1
|
Li L, Zeng J, He S, Yang Y, Wang C. METTL14 decreases FTH1 mRNA stability via m6A methylation to promote sorafenib-induced ferroptosis of cervical cancer. Cancer Biol Ther 2024; 25:2349429. [PMID: 38738555 PMCID: PMC11093024 DOI: 10.1080/15384047.2024.2349429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Cervical cancer (CC) is a prevalent malignancy among women worldwide. This study was designed to investigate the role of METTL14 in sorafenib-induced ferroptosis in CC. METTL14 expression and m6A methylation were determined in CC tissues, followed by analyzes correlating these factors with clinical features. Subsequently, METTL14 was knocked down in CC cell lines, and the effects on cell proliferation, mitochondrial morphology and ferroptosis were assessed using CCK-8, microscopy, and markers associated with ferroptosis, respectively. The regulatory relationship between METTL14 and FTH1 was verified using qRT-PCR and luciferase reporter assays. The functional significance of this interaction was further investigated both in vitro and in vivo by co-transfecting cells with overexpression vectors or shRNAs targeting METTL14 and FTH1 after sorafenib treatment. METTL14 expression and m6A methylation were significantly reduced in CC tissues, and lower METTL14 expression levels were associated with a poorer CC patients' prognosis. Notably, METTL14 expression increased during sorafenib-induced ferroptosis, and METTL14 knockdown attenuated the ferroptotic response induced by sorafenib in CC cells. FTH1 was identified as a direct target of METTL14, with METTL14 overexpression leading to increased m6A methylation of FTH1 mRNA, resulting in reduced stability and expression of FTH1 in CC. Furthermore, FTH1 overexpression or treatment with LY294002 partially counteracted the promotion of sorafenib-induced ferroptosis by METTL14. In vivo xenograft experiments demonstrated that inhibiting METTL14 reduced the anticancer effects of sorafenib, whereas suppression of FTH1 significantly enhanced sorafenib-induced ferroptosis and increased its anticancer efficacy. METTL14 reduces FTH1 mRNA stability through m6A methylation, thereby enhancing sorafenib-induced ferroptosis, which contributes to suppressing CC progression via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Lijie Li
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Jie Zeng
- Pharmacy Intravenous Admixture Services, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Sili He
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Yanfei Yang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Chen Wang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
2
|
Tan Z, Hei F, Ma K, Lv Z, Zhang H, Sun N, Guo W, Song M. m 6A reader YTHDF2 orchestrates CD8 + T cell infiltration to promote pancreatic cancer progression and predicts clinical outcome. Int Immunopharmacol 2024; 142:113079. [PMID: 39288628 DOI: 10.1016/j.intimp.2024.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Pancreatic cancer has emerged as one of the most lethal malignancies, characterized by rising morbidity and mortality rates. Research has demonstrated that N6-methyladenosine (m6A) modification of RNA significantly influences RNA metabolism, and dysregulation of m6A is implicated in various human diseases. A clearer picture of how the divergent m6A methylation patterns affect immunological microenvironment in pancreatic cancer is still unknown. Based on an analysis of RNA-sequencing (RNA-seq) data from the TCGA, GEO, and GTEx databases, we predicted and validated the expression of YTHDF2. Apoptosis and cell cycle analyses of YTHDF2 were conducted using flow cytometry, and a subcutaneous transplantation tumor model was established in BALB/c nude mice. The immune infiltration status and Weighted Gene Co-expression Network Analysis (WGCNA) were employed to evaluate cellular immunity and identify downstream target genes associated with the CD8+ T cell module. Additionally, machine learning-based integrative approaches were utilized to generate a predictive signature. The Western blot technique was employed to quantify YTHDF2 expression levels in PDAC cell lines and tissues. WGCNA and PPI unveiled TFG as the core gene regulation network conducting the function of the CD8+ T cell. Quantitative reverse transcription PCR (qRT-PCR) assays were conducted to confirm the reduction in TFG expression subsequent to YTHDF2 knockdown. Integrative analyses using large-scale genomic data sets were conducted to reveal that YTHDF2 could affect pancreatic cancer cell apoptosis and the cell cycle, promote malignant biologic processes, and gene regulation in immune cells. YTHDF2 potentially modulates crucial molecular subgroups of immune checkpoint molecules in CD8+ T cells, thereby enhancing tumor immunogenicity and promoting anti-tumor immune responses.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Faxian Hei
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kai Ma
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziqiang Lv
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haowen Zhang
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ning Sun
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weidong Guo
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Mengqi Song
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Mao J, Zhao Q, Guo M, Zhang S, Zhou J. Connecting the dots: Involvement of methyltransferase-like 3, N6-methyladenosine modification, and ferroptosis in the pathogenesis of intracerebral hemorrhage pathogenesis. Exp Neurol 2024; 382:114948. [PMID: 39260591 DOI: 10.1016/j.expneurol.2024.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024]
Abstract
Intracerebral hemorrhage is a profoundly detrimental acute cerebrovascular condition with a low overall survival rate and a high post-onset disability rate. Secondary brain injury that ensues post-ICH is the primary contributor to fatality and disability. Hence, the mitigation of brain injury during intracerebral hemorrhage progression has emerged as a crucial aspect of clinical management. N6-methyladenosine is the most pervasive, abundant, and conserved internal co-transcriptional modification of eukaryotic ribonucleic acid and is predominantly expressed in the nervous system. Methyltransferase-like 3 is a key regulatory protein that is strongly associated with the development of the nervous system and numerous neurological diseases. Ferroptosis, a form of iron-associated cell death, is a typical manifestation of neuronal apoptosis in neurological diseases and plays an important role in secondary brain damage following intracerebral hemorrhage. Therefore, this review aimed to elucidate the connection between m6A modification (particularly methyltransferase-like 3) and ferroptosis in the context of intracerebral hemorrhage to provide new insights for future intracerebral hemorrhage management approaches.
Collapse
Affiliation(s)
- Junxiang Mao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Quantang Zhao
- Department of Neurosurgery, The Chinese People's Liberation Army Joint Logistics Support Force, No. 940 Hospital, Lanzhou City, Gansu Province, China
| | - Man Guo
- Department of Neurosurgery, The Chinese People's Liberation Army Joint Logistics Support Force, No. 940 Hospital, Lanzhou City, Gansu Province, China
| | - Shenghao Zhang
- Department of Neurosurgery, The Chinese People's Liberation Army Joint Logistics Support Force, No. 940 Hospital, Lanzhou City, Gansu Province, China
| | - Jie Zhou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
4
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. RNA modification in normal hematopoiesis and hematologic malignancies. MedComm (Beijing) 2024; 5:e787. [PMID: 39445003 PMCID: PMC11496571 DOI: 10.1002/mco2.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic cells. Previous studies have shown that m6A plays a critical role under both normal physiological and pathological conditions. Hematopoiesis and differentiation are highly regulated processes, and recent studies on m6A mRNA methylation have revealed how this modification controls cell fate in both normal and malignant hematopoietic states. However, despite these insights, a comprehensive understanding of its complex roles between normal hematopoietic development and malignant hematopoietic diseases remains elusive. This review first provides an overview of the components and biological functions of m6A modification regulators. Additionally, it highlights the origin, differentiation process, biological characteristics, and regulatory mechanisms of hematopoietic stem cells, as well as the features, immune properties, and self-renewal pathways of leukemia stem cells. Last, the article systematically reviews the latest research advancements on the roles and mechanisms of m6A regulatory factors in normal hematopoiesis and related malignant diseases. More importantly, this review explores how targeting m6A regulators and various signaling pathways could effectively intervene in the development of leukemia, providing new insights and potential therapeutic targets. Targeting m6A modification may hold promise for achieving more precise and effective leukemia treatments.
Collapse
Affiliation(s)
- Xi Chen
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Yixiao Yuan
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Fan Zhou
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Jun Pu
- Department of NeurosurgeryThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
- NHC Key Laboratory of Drug Addiction MedicineKunming Medical UniversityKunmingYunnanChina
| | - Xiulin Jiang
- Department of MedicineUF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
- Department of Medicine and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
5
|
Shi C, Chen L, Huang K, Yang G, Shi T, Li J, Zheng H. m6A methylation regulators and ncRNAs in osteosarcoma: Potential therapeutic strategies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024:S0079-6107(24)00100-7. [PMID: 39461672 DOI: 10.1016/j.pbiomolbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Osteosarcoma (OS) represents the primary form of bone cancer observed in paediatric and adolescent populations. Nearly 10% to 15% of patients have metastases at diagnosis, and the 5-year survival rate was less than 20%. Although numerous investigators have offered significant efforts, the survival rates for patients with OS have remained almost unchanged over the past three decades. The most pervasive and abundant modification of internal transcripts in eukaryotic messenger RNAs (mRNAs) is N6-methyladenosine (m6A), and it is regulated by m6A methylation regulators. A number of recent studies have demonstrated that m6A modifications can regulate the biological activities of tumour cells and are intimately linked with cancer development, prognosis, drug resistance, and therapy. N6-methyladenosine modification of Non-coding RNA (ncRNA) has likewise shown a broad potential in gene regulation and tumor biology. Epigenetic changes induced by mRNAs and ncRNAs methylation are important for a better understanding of OS development and targeted drug development. Therefore, this paper summarises the biological functions of m6A-modified regulators in osteosarcoma and the role of mutual regulation between m6A and ncRNAs in osteosarcoma. Furthermore, the potential clinical applications of m6A modifications in OS are presented for consideration. It provides new directions for the future research and clinical treatment strategies of osteosarcoma.
Collapse
Affiliation(s)
- Ce Shi
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, China
| | - Lei Chen
- Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, China
| | - Kui Huang
- Department of Orthopedics, Feng xian People's Hospital, Xuzhou 221700, China
| | - Guanghui Yang
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, China
| | - Tingting Shi
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, China
| | - Jinshuang Li
- Department of Cardiology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, China.
| | - Hongbing Zheng
- Department of Orthopedics, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, China.
| |
Collapse
|
6
|
Zhang Y, Ma W, Huang Z, Liu K, Feng Z, Zhang L, Li D, Mo T, Liu Q. Research and application of omics and artificial intelligence in cancer. Phys Med Biol 2024; 69:21TR01. [PMID: 39079556 DOI: 10.1088/1361-6560/ad6951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024]
Abstract
Cancer has a high incidence and lethality rate, which is a significant threat to human health. With the development of high-throughput technologies, different types of cancer genomics data have been accumulated, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. A comprehensive analysis of various omics data is needed to understand the underlying mechanisms of tumor development. However, integrating such a massive amount of data is one of the main challenges today. Artificial intelligence (AI) techniques such as machine learning are now becoming practical tools for analyzing and understanding multi-omics data on diseases. Enabling great optimization of existing research paradigms for cancer screening, diagnosis, and treatment. In addition, intelligent healthcare has received widespread attention with the development of healthcare informatization. As an essential part of innovative healthcare, practical, intelligent prognosis analysis and personalized treatment for cancer patients are also necessary. This paper introduces the advanced multi-omics data analysis technology in recent years, presents the cases and advantages of the combination of both omics data and AI applied to cancer diseases, and finally briefly describes the challenges faced by multi-omics analysis and AI at the current stage, aiming to provide new perspectives for oncology research and the possibility of personalized cancer treatment.
