1
|
Stappenbeck F, Wang F, Sinha SK, Hui ST, Farahi L, Mukhamedova N, Fleetwood A, Murphy AJ, Sviridov D, Lusis AJ, Parhami F. Anti-Inflammatory Oxysterol, Oxy210, Inhibits Atherosclerosis in Hyperlipidemic Mice and Inflammatory Responses of Vascular Cells. Cells 2024; 13:1632. [PMID: 39404395 PMCID: PMC11475996 DOI: 10.3390/cells13191632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND AIMS We previously reported that Oxy210, an oxysterol-based drug candidate, exhibits antifibrotic and anti-inflammatory properties. We also showed that, in mice, it ameliorates hepatic hallmarks of non-alcoholic steatohepatitis (NASH), including inflammation and fibrosis, and reduces adipose tissue inflammation. Here, we aim to investigate the effects of Oxy210 on atherosclerosis, an inflammatory disease of the large arteries that is linked to NASH in epidemiologic studies, shares many of the same risk factors, and is the major cause of mortality in people with NASH. METHODS Oxy210 was studied in vivo in APOE*3-Leiden.CETP mice, a humanized mouse model for both NASH and atherosclerosis, in which symptoms are induced by consumption of a high fat, high cholesterol "Western" diet (WD). Oxy210 was also studied in vitro using two cell types that are important in atherogenesis: human aortic endothelial cells (HAECs) and macrophages treated with atherogenic and inflammatory agents. RESULTS Oxy210 reduced atherosclerotic lesion formation by more than 50% in hyperlipidemic mice fed the WD for 16 weeks. This was accompanied by reduced plasma cholesterol levels and reduced macrophages in lesions. In HAECs and macrophages, Oxy210 reduced the expression of key inflammatory markers associated with atherosclerosis, including interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), vascular cell adhesion molecule-1 (VCAM-1), and E-Selectin. In addition, cholesterol efflux was significantly enhanced in macrophages treated with Oxy210. CONCLUSIONS These findings suggest that Oxy210 could be a drug candidate for targeting both NASH and atherosclerosis, as well as chronic inflammation associated with the manifestations of metabolic syndrome.
Collapse
Affiliation(s)
| | - Feng Wang
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| | - Satyesh K. Sinha
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Simon T. Hui
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Lia Farahi
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Nigora Mukhamedova
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew Fleetwood
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Farhad Parhami
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| |
Collapse
|
2
|
Sardjan J, Lesmana CRA, Rusdi L, Kurniawan J, Yunihastuti E, Susilo A, Gani RA. Correlation between controlled attenuation parameter values with SYNTAX score in patients with significant coronary artery disease. Sci Rep 2024; 14:15382. [PMID: 38965252 PMCID: PMC11224258 DOI: 10.1038/s41598-024-63792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging cause of chronic liver disease, with coronary artery disease (CAD) as the main cause of death in NAFLD patients. However, correlation between the severity of liver steatosis and coronary atherosclerosis is yet to be understood. Here we aim to explore the correlation between controlled attenuation parameter (CAP) values and SYNTAX (Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery) score in adult patients with significant CAD, defined as ≥ 50% stenosis of the left main coronary artery, or ≥ 70% stenosis of the other major coronary arteries. A cross-sectional study was conducted on 124 adult patients with significant CAD who underwent coronary angiography. Transient elastography with CAP was used to assess liver steatosis severity, resulting in a mean CAP value of 256.5 ± 47.3 dB/m, with 52.5% subjects had significant steatosis (CAP value of ≥ 248 dB/m). Median SYNTAX score was 22. A statistically significant correlation was observed between CAP value and SYNTAX score (r = 0.245, p < 0.0001). The correlation was more pronounced in patients with prior history of PCI (r = 0.389, p = 0.037). Patients with high-risk SYNTAX score (> 32) had the highest CAP value (285.4 ± 42.6 dB/m), and it was significantly higher than those with low-risk SYNTAX score (0-22), with a mean difference of 38.76 dB/m (p = 0.006). Patients with significant liver steatosis should undergo periodic CAD assessment and lifestyle modification, especially those with severe liver steatosis.
Collapse
Affiliation(s)
- Jordan Sardjan
- Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Medical Faculty University of Indonesia, Jakarta, Indonesia
| | - Cosmas Rinaldi Adithya Lesmana
- Division of Hepatobiliary, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Medical Faculty University of Indonesia, Jakarta, Indonesia.
| | - Lusiani Rusdi
- Division of Cardiology, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Medical Faculty University of Indonesia, Jakarta, Indonesia
| | - Juferdy Kurniawan
- Division of Hepatobiliary, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Medical Faculty University of Indonesia, Jakarta, Indonesia
| | - Evy Yunihastuti
- Division of Allergy and Immunology, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General, Hospital, Medical Faculty University of Indonesia, Jakarta, Indonesia
| | - Adityo Susilo
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Medical Faculty University of Indonesia, Jakarta, Indonesia
| | - Rino Alvani Gani
- Division of Hepatobiliary, Department of Internal Medicine, Dr. Cipto Mangunkusumo National General Hospital, Medical Faculty University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
3
|
Fang Z, Jia S, Mou X, Li Z, Hu T, Tu Y, Zhao J, Zhang T, Lin W, Lu Y, Feng C, Xia S. Shared genetic architecture and causal relationship between liver and heart disease. iScience 2024; 27:109431. [PMID: 38523778 PMCID: PMC10959668 DOI: 10.1016/j.isci.2024.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
This study investigates the relationship and genetic mechanisms of liver and heart diseases, focusing on the liver-heart axis (LHA) as a fundamental biological basis. Through genome-wide association study analysis, we explore shared genes and pathways related to LHA. Shared genetic factors are found in 8 out of 20 pairs, indicating genetic correlations. The analysis reveals 53 loci with pleiotropic effects, including 8 loci exhibiting shared causality across multiple traits. Based on SNP-p level tissue-specific multi-marker analysis of genomic annotation (MAGMA) analysis demonstrates significant enrichment of pleiotropy in liver and heart diseases within different cardiovascular tissues and female reproductive appendages. Gene-specific MAGMA analysis identifies 343 pleiotropic genes associated with various traits; these genes show tissue-specific enrichment primarily in the liver, cardiovascular system, and other tissues. Shared risk loci between immune cells and both liver and cardiovascular diseases are also discovered. Mendelian randomization analyses provide support for causal relationships among the investigated trait pairs.
Collapse
Affiliation(s)
- Ziyi Fang
- Department of Gastroenterology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Sixiang Jia
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Xuanting Mou
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Zhe Li
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Tianli Hu
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yiting Tu
- Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianqiang Zhao
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Wenting Lin
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yile Lu
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Chao Feng
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| | - Shudong Xia
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
| |
Collapse
|
4
|
Zhao X, Kong X, Cui Z, Zhang Z, Wang M, Liu G, Gao H, Zhang J, Qin W. Communication between nonalcoholic fatty liver disease and atherosclerosis: Focusing on exosomes. Eur J Pharm Sci 2024; 193:106690. [PMID: 38181871 DOI: 10.1016/j.ejps.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic hepatic disorder on a global scale. Atherosclerosis (AS), a leading cause of cardiovascular diseases, stands as the primary contributor to mortality among patients diagnosed with NAFLD. However, the precise etiology by which NAFLD causes AS remains unclear. Exosomes are nanoscale extracellular vesicles secreted by cells, and are considered to participate in complex biological processes by promoting cell-to-cell and organ-to-organ communications. As vesicles containing protein, mRNA, non-coding RNA and other bioactive molecules, exosomes can participate in the development of NAFLD and AS respectively. Recently, studies have shown that NAFLD can also promote the development of AS via secreting exosomes. Herein, we summarized the recent advantages of exosomes in the pathogenesis of NAFLD and AS, and highlighted the role of exosomes in mediating the information exchange between NAFLD and AS. Further, we discussed how exosomes play a prominent role in enabling information exchange among diverse organs, delving into a novel avenue for investigating the link between diseases and their associated complications. The future directions and emerging challenges are also listed regarding the exosome-based therapeutic strategies for AS under NAFLD conditions.
Collapse
Affiliation(s)
- Xiaona Zhao
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Xinxin Kong
- School of Pharmacy, Weifang Medical University, Weifang, China; School of Pharmacy, Jining Medical University, Rizhao, China
| | - Zhoujun Cui
- Department of General Surgery, People's Hospital of Rizhao, Rizhao, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Minghui Wang
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Liu
- School of Pharmacy, Jining Medical University, Rizhao, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, China.
| |
Collapse
|
5
|
Pezzino S, Luca T, Castorina M, Puleo S, Latteri S, Castorina S. Role of Perturbated Hemostasis in MASLD and Its Correlation with Adipokines. Life (Basel) 2024; 14:93. [PMID: 38255708 PMCID: PMC10820028 DOI: 10.3390/life14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it one of the most prevalent chronic liver disorders. MASLD encompasses a range of liver pathologies, from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) with inflammation, hepatocyte damage, and fibrosis. Interestingly, the liver exhibits close intercommunication with fatty tissue. In fact, adipose tissue could contribute to the etiology and advancement of MASLD, acting as an endocrine organ that releases several hormones and cytokines, with the adipokines assuming a pivotal role. The levels of adipokines in the blood are altered in people with MASLD, and recent research has shed light on the crucial role played by adipokines in regulating energy expenditure, inflammation, and fibrosis in MASLD. However, MASLD disease is a multifaceted condition that affects various aspects of health beyond liver function, including its impact on hemostasis. The alterations in coagulation mechanisms and endothelial and platelet functions may play a role in the increased vulnerability and severity of MASLD. Therefore, more attention is being given to imbalanced adipokines as causative agents in causing disturbances in hemostasis in MASLD. Metabolic inflammation and hepatic injury are fundamental components of MASLD, and the interrelation between these biological components and the hemostasis pathway is delineated by reciprocal influences, as well as the induction of alterations. Adipokines have the potential to serve as the shared elements within this complex interrelationship. The objective of this review is to thoroughly examine the existing scientific knowledge on the impairment of hemostasis in MASLD and its connection with adipokines, with the aim of enhancing our comprehension of the disease.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Tonia Luca
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | | - Stefano Puleo
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Saverio Latteri
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Sergio Castorina
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
6
|
Lv Q, Han Q, Wen Z, Pan Y, Chen J. The association between atherosclerosis and nonalcoholic fatty liver disease. Medicine (Baltimore) 2024; 103:e36815. [PMID: 38181273 PMCID: PMC10766323 DOI: 10.1097/md.0000000000036815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024] Open
Abstract
Atherosclerosis (AS) is closely related to nonalcoholic fatty liver disease (NAFLD), which promotes and exacerbates the development of AS. However, it is uncertain how the precise underlying mechanism occurs. Here, we attempted to further explore the association underlying atherosclerosis and nonalcoholic fatty liver disease through integrated bioinformatics analysis. Microarray data for atherosclerosis and nonalcoholic fatty liver disease were retrieved from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was used to identify the genes related to atherosclerosis and nonalcoholic fatty liver disease showing co-expression. Additionally, the common gene targets associated with atherosclerosis and nonalcoholic fatty liver disease were also analyzed and screened using data from 3 public databases [comparative toxicogenomics database (CTD), DISEASES, and GeneCards]. The Gene Ontology (GO) enrichment analysis and the Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were performed using Metascape R, respectively. The protein-protein interaction networks (PPI) network was constructed using Cytoscape. According to the results of an analysis of common genes, matrix metalloproteinase 9 (MMP9) is co-expressed up-regulated in AS and NAFLD and is enriched in inflammatory and immune-related collaterals. Consequently, MMP9 may work together through immunity and inflammation to treat AS and NAFLD and may be a potential therapeutic target in the future. The findings of this study provide new insights into the shared association between AS and NAFLD. MMP9 is co-expressed up-regulated in AS and NAFLD, which be able to reveal the presence of co-expressed genes in atherosclerosis and NAFLD.
