected as study group and control group, respectively. We compare the distribution of pathogenic bacteria, analyze the drug resistance of major bacteria, and compare the efficacy, the incidence of septic shock, duration of mechanical ventilation, hospitalization time, and duration of antimicrobial drug administration between the two groups. Results A total of 140 pathogenic strains were isolated from blood cultures in the study group, and 136 strains were isolated from blood cultures in the control group. The sepsis bloodstream infection was mainly caused by Gram-negative bacteria, accounting for 59.42% (164/276). Among the gram-negative bacteria, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii had higher resistance rates to levofloxacin, ceftazidime, piperacillin sodium tazobactam, and amikacin. Among the gram-positive bacteria, Streptococcus pneumoniae, Enterococcus, and Staphylococcus aureus had high resistance rates to clindamycin, cefazolin, penicillin G, gentamicin, azithromycin, and levofloxacin. The rate of extended spectrum β-lactamase (ESBLs)-producing enterobacteria and multi-drug resistant Pseudomonas aeruginosa (MDR-PA) infection was significantly higher in the study group than in the control group; there was no difference in multi-drug resistant Acinetobacter baumannii (MDR-AB), vancomycin-resistant enterococci (VRE), and methicillin-resistant Staphylococcus aureus (MRSA) between the two groups. The duration of hospitalization and the duration of antimicrobial drug administration were longer in the study group than in the control group. Conclusion The pathogenic bacteria in patients with sepsis bloodstream infection with renal insufficiency are mainly Gram-negative bacteria, are more difficult to be cured, have a longer course of treatment, and need to use antibacterial drugs for a long time.
Collapse
Affiliation(s)
- Deng Pan
- Department of Infectious Disease, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, People’s Republic of China
| | - Pin Peng
- Intensive Care Unit, Wuhan Asia General Hospital, Wuhan, Hubei, People’s Republic of China
| | - Yu Fang
- Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jun Lu
- Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Minghao Fang
- Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Correspondence: Minghao Fang, Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei, 430030, People’s Republic of China, Tel +86-15071157405, Email
| |
Collapse
|
22
|
Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Periprosthetic Joint Infections. Pathogens 2022; 11:pathogens11070719. [PMID: 35889965 PMCID: PMC9316792 DOI: 10.3390/pathogens11070719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Periprosthetic joint infection (PJI) is a troublesome clinical issue in total joint arthroplasty (TJA). Although methicillin-resistant Staphylococcus aureus (MRSA) is considered to be the most serious pathogen in PJIs, little is known about the genotypic and phenotypic characteristics of MRSA clones isolated from PJI patients. A total of 36 MRSA isolates from PJI patients were collected at the Chang-Gung Memorial Hospital in Taiwan from May 2016 to October 2019. All MRSA isolates were subjected to genome typing. The prevalence of Panton–Valentine leucocidin (PVL), the antibiotic susceptibility profile, and the biofilm formation ability were compared among different MRSA genogroups. Additionally, demographics and clinical manifestations of patients infected with different MRSA genogroups were investigated. Eight sequence types (STs) were identified among 36 isolated from PJIs. According to the incidence of MRSA genotypes in PJIs, in this study, we divided them into four groups, including ST8 (n = 10), ST59 (n = 8), ST239 (n = 11), and other STs (n = 7). For the antibiotic susceptibility testing, we found that all MRSA isolates in the ST239 group were highly resistant to ciprofloxacin, gentamicin trimethoprim-sulfamethoxazole, and levofloxacin. Additionally, ST239 MRSA also had a higher ability to form biofilm than other groups. Importantly, patients with ST239 infection typically had a fever and exhibited higher levels of inflammatory markers, including C-reactive protein (CRP) and white blood cell count (WBC). Epidemiological investigations revealed that knee PJIs were mainly attributed to infection with ST59 MRSA and increasing trends for infection with ST8 and other ST types of MRSAs in PJI patients were observed from 2016 to 2019. The identification of MRSA genotypes in PJIs may be helpful for the management of PJIs.
Collapse
|
23
|
Molecular Insights into Coumarin Analogues as Antimicrobial Agents: Recent Developments in Drug Discovery. Antibiotics (Basel) 2022; 11:antibiotics11050566. [PMID: 35625210 PMCID: PMC9137837 DOI: 10.3390/antibiotics11050566] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Coumarins are a large family of benzopyrones, and more than 1300 coumarins have been reported to date. Natural, as well as synthetic, coumarins have demonstrated a diverse activity spectrum. On the other hand, the demands of the current health scenario witnessing morbidity and mortality due to microbial infections and multidrug-resistant bacterial strains, the well-reported phytochemical coumarin can be of interest. Some of the well-reported coumarin analogues as antimicrobial agents include β-lactum derivatives, coumarin-based 1,2,3-triazole compounds, the miconazole analogue, coumarin-substituted pyrazole hybrids, pyranocoumarin, coumarin−sulphonamide hybrids, pyranocoumarins, coumarin−sulphonamide derivatives, chromenylpyrazoles candidates, 3-amidocoumarins analogues, uracil−coumarin hybrids, indolinedione−coumarin hybrids, coumarin−imidazole hybrids, coumarin-fused pyrazolones and methyl thiazole derivatives, coumarin−theophylline hybrids, etc. In the present review, several methods for the synthesis of coumarin derivatives as antimicrobial agents are reported, along with structure−activity relationship (SAR) studies focusing on the developments reported since 2016. Abstract A major global health risk has been witnessed with the development of drug-resistant bacteria and multidrug-resistant pathogens linked to significant mortality. Coumarins are heterocyclic compounds belonging to the benzophenone class enriched in different plants. Coumarins and their derivatives have a wide range of biological activity, including antibacterial, anticoagulant, antioxidant, anti-inflammatory, antiviral, antitumour, and enzyme inhibitory effects. In the past few years, attempts have been reported towards the optimization, synthesis, and evaluation of novel coumarin analogues as antimicrobial agents. Several coumarin-based antibiotic hybrids have been developed, and the majority of them were reported to exhibit potential antibacterial effects. In the present work, studies reported from 2016 to 2020 about antimicrobial coumarin analogues are the focus. The diverse biological spectrum of coumarins can be attributed to their free radical scavenging abilities. In addition to various synthetic strategies developed, some of the structural features include a heterocyclic ring with electron-withdrawing/donating groups conjugated with the coumarin nucleus. The suggested structure−activity relationship (SAR) can provide insight into how coumarin hybrids can be rationally improved against multidrug-resistant bacteria. The present work demonstrates molecular insights for coumarin derivatives having antimicrobial properties from the recent past. The detailed SAR outcomes will benefit towards leading optimization during the discovery and development of novel antimicrobial therapeutics.
Collapse
|
24
|
Yuan H, Zhou J, Li N, Wu X, Huang S, Park S. Isolation and identification of mucin-degrading bacteria originated from human feces and their potential probiotic efficacy according to host-microbiome enterotype. J Appl Microbiol 2022; 133:362-374. [PMID: 35365862 DOI: 10.1111/jam.15560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
AIM Mucin-degrading bacteria are known to be beneficial for gut health. We aimed to isolate human-derived mucin-degrading bacteria and identify potential probiotic characteristics and their effects on the bacterial community and short-chain fatty acid (SCFA) production according to three different enterotypes of the host. METHODS AND RESULTS Bacteria with mucin decomposition ability from human feces were isolated and identified by 16S rRNA sequencing and MALDI-TOF. Heat resistance, acid resistance, antibiotic resistance, and antibacterial activity were analyzed in the selected bacteria. Their adhesion capability to the Caco-2 cell was determined by scanning electron microscopy. Their ability to alter the bacterial community and SCFA production of the isolated bacteria was investigated in three enterotypes. The three isolated strains were Bifidobacterium(B.) animalis SPM01 (CP001606.1, 99%), B. longum SPM02 (NR_043437.1, 99%), and Limosilactobacillus(L.) reuteri SPM03 (CP000705.1, 99%) deposited in Korean Collection for Type Culture (KCTC-18958P). Among them, B. animalis exhibited the highest mucin degrading ability. They exhibited strong resistance to acidic conditions, moderate resistance to heat, and the ability to adhere tightly to Caco-2 cells. Three isolated mucin-degrading bacteria incubation increased Lactobacillus in the fecal bacteria from Bacteroides and Prevotella enterotypes. However, only L. reuteri elevated Lactobacillus in the fecal bacteria from the Ruminococcus enterotype. B. longum and B. animalis increased the α-diversity in the Ruminococcus enterotype, while their incubation with other intestinal types decreased the α-diversity. B. animalis and L. reuteri increased the butyric acid level in fecal bacteria from the Prevotella enterotype, and L. reuteri elevated the acetic acid level in those from the Ruminococcus enterotype. However, the overall SCFA changes were minimal. CONCLUSIONS The isolated mucin-degrading bacteria act as probiotics and modulate gut microbiota and SCFA production differently according to the host's enterotypes. SIGNIFICANCE AND IMPACT OF STUDY Probiotics need to be personalized according to the enterotypes in clinical application.