Collapse
Affiliation(s)
- Ye Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Wenwen Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zhiqiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Kun Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zhaoyi Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Lei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Dezhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
7
|
Shi S, Wang C, Cai Q, Yang R, Peng M, Liang H, Qian B, Jiang Y, Xiao B, Wang L, Tao Y, Cai J, Zhao Z. RBM15 drives the progression of lung adenocarcinoma by regulating N6-methyladenosine-mediated LDHA mRNA stability. Life Sci 2024; 358:123146. [PMID: 39406308 DOI: 10.1016/j.lfs.2024.123146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Abnormal N6-methyladenosine (m6A) methylation in RNA plays a pivotal role in the pathogenesis of many types of tumors by influencing mRNA metabolism, alternative splicing, translocation, stability and translation. However, the specific regulators and underlying mechanisms of m6A modification in the progression of lung adenocarcinoma are not well understood. In this study, we analyzed the RNA-seq transcriptome data downloaded from The Cancer Genome Atlas (TCGA) database, and identified "m6A writer" RNA binding motif protein 15 (RBM15) expression was significantly elevated in lung adenocarcinoma (LUAD) biopsies, and the higher RBM15 levels were correlated with the poorer overall survival (OS) of LUAD patients. Further study confirmed RBM15 was prominently expressed in LUAD tissues and cell lines. Moreover, silencing RBM15 in PC9 and H1299 cells reduced cell proliferation both in vitro and in vivo, while overexpression of RBM15 in A549 cells promoted cell growth. Mechanistically, lactate dehydrogenase A (LDHA) acted as a downstream target of RBM15. RBM15-mediated m6A modification of LDHA mRNA enhanced its stability to exert an oncogenic role in LUAD. Taken together, our findings suggest that the RBM15/LDHA axis might be a novel and promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Shuai Shi
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Christopher Wang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qidong Cai
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rui Yang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Muyun Peng
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hengxing Liang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Thoracic Surgery, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Banglun Qian
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yupeng Jiang
- Department of Oncology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Bing Xiao
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Emergency Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Li Wang
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Pathology, Xiangya Hospital and School of Basic Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Juan Cai
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhenyu Zhao
- Department of Thoracic Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Liu S, Sun X, Liu N, Lin F. The Potential Role of SNRPD1 Stabilized by IGF2BP2 in the Progression of Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:679-688. [PMID: 39411513 PMCID: PMC11476285 DOI: 10.2147/bctt.s481549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 10/19/2024]
Abstract
Background Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), an RNA-binding protein with N6-methyladenosine (m6A) reader function, is associated with the poor prognosis of various tumors, including triple-negative breast cancer (TNBC). Small nuclear ribonucleoprotein D1 polypeptide (SNRPD1), a spliceosome member, exerts diagnostic and therapeutic functions in breast cancer by regulating the cell cycle and is a potential therapeutic target. However, the interaction between IGF2BP2 and SNRPD1 in the progression of TNBC remain unclear. Objective This study aimed to investigate the interaction between IGF2BP2 and SNRPD1 in TNBC and elucidate the underlying mechanisms. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to detect the expression levels of SNRPD1 and IGF2BP2 in human normal breast cells (MCF10A) and TNBC cells (MDA-MB-231). MDA-MB-231 cells were transfected with SNRPD1 interference or overexpression vectors, or co-transfected with SNRPD1 interference and IGF2BP2 overexpression vectors simultaneously. Cell viability, apoptosis, and invasion were assessed using MTT, flow cytometry, and Transwell assays. RNA stability, m6A levels, and the interaction between SNRPD1 and IGF2BP2 were evaluated using qRT-PCR, methylated RNA immunoprecipitation, and RIP assays. Results SNRPD1 was significantly up-regulated in TNBC cells, promoting cell viability and invasion while inhibiting apoptosis. IGF2BP2 was also up-regulated in TNBC cells and enhanced SNRPD1 mRNA stability via m6A modification. Furthermore, IGF2BP2 overexpression reversed the anti-tumor effect of SNRPD1 knockdown. Conclusion IGF2BP2 and SNRPD1 were significantly highly expressed in TNBC cells. IGF2BP2 might enhance the stability and protein expression of SNRPD1 through m6A-dependent mechanisms, potentially contributing to the progression of TNBC.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Breast Surgery, Beijing Electric Power Hospital, Beijing, 100071, People’s Republic of China
| | - Xin Sun
- Department of Breast Surgery, Beijing Electric Power Hospital, Beijing, 100071, People’s Republic of China
| | - Na Liu
- Department of Breast Surgery, Beijing Electric Power Hospital, Beijing, 100071, People’s Republic of China
| | - Fangcai Lin
- Department of Breast Surgery, Beijing Electric Power Hospital, Beijing, 100071, People’s Republic of China
| |
Collapse
|
9
|
Huang Y, Wang S, Hu D, Zhang L, Shi S. ALKBH5 regulates etoposide-induced cellular senescence and osteogenic differentiation in osteoporosis through mediating the m 6A modification of VDAC3. Sci Rep 2024; 14:23461. [PMID: 39379688 PMCID: PMC11461877 DOI: 10.1038/s41598-024-75033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Osteoporosis, a common bone disease in older individuals, involves the progression influenced by N6-methyladenosine (m6A) modification. This study aimed to elucidate the effects of VDAC3 m6A modification on human bone mesenchymal stromal cell (BMSC) senescence and osteogenic differentiation. BMSCs were treated with etoposide to induce senescence. Senescence was assessed by β-galactosidase staining and quantitative real-time PCR (qPCR), and osteogenic differentiation was evaluated using Western blot, alkaline phosphatase, and alizarin red S staining. VDAC3 and ALKBH5 expression were quantified by qPCR, and their interaction was assessed by RNA immunoprecipitation (RIP) and luciferase reporter assay. m6A methylation was analyzed using the Me-RIP assay. VDAC3 expression was significantly decreased in etoposide-treated BMSCs (1.00 ± 0.13 vs. 0.26 ± 0.06). VDAC3 overexpression reduced etoposide-induced senescence and promoted osteogenic differentiation. ALKBH5 overexpression inhibited VDAC3 m6A modification (1.00 ± 0.095 vs. 0.233 ± 0.177) and its stability. ALKBH5 knockdown decreased etoposide-induced senescence and promoted osteogenic differentiation, effects that were reversed by VDAC3 knockdown. YTHDF1 was identified as the m6A methylation reader, and its overexpression inhibited VDAC3 stability. We demonstrated that ALKBH5 inhibited osteogenic differentiation of etoposide-induced senescent cells through the inhibition of VDAC3 m6A modification, and YTHDF1 acted as the m6A methylation reader. These findings provide a novel theoretical basis for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yansheng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Sibo Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Dong Hu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Li Zhang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China
| | - Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
10
|
Zhang L, Mao Z, Yin K, Wang S. Review of METTL3 in colorectal cancer: From mechanisms to the therapeutic potential. Int J Biol Macromol 2024; 277:134212. [PMID: 39069066 DOI: 10.1016/j.ijbiomac.2024.134212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
N6-methyladenosine (m6A), the most abundant modification in mRNAs, affects the fate of the modified RNAs at the post-transcriptional level and participants in various biological and pathological processes. Increasing evidence shows that m6A modification plays a role in the progression of many malignancies, including colorectal cancer (CRC). As the only catalytic subunit in methyltransferase complex, methyltransferase-like 3 (METTL3) is essential to the performance of m6A modification. It has been found that METTL3 is associated with the prognosis of CRC and significantly influences various aspects of CRC, such as cell proliferation, invasion, migration, metastasis, metabolism, tumor microcirculation, tumor microenvironment, and drug resistance. The relationship between METTL3 and gut-microbiota is also involved into the progression of CRC. Furthermore, METTL3 might be a viable target for CRC treatment to prolong survival. In this review, we comprehensively summarize the function of METTL3 in CRC and the underlying molecular mechanisms. We aim to deepen understanding and offer new ideas for diagnostic biomarkers and therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Lexuan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China.
| |
Collapse
|
11
|
Shi JX, Zhang ZC, Yin HZ, Piao XJ, Liu CH, Liu QJ, Zhang JC, Zhou WX, Liu FC, Yang F, Wang YF, Liu H. RNA m6A modification in ferroptosis: implications for advancing tumor immunotherapy. Mol Cancer 2024; 23:213. [PMID: 39342168 PMCID: PMC11437708 DOI: 10.1186/s12943-024-02132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
The pursuit of innovative therapeutic strategies in oncology remains imperative, given the persistent global impact of cancer as a leading cause of mortality. Immunotherapy is regarded as one of the most promising techniques for systemic cancer therapies among the several therapeutic options available. Nevertheless, limited immune response rates and immune resistance urge us on an augmentation for therapeutic efficacy rather than sticking to conventional approaches. Ferroptosis, a novel reprogrammed cell death, is tightly correlated with the tumor immune environment and interferes with cancer progression. Highly mutant or metastasis-prone tumor cells are more susceptible to iron-dependent nonapoptotic cell death. Consequently, ferroptosis-induction therapies hold the promise of overcoming resistance to conventional treatments. The most prevalent post-transcriptional modification, RNA m6A modification, regulates the metabolic processes of targeted RNAs and is involved in numerous physiological and pathological processes. Aberrant m6A modification influences cell susceptibility to ferroptosis, as well as the expression of immune checkpoints. Clarifying the regulation of m6A modification on ferroptosis and its significance in tumor cell response will provide a distinct method for finding potential targets to enhance the effectiveness of immunotherapy. In this review, we comprehensively summarized regulatory characteristics of RNA m6A modification on ferroptosis and discussed the role of RNA m6A-mediated ferroptosis on immunotherapy, aiming to enhance the effectiveness of ferroptosis-sensitive immunotherapy as a treatment for immune-resistant malignancies.
Collapse
Affiliation(s)
- Jun-Xiao Shi
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Zhi-Chao Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Hao-Zan Yin
- The Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Xian-Jie Piao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Cheng-Hu Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Qian-Jia Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Jia-Cheng Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Wen-Xuan Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Fu-Chen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Fu Yang
- The Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
- Key Laboratory of Biosafety Defense, Ministry of Education, Shanghai, 200433, China.
- Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China.
| | - Yue-Fan Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China.
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
12
|
Memon F, Nadeem M, Sulaiman M, Arain MI, Hani UE, Yuan S. Unraveling molecular and clinical aspects of ALKBH5 as dual role in colorectal cancer. J Pharm Pharmacol 2024:rgae108. [PMID: 39321327 DOI: 10.1093/jpp/rgae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES This study investigates the dual role of ALKBH5, an eraser enzyme, in colorectal cancer (CRC), focusing on how N6-methyladenosine (m6A) mutations influence CRC development and progression. METHODS We reviewed various studies that highlighted the role of ALKBH5 in colorectal cancer (CRC). This includes the impact of ALKBH5 on tumor cell behavior including immune system interactions, invasion, and proliferation in CRC. We also looked into how ALKBH5 acts as a tumor suppressor under different conditions analyzed clinical data to assess the impact of ALKBH5 expression on outcomes in colorectal cancer patients. KEY FINDINGS In CRC, ALKBH5 plays a dual role. In certain situations, it inhibits the progression of the tumor, but in other circumstances, it promotes tumor growth and immunosuppression. The interaction with RABA5 plays a role in the development of CRC. Having elevated levels of ALKBH5 has been associated with unfavorable patient outcomes, such as reduced survival rates and more advanced cancer stages. Various factors, including tumor differentiation, TNM stages, and carcinoembryonic antigen (CEA) levels, be linked to ALKBH5 expression. CONCLUSIONS ALKBH5 plays a complicated and situation-specific role in colorectal cancer (CRC). Targeting ALKBH5 could result in novel therapy options that balance its tumor-promoting and tumor-fighting properties in CRC. Further research into m6A alterations and ALKBH5 could enhance CRC treatment approaches and patient outcomes.