Collapse
Affiliation(s)
- Qing Lv
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Han
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ziyun Wen
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunyun Pan
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jisheng Chen
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
7
|
Sinn D, Kang D, Guallar E, Choi S, Cho J, Gwak GY. Regression of Nonalcoholic Fatty Liver Disease Reduces the Development of Coronary Artery Calcification: A Longitudinal Cohort Study. GASTRO HEP ADVANCES 2023; 2:1050-1052. [PMID: 39131557 PMCID: PMC11307422 DOI: 10.1016/j.gastha.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2024]
Affiliation(s)
- D.H. Sinn
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - D. Kang
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - E. Guallar
- Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - S.C. Choi
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - J. Cho
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - G.-Y. Gwak
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Zhang D, Mi Z, Peng J, Yang T, Han Y, Zhai Y, Song C, Teng X, Sun W, Guo J, Bilonda KP. Nonalcoholic Fatty Liver Disease as an Emerging Risk Factor and Potential Intervention Target for Atherosclerotic Cardiovascular Diseases. J Cardiovasc Pharmacol 2023; 81:327-335. [PMID: 36917556 PMCID: PMC10155697 DOI: 10.1097/fjc.0000000000001418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023]
Abstract
ABSTRACT Nonalcoholic fatty liver disease (NAFLD) is an underappreciated independent risk factor for atherosclerotic cardiovascular diseases (ASCVDs). In recent years, the risk of ASCVD has increased along with the prevalence of NAFLD. ASCVD events are highly prevalent and are the main contributor to death in patients with NAFLD. The association between NAFLD and ASCVD has been validated in numerous observational, cohort, and genetic studies. Most of these studies agree that NAFLD significantly increases the risk of developing atherosclerosis and ASCVD. In addition, the underlying proatherosclerotic mechanisms of NAFLD have been gradually revealed; both disorders share several common pathophysiologic mechanisms including insulin resistance, whereas systemic inflammation and dyslipidemia driven by NAFLD directly promote atherosclerosis. Recently, NAFLD, as an emerging risk enhancer for ASCVD, has attracted attention as a potential treatment target for ASCVD. This brief review aims to illustrate the potential mechanistic insights, present recent clinically relevant investigations, and further explore the emerging therapies such as novel antidiabetic and lipid-lowering agents that could improve NAFLD and reduce ASCVD risk.
Collapse
Affiliation(s)
- Daqing Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Zhen Mi
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Jiya Peng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Tiangui Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Yuze Han
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
- Department of Cardiology, Dalian Friendship Hospital, Dalian City, PR China; and
| | - Yujia Zhai
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Chenliang Song
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Xianzhuo Teng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Wei Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
- Department of Cardiology, Dalian Third People's Hospital, Dalian City, PR China
| | - Jing Guo
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| | - Kabeya Paulin Bilonda
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang City, PR China
| |
Collapse
|
9
|
Qin L, Wu J, Sun X, Huang X, Huang W, Weng C, Cai J. The regulatory role of metabolic organ-secreted factors in the nonalcoholic fatty liver disease and cardiovascular disease. Front Cardiovasc Med 2023; 10:1119005. [PMID: 37180779 PMCID: PMC10169694 DOI: 10.3389/fcvm.2023.1119005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disease characterized by an excessive accumulation of fat in the liver, which is becoming a major global health problem, affecting about a quarter of the population. In the past decade, mounting studies have found that 25%-40% of NAFLD patients have cardiovascular disease (CVD), and CVD is one of the leading causes of death in these subjects. However, it has not attracted enough awareness and emphasis from clinicians, and the underlying mechanisms of CVD in NAFLD patients remain unclear. Available research reveals that inflammation, insulin resistance, oxidative stress, and glucose and lipid metabolism disorders play indispensable roles in the pathogenesis of CVD in NAFLD. Notably, emerging evidence indicates that metabolic organ-secreted factors, including hepatokines, adipokines, cytokines, extracellular vesicles, and gut-derived factors, are also involved in the occurrence and development of metabolic disease and CVD. Nevertheless, few studies have focused on the role of metabolic organ-secreted factors in NAFLD and CVD. Therefore, in this review, we summarize the relationship between metabolic organ-secreted factors and NAFLD as well as CVD, which is beneficial for clinicians to comprehensive and detailed understanding of the association between both diseases and strengthen management to improve adverse cardiovascular prognosis and survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunyan Weng
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Ørskov M, Vorum H, Bjerregaard Larsen T, Vestergaard N, Lip GYH, Bek T, Skjøth F. A review of risk factors for retinal vein occlusions. Expert Rev Cardiovasc Ther 2022; 20:761-772. [PMID: 35972726 DOI: 10.1080/14779072.2022.2112667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Risk factors for retinal vein occlusion have been extensively studied, with varying population sizes. Smaller populations result in less certain measures of associations. The present review included studies with a relevant population size to identify clinically relevant risk factors for retinal vein occlusion. Understanding the risk factors of retinal vein occlusion is important for the management of these patients. AREAS COVERED A comprehensive literature review was conducted through a systematic literature search in PubMed and Embase. Additional studies were selected from cross references in the assessed studies. Weighted effect measures were calculated for all included risk factors.Risk factors associated with retinal vein occlusion included cardiovascular diseases, eye diseases, systemic diseases, medical interventions, and sociodemographic factors. EXPERT OPINION This review provided an extensive overview of a wide variety of risk factors increasing the risk of developing retinal vein occlusion. The severity of the identified risk factors indicated that these patients have been in contact with the health care system before their retinal vein occlusion event. Therefore, the clinical course for patients with retinal vein occlusion may benefit from a multidisciplinary collaboration between ophthalmologists and especially cardiologists.
Collapse
Affiliation(s)
- Marie Ørskov
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark.,Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Torben Bjerregaard Larsen
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark.,Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark
| | - Nanna Vestergaard
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Gregory Y H Lip
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark.,Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| | - Flemming Skjøth
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark.,Unit for Clinical Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
11
|
Cazac GD, Lăcătușu CM, Mihai C, Grigorescu ED, Onofriescu A, Mihai BM. New Insights into Non-Alcoholic Fatty Liver Disease and Coronary Artery Disease: The Liver-Heart Axis. Life (Basel) 2022; 12:1189. [PMID: 36013368 PMCID: PMC9410285 DOI: 10.3390/life12081189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the hepatic expression of the metabolic syndrome and is the most prevalent liver disease. NAFLD is associated with liver-related and extrahepatic morbi-mortality. Among extrahepatic complications, cardiovascular disease (CVD) is the primary cause of mortality in patients with NAFLD. The most frequent clinical expression of CVD is the coronary artery disease (CAD). Epidemiological data support a link between CAD and NAFLD, underlain by pathogenic factors, such as the exacerbation of insulin resistance, genetic phenotype, oxidative stress, atherogenic dyslipidemia, pro-inflammatory mediators, and gut microbiota. A thorough assessment of cardiovascular risk and identification of all forms of CVD, especially CAD, are needed in all patients with NAFLD regardless of their metabolic status. Therefore, this narrative review aims to examine the available data on CAD seen in patients with NAFLD, to outline the main directions undertaken by the CVD risk assessment and the multiple putative underlying mechanisms implicated in the relationship between CAD and NAFLD, and to raise awareness about this underestimated association between two major, frequent and severe diseases.
Collapse
Affiliation(s)
- Georgiana-Diana Cazac
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cristina-Mihaela Lăcătușu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Cătălina Mihai
- Institute of Gastroenterology and Hepatology, “Sf. Spiridon” Emergency Hospital, 700111 Iași, Romania
- Unit of Medical Semiology and Gastroenterology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena-Daniela Grigorescu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alina Onofriescu
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan-Mircea Mihai
- Unit of Diabetes, Nutrition and Metabolic Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
12
|
Ismawati, Romus I, Asni E, Purwanti RA, Fathurrahmah S. Effect of bortezomib on fatty liver in a rat model of atherosclerosis. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i2.561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Introduction and Aim: Fatty liver is associated with atherosclerosis even though the exact mechanism remains unknown. Fatty liver and atherosclerosis correlate with inflammation. Interleukin 6 (IL-6) is recognized as an inflammatory marker. Bortezomib is a proteasome inhibitor that will inhibit the proteasome pathway and is expected to inhibit inflammation in atherosclerosis. The current research aimed to investigate the effect of bortezomib on the fatty liver of atherosclerosis rats and to analyze its correlation with serum IL-6 concentration.
Materials and Methods: Experimental subjects were 18 male Wistar rats (Rattus novergicus) divided into three treatment groups, namely atherosclerosis group (I), atherosclerosis + bortezomib group (II), and control group (III). Bortezomib (50 ?g/kg BW) was given twice intraperitoneally, on day 1 and day 3. The presence of fatty liver was evaluated using the percentage system. Serum IL-6 concentrations were measured using enzyme-linked immunosorbent assay kits.