Collapse
Affiliation(s)
- Heng Yuan
- Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Junyu Zhou
- Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Nanxin Li
- Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Xuangao Wu
- Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Shaokai Huang
- Dept. of Bioconvergence, Hoseo University, Asan, South Korea
| | - Sunmin Park
- Dept. of Bioconvergence, Hoseo University, Asan, South Korea.,Dept. of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| |
Collapse
|
25
|
Antibacterial properties of Apis dorsata honey against some bacterial pathogens. Saudi J Biol Sci 2022; 29:730-734. [PMID: 35197738 PMCID: PMC8847928 DOI: 10.1016/j.sjbs.2021.09.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/22/2023] Open
Abstract
Now-a-days, different bioproducts are being used extensively for the welfare of mankind. However, for proper utility of any bioproduct, the exact biotechnological potential of that product should be explored. Honey is produced in almost every country on the planet. It has long been used as a medicinal agent in addition to its broader use as a popular food throughout the human history. It can be used to treat various diseases without causing any negative side effects. In the present study, the antibacterial potential of honey produced by A. dorsata was investigated at its variable concentrations (25, 50, 75 and 100 %) against four pathogenic bacterial species. The highest antimicrobial action was seen against E. coli at 100 % concentration of the honey while showing zone of inhibition of 37.5 ± 3.5 mm. However, the lowest antibacterial action was observed against E. faecalis. The overall order of growth inhibition by the honey at its 100 % concentration for the implicated bacterial species appeared as: E. coli ˃ P. aeruginosa ˃ S. aureus ˃ E. faecalis. The honey couldn’t show antibacterial action at its 25 % concentration. Our findings of the present study will be helpful for utility of the honey as an alternative medicine for curing different complications caused by microbial pathogens.
Collapse
|
26
|
Liaqat I, Gulab B, Hanif U, Sultan A, Sadiqa A, Zafar U, Afzaal M, Naseem S, Akram S, Saleem G. Honey Potential as Antibiofilm, Antiquorum Sensing and Dispersal Agent against Multispecies Bacterial Biofilm. J Oleo Sci 2022; 71:425-434. [DOI: 10.5650/jos.ess21199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Iram Liaqat
- Microbiology Lab, Department of Zoology, GC University
| | - Babar Gulab
- Microbiology Lab, Department of Zoology, GC University
| | | | | | - Ayesha Sadiqa
- Department of Chemistry, University of Engineering and Technology
| | - Urooj Zafar
- Department of Microbiology, University of Karachi
| | | | - Sajida Naseem
- Department of Zoology, University of Education, Lower Mall Campu
| | - Sumia Akram
- Division of Science and Technology, University of Education
| | - Gulbeena Saleem
- Department of Pathology, University of Veterinary and Animal Sciences
| |
Collapse
|
27
|
Popovici V, Bucur L, Calcan SI, Cucolea EI, Costache T, Rambu D, Schröder V, Gîrd CE, Gherghel D, Vochita G, Caraiane A, Badea V. Elemental Analysis and In Vitro Evaluation of Antibacterial and Antifungal Activities of Usnea barbata (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010032. [PMID: 35009036 PMCID: PMC8747648 DOI: 10.3390/plants11010032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 05/02/2023]
Abstract
This study aims to complete our research on Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) from the Călimani Mountains, Romania, with an elemental analysis and to explore its antibacterial and antifungal potential. Thus, we analyzed twenty-three metals (Ca, Fe, Mg, Mn, Zn, Al, Ag, Ba, Co, Cr, Cu, Li, Ni, Tl, V, Mo, Pd, Pt, Sb, As, Pb, Cd, and Hg) in dried U. barbata lichen (dUB) by inductively coupled plasma mass spectrometry (ICP-MS). For the second study, we performed dried lichen extraction with five different solvents (ethyl acetate, acetone, ethanol, methanol, and water), obtaining five U. barbata dry extracts (UBDE). Then, using an adapted disc diffusion method (DDM), we examined their antimicrobial activity against seven bacterial species-four Gram-positive (Staphylococcus aureus, Enterococcus casseliflavus, Streptococcus pyogenes, and Streptococcus pneumoniae) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa)-and two fungi species (Candida albicans and Candida parapsilosis). Usnic acid (UA) was used as a positive control. The ICP-MS data showed a considerable Ca content (979.766 µg/g), followed by, in decreasing order, Mg, Mn, Al, Fe, and Zn. Other elements had low levels: Ba, Cu, Pb, and Cr (3.782-1.002 µg/g); insignificant amounts (<1 µg/g) of Hg and V were also found in dUB. The trace elements Ag, As, Cd, Co, Li, Tl, Mo, Pd, Pt, and Sb were below detection limits (<0.1 µg/g). The DDM results-expressed as the size (mm) of the inhibition zone diameter (IZs)-proved that the water extract did not have any inhibitory activity on any pathogens (IZs = 0 mm). Gram-positive bacteria displayed the most significant susceptibility to all other UBDE, with Enterococcus casseliflavus showing the highest level (IZs = 20-22 mm). The most susceptible Gram-negative bacterium was Pseudomonas aeruginosa (IZs = 16-20 mm); the others were insensitive to all U. barbata dry extracts (IZs = 0 mm). The inhibitory activity of UBDE and UA on Candida albicans was slightly higher than on Candida parapsilosis.
Collapse
Affiliation(s)
- Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania; (V.P.); (V.B.)
| | - Laura Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
- Correspondence: ; Tel.: +40-721528446
| | - Suzana Ioana Calcan
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tancabesti, Romania; (S.I.C.); (E.I.C.); (T.C.); (D.R.)
| | - Elena Iulia Cucolea
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tancabesti, Romania; (S.I.C.); (E.I.C.); (T.C.); (D.R.)
| | - Teodor Costache
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tancabesti, Romania; (S.I.C.); (E.I.C.); (T.C.); (D.R.)
| | - Dan Rambu
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tancabesti, Romania; (S.I.C.); (E.I.C.); (T.C.); (D.R.)
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania;
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Daniela Gherghel
- NIRDBS, Institute of Biological Research Iasi, 47 Lascar Catargi Street, 700107 Iasi, Romania; (D.G.); (G.V.)
| | - Gabriela Vochita
- NIRDBS, Institute of Biological Research Iasi, 47 Lascar Catargi Street, 700107 Iasi, Romania; (D.G.); (G.V.)
| | - Aureliana Caraiane
- Department of Oral Rehabilitation, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania;
| | - Victoria Badea
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania; (V.P.); (V.B.)
| |
Collapse
|
28
|
Booq RY, Tawfik EA, Alfassam HA, Alfahad AJ, Alyamani EJ. Assessment of the Antibacterial Efficacy of Halicin against Pathogenic Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10121480. [PMID: 34943692 PMCID: PMC8698312 DOI: 10.3390/antibiotics10121480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Artificial intelligence (AI) is a new technology that has been employed to screen and discover new drugs. Using AI, an anti-diabetic treatment (Halicin) was nominated and proven to have a unique antibacterial activity against several harmful bacterial strains, including multidrug-resistant bacteria. This study aims to explore the antibacterial effect of halicin and microbial susceptibility using the zone of inhibition and the minimum inhibition concentration (MIC) values while assessing the stability of stored halicin over a period of time with cost-effective and straightforward methods. Linear regression graphs were constructed, and the correlation coefficient was calculated. The new antibacterial agent was able to inhibit all tested gram-positive and gram-negative bacterial strains, but in different concentrations-including the A. baumannii multidrug-resistant (MDR) isolate. The MIC of halicin was found to be 16 μg/mL for S. aureus (ATCC BAA-977), 32 μg/mL for E. coli (ATCC 25922), 128 μg/mL for A. baumannii (ATCC BAA-747), and 256 μg/mL for MDR A. baumannii. Upon storage, the MICs were increased, suggesting instability of the drug after approximately a week of storage at 4 °C. MICs and zones of inhibition were found to be high (R = 0.90 to 0.98), suggesting that halicin has a promising antimicrobial activity and may be used as a wide-spectrum antibacterial drug. However, the drug's pharmacokinetics have not been investigated, and further elucidation is needed.
Collapse
Affiliation(s)
- Rayan Y. Booq
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (R.Y.B.); (E.A.T.); (A.J.A.)
| | - Essam A. Tawfik
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (R.Y.B.); (E.A.T.); (A.J.A.)