Collapse
Affiliation(s)
- Furqan Memon
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Momina Nadeem
- Faculty of Pharmacy, University of Sindh, Jamshoro-76080, Sindh, Pakistan
| | - Muhammad Sulaiman
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Mudassar Iqbal Arain
- San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92035, United States
- School of Pharmacy, University of Kansas, 2010 Becker Dr., Lawrenece, KS 66047, United States
- Pharmacy Practice, University of Sindh, Jamshoro, 76080 Sindh, Pakistan
| | - Umm-E- Hani
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
13
|
Cai M, Li X, Luan X, Zhao P, Sun Q. Exploring m6A methylation in skin Cancer: Insights into molecular mechanisms and treatment. Cell Signal 2024; 124:111420. [PMID: 39304098 DOI: 10.1016/j.cellsig.2024.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
N6-methyladenosine (m6A) is the most common and prevalent internal mRNA modification in eukaryotes. m6A modification is a dynamic and reversible process regulated by methyltransferases, demethylases, and m6A binding proteins. Skin cancers, including melanoma and nonmelanoma skin cancers (NMSCs), are among the most commonly diagnosed cancers worldwide. m6A methylation is involved in the regulation of RNA splicing, translation, degradation, stability, translocation, export, and folding. Aberrant m6A modification participates in the pathophysiological processes of skin cancers and is associated with tumor cell proliferation, invasion, migration, and metastasis during cancer progression. In this review, we provide a comprehensive summary of the biological functions of m6A and the most up-to-date evidence related to m6A RNA modification in skin cancer. We also emphasize the potential clinical applications in the diagnosis and treatment of skin cancers.
Collapse
Affiliation(s)
- Mingjun Cai
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Xueqing Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Xueyu Luan
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Pengyuan Zhao
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
14
|
Zhu M, Huang F, Sun H, Liu K, Chen Z, Yu B, Hao H, Liu H, Ding S, Zhang X, Liu L, Zhang K, Ren J, Liu Y, Liu H, Shan C, Guan W. Characterization of ACTN4 as a novel antiviral target against SARS-CoV-2. Signal Transduct Target Ther 2024; 9:243. [PMID: 39289355 PMCID: PMC11408661 DOI: 10.1038/s41392-024-01956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
The various mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pose a substantial challenge in mitigating the viral infectivity. The identification of novel host factors influencing SARS-CoV-2 replication holds potential for discovering new targets for broad-spectrum antiviral drugs that can combat future viral mutations. In this study, potential host factors regulated by SARS-CoV-2 infection were screened through different high-throughput sequencing techniques and further identified in cells. Subsequent analysis and experiments showed that the reduction of m6A modification level on ACTN4 (Alpha-actinin-4) mRNA leads to a decrease in mRNA stability and translation efficiency, ultimately inhibiting ACTN4 expression. In addition, ACTN4 was demonstrated to target nsp12 for binding and characterized as a competitor for SARS-CoV-2 RNA and the RNA-dependent RNA polymerase complex, thereby impeding viral replication. Furthermore, two ACTN4 agonists, YS-49 and demethyl-coclaurine, were found to dose-dependently inhibit SARS-CoV-2 infection in both Huh7 cells and K18-hACE2 transgenic mice. Collectively, this study unveils the pivotal role of ACTN4 in SARS-CoV-2 infection, offering novel insights into the intricate interplay between the virus and host cells, and reveals two potential candidates for future anti-SARS-CoV-2 drug development.
Collapse
Affiliation(s)
- Miao Zhu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Huang
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Huize Sun
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunpeng Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Baocheng Yu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Haizhou Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Shuang Ding
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Lishi Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kui Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jierao Ren
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Liu
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Chao Shan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China.
| |
Collapse
|
15
|
Liu ZY, You QY, Liu ZY, Lin LC, Yang JJ, Tao H. m6A control programmed cell death in cardiac fibrosis. Life Sci 2024; 353:122922. [PMID: 39032691 DOI: 10.1016/j.lfs.2024.122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
N6-methyladenosine (m6A) modification is closely related to cardiac fibrosis. As the most common and abundant form of mRNA modification in eukaryotes, m6A is deposited by methylases ("writers"), recognized and effected by RNA-binding proteins ("readers"), and removed by demethylases ("erasers"), achieving highly dynamic reversibility. m6A modification is involved in regulating the entire biological process of target RNA, including transcription, processing and splicing, export from the nucleus to the cytoplasm, and enhancement or reduction of stability and translation. Programmed cell death (PCD) comprises many forms and pathways, with apoptosis and autophagy being the most common. Other forms include pyroptosis, ferroptosis, necroptosis, mitochondrial permeability transition (MPT)-dependent necrosis, and parthanatos. In recent years, increasing evidence suggests that m6A modification can mediate PCD, affecting cardiac fibrosis. Since the correlation between some PCD types and m6A modification is not yet clear, this article mainly introduces the relationship between four common PCD types (apoptosis, autophagy, pyroptosis, and ferroptosis) and m6A modification, as well as their role and influence in cardiac fibrosis.
Collapse
Affiliation(s)
- Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Qing-Ye You
- Anhui Women and Children's Medical Center, Hefei 230001, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| |
Collapse
|
16
|
YuYan, Yuan E. Regulatory effect of N6-methyladenosine on tumor angiogenesis. Front Immunol 2024; 15:1453774. [PMID: 39295872 PMCID: PMC11408240 DOI: 10.3389/fimmu.2024.1453774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Previous studies have demonstrated that genetic alterations governing epigenetic processes frequently drive tumor development and that modifications in RNA may contribute to these alterations. In the 1970s, researchers discovered that N6-methyladenosine (m6A) is the most prevalent form of RNA modification in advanced eukaryotic messenger RNA (mRNA) and noncoding RNA (ncRNA). This modification is involved in nearly all stages of the RNA life cycle. M6A modification is regulated by enzymes known as m6A methyltransferases (writers) and demethylases (erasers). Numerous studies have indicated that m6A modification can impact cancer progression by regulating cancer-related biological functions. Tumor angiogenesis, an important and unregulated process, plays a pivotal role in tumor initiation, growth, and metastasis. The interaction between m6A and ncRNAs is widely recognized as a significant factor in proliferation and angiogenesis. Therefore, this article provides a comprehensive review of the regulatory mechanisms underlying m6A RNA modifications and ncRNAs in tumor angiogenesis, as well as the latest advancements in molecular targeted therapy. The aim of this study is to offer novel insights for clinical tumor therapy.
Collapse
Affiliation(s)
- YuYan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enwu Yuan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Yang Y, Gao F, Ren L, Ren N, Pan J, Xu Q. Functions and mechanisms of RNA m 6A regulators in breast cancer (Review). Int J Oncol 2024; 65:86. [PMID: 39054967 PMCID: PMC11299767 DOI: 10.3892/ijo.2024.5674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Breast cancer (BC) is a major malignant tumor in females and the incidence rate of BC has increased worldwide in recent years. N6‑methyladenosine (m6A) is a methylation modification that occurs extensively in eukaryotic RNA. The abnormal expression of m6A and related regulatory proteins can activate or inhibit certain signal pathways or oncogenes, thus affecting the proliferation, metastasis and prognosis of BC. Numerous studies have shown that m6A regulator disorder exists in BC, and this disorder can be reversed. Therefore, m6A is predicted as a potential therapeutic target for BC. However, the molecular mechanism of m6A RNA methylation regulating the occurrence and development of BC has not been comprehensively elucidated. In this review article, the functions of various m6A regulators and the specific mechanisms of certain regulators of the progress of BC were summarized. Furthermore, the dual role of RNA methylation in tumor progression was discussed, concluding that RNA methylation can not only lead to tumorigenesis but at times give rise to inhibition of tumor formation. In addition, further comprehensive analysis on mechanisms of m6A regulators in BC is conducive to screening effective potential targets and formulating targeted treatment strategies, which will provide new methods for the prevention and treatment of BC.
Collapse
Affiliation(s)
- Yibei Yang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310051, P.R. China
| | - Feng Gao
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310051, P.R. China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310051, P.R. China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310051, P.R. China
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
18
|
Sun X, Wang H, Pu X, Wu Y, Yuan X, Wang X, Lu H. Manipulating the tumour immune microenvironment by N6-methyladenosine RNA modification. Cancer Gene Ther 2024; 31:1315-1322. [PMID: 38834772 DOI: 10.1038/s41417-024-00791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
N6-methyladenosine (m6A), a posttranscriptional regulatory mechanism, is the most common epigenetic modification in mammalian mRNA. M6A modifications play a crucial role in the developmental network of immune cells. The expression of m6A-related regulators often affects carcinogenesis and tumour suppression networks. In the tumour microenvironment, m6A-modified enzymes can affect the occurrence and progression of tumours by regulating the activation and invasion of tumour-associated immune cells. Immunotherapy, which utilises immune cells, has been demonstrated to be a powerful weapon in tumour treatment and is increasingly being used in the clinic. Here, we provide an updated and comprehensive overview of how m6A modifications affect invasive immune cells and their potential role in immune regulation. In addition, we summarise the regulation of epigenetic regulators associated with m6A modifications in tumour cells on the antitumour response of immune cells in the tumour immune microenvironment. These findings provide new insights into the role of m6A modifications in the immune response and tumour development, leading to the development of novel immunotherapies for cancer treatment.
Collapse
Affiliation(s)
- Xinyu Sun
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huirong Wang
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xi Pu
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuting Wu
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao Yuan
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xu Wang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hanqiang Lu
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
19
|
Wang N, Yang J, Liu X, Liu G, He Z, Gu S. Changes of m 6A Regulatory Proteins and Nrf2 Signaling Molecules in Liver Tissue of Type 2 Diabetes Mellitus Rats. Cell Biochem Biophys 2024; 82:2217-2226. [PMID: 38822202 DOI: 10.1007/s12013-024-01331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Both dysregulation of N6-methyladenosine (m6A) regulatory proteins and Nrf2 signaling molecules are involved in the process of injury to multiple tissues. However, changes of m6A regulatory proteins and Nrf2 signaling molecules in liver tissue of T2DM remain unclear. In present study, changes of m6A regulatory proteins (Mettl3, Mettl16, Fto, Alkbh5 and Ythdc2) and Nrf2 signaling molecules (Nrf2, Sod1, Ho-1, Gclc) were detected in the liver tissues of T2DM rats, which constructed by high fat-diet feeding and intraperitoneal injection of streptozotocin. Our results indicated that the morphology of liver tissues from T2DM rats showed obvious abnormalities, as well as levels of liver function indicators and expressions of Nrf2 signaling molecules Nrf2, Sod1, Ho-1 were significantly increased in T2DM rats when compared with those in corresponding control rats. More importantly, m6A regulatory proteins such as Mettl3, Mettl16, Fto, Alkbh5 and Ythdc2 were dramatically higher than those in control rat. In a word, m6A regulatory proteins and Nrf2 signaling molecules may significantly change in liver tissue of T2DM rats. And This provides clues and ideas for the study of liver injury in T2DM from the perspective of RNA epigenetics in the future.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, China
| | - Jie Yang
- College of Engineering, Dali University, Dali, Yunnan, 671003, China
| | - Xiaoyu Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, China
| | - Guofen Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, China
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, China.