Results: The highest amount of fatty liver was found in the atherosclerosis group (group I) (38.33%), while the lowest was in the control group (group III) (5.83%). There was a decreasing fatty liver percentage due to bortezomib administration (group II) (29.17%), and it was statistically significant. There is a significant correlation between the degree of fatty liver and serum IL-6 concentration.
Conclusion: The administration of bortezomib 50 ?g/kg BW in atherosclerosis model rats can reduce the occurrence of fatty liver by reducing the inflammatory process.
Collapse
|
13
|
Liang J, Li W, Liu H, Li X, Yuan C, Zou W, Qu L. Di’ao Xinxuekang Capsule Improves the Anti-Atherosclerotic Effect of Atorvastatin by Downregulating the SREBP2/PCSK9 Signalling Pathway. Front Pharmacol 2022; 13:857092. [PMID: 35571088 PMCID: PMC9096164 DOI: 10.3389/fphar.2022.857092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Statins are the first choice for lowering low-density lipoprotein cholesterol (LDL-C) and preventing atherosclerotic cardiovascular disease (ASCVD). However, statins can also upregulate proprotein convertase subtilisin/kexin type 9 (PCSK9), which in turn might limits the cholesterol-lowering effect of statins through the degradation of LDL receptors (LDLR). Di’ao Xinxuekang (DXXK) capsule, as a well-known traditional Chinese herbal medicine for the prevention and treatment of coronary heart disease, can alleviate lipid disorders and ameliorate atherosclerosis in atherosclerosis model mice and downregulate the expression of PCSK9. In this study, we further explored whether DXXK has a synergistic effect with atorvastatin (ATO) and its underlying molecular mechanism. The results showed that both ATO monotherapy (1.3 mg/kg) and ATO combined with DXXK therapy significantly lowered serum lipid levels and reduced the formation of atherosclerotic plaques and the liver lipid accumulation. Moreover, compared with ATO monotherapy, the addition of DXXK (160 mg/kg) to the combination therapy further lowered LDL-C by 15.55% and further reduced the atherosclerotic plaque area by 25.98%. In addition, the expression of SREBP2, PCSK9 and IDOL showed a significant increase in the model group, and the expression of LDLR was significantly reduced; however, there were no significant differences between the ATO (1.3 mg/kg) and the model groups. When ATO was combined with DXXK, the expression of LDLR was significantly increased and was higher than that of the model group and the expression of SREBP2 and PCSK9 in the liver was also significantly inhibited. Moreover, it can be seen that the expression of SREBP2 and PCSK9 in the combination treatment group was significantly lower than that in the ATO monotherapy group (1.3 mg/kg). Besides, the expression of IDOL mRNA in each treatment group was not significantly different from that of the model group. Our study suggests that DXXK might have a synergistic effect on the LDL-C lowering and antiatherosclerosis effects of ATO through the SREBP2/PCSK9 pathway. This indicates that a combination of DXXK and ATO may be a new treatment for atherosclerosis.
Collapse
Affiliation(s)
- Jiyi Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofen Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuqiao Yuan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wenjun Zou, ; Liping Qu,
| | - Liping Qu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wenjun Zou, ; Liping Qu,
| |
Collapse
|
14
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common disease defined by excess fat deposition in the liver. The course of NAFLD is not fully understood, however, some pathogenic mechanisms have been identified. Accumulation of fat in liver cells is associated with insulin resistance, central obesity, triglyceride accumulation in the liver and hepatic fatty acid metabolism dysregulation that cause steatosis. The other process leads to hepatocyte inflammation and necrosis, which leads to severe hepatic disease; non-alcoholic steatohepatitis. Many clinical studies have underlined the link between NAFLD and atherosclerosis. NAFLD may alter the balance lipid-glucose metabolism as well as increase the risk of hypertension and systemic inflammation. This results in a greater risk of vascular events. The present review considers the link between NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Sevket Balta
- Department of Cardiology, Hayat Hospital, Malatya, Turkey
| |
Collapse
|
15
|
Ørskov M, Vorum H, Larsen TB, Lip GYH, Bek T, Skjøth F. Clinical risk factors for retinal artery occlusions: a nationwide case-control study. Int Ophthalmol 2022; 42:2483-2491. [PMID: 35305540 DOI: 10.1007/s10792-022-02247-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/11/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE This study seeks to examine potential risk factors for the development of retinal artery occlusions (RAO). METHODS We used data obtained from Danish nationwide registries to evaluate potential risk factors for RAO present up to 5 years prior to the RAO diagnosis. The study included 5312 patients diagnosed with RAO registered in the Danish National Patient Register and 26,560 controls assessed from the general population matched on sex and age at index date. Adjusted conditional logistic regression was used to estimate the odds ratio of included risk factors for RAO diagnosis. We conducted supplementary analyses stratified on sex and age, and on RAO subtype. In addition, interaction analyses were performed between strata in the stratified analyses. RESULTS Risk factors associated with the development of RAO included diabetes, arterial hypertension, ischemic heart disease, peripheral artery disease, stroke, renal disease, cataract, and glaucoma, with ORs ranging from 1.33 to 4.94. Atrial fibrillation and sleep apnea yielded effect measures close to equivalence. The presence of a risk factor was generally associated with higher odds of RAO among the population ≤ 55 of age. Arterial hypertension was stronger associated with RAO in male patients than in female patients. The association with arterial hypertension was stronger for CRAO than for BRAO subtype. CONCLUSION The investigated risk factors suggest that atherosclerosis and conditions changing the intraocular pressure are involved in the pathophysiology of RAO.
Collapse
Affiliation(s)
- Marie Ørskov
- Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark.
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Torben Bjerregaard Larsen
- Department of Cardiology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark
| | - Gregory Y H Lip
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| | - Flemming Skjøth
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark
- Unit for Clinical Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
16
|
Choi JM, Park HE, Han YM, Lee J, Lee H, Chung SJ, Lim SH, Yim JY, Chung GE. Non-alcoholic/Metabolic-Associated Fatty Liver Disease and Helicobacter pylori Additively Increase the Risk of Arterial Stiffness. Front Med (Lausanne) 2022; 9:844954. [PMID: 35280895 PMCID: PMC8914072 DOI: 10.3389/fmed.2022.844954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNon-alcoholic fatty liver disease (NAFLD) and Helicobacter pylori (Hp) infection have a close association with an increased risk of cardiovascular disease. Metabolic dysfunction-associated fatty liver disease (MAFLD) is characterized by metabolic dysfunction in NAFLD. We investigated the synergistic effects of NAFLD/MAFLD and Hp infection on the risk of arterial stiffness in an asymptomatic population.MethodsWe included individuals who underwent abdominal ultrasonography, anti-Hp IgG antibody evaluations and cardio-ankle vascular index (CAVI) during health screening tests between January 2013 and December 2017. Arterial stiffness was defined using CAVI. A logistic regression model was used to analyze the independent and synergistic effects of NAFLD/MAFLD and Hp infection on the risk of arterial stiffness.ResultsAmong 3,195 subjects (mean age 54.7 years, 68.5% male), the prevalence of increased arterial stiffness was 36.4%. In the multivariate analysis, subjects with NAFLD but without Hp infection and those with both NAFLD and Hp infection had a significantly higher risk of increased arterial stiffness [odds ratio (OR) 1.61, 95% confidence interval (CI) 1.15–2.26, and OR 2.23, 95% CI 1.63–3.06, respectively], than subjects without Hp infection and NAFLD. Regarding MAFLD, Hp infection additively increased the risk of arterial stiffness in subjects with MAFLD (OR 2.13, 95% CI 1.64–2.78).ConclusionsAn interactive effect of Hp infection on the risk of arterial stiffness in individuals with NAFLD/MAFLD was observed. Hp infection additively increases the risk of arterial stiffness in subjects with NAFLD or MAFLD.
Collapse
Affiliation(s)
- Ji Min Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Hyo Eun Park
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Yoo Min Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Jooyoung Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Heesun Lee
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Su Jin Chung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Seon Hee Lim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Jeong Yoon Yim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Goh Eun Chung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
- *Correspondence: Goh Eun Chung
| |
Collapse
|
17
|
Zhang T, Feng C, Zhang X, Sun B, Bian Y. Abnormal expression of long non-coding RNA rhabdomyosarcoma 2-associated transcript (RMST) participates in the pathological mechanism of atherosclerosis by regulating miR-224-3p. Bioengineered 2022; 13:2648-2657. [PMID: 35067166 PMCID: PMC8974166 DOI: 10.1080/21655979.2021.2023995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Study shows that long non-coding RNA (lncRNA) plays a regulatory role in cardiovascular diseases, and the mechanism of rhabdomyosarcoma 2-associated transcript (RMST) in atherosclerosis (AS) is still unclear. This study aimed to evaluate the expression of RMST and its possible role in the occurrence of AS. RMST and miR-224-3p level in serum and human umbilical vein endothelial cells (HUVECs) were determined by real-time quantitative PCR (RT-qPCR). In vitro atherosclerotic cell model was achieved by treating HUVECs with ox-LDL. Receiver operating characteristic (ROC) curve assessed the diagnostic value of RMST in AS, and Pearson correlation coefficient estimated the correlation of RMST with carotid intima-media thickness (CIMT) and carotid-femoral pulse wave velocity (cfPWV). Cell counting kit-8 (CCK-8) assay and Enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the effect of RMST on cell viability and inflammatory response. The luciferase analysis was used to validate the relationship between RMST and miR-224-3p. The results showed that in serum and HUVECs, RMST levels were increased, while miR-224-3p level was decreased. ROC curve suggested that RMST had clinical diagnostic value for AS. Besides, CIMT and cfPWV were positively correlated with RMST levels, respectively. In HUVECs, RMST-knockdown notably improved the cell viability and inhibited the production of inflammatory factors. Moreover, miR-224-3p was the target of RMST. In conclusion, RMST has the potential to be a diagnostic marker for AS. RMST-knockdown contributes to the enhancement of cell viability and the inhibition of inflammatory response, which may provide new insights into the conquest of AS.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Endocrinology, People’s Hospital of Rizhao, Shandong, China
| | - Cuina Feng
- Department of Cardiology, Affiliated Hospital of Hebei University, Hebei, China
| | - Xiang Zhang
- Department of Cardiology, People’s Hospital of Rizhao, Shandong, China
| | - Bin Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Shandong, China
| | - Ying Bian
- Department of General Breast Surgery, Affiliated Hospital of Hebei University, Hebei, China
| |
Collapse
|
18
|
Garbuzenko DV, Belov DV. Non-alcoholic fatty liver disease as an independent factor of cardiometabolic risk of cardiovascular diseases. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021. [DOI: 10.31146/1682-8658-ecg-194-10-22-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a pressing public health problem affecting up to a third of the world's adult population. The main reasons for its high mortality rate are cardiovascular diseases. They are caused by subclinical atherosclerosis characteristic of NAFLD, venous thromboembolic complications, functional and structural myocardial disorders, calcification of heart valves, heart rhythm and conduction disturbances. At the same time, NAFLD can serve as an independent factor of the cardiometabolic risk of their development, which is associated with atherogenic dyslipidemia, as well as the release of numerous pro-inflammatory mediators both from the pathologically altered liver and as a result of systemic endotoxemia, which is the result of disturbance of the intestinal microbiota, accompanied by a decrease in intestinal microbial gene richness., a change in its composition and function, followed by bacterial translocation. Considering that most patients with NAFLD die from cardiovascular complications, it becomes obvious that exclusively “liver-oriented” principles of their treatment cannot be sufficient, but require a multidisciplinary team approach involving cardiologists, cardiac surgeons and doctors of other related specialties.