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Haya A. Alfassam
- Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Ahmed J. Alfahad
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (R.Y.B.); (E.A.T.); (A.J.A.)
| | - Essam J. Alyamani
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (R.Y.B.); (E.A.T.); (A.J.A.)
- Correspondence: ; Tel.: +966-11-481-3806
| |
Collapse
|
29
|
Kopf A, Bunk B, Coldewey SM, Gunzer F, Riedel T, Schröttner P. Identification and Antibiotic Profiling of Wohlfahrtiimonas chitiniclastica, an Underestimated Human Pathogen. Front Microbiol 2021; 12:712775. [PMID: 34630346 PMCID: PMC8496446 DOI: 10.3389/fmicb.2021.712775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
In the past 12 years, several case reports have clearly demonstrated that Wohlfahrtiimonas chitiniclastica is capable of causing sepsis and bacteremia in humans. However, since most clinicians are not familiar with this species, little is known about its pathogenicity and treatment options while it is as rare but underestimated human pathogen. Therefore, a larger strain collection is required so that methods can be identified that are most suitable to obtain rapid and reliable identification. Moreover, the antimicrobial resistance profile needs to be elucidated in order to explore possible treatment options. Over a period of 6 years, we therefore have collected a total of 14 W. chitiniclastica isolates in routine diagnostics, which now served as the basis for a comprehensive characterization with respect to identification and antibiotic profiling. We compared the accuracy and convenience of several identification techniques in which MALDI-TOF MS and sequencing of the 16S rRNA gene have proven to be suitable for identification of W. chitiniclastica. In addition, whole genome sequencing (WGS)-based digital DNA-DNA hybridization (dDDH) was used as a reference method for strain identification, and surprised with the detection of a novel W. chitiniclastica subspecies. A combination of in silico and in vitro analyses revealed a first insight into the antimicrobial resistance profile and the molecular basis of antimicrobial resistance. Based on our findings, trimethoprim/sulfamethoxazole, levofloxacin, and cephalosporins (e.g., ceftazidime) may be the best antibiotics to use in order to treat infections caused by W. chitiniclastica, while resistance to fosfomycin, amikacin and tobramycin is observed.
Collapse
Affiliation(s)
- Anna Kopf
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Sina M Coldewey
- Clinic for Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Florian Gunzer
- Department of Hospital Infection Control, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Percy Schröttner
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
30
|
Milano A, Sulejmani A, Intra J, Sala MR, Leoni V, Carcione D. Antimicrobial Resistance Trends of Escherichia coli Isolates from Outpatient and Inpatient Urinary Infections over a 20-Year Period. Microb Drug Resist 2021; 28:63-72. [PMID: 34520265 DOI: 10.1089/mdr.2021.0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance is a worldwide problem, and resistance in Enterobacteriaceae, particularly Escherichia coli and Klebsiella pneumoniae, is a critical threat to human health. Inappropriate and unnecessary use of antibiotics in human health care is the most common cause for the development and spread of antimicrobial resistance. In this work, we retrospectively analyzed the antimicrobial data of E. coli strains isolated from midstream urinary samples over a 20-year period (2000-2019). The aim was to provide useful information to clinicians to prescribe a more appropriate empirical antibiotic therapy. A total of 30,955 unique E. coli isolates from positive midstream urine samples of inpatients (1,198) and outpatients (29,757) were collected. Except for carbapenems, over time all the antibiotics tested showed increasing resistance rates in both groups (p < 0.0001). On the other hand, fosfomycin and nitrofurantoin presented significant decreasing trends in resistance rate (p < 0.05). There were significant increases in extended-spectrum β-lactamases- and multidrug resistance positive isolates starting in 2000 (p < 0.0001), with similar results in both groups. Ciprofloxacin, gentamicin, trimethoprim/sulfamethoxazole, and third-generation cephalosporin resistances significantly increased with increasing age (p < 0.0001). Collectively, E. coli resistance rates severely increased during the study period, except for fosfomycin and nitrofurantoin. The need of monitoring studies about antibiotic nonsusceptibilities at local and regional levels are necessary to enhance the focus on antimicrobial stewardship, to reduce antimicrobial consumption and to detect alarming resistance mechanisms.
Collapse
Affiliation(s)
- Antonio Milano
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, Desio Hospital, Desio, Italy
| | - Adela Sulejmani
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, Desio Hospital, Desio, Italy
| | - Jari Intra
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, Desio Hospital, Desio, Italy
| | - Maria Roberta Sala
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, Desio Hospital, Desio, Italy
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, Desio Hospital, Desio, Italy
| | - Davide Carcione
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, Desio Hospital, Desio, Italy
| |
Collapse
|
31
|
Dwivedi GR, Rai R, Pratap R, Singh K, Pati S, Sahu SN, Kant R, Darokar MP, Yadav DK. Drug resistance reversal potential of multifunctional thieno[3,2-c]pyran via potentiation of antibiotics in MDR P. aeruginosa. Biomed Pharmacother 2021; 142:112084. [PMID: 34449308 DOI: 10.1016/j.biopha.2021.112084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022] Open
Abstract
We explored the antibacterial potential (alone and combination) against multidrug resistant (MDR) Pseudomonas aeruginosa isolates KG-P2 using synthesized thieno[3,2-c]pyran-2-ones in combination with different antibiotics. Out of 14 compounds, two compounds (3g and 3l) abridged the MIC of tetracycline (TET) by 16 folds. Compounds was killing the KG-P2 cells, in time dependent manner, lengthened post-antibiotic effect (PAE) of TET and found decreased the mutant prevention concentration (MPC) of TET. In ethidium bromide efflux experiment, two compounds repressed the drug transporter (efflux pumps) which is further supported by molecular docking of these compounds with efflux complex MexAB-OprM. In another study, these compounds inhibited the synthesis of biofilm.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- Microbiology Department, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur 273013, India.
| | - Reeta Rai
- Department of Biochemistry, AIIMS Ansari Nagar, New Delhi 110029, India
| | - Ramendra Pratap
- Department of Chemistry, North campus University of Delhi, Delhi 110007, India.
| | - Khusbu Singh
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Satya Narayan Sahu
- Government College Balrampur, Balrampur-Ramanujganj, Chhattisgarh 497119, India
| | - Rajni Kant
- Microbiology Department, ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur 273013, India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, ̥Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India
| | - Dharmendra K Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21924, Republic of Korea.
| |
Collapse
|
32
|
Effect of antibiotic stewardship interventions in primary care on antimicrobial resistance of Escherichia coli bacteraemia in England (2013-18): a quasi-experimental, ecological, data linkage study. THE LANCET. INFECTIOUS DISEASES 2021; 21:1689-1700. [PMID: 34363774 PMCID: PMC8612938 DOI: 10.1016/s1473-3099(21)00069-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Background Antimicrobial resistance is a major global health concern, driven by overuse of antibiotics. We aimed to assess the effectiveness of a national antimicrobial stewardship intervention, the National Health Service (NHS) England Quality Premium implemented in 2015–16, on broad-spectrum antibiotic prescribing and Escherichia coli bacteraemia resistance to broad-spectrum antibiotics in England. Methods In this quasi-experimental, ecological, data linkage study, we used longitudinal data on bacteraemia for patients registered with a general practitioner in the English National Health Service and patients with E coli bacteraemia notified to the national mandatory surveillance programme between Jan 1, 2013, and Dec 31, 2018. We linked these data to data on antimicrobial susceptibility testing of E coli from Public Health England's Second-Generation Surveillance System. We did an ecological analysis using interrupted time-series analyses and generalised estimating equations to estimate the change in broad-spectrum antibiotics prescribing over time and the change in the proportion of E coli bacteraemia cases for which the causative bacteria were resistant to each antibiotic individually or to at least one of five broad-spectrum antibiotics (co-amoxiclav, ciprofloxacin, levofloxacin, moxifloxacin, ofloxacin), after implementation of the NHS England Quality Premium intervention in April, 2015. Findings Before implementation of the Quality Premium, the rate of antibiotic prescribing for all five broad-spectrum antibiotics was increasing at rate of 0·2% per month (incidence rate ratio [IRR] 1·002 [95% CI 1·000–1·004], p=0·046). After implementation of the Quality Premium, an immediate reduction in total broad-spectrum antibiotic prescribing rate was observed (IRR 0·867 [95% CI 0·837–0·898], p<0·0001). This effect was sustained until the end of the study period; a 57% reduction in rate of antibiotic prescribing was observed compared with the counterfactual situation (ie, had the Quality Premium not been implemented). In the same period, the rate of resistance to at least one broad-spectrum antibiotic increased at rate of 0·1% per month (IRR 1·001 [95% CI 0·999–1·003], p=0·346). On implementation of the Quality Premium, an immediate reduction in resistance rate to at least one broad-spectrum antibiotic was observed (IRR 0·947 [95% CI 0·918–0·977], p=0·0007). Although this effect was also sustained until the end of the study period, with a 12·03% reduction in resistance rate compared with the counterfactual situation, the overall trend remained on an upward trajectory. On examination of the long-term effect following implementation of the Quality Premium, there was an increase in the number of isolates resistant to at least one of the five broad-spectrum antibiotics tested (IRR 1·002 [1·000–1·003]; p=0·047). Interpretation Although interventions targeting antibiotic use can result in changes in resistance over a short period, they might be insufficient alone to curtail antimicrobial resistance. Funding National Institute for Health Research, Economic and Social Research Council, Rosetrees Trust, and The Stoneygate Trust.