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, China.
| |
Collapse
|
20
|
Cao JZ, Wang CQ, Shi Z, Song JY, Tustumi F, de Castria TB, Wu J, Pocha C, Tsilimigras DI, Wang ZH, Tao T, Lu J. NOVA2 regulates the properties of liver cancer stem cells and lenvatinib resistance in hepatocellular carcinoma via the Wnt pathway. J Gastrointest Oncol 2024; 15:1674-1685. [PMID: 39279925 PMCID: PMC11399850 DOI: 10.21037/jgo-24-145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/16/2024] [Indexed: 09/18/2024] Open
Abstract
Background The regulation of cancer stem cells (CSCs) is influenced by RNA-binding proteins (RBPs). The present study sought to investigate the role of NOVA2 in the processes of self-renewal, carcinogenesis, and lenvatinib resistance in liver CSCs. Methods Neuro-oncological ventral antigen 2 (NOVA2) expression in liver CSCs was examined by real-time polymerase chain reaction (PCR). In vitro experiments were used to assess the effects of NOVA2 on liver CSC expansion and lenvatinib resistance. Results In our study, the expression of the RBP NOVA2 was higher in CSCs. NOVA2 also increased the capacity for self-renewal and carcinogenesis of the liver CSCs via the Wnt pathway. Further, suppressing the Wnt pathway leads to desensitization of the hepatocellular carcinoma (HCC) cells that overexpress NOVA2 to apoptosis caused by lenvatinib. Analyzing patient data confirmed reduced levels of NOVA2 and therefore we speculate that NOVA2 may serve as a potential indicator for response to lenvatinib in patients with HCC. Methyltransferase-like 3 (METTL3) and YTH N6-methyladenosine RNA-binding protein 1 (YTHDF1)-dependent N6-methyladenosine (m6A) methylation were linked to upregulation of NOVA2 in HCC. Furthermore, it was shown that the expression of METTL3 was elevated in cellular models of type 2 diabetes mellitus (T2DM). Conclusions NOVA2 is involved in the process of liver CSC self-renewal and carcinogenesis. In addition, NOVA2 expression may help identify patients with a higher chance of benefiting from lenvatinib treatment and can be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Jing-Zhu Cao
- Department of Endocrinology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chao-Qun Wang
- Department of Endocrinology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zheng Shi
- Department of Gastrointestinal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jing-Yun Song
- Department of Endocrinology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Francisco Tustumi
- Department of Gastroenterology, Digestive Surgery Division, University of São Paulo Medical School, Sao Paulo, Brazil
| | - Tiago Biachi de Castria
- Moffitt Cancer Center, Tampa, FL, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jennifer Wu
- Division of Hematology and Oncology, Perlmutter Cancer Center of NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Christine Pocha
- Sanford School of Medicine, University of South Dakota, Avera Hepatology and Transplant, Sioux Falls, SD, USA
| | - Diamantis I Tsilimigras
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Zhi-Hong Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Tao Tao
- Department of Endocrinology and Metabolism, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin Lu
- Department of Endocrinology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
21
|
Bian R, Li D, Xu X, Zhang L. The impact of immunity on the risk of coronary artery disease: insights from a multiomics study. Postgrad Med J 2024:qgae105. [PMID: 39180487 DOI: 10.1093/postmj/qgae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Immune inflammation is intricately associated with coronary artery disease (CAD) progression, necessitating the pursuit of more efficacious therapeutic strategies. This study aimed to uncover potential therapeutic targets for CAD and myocardial infarction (MI) by elucidating the causal connection between regulatory immune-related genes (RIRGs) and these disorders. METHODOLOGY We performed summary data-based Mendelian randomization analysis to assess the therapeutic targets linked to expression quantitative trait loci and methylation quantitative trait loci of RIRGs in relation to CAD and MI. Independent validation cohorts and datasets from coronary artery and left ventricular heart tissue were analyzed. To strengthen causal inference, colocalization analysis and PhenoScanner phenotype scans were employed. RESULTS Utilizing multiomics integration, we pinpointed EIF2B2, FCHO1, and DDT as CAD risk genes. Notably, EIF2B2 and FCHO1 displayed significant associations with MI. High EIF2B2 expression, regulated by cg16144293, heightened CAD and MI risk at rs175438. In contrast, enhanced FCHO1 expression, modulated by cg18329931, reduced CAD and MI risk at rs13382133. DDT upregulation influenced by cg11060661 and cg09664220 was associated with decreased CAD risk at rs5760120. Colocalization analysis firmly established these relationships. CONCLUSION EIF2B2, FCHO1, and DDT represent risk loci for CAD progression within RIRGs. Our identification of these genes enhances understanding of CAD pathogenesis and directs future drug development efforts.
Collapse
Affiliation(s)
- Rutao Bian
- Department of Cardiology, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450000, China
- The Affiliated Zhengzhou Hospital of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, China
| | - Dongyu Li
- Department of Cardiology, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450000, China
- The Affiliated Zhengzhou Hospital of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, China
| | - Xuegong Xu
- Department of Cardiology, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450000, China
- The Affiliated Zhengzhou Hospital of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, China
| | - Li Zhang
- Department of Cardiology, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450000, China
- The Affiliated Zhengzhou Hospital of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, China
| |
Collapse
|
22
|
Chen H, Xuan A, Shi X, Fan T, Xue S, Ruan J, Wang X, Tang S, Qi W, Sun H, Liu C, He S, Ding C, Zhu Z. RNA N6-methyladenosine modification in arthritis: New insights into pathogenesis. Mod Rheumatol 2024:roae080. [PMID: 39235765 DOI: 10.1093/mr/roae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
The commonest type of eukaryotic RNA modification, N6-methyladenosine (m6A), has drawn increased scrutiny in the context of pathological functioning as well as relevance in determination of RNA stability, splicing, transportation, localization, and translation efficiency. The m6A modification plays an important role in several types of arthritis, especially osteoarthritis and rheumatoid arthritis. Recent studies have reported that m6A modification regulates arthritis pathology in cells, such as chondrocytes and synoviocytes via immune responses and inflammatory responses through functional proteins classified as writers, erasers, and readers. The aim of this review was to highlight recent advances relevant to m6A modification in the context of arthritis pathogenesis and detail underlying molecular mechanisms, regulatory functions, clinical applications, and future perspectives of m6A in arthritis with the aim of providing a foundation for future research directions.
Collapse
Affiliation(s)
- Haowei Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anran Xuan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaorui Shi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tianxiang Fan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Song Xue
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianzhao Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weizhong Qi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Canzhao Liu
- Department of Cardiovascular Medicine, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Royal North Shore Hospital and Sydney Musculoskeletal Health, Kolling Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
23
|
Li J, Wang X, Zhang H, Hu X, Peng X, Jiang W, Zhuo L, Peng Y, Zeng G, Wang Z. Fenamates: Forgotten treasure for cancer treatment and prevention: Mechanisms of action, structural modification, and bright future. Med Res Rev 2024. [PMID: 39171404 DOI: 10.1002/med.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited. To accelerate the repurposing of fenamates, this review summarizes the results of fenamates alone or in combination with existing chemotherapeutic agents. This paper also explores targets of fenamates in cancer therapy, including COX, AKR family, AR, gap junction, FTO, TEAD, DHODH, TAS2R14, ion channels, and DNA. Besides, this paper discusses other mechanisms, such as regulating Wnt/β-catenin, TGF-β, p38 MAPK, and NF-κB pathway, and the regulation of the expressions of Sp, EGR-1, NAG-1, ATF-3, ErbB2, AR, as well as the modulation of the tumor immune microenvironment. Furthermore, this paper outlined the structural modifications of fenamates, highlighting their potential as promising leads for anticancer drugs.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weifan Jiang
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo Zeng
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
24
|
Chen W, Liu C, He Y, Jiang T, Chen Q, Zhang H, Gao R. ALKBH5-Mediated m 6A Modification Drives Apoptosis in Renal Tubular Epithelial Cells by Negatively Regulating MUC1. Mol Biotechnol 2024:10.1007/s12033-024-01250-2. [PMID: 39172331 DOI: 10.1007/s12033-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
Dysregulation of renal tubular epithelial cell (RTEC) apoptosis is one of the critical steps underlying the occurrence and development of nephrolithiasis. Although N6-methyladenosine (m6A) modification has been extensively studied and associated with various pathologic processes, research on its specific role in RTEC injury and apoptosis remains limited. In this study, we found that overexpression of ALKBH5 reduced the level of m6A modification in RTEC cells and notably promoted RTEC apoptosis. Further mechanism studies revealed that ALKBH5 mainly decreased the m6A level on the mRNA of Mucin 1 (MUC1) gene in RTECs. Moreover, ALKBH5 impaired the stability of MUC1 mRNA in RTECs, leading to attenuated expression of MUC1. Finally, we determined that the ALKBH5-MUC1 axis primarily facilitated RTEC apoptosis by regulating the PI3K/Akt signaling pathway. This study revealed the critical role of the ALKBH5-MUC1-PI3K/Akt regulatory system in RTEC apoptosis and provided new therapeutic targets for treating nephrolithiasis.
Collapse
Affiliation(s)
- Wenwei Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Changyi Liu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yanfeng He
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Tao Jiang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Qin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Hua Zhang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Rui Gao
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road 20, Taijiang District, Fuzhou, 350005, Fujian, People's Republic of China.
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
25
|
Zhou Z, Wang YQ, Zheng XN, Zhang XH, Ji LY, Han JY, Zuo ZC, Mo WL, Zhang L. Optimizing ABA-based chemically induced proximity for enhanced intracellular transcriptional activation and modification response to ABA. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2707-9. [PMID: 39172347 DOI: 10.1007/s11427-024-2707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Abscisic acid (ABA)-based chemically induced proximity (CIP) is primarily mediated by the interaction of the ABA receptor pyrabactin resistance 1-like 1 (PYL1) and the 2C-type protein phosphatase ABI1, which confers ABA-induced proximity to their fusion proteins, and offers precise temporal control of a wide array of biological processes. However, broad application of ABA-based CIP has been limited by ABA response intensity. In this study, we demonstrated that ABA-induced interaction between another ABA receptor pyrabactin resistance 1 (PYR1) and ABI1 exhibited higher ABA response intensity than that between PYL1 and ABI1 in HEK293T cells. We engineered PYR1-ABI1 and PYL1-ABI1 into ABA-induced transcriptional activation tools in mammalian cells by integration with CRISPR/dCas9 and found that the tool based on PYR1-ABI1 demonstrated better ABA response intensity than that based on PYL1-ABI1 for both exogenous and endogenous genes in mammalian cells. We further achieved ABA-induced RNA m6A modification installation and erasure by combining ABA-induced PYR1-ABI1 interaction with CRISPR/dCas13, successfully inhibiting tumor cell proliferation. We subsequently improved the interaction of PYR1-ABI1 through phage-assisted continuous evolution (PACE), successfully generating a PYR1 mutant (PYR1m) whose interaction with ABI1 exhibited a higher ABA response intensity than that of the wild-type. In addition, we tested the transcriptional activation tool based on PYRm-ABI1 and found that it also showed a higher ABA response intensity than that of the wild type. These results demonstrate that we have developed a novel ABA-based CIP and further improved upon it using PACE, providing a new approach for the modification of other CIP systems.
Collapse
Affiliation(s)
- Zeng Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yue-Qi Wang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xu-Nan Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiao-Hong Zhang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu-Yao Ji
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun-You Han
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Ze-Cheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Wei-Liang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Li Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
26
|
Zhang G, Yang J, Fang J, Yu R, Yin Z, Chen G, Tai P, He D, Cao K, Jiang J. Development of an m6A subtype classifier to guide precision therapy for patients with bladder cancer. J Cancer 2024; 15:5204-5217. [PMID: 39247586 PMCID: PMC11375535 DOI: 10.7150/jca.99483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose: Bladder cancer (BLCA) is a highly heterogeneous tumor. We aim to construct a classifier from the perspective of N6-methyladenosine methylation (m6A) to identify patients with different prognostic risks and treatment responsiveness for precision therapy. Methods: Data on gene expression profile, mutation, and clinical characteristics were mainly obtained from the TCGA-BLCA cohort. Unsupervised clustering was performed to construct m6A subtypes. The tumor microenvironment (TME) landscapes were explored by using ssGSEA, ESTIMATE, and MCPcounter algorithms. K-M survival curves and Cox regression analysis were used to demonstrate the significance of m6A subtypes in predicting prognosis. pRRophetic, oncoPredict, and TIDE algorithms were used to evaluate responsiveness to antitumor therapy. A classifier of m6a subtypes was finally developed based on random forest and artificial neural network (ANN). Results: The two m6A subtypes have significantly different m6A-related gene expression profiles and mutational landscapes. TME analysis showed a higher level of stromal and Inhibitory immune components in subtype B compared with subtype A. The m6A subtype is a clinically independent prognostic predictor of BLCA, subtype B has a poorer prognosis. Drug sensitivity analysis showed that subtype B has lower IC50 values and AUC values for cisplatin and docetaxel. Efficacy assessment showed significantly poorer radiotherapy efficacy and lower immunotherapy responsiveness in subtype B. We finally constructed an ANN classifier to accurately classify BLCA patients into two m6A subtypes. Conclusion: Our study developed a classifier for identifying subtypes with different m6A characteristics, and BLCA patients with different m6A subtypes have significantly different prognosis and responsiveness to antitumor therapy.