Collapse
|
19
|
Effects of Pyrroloquinoline Quinone on Lipid Metabolism and Anti-Oxidative Capacity in a High-Fat-Diet Metabolic Dysfunction-Associated Fatty Liver Disease Chick Model. Int J Mol Sci 2021; 22:ijms22031458. [PMID: 33535680 PMCID: PMC7867196 DOI: 10.3390/ijms22031458] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) and its interaction with many metabolic pathways raises global public health concerns. This study aimed to determine the therapeutic effects of Pyrroloquinoline quinone (PQQ, provided by PQQ.Na2) on MAFLD in a chick model and primary chicken hepatocytes with a focus on lipid metabolism, anti-oxidative capacity, and mitochondrial biogenesis. The MAFLD chick model was established on laying hens by feeding them a high-energy low-protein (HELP) diet. Primary hepatocytes isolated from the liver of laying hens were induced for steatosis by free fatty acids (FFA) and for oxidative stress by hydrogen peroxide (H2O2). In the MAFLD chick model, the dietary supplementation of PQQ conspicuously ameliorated the negative effects of the HELP diet on liver biological functions, suppressed the progression of MAFLD mainly through enhanced lipid metabolism and protection of liver from oxidative injury. In the steatosis and oxidative stress cell models, PQQ functions in the improvement of the lipid metabolism and hepatocytes tolerance to fatty degradation and oxidative damage by enhancing mitochondrial biogenesis and then increasing the anti-oxidative activity and anti-apoptosis capacity. At both the cellular and individual levels, PQQ was demonstrated to exert protective effects of hepatocyte and liver from fat accumulation through the improvement of mitochondrial biogenesis and maintenance of redox homeostasis. The key findings of the present study provide an in-depth knowledge on the ameliorative effects of PQQ on the progression of fatty liver and its mechanism of action, thus providing a theoretical basis for the application of PQQ, as an effective nutrient, into the prevention of MAFLD.
Collapse
|
20
|
Arslan U, Yenerçağ M. Relationship between non-alcoholic fatty liver disease and coronary heart disease. World J Clin Cases 2020; 8:4688-4699. [PMID: 33195636 PMCID: PMC7642538 DOI: 10.12998/wjcc.v8.i20.4688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease and considered a liver manifestation of metabolic syndrome. It is in close relationship with insulin resistance, obesity, diabetes mellitus, all of which increase risk of cardiovascular disease (CVD). Besides, many studies point out that NAFLD independently contributes to the development of atherosclerosis and CHD. On the other hand, CVDs are the leading cause of death in NAFLD patients. Many pathophysiological changes and molecular mechanisms play an important role in NAFLD for CVD formation. Atherosclerosis is common in NAFLD, which also mainly contributes to the CVD formation and CHD. Many studies linking atherosclerotic CHD and NAFLD are present in the literature. Subclinical CHD, mainly detected by coronary computed tomography views, have been detected more common in NAFLD patients. Presence of NAFLD has been found to be more common in patients with severe CHD and in stable CHD, NAFLD has been found to be associated with more diffuse disease. In acute coronary syndromes, especially in acute myocardial infarction, patients with NAFLD have been found to have poor prognosis when compared with NAFLD free patients. In this review, our aim is to evaluate the relationship between NAFLD and CHD in detail and go over the pathophysiological mechanisms underlying this relationship.
Collapse
Affiliation(s)
- Ugur Arslan
- Department of Cardiology, University of Health Sciences Samsun Training and Research Hospital, Samsun 55400, Turkey
| | - Mustafa Yenerçağ
- Department of Cardiology, University of Health Sciences Samsun Training and Research Hospital, Samsun 55400, Turkey
| |
Collapse
|
21
|
Hepatoprotective Effects of a Novel Trihoney against Nonalcoholic Fatty Liver Disease: A Comparative Study with Atorvastatin. ScientificWorldJournal 2020; 2020:4503253. [PMID: 33132768 PMCID: PMC7568805 DOI: 10.1155/2020/4503253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder worldwide with no curative therapy. The aim of this study was to investigate the hepatoprotective effects of a novel Trihoney against biochemical and histological manifestations of NAFLD in hypercholesterolemic rabbits. Methodology. Forty-eight male New Zealand white (NZW) rabbits were grouped into normal diet (C), normal diet with 0.6 g/kg/day of Trihoney (C + H), 1% cholesterol diet (HCD), 1% cholesterol diet with 0.3 g/kg/day of Trihoney (HCD + H1), 1% cholesterol diet with 0.6 g/kg/day of Trihoney (HCD + H2), and 1% cholesterol diet with 2 mg/kg/day of atorvastatin (HCD + At.). Animals were sacrificed after 12 weeks of treatment. Serum lipids and liver function test (LFT) were measured prior to and at the endpoint of the experiment for total cholesterol (TC), low-density lipoprotein (LDL-c), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), and total bilirubin (T. Bil.). Liver was processed for histopathology study. Liver homogenate was analysed for oxidative stress parameters: superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA). Results. Lipid analysis approved the induction of hypercholesterolemia. A significant elevation (p < 0.01) of serum AST and ALT levels showed by the HCD group was compared to C and C + H groups. Trihoney exhibited a significant reduction (p < 0.001) of AST and ALT compared to the HCD group. Likewise, AST and ALT reduced significantly in the HCD + At. group (p < 0.001). Trihoney supplementation induced significant (p < 0.05) enhancement of SOD and GPx activities. Atorvastatin treatment was associated with significant (p < 0.05) reduction of SOD and GPx activities in the liver. Trihoney and atorvastatin showed marked (p < 0.001) reduction of hepatic lipid peroxidation. Trihoney showed histological protection against progression of NAFLD to nonalcoholic steatohepatitis (NASH). Atorvastatin exhibited no beneficial impact on hepatic architecture. Conclusion. Trihoney was able to maintain normal liver function and showed hepatoprotection against progression of NAFLD to NASH probably through hypocholesterolaemic and antioxidant functions.
Collapse
|
22
|
Della Torre S. Non-alcoholic Fatty Liver Disease as a Canonical Example of Metabolic Inflammatory-Based Liver Disease Showing a Sex-Specific Prevalence: Relevance of Estrogen Signaling. Front Endocrinol (Lausanne) 2020; 11:572490. [PMID: 33071979 PMCID: PMC7531579 DOI: 10.3389/fendo.2020.572490] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive evidence supporting the interplay between metabolism and immune response, that have evolved in close relationship, sharing regulatory molecules and signaling systems, to support biological functions. Nowadays, the disruption of this interaction in the context of obesity and overnutrition underlies the increasing incidence of many inflammatory-based metabolic diseases, even in a sex-specific fashion. During evolution, the interplay between metabolism and reproduction has reached a degree of complexity particularly high in female mammals, likely to ensure reproduction only under favorable conditions. Several factors may account for differences in the incidence and progression of inflammatory-based metabolic diseases between females and males, thus contributing to age-related disease development and difference in life expectancy between the two sexes. Among these factors, estrogens, acting mainly through Estrogen Receptors (ERs), have been reported to regulate several metabolic pathways and inflammatory processes particularly in the liver, the metabolic organ showing the highest degree of sexual dimorphism. This review aims to investigate on the interaction between metabolism and inflammation in the liver, focusing on the relevance of estrogen signaling in counteracting the development and progression of non-alcoholic fatty liver disease (NAFLD), a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence. Understanding the role of estrogens/ERs in the regulation of hepatic metabolism and inflammation may provide the basis for the development of sex-specific therapeutic strategies for the management of such an inflammatory-based metabolic disease and its cardio-metabolic consequences.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Allen JN, Dey A, Cai J, Zhang J, Tian Y, Kennett M, Ma Y, Liang TJ, Patterson AD, Hankey-Giblin PA. Metabolic Profiling Reveals Aggravated Non-Alcoholic Steatohepatitis in High-Fat High-Cholesterol Diet-Fed Apolipoprotein E-Deficient Mice Lacking Ron Receptor Signaling. Metabolites 2020; 10:metabo10080326. [PMID: 32796650 PMCID: PMC7464030 DOI: 10.3390/metabo10080326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) represents the progressive sub-disease of non-alcoholic fatty liver disease that causes chronic liver injury initiated and sustained by steatosis and necroinflammation. The Ron receptor is a tyrosine kinase of the Met proto-oncogene family that potentially has a beneficial role in adipose and liver-specific inflammatory responses, as well as glucose and lipid metabolism. Since its discovery two decades ago, the Ron receptor has been extensively investigated for its differential roles on inflammation and cancer. Previously, we showed that Ron expression on tissue-resident macrophages limits inflammatory macrophage activation and promotes a repair phenotype, which can retard the progression of NASH in a diet-induced mouse model. However, the metabolic consequences of Ron activation have not previously been investigated. Here, we explored the effects of Ron receptor activation on major metabolic pathways that underlie the development and progression of NASH. Mice lacking apolipoprotein E (ApoE KO) and double knockout (DKO) mice that lack ApoE and Ron were maintained on a high-fat high-cholesterol diet for 18 weeks. We observed that, in DKO mice, the loss of ligand-dependent Ron signaling aggravated key pathological features in steatohepatitis, including steatosis, inflammation, oxidation stress, and hepatocyte damage. Transcriptional programs positively regulating fatty acid (FA) synthesis and uptake were upregulated in the absence of Ron receptor signaling, whereas lipid disposal pathways were downregulated. Consistent with the deregulation of lipid metabolism pathways, the DKO animals exhibited increased accumulation of FAs in the liver and decreased level of bile acids. Altogether, ligand-dependent Ron receptor activation provides protection from the deregulation of major metabolic pathways that initiate and aggravate non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Joselyn N. Allen
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Adwitia Dey
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Jingtao Zhang
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Yanling Ma
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20814, USA; (Y.M.); (T.J.L.)