Collapse
|
33
|
Stamatiou K, Samara E, Lacroix RN, Moschouris H, Perletti G, Magri V. One, No One and One Hundred Thousand: Patterns of chronic prostatic inflammation and infection. Exp Ther Med 2021; 22:966. [PMID: 34335908 PMCID: PMC8290471 DOI: 10.3892/etm.2021.10398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/18/2021] [Indexed: 11/05/2022] Open
Abstract
Chronic prostatic inflammation may be classified into three types that share similar symptoms and are distinguished on the basis of microbiological findings. In the present study, consecutive cases of chronic prostatic inflammation and infection were retrospectively reviewed in order to explore the clinical course and long-term outcomes. The cohort consisted of patients with symptoms of prostatitis who visited the Urology Clinic of the Tzaneion Hospital (Piraeus, Greece) between March 2009 and March 2019. The patients were subjected to the Meares and Stamey ‘4-glass’ test and patients with febrile prostatitis were evaluated with a single mid-stream ‘clean’ urine sample culture. Bacterial identification was performed using the Vitek 2 Compact system and the sensitivity test with the disc and the Vitek 2 system. A total of 656 patients with prostatitis-like symptoms with 1,783 visits for investigation and follow-up were reviewed and patients were divided into two major groups. Group 1 consisted of 549 cases with a single set of chronic prostatitis (CP)-like symptoms assessed in up to three visits. National Institutes of Health (NIH) category II CP (NIH-II) was most frequently diagnosed in those patients (37,6%). At the follow-up, 125 patients were identified as having a type of CP different from that determined initially. Group 2 (107 cases) had recurring episodes of prostatitis-like symptoms assessed or confirmed over the course of 4-18 visits. Most patients (54.2%) were initially diagnosed with NIH-II followed by disease-free periods and recurrence/reinfection or by shifts to NHI-IIIB. In conclusion, CP remains a poorly understood n medical condition characterized by a variety of clinical manifestations and by transitions between different CP classes during its course.
Collapse
Affiliation(s)
| | | | - Richard Nicolas Lacroix
- Department of Public and Community Health, University of West Attica, Egaleo, 12241 Athens, Greece
| | | | - Gianpaolo Perletti
- Department of Biotechnology and Life Sciences, University of Insubria, I-21100 Varese, Italy.,Faculty of Medicine and Medical Sciences, Ghent University, 3K3 9000 Ghent, Belgium
| | - Vittorio Magri
- Urology Secondary Care Clinic, ASST-Nord, I-20092 Milan, Italy
| |
Collapse
|
34
|
Arbune M, Gurau G, Niculet E, Iancu AV, Lupasteanu G, Fotea S, Vasile MC, Tatu AL. Prevalence of Antibiotic Resistance of ESKAPE Pathogens Over Five Years in an Infectious Diseases Hospital from South-East of Romania. Infect Drug Resist 2021; 14:2369-2378. [PMID: 34194233 PMCID: PMC8238535 DOI: 10.2147/idr.s312231] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 01/31/2023] Open
Abstract
PURPOSE This study aimed at identifying the main antimicrobial resistance of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli) pathogens in a Romanian infectious diseases hospital. This antimicrobial resistance is a global threat, having high rates of multidrug resistance and limited treatment options. PATIENTS AND METHODS This retrospective study (2016-2020) assessed the antimicrobial resistance of ESKAPE pathogens isolated from the patient's biological samples. The microbiological diagnosis was performed by classical culture methods. The antimicrobial susceptibility analysis used the Kirby-Bauer disk-diffusion method and the method of minimum inhibiting concentration with the automated Vitek, according to the CLSI (Clinical and Laboratory Standards Institute) standards. RESULTS Included in this study were 4293 bacterial isolates: 67% Gram-negative bacilli, 31% Gram-positive cocci and 2% other morphotinctorial bacteria. ESKAPE pathogens were found in 97% of the bacterial isolates strains; E. coli (38.26%) and Staphylococcus aureus (26%) were the most prevalent. Most bacterial strains were isolated from urine cultures (45.6%), skin and soft tissue secretions/collections (35.9%) and also blood cultures (4.2%). Increased antimicrobial resistance was observed for methicillin-resistant Staphylococcus aureus (MRSA)s, extended spectrum beta-lactamase producing (ESBL) Enterobacterales, carbapenem-resistant (CR) Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae. No vancomycin resistance was found for Enterococcus faecium. The highest prevalence rates of multidrug resistance were found in methicillin-resistant Staphylococcus aureus (86.6%), Acinetobacter baumannii (36.8%), Pseudomonas aeruginosa (29.1%) and Klebsiella pneumoniae (24.4%). CONCLUSION ESKAPE pathogens are frequently isolated in the infectious diseases hospital, with main antimicrobial resistance: ESBL, MRSA and CR. The local antimicrobial resistance pattern is essential in updating the local protocols and for appropriately prescribing antibiotics. Streamlining microbiological diagnosis and aligning with the European standards for antimicrobial susceptibility testing are necessary steps in harmonizing the regional network for good antimicrobial resistance control practices.
Collapse
Affiliation(s)
- Manuela Arbune
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Infectious Diseases Department, Clinical Hospital of Infectious Diseases “Sf. Cuvioasa Parascheva”, Galati, Romania
| | - Gabriela Gurau
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galați, Romania
| | - Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galați, Romania
- Department of Pathology, “Sf. Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galați, Romania
- Medical Laboratory Department, Clinical Hospital of Infectious Diseases “Sf. Cuvioasa Parascheva”, Galati, Romania
| | - Gabriela Lupasteanu
- Infectious Diseases Department, Clinical Hospital of Infectious Diseases “Sf. Cuvioasa Parascheva”, Galati, Romania
- Medical Doctoral School, “Ovidius” University, Constanta, Romania
| | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Mihaela Camelia Vasile
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Infectious Diseases Department, Clinical Hospital of Infectious Diseases “Sf. Cuvioasa Parascheva”, Galati, Romania
| | - Alin Laurentiu Tatu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Research Center in the Field of Medical and Pharmaceutical Sciences, ReFORM-UDJ, Galati, Romania
- Dermatology Department, Clinical Hospital of Infectious Diseases “Sf. Cuvioasa Parascheva”, Galati, Romania
| |
Collapse
|
35
|
Yang Q, Li X, Jia P, Giske C, Kahlmeter G, Turnidge J, Yu Y, Lv Y, Wang M, Sun Z, Lin J, Li Y, Zheng B, Hu F, Guo Y, Chen Z, Li H, Zhang G, Zhang J, Kang W, Duan S, Wang T, Jing R, Xu Y. Determination of norvancomycin epidemiological cut-off values (ECOFFs) for Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus hominis. J Antimicrob Chemother 2021; 76:152-159. [PMID: 33057728 DOI: 10.1093/jac/dkaa414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/08/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To determine the epidemiological cut-off values (ECOFFs) of norvancomycin for Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus hominis. METHODS We collected 1199 clinical isolates of Staphylococcus species from five laboratories located in four cities in China. MICs and inhibitory zone diameters of norvancomycin were determined by broth microdilution and the disc diffusion method, separately. ECOFFs of norvancomycin for four species were calculated by ECOFFinder software following EUCAST principles. Methicillin and vancomycin resistance genes (mecA/mecC and vanA/vanB/vanC/vanD/vanE) were screened for by PCR in all isolates. Pearson correlation and χ2 test were used to calculate the correlation of MICs and inhibition zone diameters, and MICs and resistance genes, respectively. RESULTS MICs of norvancomycin for all strains from five laboratories fell in the range of 0.12-2 mg/L. ECOFFs of norvancomycin were determined to be 2 mg/L for S. epidermidis and S. haemolyticus and 1 mg/L for S. aureus and S. hominis. A weak correlation was observed between MIC values and zone diameters for S. haemolyticus (r = -0.36) and S. hominis (r = -0.26), while no correlation was found for S. epidermidis and S. aureus. The mecA gene was detected in 63.1% of Staphylococcus, whereas no isolate carried mecC, vanA, vanB, vanC, vanD or vanE. ECOFFs of norvancomycin were not correlated with mecA gene carriage in Staphylococcus species. CONCLUSIONS ECOFFs of norvancomycin for four Staphylococcus species were determined, which will be helpful to differentiate WT strains. The correlation of MICs and zone diameters of norvancomycin was weak in Staphylococcus species.