Collapse
Affiliation(s)
- Ganghua Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingxin Yang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianing Fang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Rui Yu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Yin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Guanjun Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Panpan Tai
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dong He
- Staff Hospital of Central South University, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiaode Jiang
- Department of Neurosurgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Olazagoitia-Garmendia A, Rojas-Márquez H, Romero MDM, Ruiz P, Agirre-Lizaso A, Chen Y, Perugorria MJ, Herrero L, Serra D, Luo C, Bujanda L, He C, Castellanos-Rubio A. Inhibition of YTHDF1 by salvianolic acid overcomes gluten-induced intestinal inflammation. Gut 2024; 73:1590-1592. [PMID: 37907258 PMCID: PMC11347238 DOI: 10.1136/gutjnl-2023-330459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Affiliation(s)
- Ane Olazagoitia-Garmendia
- Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Henar Rojas-Márquez
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Maria Del Mar Romero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Pamela Ruiz
- Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, UPV/EHU, Plentzia, Spain
- BCTA Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country, UPV-EHU, Leioa, Spain
| | - Aloña Agirre-Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, Donostia-san Sebastian, Spain
| | - Yantao Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Beijing, Beijing, China
| | - Maria Jesus Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, Donostia-san Sebastian, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red enfermedades hepaticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Beijing, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, Donostia-san Sebastian, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red enfermedades hepaticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
- Howard Hughes Medical Institute, Chicago, Illinois, USA
| | - Ainara Castellanos-Rubio
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
28
|
Bu FT, Wang HY, Xu C, Song KL, Dai Z, Wang LT, Ying J, Chen J. The role of m6A-associated membraneless organelles in the RNA metabolism processes and human diseases. Theranostics 2024; 14:4683-4700. [PMID: 39239525 PMCID: PMC11373618 DOI: 10.7150/thno.99019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant post-transcriptional dynamic RNA modification process in eukaryotes, extensively implicated in cellular growth, embryonic development and immune homeostasis. One of the most profound biological functions of m6A is to regulate RNA metabolism, thereby determining the fate of RNA. Notably, the regulation of m6A-mediated organized RNA metabolism critically relies on the assembly of membraneless organelles (MLOs) in both the nucleus and cytoplasm, such as nuclear speckles, stress granules and processing bodies. In addition, m6A-associated MLOs exert a pivotal role in governing diverse RNA metabolic processes encompassing transcription, splicing, transport, decay and translation. However, emerging evidence suggests that dysregulated m6A levels contribute to the formation of pathological condensates in a range of human diseases, including tumorigenesis, reproductive diseases, neurological diseases and respiratory diseases. To date, the molecular mechanism by which m6A regulates the aggregation of biomolecular condensates associated with RNA metabolism is unclear. In this review, we comprehensively summarize the updated biochemical processes of m6A-associated MLOs, particularly focusing on their impact on RNA metabolism and their pivotal role in disease development and related biological mechanisms. Furthermore, we propose that m6A-associated MLOs could serve as predictive markers for disease progression and potential drug targets in the future.
Collapse
Affiliation(s)
- Fang-Tian Bu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hai-Yan Wang
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chao Xu
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Kang-Li Song
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhen Dai
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lin-Ting Wang
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jie Ying
- Department of Gastroenterology, Affiliated Nanjing Jiangbei Hospital of Xinglin College, Nantong University, Nanjing 210044, P. R. China
| | - Jianxiang Chen
- College of Pharmacy and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, 169610, Singapore
| |
Collapse
|
29
|
Tang X, Guo M, Zhang Y, Lv J, Gu C, Yang Y. Examining the evidence for mutual modulation between m6A modification and circular RNAs: current knowledge and future prospects. J Exp Clin Cancer Res 2024; 43:216. [PMID: 39095902 PMCID: PMC11297759 DOI: 10.1186/s13046-024-03136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The resistance of cancer cells to treatment significantly impedes the success of therapy, leading to the recurrence of various types of cancers. Understanding the specific mechanisms of therapy resistance may offer novel approaches for alleviating drug resistance in cancer. Recent research has shown a reciprocal relationship between circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification, and their interaction can affect the resistance and sensitivity of cancer therapy. This review aims to summarize the latest developments in the m6A modification of circRNAs and their importance in regulating therapy resistance in cancer. Furthermore, we explore their mutual interaction and exact mechanisms and provide insights into potential future approaches for reversing cancer resistance.
Collapse
Affiliation(s)
- Xiaozhu Tang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjie Guo
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junxian Lv
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
30
|
Xie Y, Xiao J, Ying Y, Liu J, Zhang L, Zeng X. Bioinformatic identification reveals a m6A-binding protein, IGF2BP2, as a novel tumor-promoting gene signature in thyroid carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5663-5676. [PMID: 38289368 DOI: 10.1007/s00210-024-02961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 08/18/2024]
Abstract
N6-methyladenosine (m6A) modification plays a crucial role in thyroid carcinoma (THCA). Insulin-like growth factor 2 binding protein 2 (IGF2BP2) is a m6A-binding protein. We aimed to explore the effect of IGF2BP2 on the development of THCA. Differentially expressed genes (DEGs) were screened from GSE50901 and GSE60542 datasets. LinkedOmics, Genebank, and Sequence-based RNA Adenosine Methylation Site Predictor databases were employed to find potential m6A modification sites. Protein-protein interaction network and receiver-operating characteristic curves were applied to determine hub genes of THCA. ESTIMATE revealed the effect of IGF2BP2 on tumor immunity. The mRNA expression of IGF2BP2 was detected using real-time quantitative polymerase chain reaction. The viability, migration, and invasion were assessed by Cell Counting Kit-8, wound healing, and transwell assays. A total of 166 common DEGs were identified from GSE50901 and GSE60542 datasets. One m6A-related gene, IGF2BP2, was differentially expressed in THCA and selected as the research target. The hub genes (CD44, DCN, CXCL12, ICAM1, SDC4, KIT, CTGF, and FMOD) were identified with high prediction values for THCA. Subsequently, the target genes of IGF2BP2, SDC4, and ICAM1, which had potential m6A modification sites, were screened out based on the hub genes. IGF2BP2 was upregulated in THCA and IGF2BP2 expression was positively correlated with immune infiltration in THCA. Additionally, knockdown of IGF2BP2 inhibited the proliferation, invasion, and migration of THCA cells. IGF2BP2 has a contributory effect on the progression of THCA, which is a novel biomarker and a therapeutic target for THCA.
Collapse
Affiliation(s)
- Yang Xie
- Suzhou Medical College of Soochow University, Suzhou, China
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
- Institute of Thyroid Diseases, Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Thyroid Tumor, Ganzhou, China
| | - Junqi Xiao
- Department of Vascular Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yong Ying
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| | - Jiafeng Liu
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China
| | - Leiying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiangtai Zeng
- Suzhou Medical College of Soochow University, Suzhou, China.
- Department of Thyroid and Hernia Surgery, The First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou, 341000, Jiangxi Province, China.
- Institute of Thyroid Diseases, Gannan Medical University, Ganzhou, China.
- Ganzhou Key Laboratory of Thyroid Tumor, Ganzhou, China.
| |
Collapse
|
31
|
Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations of m 6A and other RNA modifications and their roles in cancer. Front Med 2024; 18:622-648. [PMID: 38907157 DOI: 10.1007/s11684-024-1064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/17/2024] [Indexed: 06/23/2024]
Abstract
RNA modification is an essential component of the epitranscriptome, regulating RNA metabolism and cellular functions. Several types of RNA modifications have been identified to date; they include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), N4-acetylcytidine (ac4C), etc. RNA modifications, mediated by regulators including writers, erasers, and readers, are associated with carcinogenesis, tumor microenvironment, metabolic reprogramming, immunosuppression, immunotherapy, chemotherapy, etc. A novel perspective indicates that regulatory subunits and post-translational modifications (PTMs) are involved in the regulation of writer, eraser, and reader functions in mediating RNA modifications, tumorigenesis, and anticancer therapy. In this review, we summarize the advances made in the knowledge of different RNA modifications (especially m6A) and focus on RNA modification regulators with functions modulated by a series of factors in cancer, including regulatory subunits (proteins, noncoding RNA or peptides encoded by long noncoding RNA) and PTMs (acetylation, SUMOylation, lactylation, phosphorylation, etc.). We also delineate the relationship between RNA modification regulator functions and carcinogenesis or cancer progression. Additionally, inhibitors that target RNA modification regulators for anticancer therapy and their synergistic effect combined with immunotherapy or chemotherapy are discussed.
Collapse
Affiliation(s)
- Xin-Hui Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Kun-Xiong Guo
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jing Li
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shu-Hui Xu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifang Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
32
|
Xu D, Han S, Yue X, Xu X, Huang T. METTL14 Suppresses Tumor Stemness and Metastasis of Colon Cancer Cells by Modulating m6A-Modified SCD1. Mol Biotechnol 2024; 66:2095-2105. [PMID: 37592151 DOI: 10.1007/s12033-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Colon cancer (CC) is a malignant disease of the digestive tract, and its rising prevalence poses a grave threat to people's health. N6-methyladenosine (m6A) modification is essential for various crucial life processes through modulating gene expression. Methyltransferase-like 14 (METTL14), the m6A methylation transferase core protein, and its aberrant expression is intimately correlated to tumor development. This study was conducted to probe the impacts and specific mechanisms of METTL14 on the biological process of CC. Bioinformatics data disclosed that METTL14 was significantly attenuated in CC. Functional assays were executed to ascertain how METTL14 affected CC tumorigenicity, and METTL14 overexpression caused a notable decline in viability, migration, invasion, and stemness phenotype of CC cells. Then, in-depth mechanistic studies displayed that stearoyl-CoA desaturase 1 (SCD1) was a downstream target gene of METTL14-mediated m6A modification. METTL14 overexpression substantially augmented the m6A modification of SCD1 mRNA and diminished the SCD1 mRNA level. In addition, we revealed that YTHDF2 was the m6A reader to recognize METTL14 m6A-modified SCD1 mRNA and abolish its stability. Finally, we also validated that METTL14 might impede the tumorigenic process of CC through SCD1 mediated Wnt/β-catenin signaling. Taken together, this study presented that METTL14 performed as a potential therapeutic target in CC with important implications for the prognosis amelioration of CC patients.
Collapse
Affiliation(s)
- Dehua Xu
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Shuguang Han
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Xiaoguang Yue
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Xiangyu Xu
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Tieao Huang
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China.
| |
Collapse
|
33
|
Huang Y, Wu W, Zhang X. Verbascoside inhibits oral squamous cell carcinoma cell proliferation, migration, and invasion by the methyltransferase 3-mediated microRNA-31-5p/homeodomain interacting protein kinase 2 axis. Arch Oral Biol 2024; 164:105979. [PMID: 38744201 DOI: 10.1016/j.archoralbio.2024.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/03/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE The study aimed to investigate the effects of verbascoside on oral squamous cell carcinoma (OSCC) cellular behaviors and underlying molecular mechanisms. DESIGN For this purpose, SCC9 and UM1 cell lines were treated with verbascoside, and their biological behaviors, including proliferation, migration, and invasion, were evaluated using cell counting kit-8, 5-Ethynyl-2'-deoxyuridine, and Transwell assays. The expression of methyltransferase-3 (METTL3), microRNA (miR)- 31-5p, and homeodomain interacting protein kinase-2 (HIPK2) were examined using quantitative real-time polymerase chain reaction (qRT-PCR). The interaction between METTL3 and miR-31-5p was evaluated by RNA immunoprecipitation and methylated RNA immunoprecipitation, while the interaction between miR-31-5p and HIPK2 was evaluated by dual-luciferase reporter analysis. RESULTS The results indicated inhibition of OSCC cell proliferation, migration, and invasion post verbascoside treatment. Similarly, METTL3 was upregulated in OSCC cells and was inhibited post-verbascoside treatment. Overexpressing METTL3 promoted the cellular processes. Moreover, miR-31-5p was upregulated in OSCC cells, where METTL3 facilitated the processing of miR-31-5p in an N6-methyladenosine (m6A)-dependent manner. The HIPK2 served as miR-31-5p target, where overexpressing miR-31-5p or HIPK2 knockdown reversed the suppression of verbascoside-induced biological behaviors. CONCLUSIONS Verbascoside inhibited the progression of OSCC by inhibiting the METTL3-regulated miR-31-5p/HIPK2 axis. These findings suggested that verbascoside might be an effective drug for OSCC therapy.