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20814, USA; (Y.M.); (T.J.L.)
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
- Correspondence: (A.D.P.); (P.A.H.-G.); Tel.: +1-814-867-4565; (A.D.P.); +1-814-863-0128 (P.A.H.-G.)
| | - Pamela A. Hankey-Giblin
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
- Correspondence: (A.D.P.); (P.A.H.-G.); Tel.: +1-814-867-4565; (A.D.P.); +1-814-863-0128 (P.A.H.-G.)
| |
Collapse
|
24
|
Lu K, Wang J, Yu Y, Wu Y, He Z. Lycium ruthenicum Murr. alleviates nonalcoholic fatty liver in mice. Food Sci Nutr 2020; 8:2588-2597. [PMID: 32566176 PMCID: PMC7300084 DOI: 10.1002/fsn3.1445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and inflammation contribute to hypertriglyceridemia-induced nonalcoholic fatty liver disease (NAFLD). Cholesterol-enriched diets increase the risk of NAFLD. Lycium ruthenium Murr. (LRM) contains water-soluble antioxidant proanthocyanidins. Whether Lycium ruthenium Murr. improves NAFLD remains elusive. In this study, we established a model of NAFLD-induced by cholesterol-enriched high-fat diet (western diet) in ApoE -/- mice; oxidative stress and inflammation were examined and intervened by supplement of Lycium ruthenium Murr. (LRM) extracts. LRM supplement did not influence body weight gain, food intake, and lipotoxicity of mice. LRM supplement significantly alleviated triglyceride accumulation in liver, with reduced inflammation, elevated GSH-Px activity, and reduced MDA levels. The expression of fatty acids oxidative gene Scd1 was significantly increased, and fatty acids synthesis-related gene Pparγ was dramatically downregulated on mRNA level in liver of mice with LRM supplement. These data demonstrated that LRM supplement decreased ROS production and inflammation, increased fatty acids oxidation, and reduced fatty acids synthesis in liver, leading to ameliorate the development of NAFLD induced by high western diet. Thus, oxidative stress and inflammation also are involved in the pathogenesis of western diet-induced NAFLD, which is independent of obesity.
Collapse
Affiliation(s)
- Keke Lu
- Shandong Provincial Hospital and School of MedicineShandong UniversityJinanChina
| | - Jing Wang
- Shandong Provincial Hospital and School of MedicineShandong UniversityJinanChina
| | - Yueyuan Yu
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Yikuan Wu
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Zhao He
- Shandong Provincial Hospital and School of MedicineShandong UniversityJinanChina
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyJiangnan UniversityWuxiChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismShandong Provincial HospitalJinanChina
- Institute of Endocrinology and metabolismShandong Academy of Clinical MedicineJinanChina
| |
Collapse
|
25
|
Ablation of miR-144 increases vimentin expression and atherosclerotic plaque formation. Sci Rep 2020; 10:6127. [PMID: 32273567 PMCID: PMC7145828 DOI: 10.1038/s41598-020-63335-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
It has been suggested that miR-144 is pro-atherosclerotic via effects on reverse cholesterol transportation targeting the ATP binding cassette protein. This study used proteomic analysis to identify additional cardiovascular targets of miR-144, and subsequently examined the role of a newly identified regulator of atherosclerotic burden in miR-144 knockout mice receiving a high fat diet. To identify affected secretory proteins, miR-144 treated endothelial cell culture medium was subjected to proteomic analysis including two-dimensional gel separation, trypsin digestion, and nanospray liquid chromatography coupled to tandem mass spectrometry. We identified 5 gel spots representing 19 proteins that changed consistently across the biological replicates. One of these spots, was identified as vimentin. Atherosclerosis was induced in miR-144 knockout mice by high fat diet and vascular lesions were quantified by Oil Red-O staining of the serial sectioned aortic root and from en-face views of the aortic tree. Unexpectedly, high fat diet induced extensive atherosclerosis in miR-144 knockout mice and was accompanied by severe fatty liver disease compared with wild type littermates. Vimentin levels were reduced by miR-144 and increased by antagomiR-144 in cultured cardiac endothelial cells. Compared with wild type, ablation of the miR-144/451 cluster increased plasma vimentin, while vimentin levels were decreased in control mice injected with synthetic miR-144. Furthermore, increased vimentin expression was prominent in the commissural regions of the aortic root which are highly susceptible to atherosclerotic plaque formation. We conclude that miR-144 maybe a potential regulator of the development of atherosclerosis via changes in vimentin signaling.
Collapse
|
26
|
Peng Y, Xu J, Zeng Y, Chen L, Xu XL. Polydatin attenuates atherosclerosis in apolipoprotein E-deficient mice: Role of reverse cholesterol transport. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152935. [PMID: 31085374 DOI: 10.1016/j.phymed.2019.152935] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Polydatin has been recently shown to possess extensive cardiovascular pharmacological activities. However, its protective effect against atherosclerosis in vivo remains poorly understood. The aim of the present study was to evaluate the potential effects of polydatin on high fat diet (HFD)-induced atherosclerosis using ApoE-/- mice, and explore the underlying mechanisms involved, especially focusing on reverse cholesterol transport (RCT) regulation. METHODS after 12 weeks treatment, serum samples, mouse aorta, liver, peritoneal macrophages were collected to determine lipid profiles, atherosclerotic lesions, hepatic steatosis, foam cell formation and expression of related molecules. RAW264.7 macrophages were used to study cholesterol efflux. RESULTS Polydatin improved serum lipid profiles, attenuated atherosclerosis and hepatic steatosis. Furthermore, polydatin may facilitate RCT by stimulating cholesterol efflux through ATP-binding cassette transporters (ABC) A1, ABCG1 and scavenger receptor class B type I (SR-BI) in macrophages, increasing serum levels of high density lipoprotein and apolipoprotein A-I, promoting of SR-BI-mediated cholesterol uptake of liver, increasing secretion of cholesterol into bile by ABCG5/ABCG8 and improving cholesterol metabolism by CYP7A1 pathway. Polydatin also regulated the protein expressions of hepatic fatty acid synthase and peroxisome proliferator-activated receptor-α. Additionally, polydatin reduced hepatic and aortic reactive oxygen species generation, normalized activities of antioxidant enzymes and increased protein expressions of NADPH-oxidase (NOX) 2 and NOX4 in liver. Polydatin also prevented hepatic and aortic inflammation as evidenced by the reduced macrophage infiltration and mRNA expressions of tumor necrosis factor-α and interleukin-6 in both aorta and liver. CONCLUSION These findings indicated that polydatin can inhibit atherosclerosis through enhancement of overall RCT. In addition, anti-oxidative and anti-inflammatory effect of polydatin may also contribute to its inhibitory effects on atherosclerosis.
Collapse
Affiliation(s)
- Yi Peng
- Department of Pharmacology, Nantong University Pharmacy College, Nantong 226001, China
| | - Jin Xu
- Department of Pharmacology, Nantong University Pharmacy College, Nantong 226001, China
| | - Yi Zeng
- Department of Pharmacology, Nantong University Pharmacy College, Nantong 226001, China
| | - Long Chen
- Department of Pharmacology, Nantong University Pharmacy College, Nantong 226001, China
| | - Xiao Le Xu
- Department of Pharmacology, Nantong University Pharmacy College, Nantong 226001, China.
| |
Collapse
|
27
|
Yu LY, Hu KC, Liu CJ, Hung CL, Bair MJ, Chen MJ, Wang HY, Wu MS, Shih SC, Liu CC. Helicobacter pylori infection combined with non-alcoholic fatty liver disease increase the risk of atherosclerosis: Focus in carotid artery plaque. Medicine (Baltimore) 2019; 98:e14672. [PMID: 30817593 PMCID: PMC6831312 DOI: 10.1097/md.0000000000014672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis has severe consequences on human health. Carotid artery plaques are a condition typically caused by atherosclerosis. Previous studies showed that nonalcoholic fatty liver disease (NAFLD) and Helicobacter pylori (H pylori) are risks factors for carotid artery plaque formation. We hypothesize that the combination of NAFLD with H pylori infection increases the risk of carotid artery plaque formation.A total of 4669 subjects aged > 40 years who underwent routine health checkups between January 2006 and December 2015 were retrospectively reviewed. A serial examination, including abdominal ultrasound, carotid artery ultrasound and esophago-gastroduodenoscopy (EGD), and biopsy urease testing, was conducted.In total, 2402 subjects were enrolled. There were no differences in H pylori infection status among patients with or without NAFLD. There was a trend of more participants with both NAFLD and H pylori infection (number [N]=583) presenting carotid artery plaque (N = 187,32.08%) than participants without NAFLD and H pylori infection (N = 589) who presented plaque formation (N = 106, 18.00%). Participants who had both H pylori infection and NAFLD had the highest risk of any carotid artery plaque (odds ratio [OR], 1.93; 95% confidence interval [CI], 1.413-2.636) based on a multivariate logistic regression analysis. This analysis also showed that age >60 years, male sex, low-density lipoprotein (LDL) >130 mg/dL, and H pylori infection were independent risk factors for concomitant NAFLD and carotid artery plaque formation.The combination of H pylori infection and NAFLD increases carotid artery plaque formation. H pylori eradication and NAFLD control may be warranted to prevent carotid artery plaque formation.