Collapse
Affiliation(s)
- Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Peiyao Jia
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Christian Giske
- EUCAST Development Laboratory for Antimicrobial Susceptibility Testing, c/o Clinical Microbiology, Central Hospital, Växjö, Sweden
| | - Gunnar Kahlmeter
- EUCAST Development Laboratory for Antimicrobial Susceptibility Testing, c/o Clinical Microbiology, Central Hospital, Växjö, Sweden
| | - John Turnidge
- Pathology, Paediatrics and Molecular Biosciences, University of Adelaide, SA, Australia
| | - Yunsong Yu
- Department of Clinical Infectious Diseases, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Yuan Lv
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Minggui Wang
- Huashan Hospital of Fudan University, Shanghai, China
| | - Ziyong Sun
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Lin
- Department of Clinical Infectious Diseases, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Fupin Hu
- Huashan Hospital of Fudan University, Shanghai, China
| | - Yan Guo
- Huashan Hospital of Fudan University, Shanghai, China
| | - Zhongju Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Ge Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingjia Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Kang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Simeng Duan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ran Jing
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | | |
Collapse
|
36
|
Suravaram S, Hada V, Ahmed Siddiqui I. Comparison of antimicrobial susceptibility interpretation among Enterobacteriaceae using CLSI and EUCAST breakpoints. Indian J Med Microbiol 2021; 39:315-319. [PMID: 34016471 DOI: 10.1016/j.ijmmb.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To determine the difference in antimicrobial susceptibility of various antibiotics using the CLSI & EUCAST breakpoints. METHODS In this non interventional, retrospective observational study, we reviewed minimum inhibitory concentrations (MIC) of various antibiotics routinely reported for Enterobacteriaceae clinical isolates, from an automated microbiology identification system (VITEK-2). These MICs were then analysed using both CLSI 2019 and EUCAST 2019 guidelines and classified as per the breakpoints into various categories. RESULTS The concordance rates of the antimicrobial susceptibility for various drugs ranged from 78.2% to 100% among two breakpoints. Perfect agreement with κ = 1 (p < 0.001) was observed for only three antimicrobials ceftriaxone, levofloxacin and trimethoprim-sulfamethoxazole. The changes in antimicrobial susceptibility interpretation for cefepime, ciprofloxacin, amoxicillin clavulanic acid was majorly in Intermediate category. CONCLUSION The change in interpretation of the susceptibility will lead to change in the usage of antibiotics especially due to recent change in definition of I by EUCAST. There is need of more studies in this aspect to ascertain clinical implication of change in antimicrobial susceptibility.
Collapse
Affiliation(s)
- Swathi Suravaram
- Department of Microbiology, ESIC Medical College & Hospital, Sanathnagar, Hyderabad, India
| | - Vivek Hada
- Department of Microbiology, All India Institute of Medical Sciences, Gorakhpur, India.
| | - Imran Ahmed Siddiqui
- Department of Biochemistry, ESIC Medical College & Hospital, Sanathnagar, Hyderabad, India
| |
Collapse
|
37
|
Pakbin B, Didban A, Monfared YK, Mahmoudi R, Peymani A, Modabber MR. Antibiotic susceptibility and genetic relatedness of Shigella species isolated from food and human stool samples in Qazvin, Iran. BMC Res Notes 2021; 14:144. [PMID: 33865447 PMCID: PMC8052664 DOI: 10.1186/s13104-021-05554-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/02/2021] [Indexed: 01/25/2023] Open
Abstract
Objective The aim of this study was to investigate the genetic relatedness and antimicrobial resistance among Shigella species isolated from food and stool samples. Using cross sectional study method, Shigella spp. were isolated from food and clinical samples using culture-based, biochemical and serological methods. Antimicrobial susceptibility and genetic relatedness among the isolates were evaluated using disk diffusion and RAPD-PCR methods respectively. Results The prevalence of Shigella spp. were 4.84 and 7.7% in food and stool samples respectively. All food isolates were Sh. sonnei. 91.42% of the Shigella stool isolates were Sh. sonnei. 62.5% of food isolates were resistant to tetracycline. 46.8, 50 and 65.8% of clinical isolates were resistant to imipenem, amikacin and azithromycin respectively. 50 and 85.7% of the food and clinical isolates respectively were MDR. Dendrogram generated by RAPD-PCR showed that the isolates from food and stool samples were categorized in a same group. Close genetic relatedness between MDR Shigella isolates from food and clinical samples indicate that foods can be considered as one of the main vehicles for transmission of MDR Shigella to human causing acute diseases. Survey of MDR Shigella among food and clinical samples is strongly suggested to be implemented.
Collapse
Affiliation(s)
- Babak Pakbin
- Children Growth Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Bahonar Blvd., P.O. Box: 34185-754, Qazvin, Iran.,Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abdollah Didban
- Children Growth Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Bahonar Blvd., P.O. Box: 34185-754, Qazvin, Iran.
| | | | - Razzagh Mahmoudi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Reza Modabber
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
38
|
Guan H, Dong W, Lu Y, Jiang M, Zhang D, Aobuliaximu Y, Dong J, Niu Y, Liu Y, Guan B, Tang J, Lu S. Distribution and Antibiotic Resistance Patterns of Pathogenic Bacteria in Patients With Chronic Cutaneous Wounds in China. Front Med (Lausanne) 2021; 8:609584. [PMID: 33816517 PMCID: PMC8010674 DOI: 10.3389/fmed.2021.609584] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Background: To determine the distribution and antimicrobial susceptibility pattern of pathogenic bacteria in patients with chronic cutaneous wounds on a national scale. Methods: A retrospective study was conducted using the data recorded between January 1, 2018 and January1, 2020 in 195 hospitals across China. After screening the data, 815 patients with chronic wounds were finally analyzed. The data collected included information about the patients' general condition and local cutaneous wound assessments, especially microbial culture and antibiotic susceptibility tests. The analyses were performed using SPSS Version 26. Results: The study included 815 patients (290 [35.6%] females; 63 [50-74] years). The most common causes of chronic cutaneous wounds were diabetes (183, 22.5%), infection (178, 21.8%), and pressure (140, 17.2%). Among these, 521(63.9%) samples tested yielded microbial growth, including 70 (13.4%) polymicrobial infection and 451 (86.6%) monomicrobial infection. The positive rate of microbial culture was highest in wound tissue of ulcers caused by infection (87.6%), followed by pressure (77.1%), diabetes (68.3%), and venous diseases (67.7%). Bates-Jensen wound assessment tool (BWAT) scores >25 and wounds that lasted for more than 3 months had a higher positive rate of microbial culture. BWAT scores >25 and wounds in the rump, perineum, and feet were more likely to exhibit polymicrobial infection. A total of 600 strains were isolated, of which 46.2% (277 strains) were Gram-positive bacteria, 51.3% (308 strains) were Gram-negative bacteria, and 2.5% (15 strains) were fungi. The most common bacterial isolates were Staphylococcus aureus (29.2%), Escherichia coli (11.5%), Pseudomonas aeruginosa (11.0%), Proteus mirabilis (8.0%), and Klebsiella pneumoniae (5.8%). The susceptibility tests showed that 116 cultured bacteria were Multidrug resistant (MDR) strains. The resistance rates of S. aureus were 92.0% (161/175) to penicillin, 58.3% (102/175) to erythromycin, and 50.9% (89/175) to clindamycin. Vancomycin was the most effective antibiotic (0% resistance rate) against all Gram-positive bacteria. Besides, the resistance rates of E. coli were 68.1% (47/69) to ampicillin, 68.1% (47/69) to ciprofloxacin, 60.9% (42/69) to levofloxacin. However, all the isolated Gram-negative bacteria showed low resistance rates to tigecycline (3.9%) and amikacin (3.6%). Conclusions: The distribution of bacteria isolated from chronic cutaneous wounds varies with the BWAT scores, causes, duration, and the location of wounds. Multidrug resistance is a serious health issue, and therefore antibiotics used in chronic wounds must be under strict regulation. Our findings may help clinicians in making informed decisions regarding antibiotic therapy.