Collapse
Affiliation(s)
- Yuhua Huang
- Department of Stomatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 6/F, East Zone, No. 111, Dade Road, Yuexiu District, Guangzhou, Guangdong 510120, China
| | - Wei Wu
- Department of Stomatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 6/F, East Zone, No. 111, Dade Road, Yuexiu District, Guangzhou, Guangdong 510120, China
| | - Xing Zhang
- Department of Stomatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 6/F, East Zone, No. 111, Dade Road, Yuexiu District, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
34
|
Zha X, Gao Z, Li M, Xia X, Mao Z, Wang S. Insight into the regulatory mechanism of m 6A modification: From MAFLD to hepatocellular carcinoma. Biomed Pharmacother 2024; 177:116966. [PMID: 38906018 DOI: 10.1016/j.biopha.2024.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
In recent years, there has been a significant increase in the incidence of metabolic-associated fatty liver disease (MAFLD), which has been attributed to the increasing prevalence of type 2 diabetes mellitus (T2DM) and obesity. MAFLD affects more than one-third of adults worldwide, making it the most prevalent liver disease globally. Moreover, MAFLD is considered a significant risk factor for hepatocellular carcinoma (HCC), with MAFLD-related HCC cases increasing. Approximately 1 in 6 HCC patients are believed to have MAFLD, and nearly 40 % of these HCC patients do not progress to cirrhosis, indicating direct transformation from MAFLD to HCC. N6-methyladenosine (m6A) is commonly distributed in eukaryotic mRNA and plays a crucial role in normal development and disease progression, particularly in tumors. Numerous studies have highlighted the close association between abnormal m6A modification and cellular metabolic alterations, underscoring its importance in the onset and progression of MAFLD. However, the specific impact of m6A modification on the progression of MAFLD to HCC remains unclear. Can targeting m6A effectively halt the progression of MAFLD-related HCC? In this review, we investigated the pivotal role of abnormal m6A modification in the transition from MAFLD to HCC, explored the potential of m6A modification as a therapeutic target for MAFLD-related HCC, and proposed possible directions for future investigations.
Collapse
Affiliation(s)
- Xuan Zha
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zewei Gao
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Li
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
35
|
Shi R, Zhao R, Shen Y, Wei S, Zhang T, Zhang J, Shu W, Cheng S, Teng H, Wang H. IGF2BP2-modified circular RNA circCHD7 promotes endometrial cancer progression via stabilizing PDGFRB and activating JAK/STAT signaling pathway. Cancer Gene Ther 2024; 31:1221-1236. [PMID: 38778089 PMCID: PMC11327104 DOI: 10.1038/s41417-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Circular RNAs (circRNAs) represent a class of covalently closed, single-stranded RNAs and have been linked to cancer progression. N6-methyladenosine (m6A) methylation is a ubiquitous RNA modification in cancer cells. Increasing evidence suggests that m6A can mediate the effects of circRNAs in cancer biology. In contrast, the post-transcriptional systems of m6A and circRNA in the progression of endometrial cancer (EC) remain obscure. The current study identified a novel circRNA with m6A modification, hsa_circ_0084582 (circCHD7), which was upregulated in EC tissues. Functionally, circCHD7 was found to promote the proliferation of EC cells. Mechanistically, circCHD7 interacted with insulin-like growth factor 2 mRNA-binding protein (IGF2BP2) to amplify its enrichment. Moreover, circCHD7 increased the mRNA stability of platelet-derived growth factor receptor beta (PDGFRB) in an m6A-dependent manner, thereby enhancing its expression. In addition, the circCHD7/IGF2BP2/PDGFRB axis activated the JAK/STAT signaling pathway and promoted EC cell proliferation. In conclusion, these findings provide new insights into the regulation of circRNA-mediated m6A modification, and the new "circCHD7-PDGFRB" model of regulation offers new perspectives on circCHD7 as a potential target for EC therapy.
Collapse
Affiliation(s)
- Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Yan Shen
- Health Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Shuangshuang Cheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Hua Teng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China.
| |
Collapse
|
36
|
Yang L, Ying J, Tao Q, Zhang Q. RNA N 6-methyladenosine modifications in urological cancers: from mechanism to application. Nat Rev Urol 2024; 21:460-476. [PMID: 38347160 DOI: 10.1038/s41585-023-00851-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 08/04/2024]
Abstract
The N6-methyladenosine (m6A) modification is the most common modification of messenger RNAs in eukaryotes and has crucial roles in multiple cancers, including in urological malignancies such as renal cell carcinoma, bladder cancer and prostate cancer. The m6A RNA modification is controlled by three types of regulators, including methyltransferases (writers), demethylases (erasers) and RNA-binding proteins (readers), which are responsible for gene regulation at the post-transcriptional level. This Review summarizes the current evidence indicating that aberrant or dysregulated m6A modification is associated with urological cancer development, progression and prognosis. The complex and context-dependent effects of dysregulated m6A modifications in urological cancers are described, along with the potential for aberrantly expressed m6A regulators to provide valuable diagnostic and prognostic biomarkers as well as new therapeutic targets.
Collapse
Affiliation(s)
- Lei Yang
- Department of Urology, Peking University First Hospital, Institute of Urology, National Research Center for Genitourinary Oncology, Peking University, Beijing, China
| | - Jianming Ying
- Department of Pathology, Cancer Institute and Cancer Hospital, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital, Institute of Urology, National Research Center for Genitourinary Oncology, Peking University, Beijing, China.
- Department of Urology, Peking University Binhai Hospital, Tianjin, China.
| |
Collapse
|
37
|
Zhu H, Cai C, Yu Y, Zhou Y, Yang S, Hu Y, Zhu Y, Zhou J, Zhao J, Ma H, Chen Y, Xu Y. Quercetin-Loaded Bioglass Injectable Hydrogel Promotes m6A Alteration of Per1 to Alleviate Oxidative Stress for Periodontal Bone Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403412. [PMID: 38749005 PMCID: PMC11304245 DOI: 10.1002/advs.202403412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/21/2024] [Indexed: 08/09/2024]
Abstract
Periodontal disease ranks third among noncommunicable illnesses, behind cancer and cardiovascular disease, and is closely related to the occurrence and progression of various systemic diseases. However, elucidating the processes of periodontal disease and promoting periodontal bone regeneration remains a challenge. Here, quercetin is demonstrated to reduce the oxidative stress state of orofacial mesenchymal stem cells (OMSCs) in vitro and to affect the osteogenic growth of OMSCs through molecular mechanisms that mediate the m6A change in Per1. Nevertheless, the limited therapeutic efficacy of systemic medication and the limitations of local medication resulting from the small, moist, and highly dynamic periodontal environment make it challenging to treat periodontal tissues with medication. Herein, a biosafe injectable hydrogel drug-controlled delivery system is constructed as a bone-enhancing factory and loaded with quercetin to treat oxidative stress injury in periodontal tissues. This drug-carrying system made up of nanoscale bioglass microspheres and a light-cured injectable hydrogel, allows effective drug particle loading and cementation in the dynamic and moist periodontal environment. Furthermore, the system demonstrates the ability to stimulate OMSCs osteogenic differentiation in a Per1-dependent manner, which ultimately promotes periodontal bone repair, suggesting that this system has potential for clinical periodontal therapy.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityNo. 639Zhizaoju RdShanghai200011China
| | - Chao Cai
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Yeke Yu
- Department of Oral Maxillofacial‑Head and Neck OncologyShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineNo 639, Zhizaoju RdShanghai200011China
| | - Yuning Zhou
- Department of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityNo. 639Zhizaoju RdShanghai200011China
| | - Shiyuan Yang
- Department of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityNo. 639Zhizaoju RdShanghai200011China
| | - Yue Hu
- Department of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityNo. 639Zhizaoju RdShanghai200011China
| | - Yan Zhu
- Department of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityNo. 639Zhizaoju RdShanghai200011China
| | - Jia Zhou
- Department of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityNo. 639Zhizaoju RdShanghai200011China
| | - Jieyun Zhao
- Department of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityNo. 639Zhizaoju RdShanghai200011China
| | - Hailong Ma
- Department of Oral Maxillofacial‑Head and Neck OncologyShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineNo 639, Zhizaoju RdShanghai200011China
| | - Yujie Chen
- State Key Laboratory of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Yuanjin Xu
- Department of Oral SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Jiao Tong UniversityNo. 639Zhizaoju RdShanghai200011China
| |
Collapse
|
38
|
Li C, Liu L, Li S, Liu YS. N 6-Methyladenosine in Vascular Aging and Related Diseases: Clinical Perspectives. Aging Dis 2024; 15:1447-1473. [PMID: 37815911 PMCID: PMC11272212 DOI: 10.14336/ad.2023.0924-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Aging leads to progressive deterioration of the structure and function of arteries, which eventually contributes to the development of vascular aging-related diseases. N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic RNAs. This reversible m6A RNA modification is dynamically regulated by writers, erasers, and readers, playing a critical role in various physiological and pathological conditions by affecting almost all stages of the RNA life cycle. Recent studies have highlighted the involvement of m6A in vascular aging and related diseases, shedding light on its potential clinical significance. In this paper, we comprehensively discuss the current understanding of m6A in vascular aging and its clinical implications. We discuss the molecular insights into m6A and its association with clinical realities, emphasizing its significance in unraveling the mechanisms underlying vascular aging. Furthermore, we explore the possibility of m6A and its regulators as clinical indicators for early diagnosis and prognosis prediction and investigate the therapeutic potential of m6A-associated anti-aging approaches. We also examine the challenges and future directions in this field and highlight the necessity of integrating m6A knowledge into patient-centered care. Finally, we emphasize the need for multidisciplinary collaboration to advance the field of m6A research and its clinical application.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Le Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Du B, Wang P, Wei L, Qin K, Pei Z, Zheng J, Wang J. Unraveling the independent role of METTL3 in m6A modification and tumor progression in esophageal squamous cell carcinoma. Sci Rep 2024; 14:15398. [PMID: 38965238 PMCID: PMC11224396 DOI: 10.1038/s41598-024-64517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
METTL3 and METTL14 are traditionally posited to assemble the m6A methyltransferase complex in a stoichiometric 1:1 ratio, modulating mRNA fate via m6A modifications. Nevertheless, recent investigations reveal inconsistent expression levels and prognostic significance of METTL3 and METTL14 across various tumor types, challenging their consistent functional engagement in neoplastic contexts. A pan-cancer analysis leveraging The Cancer Genome Atlas (TCGA) data has identified pronounced disparities in the expression patterns, functional roles, and correlations with tumor burden between METTL3 and METTL14, particularly in esophageal squamous cell carcinoma (ESCC). Knockdown experiments of METTL3 in EC109 cells markedly suppress cell proliferation both in vitro and in vivo, whereas METTL14 knockdown shows a comparatively muted effect on proliferation and does not significantly alter METTL3 protein levels. mRNA sequencing indicates that METTL3 singularly governs the expression of 1615 genes, with only 776 genes co-regulated with METTL14. Additionally, immunofluorescence co-localization studies suggest discrepancies in cellular localization between METTL3 and METTL14. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses demonstrate that METTL3 uniquely associates with the Nop56p-linked pre-rRNA complex and mRNA splicing machinery, independent of METTL14. Preliminary bioinformatics and multi-omics investigations reveal that METTL3's autonomous role in modulating tumor cell proliferation and its involvement in mRNA splicing are potentially pivotal molecular mechanisms. Our study lays both experimental and theoretical groundwork for a deeper understanding of the m6A methyltransferase complex and the development of targeted tumor therapies focusing on METTL3.