Collapse
Affiliation(s)
- Lo-Yip Yu
- Division of Gastroenterology, Department of Internal Medicine, Healthy Evaluation Center
| | - Kuang-Chun Hu
- Division of Gastroenterology, Department of Internal Medicine, Healthy Evaluation Center
| | - Chun-Jen Liu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chung-Lieh Hung
- Division of Cardiology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei
| | - Ming-Jong Bair
- Division of Gastroenterology, Department of Internal Medicine, Mackay Memorial Hospital, Taitung Branch, Taitung
| | - Ming-Jen Chen
- Division of Gastroenterology, Department of Internal Medicine, Healthy Evaluation Center
| | - Horng-Yuan Wang
- Division of Gastroenterology, Department of Internal Medicine, Healthy Evaluation Center
| | - Ming-Shiang Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shou-Chuan Shih
- Division of Gastroenterology, Department of Internal Medicine, Healthy Evaluation Center
| | - Chuan-Chuan Liu
- Division of Gastroenterology, Department of Internal Medicine, Healthy Evaluation Center
| |
Collapse
|
28
|
Jackson K, Dressler N, Ben-Shushan RS, Meerson A, LeBaron TW, Tamir S. Effects of alkaline-electrolyzed and hydrogen-rich water, in a high-fat-diet nonalcoholic fatty liver disease mouse model. World J Gastroenterol 2018; 24:5095-5108. [PMID: 30568387 PMCID: PMC6288656 DOI: 10.3748/wjg.v24.i45.5095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To identify the effect of hydrogen-rich water (HRW) and electrolyzed-alkaline water (EAW) on high-fat-induced non-alcoholic fatty acid disease in mice.
METHODS Mice were divided into four groups: (1) Regular diet (RD)/regular water (RW); (2) high-fat diet (HFD)/RW; (3) RD/EAW; and (4) HFD/EAW. Weight and body composition were measured. After twelve weeks, animals were sacrificed, and livers were processed for histology and reverse-transcriptase polymerase chain reaction. A similar experiment was performed using HRW to determine the influence and importance of molecular hydrogen (H2) in EAW. Finally, we compared the response of hepatocytes isolated from mice drinking HRW or RW to palmitate overload.
RESULTS EAW had several properties important to the study: (1) pH = 11; (2) oxidation-reduction potential of -495 mV; and (3) H2 = 0.2 mg/L. However, in contrast to other studies, there were no differences between the groups drinking EAW or RW in either the RD or HFD groups. We hypothesized that the null result was due to low H2 concentrations. Therefore, we evaluated the effects of RW and low and high HRW concentrations (L-HRW = 0.3 mg H2/L and H-HRW = 0.8 mg H2/L, respectively) in mice fed an HFD. Compared to RW and L-HRW, H-HRW resulted in a lower increase in fat mass (46% vs 61%), an increase in lean body mass (42% vs 28%), and a decrease in hepatic lipid accumulation (P < 0.01). Lastly, exposure of hepatocytes isolated from mice drinking H-HRW to palmitate overload demonstrated a protective effect from H2 by reducing hepatocyte lipid accumulation in comparison to mice drinking regular water.
CONCLUSION H2 is the therapeutic agent in electrolyzed-alkaline water and attenuates HFD-induced nonalcoholic fatty liver disease in mice.
Collapse
Affiliation(s)
- Karen Jackson
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Kyriat Shmona 11016, Israel
- Tel Hai College, Upper Galilee 12110, Israel
| | - Noa Dressler
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Kyriat Shmona 11016, Israel
- Tel Hai College, Upper Galilee 12110, Israel
| | - Rotem S Ben-Shushan
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Kyriat Shmona 11016, Israel
| | - Ari Meerson
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Kyriat Shmona 11016, Israel
| | - Tyler W LeBaron
- Center of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava 84005, Slovakia
- Molecular Hydrogen Institute, UT 48101, United States
| | - Snait Tamir
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Kyriat Shmona 11016, Israel
- Tel Hai College, Upper Galilee 12110, Israel
| |
Collapse
|
29
|
Sfyri PP, Yuldasheva NY, Tzimou A, Giallourou N, Crispi V, Aburima A, Beltran-Alvarez P, Patel K, Mougios V, Swann JR, Kearney MT, Matsakas A. Attenuation of oxidative stress-induced lesions in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia and atherosclerosis through the inhibition of Nox2 activity. Free Radic Biol Med 2018; 129:504-519. [PMID: 30342191 DOI: 10.1016/j.freeradbiomed.2018.10.422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/12/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Obesity leading to hyperlipidaemia and atherosclerosis is recognised to induce morphological and metabolic changes in many tissues. However, hyperlipidaemia can occur in the absence of obesity. The impact of the latter scenario on skeletal muscle and liver is not understood sufficiently. In this regard, we used the Apolipoprotein E-deficient (ApoE-/-) mouse model, an established model of hyperlipidaemia and atherosclerosis, that does not become obese when subjected to a high-fat diet, to determine the impact of Western-type diet (WD) and ApoE deficiency on skeletal muscle morphological, metabolic and biochemical properties. To establish the potential of therapeutic targets, we further examined the impact of Nox2 pharmacological inhibition on skeletal muscle redox biology. We found ectopic lipid accumulation in skeletal muscle and the liver, and altered skeletal muscle morphology and intramuscular triacylglycerol fatty acid composition. WD and ApoE deficiency had a detrimental impact in muscle metabolome, followed by perturbed gene expression for fatty acid uptake and oxidation. Importantly, there was enhanced oxidative stress in the skeletal muscle and development of liver steatosis, inflammation and oxidative protein modifications. Pharmacological inhibition of Nox2 decreased reactive oxygen species production and protein oxidative modifications in the muscle of ApoE-/- mice subjected to a Western-type diet. This study provides key evidence to better understand the pathophysiology of skeletal muscle in the context of hyperlipidaemia and atherosclerosis and identifies Nox2 as a potential target for attenuating oxidative stress in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia.
Collapse
Affiliation(s)
- Pagona Panagiota Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, United Kingdom
| | - Nadira Y Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom
| | - Anastasia Tzimou
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sports Science at Thessaloniki, Aristotle University of Thessaloniki, Greece
| | - Natasa Giallourou
- Department of Surgery and Cancer, Division of Computational and Systems Medicine, Imperial College London, United Kingdom
| | - Vassili Crispi
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, United Kingdom
| | - Ahmed Aburima
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, United Kingdom
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, United Kingdom
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sports Science at Thessaloniki, Aristotle University of Thessaloniki, Greece
| | - Jonathan R Swann
- Department of Surgery and Cancer, Division of Computational and Systems Medicine, Imperial College London, United Kingdom
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, United Kingdom.
| |
Collapse
|
30
|
Gummesson A, Strömberg U, Schmidt C, Kullberg J, Angerås O, Lindgren S, Hjelmgren O, Torén K, Rosengren A, Fagerberg B, Brandberg J, Bergström G. Non-alcoholic fatty liver disease is a strong predictor of coronary artery calcification in metabolically healthy subjects: A cross-sectional, population-based study in middle-aged subjects. PLoS One 2018; 13:e0202666. [PMID: 30133541 PMCID: PMC6105021 DOI: 10.1371/journal.pone.0202666] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
Objectives This study aims to estimate the relationship between non-alcoholic fatty liver disease (NAFLD) and measures of atherosclerotic cardiovascular disease (ASCVD), and to determine to what extent such relationships are modified by metabolic risk factors. Methods The study was conducted in the population-based Swedish CArdioPulmonary bioImage Study (SCAPIS) pilot cohort (n = 1015, age 50–64 years, 51.2% women). NAFLD was defined as computed tomography liver attenuation ≤40 Hounsfield Units, excluding other causes of liver fat. Coronary artery calcification score (CACS) was assessed using the Agatston method. Carotid plaques and intima media thickness (IMT) were measured by ultrasound. Metabolic status was based on assessments of glucose homeostasis, serum lipids, blood pressure and inflammation. A propensity score model was used to balance NAFLD and non NAFLD groups with regards to potential confounders and associations between NAFLD status and ASCVD variables in relation to metabolic status were examined by logistic and generalized linear regression models. Results NAFLD was present in 106 (10.4%) of the subjects and strongly associated with obesity-related traits. NAFLD was significantly associated with CACS after adjustment for confounders and metabolic risk factors (OR 1.77, 95% CI 1.07–2.94), but not with carotid plaques and IMT. The strongest association between NAFLD and CACS was observed in subjects with few metabolic risk factors (n = 612 [60% of all] subjects with 0–1 out of 7 predefined metabolic risk factors; OR 5.94, 95% CI 2.13–16.6). Conclusions NAFLD was independently associated with coronary artery calcification but not with measures of carotid atherosclerosis in this cohort. The association between NAFLD and CACS was most prominent in the metabolically healthy subjects.
Collapse
Affiliation(s)
- Anders Gummesson
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Ulf Strömberg
- Health Metrics Unit, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Schmidt
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical, Mölndal, Sweden
| | - Oskar Angerås
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stefan Lindgren
- Gastroenterology Division, Department of Clinical Sciences, Lund University, University Hospital Skåne, Malmö, Sweden
| | - Ola Hjelmgren
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kjell Torén
- Section of Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Rosengren
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Björn Fagerberg
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - John Brandberg
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
31
|
Zhou YY, Zhou XD, Wu SJ, Hu XQ, Tang B, Poucke SV, Pan XY, Wu WJ, Gu XM, Fu SW, Zheng MH. Synergistic increase in cardiovascular risk in diabetes mellitus with nonalcoholic fatty liver disease: a meta-analysis. Eur J Gastroenterol Hepatol 2018; 30:631-636. [PMID: 29351115 DOI: 10.1097/meg.0000000000001075] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has been linked to an increased risk of cardiovascular disease (CVD). To explore the impact of diabetes mellitus (DM) as a cardiovascular risk factor, this meta-analysis quantitatively assessed the association of NAFLD and CVD in diabetic patients. METHODS PubMed, EMBASE, and the Cochrane Library database were analyzed until the end of March 2017. Original studies analyzing the association between NAFLD and cardiovascular risk factors in the diabetic population were included. The available data related to outcome were extracted for the effect estimate using a random-effects model. The quality of the included studies was assessed using the Newcastle-Ottawa Quality Assessment Scale. RESULTS Of the 770 initially identified studies, 11 studies involving 8346 patients were finally included. The Newcastle-Ottawa Quality Assessment Scale scores suggested that the studies included were of high quality. The pooled effects estimate showed that diabetic patients with NAFLD showed a two times increased risk for CVD compared with patients without NAFLD (odds ratio=2.20, 95% confidence interval: 1.67-2.90). Subgroup analysis also yielded a markedly increased risk, with odds ratio (95% confidence interval) values of 2.28 (1.61-3.23) and 1.90 (1.48-2.45) in cross-sectional and cohort studies, respectively. CONCLUSION This is the first meta-analysis investigating the relationship between NAFLD and CVD independent of the impact of DM. Our findings suggested that NAFLD increases the risk of CVD in populations with comparable DM profiles. Diabetic patients diagnosed with NAFLD might benefit from a more early cardiovascular risk assessment, thereby reducing CVD morbidity and mortality.