Collapse
Affiliation(s)
- Haonan Guan
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wei Dong
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yechen Lu
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Minfei Jiang
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Di Zhang
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yakupu Aobuliaximu
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jiaoyun Dong
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yiwen Niu
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yingkai Liu
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Bingjie Guan
- Department of General Surgery, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jiajun Tang
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shuliang Lu
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
39
|
Raj Dwivedi G, Khwaja S, Singh Negi A, Panda SS, Swaroop Sanket A, Pati S, Chand Gupta A, Bawankule DU, Chanda D, Kant R, Darokar MP. Design, synthesis and drug resistance reversal potential of novel curcumin mimics Van D: Synergy potential of curcumin mimics. Bioorg Chem 2021; 106:104454. [PMID: 33213895 DOI: 10.1016/j.bioorg.2020.104454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/03/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022]
Abstract
Being crucial part of plant-based novel discovery of drug from natural resources, a study was done to explore the antibacterial potential of curcumin mimics in combination with antibiotics against multidrug resistant isolates of Pseudomonas aeruginosa. The best candidate Van D, a curcumin mimics reduced the MIC of tetracycline (TET) up to 16 folds against multidrug resistant clinical isolates. VanD further inhibited the efflux pumps as evident by ethidium bromide efflux and by in-silico docking studies. In another experiment, it was also found that Van D inhibits biofilm synthesis. This derivative kills the KG-P2, an isolate of P. aeruginosa in a time dependent manner, the post-antibiotic effect (PAE) of tetracycline was extended as well as mutant prevention concentration (MPC) of TET was also decreased. In Swiss albino mice, Van D reduced the proinflammatory cytokines concentration. In acute oral toxicity study, this derivative was well tolerated and found to be safe up to 1000 mg/kg dose. To the best of our knowledge, this is the first report on curcumin mimics as synergistic agent via inhibition of efflux pump.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- Microbiology Department, ICMR-Regional Medical Research Centre, Gorakhpur 273013, Uttar Pradesh, India.
| | - Sadiya Khwaja
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arvind Singh Negi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Swati S Panda
- ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - A Swaroop Sanket
- ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Amit Chand Gupta
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India
| | - Dnyaneshwar Umrao Bawankule
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Chanda
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajni Kant
- Microbiology Department, ICMR-Regional Medical Research Centre, Gorakhpur 273013, Uttar Pradesh, India
| | - Mahendra P Darokar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
40
|
Korfanty G, Stanley K, Lammers K, Fan Y, Xu J. Variations in sexual fitness among natural strains of the opportunistic human fungal pathogen Aspergillus fumigatus. INFECTION GENETICS AND EVOLUTION 2020; 87:104640. [PMID: 33246083 DOI: 10.1016/j.meegid.2020.104640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/05/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
Aspergillus fumigatus is a ubiquitous ascomycete fungus, naturally inhabiting the soil and compost piles. Its conidia readily disperse into the atmosphere and cause opportunistic infections known as aspergillosis. With the emerging resistance to many antifungal drugs, our understanding of A. fumigatus epidemiology has become increasingly important for developing effective control and treatment strategies. As a pathogen capable of both sexual and asexual reproduction, mutations causing drug resistance and increased virulence could be spread rapidly in A. fumigatus populations. However, relatively little is known about the distributions of sexual reproductive fitness among natural strains of A. fumigatus. Here we investigated the formation of sexual reproductive structure (i.e. cleistothecia) and sexual spore viability among 60 natural strains of A. fumigatus. These strains were from six geographically distant countries (India, China, Canada, Cameroon, Saudi Arabia, and New Zealand), with 10 strains (including five MAT1-1 strains and five MAT1-2 strains) from each country. These strains were crossed in all combinations with strains of the opposite mating type. In addition, all 60 strains were crossed with either AFB62-1 (MAT1-1) or AFIR928 (MAT1-2), two reference supermater strains. Of the 900 crosses among the 60 natural strains, 136 crosses (15.1%) produced cleistothecia. Our analyses revealed that strains from China had the highest average ability to form cleistothecia, followed by those from New Zealand, Saudi Arabia, India, Canada, and Cameroon. Among the crosses that produced cleistothecia, about 40% produced viable ascospores, with the rate of ascospore germination varied significantly among crosses. Interestingly, neither the ability to form cleistothecia nor ascospore germination rate showed any distinct relationships with either geographic or genetic distance between parental strains. Our results suggest that genetic exchange among geographically and genetically divergent strains of A. fumigatus are possible. However, the rates of genetic exchange likely vary among strains and populations in nature.
Collapse
Affiliation(s)
- Greg Korfanty
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Kaitlin Stanley
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Kaitlyn Lammers
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - YuYing Fan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
41
|
Kirchhelle C, Atkinson P, Broom A, Chuengsatiansup K, Ferreira JP, Fortané N, Frost I, Gradmann C, Hinchliffe S, Hoffman SJ, Lezaun J, Nayiga S, Outterson K, Podolsky SH, Raymond S, Roberts AP, Singer AC, So AD, Sringernyuang L, Tayler E, Rogers Van Katwyk S, Chandler CIR. Setting the standard: multidisciplinary hallmarks for structural, equitable and tracked antibiotic policy. BMJ Glob Health 2020; 5:e003091. [PMID: 32967980 PMCID: PMC7513567 DOI: 10.1136/bmjgh-2020-003091] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 01/16/2023] Open
Abstract
There is increasing concern globally about the enormity of the threats posed by antimicrobial resistance (AMR) to human, animal, plant and environmental health. A proliferation of international, national and institutional reports on the problems posed by AMR and the need for antibiotic stewardship have galvanised attention on the global stage. However, the AMR community increasingly laments a lack of action, often identified as an 'implementation gap'. At a policy level, the design of internationally salient solutions that are able to address AMR's interconnected biological and social (historical, political, economic and cultural) dimensions is not straightforward. This multidisciplinary paper responds by asking two basic questions: (A) Is a universal approach to AMR policy and antibiotic stewardship possible? (B) If yes, what hallmarks characterise 'good' antibiotic policy? Our multistage analysis revealed four central challenges facing current international antibiotic policy: metrics, prioritisation, implementation and inequality. In response to this diagnosis, we propose three hallmarks that can support robust international antibiotic policy. Emerging hallmarks for good antibiotic policies are: Structural, Equitable and Tracked. We describe these hallmarks and propose their consideration should aid the design and evaluation of international antibiotic policies with maximal benefit at both local and international scales.
Collapse
Affiliation(s)
- Claas Kirchhelle
- School of History, University College Dublin, Dublin, Ireland
- Oxford Martin School, University of Oxford, Oxford, Oxfordshire, UK
| | - Paul Atkinson
- Department of Public Health and Policy/ Institute of Infection and Global Health, University of Liverpool, Liverpool, Merseyside, UK
| | - Alex Broom
- School of Social and Political Sciences, Faculty of Arts and Social Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Jorge Pinto Ferreira
- Antimicrobial Resistance and Veterinary Products Department, World Organisation for Animal Health, Paris, Île-de-France, France
| | - Nicolas Fortané
- Irisso, Paris-Dauphine University, PSL, INRAE, Paris, Île-de-France, France
| | - Isabel Frost
- Center for Disease Dynamics Economics and Policy, Washington, DC, USA
- Department of Infectious Disease, Imperial College London, London, UK
| | - Christoph Gradmann
- Institute for Health and Society, Dept. of Community Medicine and Global Health, University of Oslo, Oslo, Norway
| | - Stephen Hinchliffe
- Geography, College of Life and Environmental Sciences and Wellcome Centre for Cultures and Environments of Health, University of Exeter, Exeter, Devon, UK
| | - Steven J Hoffman
- Global Strategy Lab, Dahdaleh Institute for Global Health Research, Faculty of Health and Osgoode Hall Law School, York University, Toronto, Ontario, Canada
| | - Javier Lezaun
- Institute for Science, Innovation and Society, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, Oxfordshire, UK
| | - Susan Nayiga
- Infectious Diseases Research Collaboration, Kampala, Central Region, Uganda
| | - Kevin Outterson
- School of Law, Social Innovation on Drug Program, Boston University, Boston, Massachusetts, USA
| | - Scott H Podolsky
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie Raymond
- School of Social and Political Sciences, Faculty of Arts and Social Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, Liverpool, UK
| | - Andrew C Singer
- Pollution, UK Centre for Ecology & Hydrology, Wallingford, UK
| | - Anthony D So
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Innovation + Design Enabling Access (IDEA) Initiative, ReAct - Action on Antibiotic Resistance, Baltimore, Maryland, USA
| | | | - Elizabeth Tayler
- Global Coordination and Partnerships, AMR Division, World Health Organisation, Geneva, Switzerland
| | - Susan Rogers Van Katwyk
- Global Strategy Lab, Dahdaleh Institute for Global Health Research, Faculty of Health and Osgoode Hall Law School, York University, Toronto, Ontario, Canada
- Global Strategy Lab, York University, Toronto, Ontario, Canada
| | - Clare I R Chandler
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
42
|
Shanmugakani RK, Srinivasan B, Glesby MJ, Westblade LF, Cárdenas WB, Raj T, Erickson D, Mehta S. Current state of the art in rapid diagnostics for antimicrobial resistance. LAB ON A CHIP 2020; 20:2607-2625. [PMID: 32644060 PMCID: PMC7428068 DOI: 10.1039/d0lc00034e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Antimicrobial resistance (AMR) is a fundamental global concern analogous to climate change threatening both public health and global development progress. Infections caused by antimicrobial-resistant pathogens pose serious threats to healthcare and human capital. If the increasing rate of AMR is left uncontrolled, it is estimated that it will lead to 10 million deaths annually by 2050. This global epidemic of AMR necessitates radical interdisciplinary solutions to better detect antimicrobial susceptibility and manage infections. Rapid diagnostics that can identify antimicrobial-resistant pathogens to assist clinicians and health workers in initiating appropriate treatment are critical for antimicrobial stewardship. In this review, we summarize different technologies applied for the development of rapid diagnostics for AMR and antimicrobial susceptibility testing (AST). We briefly describe the single-cell technologies that were developed to hasten the AST of infectious pathogens. Then, the different types of genotypic and phenotypic techniques and the commercially available rapid diagnostics for AMR are discussed in detail. We conclude by addressing the potential of current rapid diagnostic systems being developed as point-of-care (POC) diagnostic tools and the challenges to adapt them at the POC level. Overall, this review provides an insight into the current status of rapid and POC diagnostic systems for AMR.