Collapse
Affiliation(s)
- Bin Du
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Pu Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Lingyu Wei
- Central Laboratory of Clinical Research, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 047500, China
| | - Kai Qin
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Zhen Pei
- Department of Physiology, Changzhi Medical College, Changzhi, 047500, China
| | - Jinping Zheng
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China
| | - Jia Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi, 047500, China.
| |
Collapse
|
40
|
Chang L, Ding J, Pu J, Zhu J, Zhou X, Luo Q, Li J, Qian M, Lin S, Li J, Wang K. A novel lncRNA LOC101928222 promotes colorectal cancer angiogenesis by stabilizing HMGCS2 mRNA and increasing cholesterol synthesis. J Exp Clin Cancer Res 2024; 43:185. [PMID: 38965575 PMCID: PMC11223299 DOI: 10.1186/s13046-024-03095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Metastasis is the leading cause of mortality in patients with colorectal cancer (CRC) and angiogenesis is a crucial factor in tumor invasion and metastasis. Long noncoding RNAs (lncRNAs) play regulatory functions in various biological processes in tumor cells, however, the roles of lncRNAs in CRC-associated angiogenesis remain to be elucidated in CRC, as do the underlying mechanisms. METHODS We used bioinformatics to screen differentially expressed lncRNAs from TCGA database. LOC101928222 expression was assessed by qRT-PCR. The impact of LOC101928222 in CRC tumor development was assessed both in vitro and in vivo. The regulatory mechanisms of LOC101928222 in CRC were investigated by cellular fractionation, RNA-sequencing, mass spectrometric, RNA pull-down, RNA immunoprecipitation, RNA stability, and gene-specific m6A assays. RESULTS LOC101928222 expression was upregulated in CRC and was correlated with a worse outcome. Moreover, LOC101928222 was shown to promote migration, invasion, and angiogenesis in CRC. Mechanistically, LOC101928222 synergized with IGF2BP1 to stabilize HMGCS2 mRNA through an m6A-dependent pathway, leading to increased cholesterol synthesis and, ultimately, the promotion of CRC development. CONCLUSIONS In summary, these findings demonstrate a novel, LOC101928222-based mechanism involved in the regulation of cholesterol synthesis and the metastatic potential of CRC. The LOC101928222-HMGCS2-cholesterol synthesis pathway may be an effective target for diagnosing and managing CRC metastasis.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Ding
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Pu
- Department of Oncology, Lianshui County People's Hospital, Affiliated Hospital of Kangda college, Nanjing Medical University, Huaian, Jiangsu, China
| | - Jing Zhu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Zhou
- Head and neck surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qian Luo
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengsen Qian
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuhui Lin
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Keming Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
41
|
Zhu DH, Su KK, Ou-Yang XX, Zhang YH, Yu XP, Li ZH, Ahmadi-Nishaboori SS, Li LJ. Mechanisms and clinical landscape of N6-methyladenosine (m6A) RNA modification in gastrointestinal tract cancers. Mol Cell Biochem 2024; 479:1553-1570. [PMID: 38856795 PMCID: PMC11254988 DOI: 10.1007/s11010-024-05040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Epigenetics encompasses reversible and heritable chemical modifications of non-nuclear DNA sequences, including DNA and RNA methylation, histone modifications, non-coding RNA modifications, and chromatin rearrangements. In addition to well-studied DNA and histone methylation, RNA methylation has emerged as a hot topic in biological sciences over the past decade. N6-methyladenosine (m6A) is the most common and abundant modification in eukaryotic mRNA, affecting all RNA stages, including transcription, translation, and degradation. Advances in high-throughput sequencing technologies made it feasible to identify the chemical basis and biological functions of m6A RNA. Dysregulation of m6A levels and associated modifying proteins can both inhibit and promote cancer, highlighting the importance of the tumor microenvironment in diverse biological processes. Gastrointestinal tract cancers, including gastric, colorectal, and pancreatic cancers, are among the most common and deadly malignancies in humans. Growing evidence suggests a close association between m6A levels and the progression of gastrointestinal tumors. Global m6A modification levels are substantially modified in gastrointestinal tumor tissues and cell lines compared to healthy tissues and cells, possibly influencing various biological behaviors such as tumor cell proliferation, invasion, metastasis, and drug resistance. Exploring the diagnostic and therapeutic potential of m6A-related proteins is critical from a clinical standpoint. Developing more specific and effective m6A modulators offers new options for treating these tumors and deeper insights into gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Dan-Hua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kun-Kai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao-Xi Ou-Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yan-Hong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao-Peng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zu-Hong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | | | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
42
|
Chen B, Deng Y, Hong Y, Fan L, Zhai X, Hu H, Yin S, Chen Q, Xie X, Ren X, Zhao J, Jiang C. Metabolic Recoding of NSUN2-Mediated m 5C Modification Promotes the Progression of Colorectal Cancer via the NSUN2/YBX1/m 5C-ENO1 Positive Feedback Loop. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309840. [PMID: 38769664 PMCID: PMC11267267 DOI: 10.1002/advs.202309840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/11/2024] [Indexed: 05/22/2024]
Abstract
The RNA modification, 5-methylcytosine (m5C), has recently gained prominence as a pivotal post-transcriptional regulator of gene expression, intricately intertwined with various tumorigenic processes. However, the exact mechanisms governing m5C modifications during the onset and progression of colorectal cancer (CRC) remain unclear. Here, it is determined that the m5C methyltransferase NSUN2 exhibits significantly elevated expression and exerts an oncogenic function in CRC. Mechanistically, NSUN2 and YBX1 are identified as the "writer" and "reader" of ENO1, culminating in the reprogramming of the glucose metabolism and increased production of lactic acid in an m5C-dependent manner. The accumulation of lactic acid derived from CRC cells, in turn, activates the transcription of NSUN2 through histone H3K18 lactylation (H3K18la), and induces the lactylation of NSUN2 at the Lys356 residue (K356), which is crucial for capturing target RNAs. Together, these findings reveal an intriguing positive feedback loop involving the NSUN2/YBX1/m5C-ENO1 signaling axis, thereby bridging the connection between metabolic reprogramming and epigenetic remodeling, which may shed light on the therapeutic potential of combining an NSUN2 inhibitor with immunotherapy for CRC.
Collapse
Affiliation(s)
- Baoxiang Chen
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yanrong Deng
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yuntian Hong
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Lifang Fan
- Department of PathologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xiang Zhai
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Heng Hu
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Siyuan Yin
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and BiosafetyCAS Center for Influenza Research and Early WarningWuhan Institute of VirologyChinese Academy of SciencesWuhan430064China
| | - Xiaoyu Xie
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Xianghai Ren
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jianhong Zhao
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Congqing Jiang
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei ProvinceZhongnan Hospital of Wuhan UniversityWuhan430071China
| |
Collapse
|
43
|
Tan RZ, Jia J, Li T, Wang L, Kantawong F. A systematic review of epigenetic interplay in kidney diseases: Crosstalk between long noncoding RNAs and methylation, acetylation of chromatin and histone. Biomed Pharmacother 2024; 176:116922. [PMID: 38870627 DOI: 10.1016/j.biopha.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
The intricate crosstalk between long noncoding RNAs (lncRNAs) and epigenetic modifications such as chromatin/histone methylation and acetylation offer new perspectives on the pathogenesis and treatment of kidney diseases. lncRNAs, a class of transcripts longer than 200 nucleotides with no protein-coding potential, are now recognized as key regulatory molecules influencing gene expression through diverse mechanisms. They modulate the epigenetic modifications by recruiting or blocking enzymes responsible for adding or removing methyl or acetyl groups, such as DNA, N6-methyladenosine (m6A) and histone methylation and acetylation, subsequently altering chromatin structure and accessibility. In kidney diseases such as acute kidney injury (AKI), chronic kidney disease (CKD), diabetic nephropathy (DN), glomerulonephritis (GN), and renal cell carcinoma (RCC), aberrant patterns of DNA/RNA/histone methylation and acetylation have been associated with disease onset and progression, revealing a complex interplay with lncRNA dynamics. Recent studies have highlighted how lncRNAs can impact renal pathology by affecting the expression and function of key genes involved in cell cycle control, fibrosis, and inflammatory responses. This review will separately address the roles of lncRNAs and epigenetic modifications in renal diseases, with a particular emphasis on elucidating the bidirectional regulatory effects and underlying mechanisms of lncRNAs in conjunction with DNA/RNA/histone methylation and acetylation, in addition to the potential exacerbating or renoprotective effects in renal pathologies. Understanding the reciprocal relationships between lncRNAs and epigenetic modifications will not only shed light on the molecular underpinnings of renal pathologies but also present new avenues for therapeutic interventions and biomarker development, advancing precision medicine in nephrology.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
44
|
Bove G, Crepaldi M, Amin S, Megchelenbrink WL, Nebbioso A, Carafa V, Altucci L, Del Gaudio N. The m 6A-independent role of epitranscriptomic factors in cancer. Int J Cancer 2024. [PMID: 38935523 DOI: 10.1002/ijc.35067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Protein function alteration and protein mislocalization are cancer hallmarks that drive oncogenesis. N6-methyladenosine (m6A) deposition mediated by METTL3, METTL16, and METTL5 together with the contribution of additional subunits of the m6A system, has shown a dramatic impact on cancer development. However, the cellular localization of m6A proteins inside tumor cells has been little studied so far. Interestingly, recent evidence indicates that m6A methyltransferases are not always confined to the nucleus, suggesting that epitranscriptomic factors may also have multiple oncogenic roles beyond m6A that still represent an unexplored field. To date novel epigenetic drugs targeting m6A modifiers, such as METTL3 inhibitors, are entering into clinical trials, therefore, the study of the potential onco-properties of m6A effectors beyond m6A is required. Here we will provide an overview of methylation-independent functions of the m6A players in cancer, describing the molecular mechanisms involved and the future implications for therapeutics.
Collapse
Affiliation(s)
- Guglielmo Bove
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Crepaldi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sajid Amin
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Wouter Leonard Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Prinses Máxima Centrum, Utrecht, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- BIOGEM, Via Camporeale, Ariano Irpino, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Prinses Máxima Centrum, Utrecht, The Netherlands
- BIOGEM, Via Camporeale, Ariano Irpino, Italy
- IEOS-CNR Institute for Endocrinology and Oncology "Gaetano Salvatore", Naples, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
45
|
Fang M, Yao J, Zhang H, Sun J, Yin Y, Shi H, Jiang G, Shi X. Specific deletion of Mettl3 in IECs triggers the development of spontaneous colitis and dysbiosis of T lymphocytes in mice. Clin Exp Immunol 2024; 217:57-77. [PMID: 38507548 PMCID: PMC11188546 DOI: 10.1093/cei/uxae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024] Open
Abstract
The enzymatic core component of m6A writer complex, Mettl3, plays a crucial role in facilitating the development and progress of gastric and colorectal cancer (CRC). However, its underlying mechanism in regulating intestinal inflammation remains unclear and poorly investigated. First, the characteristics of Mettl3 expression in inflammatory bowel diseases (IBD) patients were examined. Afterward, we generated the mice line with intestinal epithelial cells (IECs)-specific deletion of Mettl3 verified by various experiments. We continuously recorded and compared the physiological status including survival rate etc. between the two groups. Subsequently, we took advantage of staining assays to analyze mucosal damage and immune infiltration of Mettl3WT and Mettl3KO primary IECs. Bulk RNA sequencing was used to pursuit the differential expression of genes (DEGs) and associated signaling pathways after losing Mettl3. Pyroptosis-related proteins were to determine whether cell death was caused by pyroptosis. Eventually, CyTOF was performed to probe the difference of CD45+ cells, especially CD3e+ T-cell clusters after losing Mettl3. In IBD patients, Mettl3 was highly expressed in the inner-nucleus of IECs while significantly decreased upon acute intestinal inflammation. IECs-specific deletion of Mettl3 KO mice triggered a wasting phenotype and developed spontaneous colitis. The survival rate, body weight, and intestinal length observed from 2 to 8 weeks of Mettl3KO mice were significantly lower than Mettl3WT mice. The degree of mucosal damage and immune infiltration in Mettl3KO were even more serious than in their WT littermate. Bulk RNA sequencing demonstrated that DEGs were dramatically enriched in NOD-signaling pathways due to the loss of Mettl3. The colonic epithelium was more prone to pyroptosis after losing Mettl3. Subsequently, CyTOF revealed that T cells have altered significantly in Mettl3KO. Furthermore, there was abnormal proliferation of CD4+ T and markedly exhaustion of CD8 + T in Mettl3KO mice. In severe IBD patients, Mettl3 is located in the inner-nucleus of IECs and declined when intestinal inflammation occurs. Subsequently, Mettl3 prevented mice from developing colitis.