Collapse
Affiliation(s)
- Yao-Yao Zhou
- Department of Cardiology, Jinhua Municipal Hospital, Jinhua
| | | | - Sheng-Jie Wu
- Department of Cardiovascular Medicine, the Heart Center
| | - Xian-Qing Hu
- Department of Cardiology, Jinhua Municipal Hospital, Jinhua
| | - Biao Tang
- Department of Cardiology, Jinhua Municipal Hospital, Jinhua
| | - Sven van Poucke
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Ziekenhuis Oost-Limburg, Genk, Belgium
| | | | | | | | - Shen-Wen Fu
- Department of Cardiology, Jinhua Municipal Hospital, Jinhua
| | - Ming-Hua Zheng
- Department of Hepatology, NAFLD Research Center, the First Affiliated Hospital of Wenzhou Medical University
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Salusin-α attenuates hepatic steatosis and atherosclerosis in high fat diet-fed low density lipoprotein receptor deficient mice. Eur J Pharmacol 2018; 830:76-86. [PMID: 29704496 DOI: 10.1016/j.ejphar.2018.04.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
Salusin-α is an endogenous bioactive peptide and likely to prevent atherosclerosis. But its protective effect against atherosclerosis in vivo remains poorly understood. The aim of the present study was to determine the potential effects of salusin-α on atherosclerosis and its associated metabolic disorders in high fat diet (HFD)-fed low density lipoprotein receptor deficient (LDLr-/-) mice, and also explore the possible underlying mechanisms involved. Our data showed that after 12 weeks treatment, salusin-α ameliorated HFD-induced weight gain, hyperlipidemia, and serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Salusin-α suppressed HFD-induced hepatic steatosis and regulated gene expression of fatty acid synthase, acetyl coenzyme A carboxylase-α, peroxisome proliferator-activated receptor-α, camitine palmitoyltransferase-1α and CYP7A1 in liver. Salusin-α reduced atherosclerotic plaque area and macrophage foam cell formation. Salusin-α prevented hepatic and aortic inflammation as evidenced by the reduced macrophage recruitment and mRNA expression of IL-6 and TNF-α in both liver and aorta. Salusin-α also reduced hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in liver and suppressing reactive oxygen species generation and protein expressions of NADPH-oxidase (NOX) 2 and NOX4 in both liver and aorta. Our present data suggest that salusin-α could reduce hepatic steatosis and atherosclerosis via its pleiotropic effects, including amelioration of lipid profiles, regulation of some key molecules involved in lipid metabolism in liver, anti-oxidative effect and anti-inflammatory action.
Collapse
|
33
|
Cui XB, Luan JN, Dong K, Chen S, Wang Y, Watford WT, Chen SY. RGC-32 (Response Gene to Complement 32) Deficiency Protects Endothelial Cells From Inflammation and Attenuates Atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38:e36-e47. [PMID: 29449334 DOI: 10.1161/atvbaha.117.310656] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The objective of this study is to determine the role and underlying mechanisms of RGC-32 (response gene to complement 32 protein) in atherogenesis. APPROACH AND RESULTS RGC-32 was mainly expressed in endothelial cells of atherosclerotic lesions in both ApoE-/- (apolipoprotein E deficient) mice and human patients. Rgc-32 deficiency (Rgc32-/-) attenuated the high-fat diet-induced and spontaneously developed atherosclerotic lesions in ApoE-/- mice without affecting serum cholesterol concentration. Rgc32-/- seemed to decrease the macrophage content without altering collagen and smooth muscle contents or lesional macrophage proliferation in the lesions. Transplantation of WT (wild type) mouse bone marrow to lethally irradiated Rgc32-/- mice did not alter Rgc32-/--caused reduction of lesion formation and macrophage accumulation, suggesting that RGC-32 in resident vascular cells, but not the macrophages, plays a critical role in the atherogenesis. Of importance, Rgc32-/- decreased the expression of ICAM-1 (intercellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) in endothelial cells both in vivo and in vitro, resulting in a decrease in TNF-α (tumor necrosis factor-α)-induced monocyte-endothelial cell interaction. Mechanistically, RGC-32 mediated the ICAM-1 and VCAM-1 expression, at least partially, through NF (nuclear factor)-κB signaling pathway. RGC-32 directly interacted with NF-κB and facilitated its nuclear translocation and enhanced TNF-α-induced NF-κB binding to ICAM-1 and VCAM-1 promoters. CONCLUSIONS RGC-32 mediates atherogenesis by facilitating monocyte-endothelial cell interaction via the induction of endothelial ICAM-1 and VCAM-1 expression, at least partially, through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Jun-Na Luan
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Kun Dong
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Sisi Chen
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Yongyi Wang
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Wendy T Watford
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.).
| |
Collapse
|
34
|
Chen X, Tang K, Peng Y, Xu X. 2,3,4′,5-tetrahydroxystilbene-2-O-β-d-glycoside attenuates atherosclerosis in apolipoprotein E-deficient mice: role of reverse cholesterol transport. Can J Physiol Pharmacol 2018; 96:8-17. [DOI: 10.1139/cjpp-2017-0474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study was to evaluate the potential effects of 2,3,4′,5-tetrahydroxystilbene-2-O-β-d-glucoside (TSG) on the development of atherosclerotic plaque in ApoE−/− mice, and explore the mechanisms involved. Our data showed that after 8 weeks of treatment, TSG ameliorated serum levels of total cholesterol, triglyceride, and low density lipoprotein cholesterol, and increased serum levels of high density lipoprotein cholesterol in ApoE−/− mice. TSG suppressed hepatic steatosis, the formation of atherosclerotic lesions, and the formation of macrophage foam cells in ApoE−/− mice. Moreover, TSG improved the expressions of hepatic SR-BI, ABCG5, and CYP7A1, and up-regulated the protein expressions of aortic ABCA1 and ABCG1. An in-vitro study showed that TSG promoted macrophage cholesterol efflux and increased the protein expressions of ABCA1 and ABCG1. Our findings provide evidence for a positive role of TSG in preventing atherosclerosis by promoting reverse cholesterol transport. These effects may be achieved by stimulating cholesterol efflux through ABCA1 and ABCG1, promoting SR-BI-mediated cholesterol uptake in the liver, increasing secretion of cholesterol into bile by ABCG5, and improving cholesterol metabolism by the CYP7A1 pathway. In addition, antioxidative and anti-inflammatory effects of TSG may also contribute to its inhibitory effects on atherosclerosis. Further study is needed to investigate whether other potential mechanisms are involved in TSG-mediated atheroprotection.
Collapse
Affiliation(s)
- Xuemeng Chen
- Department of Pharmacology, Nantong University Pharmacy College, Nantong 226001, China
- Department of Pharmacology, Nantong University Pharmacy College, Nantong 226001, China
| | - Kun Tang
- Department of Pharmacology, Nantong University Pharmacy College, Nantong 226001, China
- Department of Pharmacology, Nantong University Pharmacy College, Nantong 226001, China
| | - Yi Peng
- Department of Pharmacology, Nantong University Pharmacy College, Nantong 226001, China
- Department of Pharmacology, Nantong University Pharmacy College, Nantong 226001, China
| | - XiaoLe Xu
- Department of Pharmacology, Nantong University Pharmacy College, Nantong 226001, China
- Department of Pharmacology, Nantong University Pharmacy College, Nantong 226001, China
| |
Collapse
|
35
|
Sun YZ, Chen JF, Shen LM, Zhou J, Wang CF. Anti-atherosclerotic effect of hesperidin in LDLr −/− mice and its possible mechanism. Eur J Pharmacol 2017; 815:109-117. [DOI: 10.1016/j.ejphar.2017.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 02/01/2023]
|
36
|
Zabek A, Paslawski R, Paslawska U, Wojtowicz W, Drozdz K, Polakof S, Podhorska M, Dziegiel P, Mlynarz P, Szuba A. The influence of different diets on metabolism and atherosclerosis processes-A porcine model: Blood serum, urine and tissues 1H NMR metabolomics targeted analysis. PLoS One 2017; 12:e0184798. [PMID: 28991897 PMCID: PMC5633143 DOI: 10.1371/journal.pone.0184798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022] Open
Abstract
The global epidemic of cardiovascular diseases leads to increased morbidity and mortality caused mainly by myocardial infarction and stroke. Atherosclerosis is the major pathological process behind this epidemic. We designed a novel model of atherosclerosis in swine. Briefly, the first group (11 pigs) received normal pig feed (balanced diet group-BDG) for 12 months, the second group (9 pigs) was fed a Western high-calorie diet (unbalanced diet group-UDG) for 12 months, the third group (8 pigs) received a Western type high-calorie diet for 9 months later replaced by a normal diet for 3 months (regression group-RG). Clinical measurements included zoometric data, arterial blood pressure, heart rate and ultrasonographic evaluation of femoral arteries. Then, the animals were sacrificed and the blood serum, urine and skeletal muscle tissue were collected and 1H NMR based metabolomics studies with the application of fingerprinting PLS-DA and univariate analysis were done. Our results have shown that the molecular disturbances might overlap with other diseases such as onset of diabetes, sleep apnea and other obesity accompanied diseases. Moreover, we revealed that once initiated, molecular changes did not return to homeostatic equilibrium, at least for the duration of this experiment.