Collapse
Affiliation(s)
- Rathina Kumar Shanmugakani
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Balaji Srinivasan
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Marshall J. Glesby
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Lars F. Westblade
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Washington B. Cárdenas
- Laboratorio para Investigaciones Biomédicas, Escuela Superior Politécnica del Litoral, Guayaquil, Guayas, Ecuador
| | - Tony Raj
- St. John’s Research Institute, Bangalore, Karnataka, India
| | - David Erickson
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Saurabh Mehta
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
43
|
de Sousa ESO, Cortez ACA, de Souza Carvalho Melhem M, Frickmann H, de Souza JVB. Factors influencing susceptibility testing of antifungal drugs: a critical review of document M27-A4 from the Clinical and Laboratory Standards Institute (CLSI). Braz J Microbiol 2020; 51:1791-1800. [PMID: 32757139 DOI: 10.1007/s42770-020-00354-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Due to the increasing numbers of fungal infections and the emergence of drug-resistant fungi, optimization and standardization of diagnostic methods for the measurement of antifungal susceptibility are ongoing. The M27-A4 document by the US Clinical and Laboratory Standards Institute (CLSI) is presently used for the interpretation of minimum inhibitory concentrations of major opportunistic yeast species as measured by broth microdilution testing in many countries. Although microdilution is considered a benchmark for reproducible and accurate results, increased testing capacity, and limited human bias, the method is often inaccessible to routine clinical laboratories and researchers, especially in low-income countries. Furthermore, several studies suggest that there are still a considerable number of factors that make the estimation of in vitro activity of antifungal agents challenging. This review article summarizes the limitations of the M27-A4 standard which, despite the advances and improvements obtained by the standardization of antimicrobial resistance testing methods by CLSI, still persist.
Collapse
Affiliation(s)
| | - Ana Claúdia Alves Cortez
- Department of Medical Microbiology, National Institute for Amazonian Research - INPA, André Araújo Avenue, Manaus, Amazonas, Brazil
| | - Marcia de Souza Carvalho Melhem
- Department of Mycology, Adolfo Lutz Institute, Av. Dr. Arnaldo, Sao Paulo, Brazil
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Hagen Frickmann
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany, Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - João Vicente Braga de Souza
- Department of Medical Microbiology, National Institute for Amazonian Research - INPA, André Araújo Avenue, Manaus, Amazonas, Brazil.
| |
Collapse
|
44
|
Prevalence of susceptibility patterns of opportunistic bacteria in line with CLSI or EUCAST among Haemophilus parainfluenzae isolated from respiratory microbiota. Sci Rep 2020; 10:11512. [PMID: 32661300 PMCID: PMC7359364 DOI: 10.1038/s41598-020-68161-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/15/2020] [Indexed: 12/02/2022] Open
Abstract
The application of CLSI and EUCAST guidelines led to many discrepancies. Various doubts have already appeared in preliminary stages of microbiological diagnostics of Haemophilus spp. A total of 87 H. parainfluenzae isolates were obtained from throat or nasopharyngeal swabs from adults 18 to 70 years old, both healthy volunteers and patients with chronic diseases between 2013 to 2015 in eastern Poland. Haemophilus spp. were identified by colony morphology, Gram-staining, API NH and MALDI-TOF MS technique. Both susceptibility to various antimicrobials and phenotypes of Haemophilus spp. resistance to beta-lactams were determined. Statistically significant association between applied guidelines and drug resistance patterns were observed to as follows: ampicillin, cefuroxime, cefotaxime, amoxicillin-clavulanate, azithromycin, tetracycline and trimethoprim-sulfamethoxazole. Resistance phenotypes according to CLSI vs. EUCAST were as follows: 3.4% vs. 8.0% for BLNAR and 6.9% vs. 19.5% for BLPACR isolates. In conclusion, this is the first study that reports comparative analysis of drug susceptibility interpretation using CLSI and EUCAST of haemophili rods from human respiratory microbiota in Poland. In case of susceptible, increased exposure (formerly intermediate) category of susceptibility within H. parainfluenzae isolates we have observed EUCAST as more restrictive than CLSI. Moreover, BLNAI and BLPAI phenotype isolates have been observed, as well as BLPBR using only CLSI or EUCAST guidelines, respectively.
Collapse
|
45
|
Leudjo Taka A, Doyle BP, Carleschi E, Youmbi Fonkui T, Erasmus R, Fosso-Kankeu E, Pillay K, Mbianda XY. Spectroscopic characterization and antimicrobial activity of nanoparticle doped cyclodextrin polyurethane bionanosponge. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111092. [PMID: 32600696 DOI: 10.1016/j.msec.2020.111092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/25/2020] [Accepted: 05/10/2020] [Indexed: 11/16/2022]
Abstract
This study reports on the spectroscopic characterization and antimicrobial potency of polyurethane cyclodextrin co-polymerized phosphorylated multiwalled carbon nanotube-doped Ag-TiO2 nanoparticle (pMWCNT-CD/Ag-TiO2) bionanosponge nanocomposite. The synthesis of pMWCNT-CD/Ag-TiO2 bionanosponge nanocomposite was carried out through the combined processes of amidation and polymerization reactions as well as the sol-gel method. The native nanosponge cyclodextrin and phosphorylated multiwalled carbon nanotube-nanosponge CD (pMWCNT-CD) polyurethanes were also prepared, and their antimicrobial activities carried out for comparison purposes. The synthesized bionanosponge polyurethane materials were characterized using Fourier-transform infrared (FTIR) spectroscopy, Laser Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) to give clear information regarding their structural, and dynamic physicochemical properties. The potency tests of the synthesized compounds were carried out against three bacterial strains Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and two fungal representatives Aspergillus ochraceus and Aspergillus fumigatus, using the disc diffusion method. Micro dilution and agar plating were used to determine the minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC), respectively. The results obtained revealed that pMWCNT-CD/Ag-TiO2 exhibits superior antibacterial and antifungal activities when compared to the other bionanosponge polymers tested. Thus, the bionanosponge polyurethane pMWCNT-CD/Ag-TiO2 nanocomposite can be considered as an active antimicrobial compound (AMC).
Collapse
Affiliation(s)
- Anny Leudjo Taka
- Department of Chemical Sciences, Centre for Nanomaterials Science Research, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Bryan P Doyle
- Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Emanuela Carleschi
- Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Thierry Youmbi Fonkui
- Department of Biotechnology and Food Technology, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028, South Africa
| | - Rudolph Erasmus
- School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Elvis Fosso-Kankeu
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, Faculty of Engineering, North West University, Potchefstroom Campus, Potchefstroom, South Africa
| | - Kriveshini Pillay
- Department of Chemical Sciences, Centre for Nanomaterials Science Research, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Xavier Y Mbianda
- Department of Chemical Sciences, Centre for Nanomaterials Science Research, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
46
|
Coagulase-negative staphylococci in outpatient routines: the implications of switching from CLSI to BrCAST/EUCAST guidelines. Braz J Microbiol 2020; 51:1071-1078. [PMID: 32328965 DOI: 10.1007/s42770-020-00278-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are frequently isolated in clinical specimens and are important reservoirs of resistance genes. In 2019, the Brazilian government set the BrCAST/EUCAST (Brazilian Committee on Antimicrobial Susceptibility Testing) guidelines as the national standard, resulting in changes in the interpretation of CoNS susceptibility tests. From outpatients, disk-diffusion susceptibility of 65 CoNS cultures were evaluated and compared using classification criteria from both CLSI and BrCAST/EUCAST. The isolates were identified using matrix assisted laser desorption ionization-time of flight (MALDI-TOF), and the presence of the mecA gene was determined. The most prevalent species were Staphylococcus saprophyticus (32.3%), S. haemolyticus (18.5%), and S. epidermidis (9.2%). Almost perfect agreement was seen between the guidelines, except concerning oxacillin and gentamicin, and the prevalence of multidrug resistant isolates increased with the use of BrCAST/EUCAST. Of all, 15 (23.1%) isolates, mainly S. epidermidis and S. haemolyticus, were positive for the mecA gene, and only three were detected when using CLSI or BrCAST/EUCAST disk-diffusion screening. This, using either guideline, could reveal the difficulty of determining oxacillin resistance. Using warning zones or molecular methods might well be indicated for CoNS. In conclusion, adoption of the BrCAST/EUCAST guidelines will result in certain artificial changes in epidemiological susceptibility profiles, and clinicians and institutions should be aware of the possible implications.