Collapse
Affiliation(s)
- Miao Fang
- School of Medicine, Southeast University, Nanjing, PR China
| | - Jie Yao
- School of Medicine, Southeast University, Nanjing, PR China
- Department of General Surgery, Nantong Haimen People’s Hospital, Nantong, PR China
| | - Haifeng Zhang
- School of Medicine, Southeast University, Nanjing, PR China
| | - Jiahui Sun
- School of Public Health, Southeast University, Nanjing, PR China
| | - Yiping Yin
- School of Medicine, Southeast University, Nanjing, PR China
| | - Hongzhou Shi
- School of Medicine, Southeast University, Nanjing, PR China
| | | | - Xin Shi
- School of Medicine, Southeast University, Nanjing, PR China
| |
Collapse
|
46
|
Jia L, Zhang D, Zeng X, Wu L, Tian X, Xing N. Targeting RNA N6-methyladenosine modification-- a novel therapeutic target for HER2- positive gastric cancer. Front Oncol 2024; 14:1387444. [PMID: 38966068 PMCID: PMC11222400 DOI: 10.3389/fonc.2024.1387444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/06/2024] [Indexed: 07/06/2024] Open
Abstract
Gastric cancer is one of the most common cancers and is considered the 5th most frequent occurring cancer worldwide. It has gained great attention from the clinicians and researchers because of high mortality rate. It is generally treated with chemotherapy, radiotherapy, and surgery. Recently, additional treatment options including immunotherapy and targeted therapy and immunotherapy have been developed. However, poor prognosis, limited survival rate of patients, and drug resistance to treatment remain critical problems. To improve treatment options or to overcome the bottleneck of treatment, identification of diagnostic and prognostic markers, determining the most effective therapeutic options, and uncovering the molecular regulations associated with treatment strategies are required. In this regard n6-methyladenosine (m6A) regulation is considered important. This reversible modification plays a crucial role in progression, development and treatment of HER2-positive gastric cancer. Here, we discuss the role of m6A modification in HER2-positive gastric cancer progression through collecting related studies at present. We further discuss the association of m6A modification with therapeutic efficacy in HER2-positive gastric cancer and list some examples. We conclude that modification of m6A can be a new strategy for improving the prognosis and survival rate of HER2-positive gastric cancer patients.
Collapse
Affiliation(s)
| | - Di Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Xue H, Ma Y, Guan K, Zhou Y, Liu Y, Cao F, Kang X. The role of m6A methylation in targeted therapy resistance in lung cancer. Am J Cancer Res 2024; 14:2994-3009. [PMID: 39005690 PMCID: PMC11236795 DOI: 10.62347/lxos2662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Targeted therapies have greatly improved clinical outcomes for patients with lung cancer (LC), but acquired drug resistance and disease relapse inevitably occur. Increasingly, the role of epigenetic mechanisms in driving acquired drug resistance is appreciated. In particular, N6-methyladenosine (m6A), one of the most prevalent RNA modifications, has several roles regulating RNA stability, splicing, transcription, translation, and destruction. Numerous studies have demonstrated that m6A RNA methylation can modulate the growth and invasion of cancer cells as well as contribute to targeted therapy resistance in LC. In this study, we outline what is known regarding the function of m6A in the acquisition of targeted therapy resistance in LC.
Collapse
Affiliation(s)
- Huange Xue
- Department of Radiation Oncology, The First Affiliated Hospital of Xinxiang Medical University Xinxiang, Henan, China
| | - Yufei Ma
- Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical College Xinxiang, Henan, China
| | - Kaiwen Guan
- Department of Radiation Oncology, The First Affiliated Hospital of Xinxiang Medical University Xinxiang, Henan, China
| | - Yueyang Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Xinxiang Medical University Xinxiang, Henan, China
| | - Yang Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xinxiang Medical University Xinxiang, Henan, China
| | - Fei Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Xinxiang Medical University Xinxiang, Henan, China
| | - Xiaohong Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Xinxiang Medical University Xinxiang, Henan, China
| |
Collapse
|
48
|
Wan K, Nie T, Ouyang W, Xiong Y, Bian J, Huang Y, Ling L, Huang Z, Zhu X. Exploring the impact of N4-acetylcytidine modification in RNA on non-neoplastic disease: unveiling its role in pathogenesis and therapeutic opportunities. Brief Funct Genomics 2024:elae020. [PMID: 38841796 DOI: 10.1093/bfgp/elae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
RNA modifications include not only methylation modifications, such as m6A, but also acetylation modifications, which constitute a complex interaction involving "writers," "readers," and "erasers" that play crucial roles in growth, genetics, and disease. N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that plays a profound role in the pathogenesis of a wide range of diseases. This review provides insights into the functional impact of ac4C modifications in disease and introduces new perspectives for disease treatment. These studies provide important insights into the biological functions of post-transcriptional RNA modifications and their potential roles in disease mechanisms, offering new perspectives and strategies for disease treatment.
Collapse
Affiliation(s)
- Keyu Wan
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Tiantian Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wenhao Ouyang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yunjing Xiong
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jing Bian
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Ying Huang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Zhenjun Huang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xianhua Zhu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
49
|
Ye L, Tong X, Pan K, Shi X, Xu B, Yao X, Zhuo L, Fang S, Tang S, Jiang Z, Xue X, Lu W, Guo G. Identification of potential novel N6-methyladenosine effector-related lncRNA biomarkers for serous ovarian carcinoma: a machine learning-based exploration in the framework of 3P medicine. Front Pharmacol 2024; 15:1351929. [PMID: 38895621 PMCID: PMC11185051 DOI: 10.3389/fphar.2024.1351929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/04/2024] [Indexed: 06/21/2024] Open
Abstract
Background Serous ovarian carcinoma (SOC) is considered the most lethal gynecological malignancy. The current lack of reliable prognostic biomarkers for SOC reduces the efficacy of predictive, preventive, and personalized medicine (PPPM/3PM) in patients with SOC, leading to unsatisfactory therapeutic outcomes. N6-methyladenosine (m6A) modification-associated long noncoding RNAs (lncRNAs) are effective predictors of SOC. In this study, an effective risk prediction model for SOC was constructed based on m6A modification-associated lncRNAs. Methods Transcriptomic data and clinical information of patients with SOC were downloaded from The Cancer Genome Atlas. Candidate lncRNAs were identified using univariate and multivariate and least absolute shrinkage and selection operator-penalized Cox regression analyses. The molecular mechanisms of m6A effector-related lncRNAs were explored via Gene Ontology, pathway analysis, gene set enrichment analysis, and gene set variation analysis (GSVA). The extent of immune cell infiltration was assessed using various algorithms, including CIBERSORT, Microenvironment Cell Populations counter, xCell, European Prospective Investigation into Cancer and Nutrition, and GSVA. The calcPhenotype algorithm was used to predict responses to the drugs commonly used in ovarian carcinoma therapy. In vitro experiments, such as migration and invasion Transwell assays, wound healing assays, and dot blot assays, were conducted to elucidate the functional roles of candidate lncRNAs. Results Six m6A effector-related lncRNAs that were markedly associated with prognosis were used to establish an m6A effector-related lncRNA risk model (m6A-LRM) for SOC. Immune microenvironment analysis suggested that the high-risk group exhibited a proinflammatory state and displayed increased sensitivity to immunotherapy. A nomogram was constructed with the m6A effector-related lncRNAs to assess the prognostic value of the model. Sixteen drugs potentially targeting m6A effector-related lncRNAs were identified. Furthermore, we developed an online web application for clinicians and researchers (https://leley.shinyapps.io/OC_m6A_lnc/). Overexpression of the lncRNA RP11-508M8.1 promoted SOC cell migration and invasion. METTL3 is an upstream regulator of RP11-508M8.1. The preliminary regulatory axis METTL3/m6A/RP11-508M8.1/hsa-miR-1270/ARSD underlying SOC was identified via a combination of in vitro and bioinformatic analyses. Conclusion In this study, we propose an innovative prognostic risk model and provide novel insights into the mechanism underlying the role of m6A-related lncRNAs in SOC. Incorporating the m6A-LRM into PPPM may help identify high-risk patients and personalize treatment as early as possible.
Collapse
Affiliation(s)
- Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kan Pan
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyu Shi
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Binbing Xu
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuyang Yao
- First Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linpei Zhuo
- Haiyuan College, Kunming Medical University, Kunming, Yunnan, China
| | - Su Fang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sangsang Tang
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhuofeng Jiang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiguo Lu
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Uterine Cancer Diagnosis and Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
50
|
Liu Q, Zhang N, Chen J, Zhou M, Zhou D, Chen Z, Huang Z, Xie Y, Qiao G, Tu X. WTAP-induced N 6-methyladenosine of PD-L1 blocked T-cell-mediated antitumor activity under hypoxia in colorectal cancer. Cancer Sci 2024; 115:1749-1762. [PMID: 38508217 PMCID: PMC11145145 DOI: 10.1111/cas.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
N6-Methyladenosine (m6A) is a important process regulating gene expression post-transcriptionally. Programmed death ligand 1 (PD-L1) is a major immune inhibitive checkpoint that facilitates immune evasion and is expressed in tumor cells. In this research we discovered that Wilms' tumor 1-associated protein (WTAP) degradation caused by ubiquitin-mediated cleavage in cancer cells (colorectal cancer, CRC) under hypoxia was inhibited by Pumilio homolog 1 (PUM1) directly bound to WTAP. WTAP enhanced PD-L1 expression in a way that was m6A-dependent. m6A "reader," Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) identified methylated PD-L1 transcripts and subsequently fixed its mRNA. Additionally, we found that T-cell proliferation and its cancer cell-killing effects were prevented by overexpression of WTAP in vitro and in vivo. Overexpression prevented T cells from proliferating and killing CRC by maintaining the expression of PD-L1. Further evidence supporting the WTAP-PD-L1 regulatory axis was found in human CRC and organoid tissues. Tumors with high WTAP levels appeared more responsive to anti-PD1 immunotherapy, when analyzing samples from patients undergoing treatment. Overall, our findings demonstrated a novel PD-L1 regulatory mechanism by WTAP-induced mRNA epigenetic regulation and the possible application of targeting WTAP as immunotherapy for tumor hypoxia.
Collapse
Affiliation(s)
- Qi‐zhi Liu
- Department of Gastrointestinal Surgery, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Nan Zhang
- Department of Gastrointestinal Surgery, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jun‐yi Chen
- Department of Gastrointestinal Surgery, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Min‐jun Zhou
- Department of Gastrointestinal Surgery, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - De‐hua Zhou
- Department of Gastrointestinal Surgery, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhuo Chen
- Department of Gastrointestinal Surgery, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhen‐xing Huang
- Department of Gastrointestinal Surgery, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yu‐xiang Xie
- Department of Gastrointestinal Surgery, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Guang‐lei Qiao
- Department of Oncology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiao‐huang Tu
- Department of Gastrointestinal Surgery, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|