Collapse
|
47
|
Sahu C, Jain V, Mishra P, Prasad KN. Clinical and laboratory standards institute versus European committee for antimicrobial susceptibility testing guidelines for interpretation of carbapenem antimicrobial susceptibility results for Escherichia coli in urinary tract infection (UTI). J Lab Physicians 2020; 10:289-293. [PMID: 30078964 PMCID: PMC6052810 DOI: 10.4103/jlp.jlp_176_17] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Carbapenems show excellent activity against resistant uropathogens, and they are the antibiotics of choice for urinary tract infections (UTIs). The choice of carbapenem prescription is strongly influenced by antimicrobial susceptibility testing (AST) report. With the publication of recent AST guidelines by the European Committee on AST (EUCAST), we were curious to evaluate the difference in results between Clinical and Laboratory Standards Institute (CLSI) and the EUCAST guidelines for the interpretation of carbapenems. METHODS During a period of 1 year, midstream urine specimens received in the laboratory were cultured by conventional techniques and 2932 of them grew significant colony counts of Escherichia coli. Out of them, 501 E. coli isolates which were resistant to at least six first-line antibiotics were further subjected to second-line antimicrobials imipenem and meropenem, reported by E-tests (bioMerieux, France). The E-test results were interpreted by both CLSI 2016 and EUCAST 6.0 (2016) guidelines. Weighted kappa was used to determine absolute agreement, and McNemar's Chi-square test was used to test the difference in proportions of susceptibility between two methods, respectively. RESULTS Taking CLSI guidelines as a gold standard, there was 100% sensitivity in a susceptible category by the EUCAST guidelines for both the carbapenems. Weighted kappa showed good and moderate agreement between them for imipenem and meropenem, respectively. However, McNemar Chi-square test in the nonsusceptible category between the two tests was 9.38% and 33.03% for imipenem and meropenem, respectively, and they were highly significant (P < 0.001). CONCLUSIONS A laboratory can follow EUCAST guidelines as well and the guidelines are more useful in urinary concentrated antibiotics such as carbapenems. Further other antibiotics need to be evaluated by both these guidelines.
Collapse
Affiliation(s)
- Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Vidhi Jain
- Department of Microbiology, Yashoda Superspeciality Hospital, Kaushambi, Uttar Pradesh, India
| | - Prabhakar Mishra
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Kashi Nath Prasad
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
48
|
Yang JJ, Huang YC, Chuang TH, Herr DR, Hsieh MF, Huang CJ, Huang CM. Cysteine-Capped Hydrogels Incorporating Copper as Effective Antimicrobial Materials against Methicillin-Resistant Staphylococcus aureus. Microorganisms 2020; 8:E149. [PMID: 31973160 PMCID: PMC7074715 DOI: 10.3390/microorganisms8020149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 11/17/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) has become an alarming threat to public health, and infected soft tissue. Antibiotics are commonly used to treat skin infection with MRSA, but the inappropriate use of antibiotics runs a considerable risk of generating resistant S. aureus. In this study, we created a cysteine-capped hydrogel able to absorb and release copper, an ion with the capability of suppressing the growth of USA300, a community-acquired MRSA. The results of analysis of Fourier transform infrared spectroscopy (FTIR) revealed the binding of copper to a cysteine-capped hydrogel. The topical application of a cysteine-capped hydrogel binding with copper on USA300-infected skin wounds in the dorsal skin of Institute of Cancer Research (ICR) mice significantly enhanced wound healing, hindered the growth of USA300, and reduced the production of pro-inflammatory macrophage inflammatory protein 2-alpha (MIP-2) cytokine. Our work demonstrates a newly designed hydrogel that conjugates a cysteine molecule for copper binding. The cysteine-capped hydrogel can potentially chelate various antimicrobial metals as a novel wound dressing.
Collapse
Affiliation(s)
- John Jackson Yang
- Department of Life Sciences, National Central University, Taoyuan County 32001, Taiwan; (J.J.Y.); (Y.-C.H.)
| | - Yung-Chi Huang
- Department of Life Sciences, National Central University, Taoyuan County 32001, Taiwan; (J.J.Y.); (Y.-C.H.)
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes (NHRI), Zhunan, Miaoli County 35053, Taiwan;
| | - Deron Raymond Herr
- Department of Pharmacology, National University of Singapore, Singapore 117543, Singapore;
| | - Ming-Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - Chun-Jen Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan County 32001, Taiwan;
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan County 32001, Taiwan;
| |
Collapse
|
49
|
Ardehali SH, Fatemi A, Rezaei SF, Forouzanfar MM, Zolghadr Z. The Effects of Open and Closed Suction Methods on Occurrence of Ventilator Associated Pneumonia; a Comparative Study. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2020; 8:e8. [PMID: 32021989 PMCID: PMC6993077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Endotracheal suctioning is a method commonly used to clean airway secretions in patients under mechanical ventilation (MV). This study aimed to compare the effects of open and closed suction methods on the occurrence of ventilator associated pneumonia (VAP). METHODS This comparative study was carried out on adult intensive care unit (ICU) patients in need of MV for more than 48 hours, from October 2018 to January 2019. Patients were randomly allocated to either closed tracheal suction system (CTSS) group or open tracheal suction system (OTSS) group. Patients were monitored for developing VAP within 72 hours of intubation and the findings were compared between groups. RESULTS 120 cases with the mean age of 57.91±19.9 years were randomly divided into two groups (56.7% male). The two groups were similar regarding age (p = 0.492) and sex (p = 0.713) distribution. 22 (18.3%) cases developed VAP (12 (20%) in OSST group and 10 (16.7%) in CSST; p = 0.637). The most prevalent bacterial causes of VAP were Acinetobacter_Baumannii (72.7%), Klebsiella pneumoniae (18.2%), and Methicillin-Resistant Staphylococcus aureus (9.1%), respectively. There was not any significant difference between groups regarding the mean duration of remaining under MV (p = 0.623), mean duration of hospitalization (p = 0.219), frequency of VAP (p = 0.637), and mortality (p = 0.99). CONCLUSION It seems that type of endotracheal suction system (OSST vs. CSST) had no effect on occurrence of VAP and other outcomes such as duration of need for MV and ICU stay as well as mortality.
Collapse
Affiliation(s)
- Seyed Hossein Ardehali
- Department of Anesthesiology & Critical Care, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Fatemi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,*Corresponding Author: Alireza Fatemi; Men's Health and Reproductive Health Research Center, Shohadaye Tajrish Hospital, Shahrdary Avenue, Tajrish Square, Tehran, Iran
| | - Seyedeh Fariba Rezaei
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Forouzanfar
- Emergency department, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Zolghadr
- Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Paravisi M, Laviniki V, Bassani J, Kunert Filho HC, Carvalho D, Wilsmann DE, Borges KA, Furian TQ, Salle CTP, Moraes HLS, Nascimento VP. Antimicrobial Resistance in Campylobacter jejuni Isolated from Brazilian Poultry Slaughterhouses. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2020-1262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M Paravisi
- Universidade Federal do Rio Grande do Sul, Brazil
| | - V Laviniki
- Universidade Federal do Rio Grande do Sul, Brazil
| | - J Bassani
- Universidade Federal do Rio Grande do Sul, Brazil
| | | | - D Carvalho
- Universidade Federal do Rio Grande do Sul, Brazil
| | - DE Wilsmann
- Universidade Federal do Rio Grande do Sul, Brazil
| | - KA Borges
- Universidade Federal do Rio Grande do Sul, Brazil
| | - TQ Furian
- Universidade Federal do Rio Grande do Sul, Brazil
| | - CTP Salle
- Universidade Federal do Rio Grande do Sul, Brazil
| | - HLS Moraes
- Universidade Federal do Rio Grande do Sul, Brazil
| | | |
Collapse
|