Collapse
Affiliation(s)
- Adam Zabek
- Bioorganic Chemistry Group, Department of Chemistry, Wroclaw University of Technology, Wyb. Wspianskiego, Wroclaw, Poland
| | - Robert Paslawski
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamienskiego, Wroclaw, Poland
- Department and Clinic of Internal and Occupational Diseases and Hypertension Wroclaw Medical University, Borowska, Wroclaw, Poland
| | - Urszula Paslawska
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamienskiego, Wroclaw, Poland
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida, Wroclaw, Poland
| | - Wojciech Wojtowicz
- Bioorganic Chemistry Group, Department of Chemistry, Wroclaw University of Technology, Wyb. Wspianskiego, Wroclaw, Poland
| | - Katarzyna Drozdz
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamienskiego, Wroclaw, Poland
- Division of Angiology, Wroclaw Medical University, Pasteura, Wroclaw, Poland
- 4th Military Hospital in Wrocław, Weigla, Wrocław, Poland
| | - Sergio Polakof
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Marzena Podhorska
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dziegiel
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Mlynarz
- Bioorganic Chemistry Group, Department of Chemistry, Wroclaw University of Technology, Wyb. Wspianskiego, Wroclaw, Poland
| | - Andrzej Szuba
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamienskiego, Wroclaw, Poland
- Division of Angiology, Wroclaw Medical University, Pasteura, Wroclaw, Poland
- 4th Military Hospital in Wrocław, Weigla, Wrocław, Poland
| |
Collapse
|
37
|
Sharma DL, Lakhani HV, Klug RL, Snoad B, El-Hamdani R, Shapiro JI, Sodhi K. Investigating Molecular Connections of Non-alcoholic Fatty Liver Disease with Associated Pathological Conditions in West Virginia for Biomarker Analysis. ACTA ACUST UNITED AC 2017; 8. [PMID: 29177105 PMCID: PMC5701750 DOI: 10.4172/2155-9899.1000523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease characterized by a steatosis of the liver that may progress to more serious pathological conditions including: nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. As the prevalence of NAFLD has increased worldwide in recent years, pathophysiology and risk factors associated with disease progression of NAFLD are at the focus of many studies. NAFLD is related to and shares common serum biomarkers with cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome (MetS). West Virginia (WV) is a state with some of the highest rates of CVD, obesity and diabetes mellitus. As NAFLD is closely related to these diseases, it is of particular interest in WV. Currently there is no cost-effective, standardized method used clinically to detect NAFLD prior to the onset of reversible complications. At this time, the diagnosis of NAFLD is made with costly radiologic studies and invasive biopsy. These studies are only diagnostic once changes to hepatic tissue have occurred. The diagnosis of NAFLD by traditional methods may not allow for successful intervention and may not be readily available in areas with already sparse medical resources. In this literature review, we identify a list of biomarkers common among CVD, T2DM, obesity, MetS and NAFLD. From this research we propose the following biomarkers are good candidates for inclusion in a panel of biomarkers for the early detection of NAFLD: adiponectin, AST, ALT, apo-B, CK18, CPS1, CRP, FABP-1, ferritin, GGT, GRP78, HDL-C, IGF-1, IL-1β, 6, 8, 10, IRS-2PAI-1, leptin, lumican, MDA SREBP-1c and TNF-α. Creating and implementing a biomarker panel for the early detection and attenuation of NAFLD, prior to the onset of irreversible complication would provide maximum benefit and decrease the disease burden on the patients and healthcare system of WV.
Collapse
Affiliation(s)
- Dana L Sharma
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Hari Vishal Lakhani
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Rebecca L Klug
- Department of Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Brian Snoad
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Rawan El-Hamdani
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Komal Sodhi
- Department of Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
38
|
Nayak IMN, Narendar K, M PA, Jamadar MG, Kumar VH. Comparison of Pioglitazone and Metformin Efficacy against Glucocorticoid Induced Atherosclerosis and Hepatic Steatosis in Insulin Resistant Rats. J Clin Diagn Res 2017; 11:FC06-FC10. [PMID: 28892924 DOI: 10.7860/jcdr/2017/28418.10193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/16/2017] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Insulin Resistance is a major cause of Atherosclerosis (AS) and Non Alcoholic Fatty Liver Disease (NAFLD). These lipid alterations in blood vessels and liver may progress to cardiovascular abnormalities and cirrhosis respectively. Drugs like pioglitazone (PIO) and metformin (MET) are effective insulin sensitizers used in T2DM. But their efficacy and tolerability needs to be compared in IR associated abnormalities. AIM To compare the efficacy of PIO and MET in glucocorticoid induced AS, Hepatic Steatosis (HS) and IR in albino rats. MATERIALS AND METHODS Male Wistar albino rats were randomized into four groups (n=6). Group 1 (Normal control) rats consumed 2% gum acacia orally for 12 days. Group 2 {dexamethasone (DEX) control} rats were administered 2% gum acacia orally for 12 days and DEX (8 mg/kg) intraperitoneally (i.p.) from 7th to 12th day during the study period. Group 3 and 4 (PIO and MET control) rats received oral administration of PIO (45 mg/kg) and MET (1000 mg/kg) for 12 days respectively. Both groups were treated with DEX (8 mg/kg/i.p.) from 7th to 12th day during the study period. On last day, fasting blood was collected and rats were sacrificed by cervical dislocation; aorta and liver tissues were isolated for the histopathological examination. Body weight, liver weight and liver volume were measured. Blood samples were processed for biochemical parameters. The data were analysed by One-way Analysis of variance (ANOVA) followed by Scheffe's multiple comparison post-hoc test. The statistical significance was assumed at p<0.05. RESULTS Our results established the possible role of DEX in the development of AS and HS. Histopathological examination of Group 2 rats treated with DEX showed a marked lipid accumulation in the aorta and liver. Administration of MET and PIO resulted in partial to complete restoration of DEX induced fatty changes in aorta and liver. Both drugs significantly (p<0.05) prevented the elevation of insulin, lipid, glucose levels, liver weight and liver volume in DEX treated rats. They had significantly (p<0.05) improved body weight and insulin sensitivity. However, PIO was highly significant (p<0.05) compared to MET in reducing DEX induced IR complications. CONCLUSION These findings suggest that PIO was more effective insulin sensitizer compared to MET in reducing AS, HS and IR induced by glucocorticoids.
Collapse
Affiliation(s)
- I M Nagendra Nayak
- Professor and Head, Department of Pharmacology, Mount Zion Medical College, Adoor, Kerala, India
| | - Koyagura Narendar
- Lecturer, Department of Pharmacology, Al-Ameen Medical College, Vijayapura, Karnataka, India
| | - Patil Ashok M
- Professor and Head, Department of Pathology, Al-Ameen Medical College, Vijayapura, Karnataka, India
| | - M G Jamadar
- Professor and Head, Department of Pharmacology, Al-Ameen Medical College, Vijayapura, Karnataka, India
| | - V Hemanth Kumar
- Lecturer, Department of Pharmacology, Al-Ameen Medical College, Vijayapura, Karnataka, India
| |
Collapse
|
39
|
Coutinho PN, Pereira BP, Hertel Pereira AC, Porto ML, Monteiro de Assis ALE, Côgo Destefani A, Meyrelles SS, Vasquez EC, Nogueira BV, de Andrade TU, Endringer DC, Fronza M, Costa Pereira TM. Chronic administration of antioxidant resin from Virola oleifera attenuates atherogenesis in LDLr -/- mice. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:65-72. [PMID: 28502908 DOI: 10.1016/j.jep.2017.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Virola oleifera (Schott) A. C. Smith, Myristicaceae has been largely used in traditional folk medicine in Brazil as an anti-inflammatory agent and our previous data indicated the antioxidant properties in other oxidative stress-related models. However, its effects on atherosclerosis (AT) are not yet investigated. AIMS OF THE STUDY To evaluate the influence of resin from Virola oleifera (RV) on progression of AT in LDLr-/- mice. MATERIALS AND METHODS LDLr-/- mice were divided into 4 groups: 1) The ND group received a normal diet without treatment. 2) The HD group received a high-fat diet without treatment. 3) The HD-V50 received a high-fat diet and was orally treated with RV at 50mg/Kg. 4) The HD-V300 received a high-fat diet and was orally treated with RV at 300mg/Kg. After 4 weeks, blood was collected to quantify biochemical parameters and ROS total and the aorta was removed to measure the lipid deposition by en face analysis. The liver was also collected to determine total lipids and lipid and protein oxidation. In order to investigate in more detail the contributions of RV in the vascular structure, we carried out the in vitro tests using four cellular types: macrophages, fibroblasts, vascular smooth muscle and endothelial cells. RESULTS We showed that the chronic treatment of RV at both doses reduced vascular lipid accumulation (~50%, p<0.05), probably through systemic and hepatic antioxidant effects, independent of dyslipidemia. Moreover, the in vitro assay results demonstrated that RV develops antioxidant properties on the vascular smooth muscle and endothelial cells, reinforcing the protective role of RV in progression of AT. LPS-stimulated macrophages treated with RV resulted in a significant reduction of NO production in a concentration-dependent manner. CONCLUSIONS Chronic treatment with RV diminishes lipid deposition in atherosclerotic mice, which may be justified, at least in part, by antioxidant systemic and local mechanisms, reinforcing the protective role this resin in the setting of vascular lipid deposition, independent of hypercholesterolemia.
Collapse
Affiliation(s)
- Paola Nogueira Coutinho
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil.
| | - Beatriz Peters Pereira
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil.
| | | | - Marcella Leite Porto
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil.
| | - Arícia Leone Evangelista Monteiro de Assis
- Laboratory of Cellular Ultrastructure Carlos Alberto Redins (LUCCAR), Department of Morphology, UFES, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| | - Afrânio Côgo Destefani
- Laboratory of Cellular Ultrastructure Carlos Alberto Redins (LUCCAR), Department of Morphology, UFES, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| | - Silvana Santos Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| | - Elisardo Corral Vasquez
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil; Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| | - Breno Valentim Nogueira
- Laboratory of Cellular Ultrastructure Carlos Alberto Redins (LUCCAR), Department of Morphology, UFES, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| | - Tadeu Uggere de Andrade
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil.
| | - Denise Coutinho Endringer
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil; Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil.
| | - Marcio Fronza
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil.
| | - Thiago Melo Costa Pereira
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil; Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil.
| |
Collapse
|
40
|
Saba E, Kim SH, Kim SD, Park SJ, Kwak D, Oh JH, Park CK, Rhee MH. Alleviation of diabetic complications by ginsenoside Rg3-enriched red ginseng extract in western diet-fed LDL -/- mice. J Ginseng Res 2017; 42:352-355. [PMID: 29983617 PMCID: PMC6026365 DOI: 10.1016/j.jgr.2017.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/10/2017] [Indexed: 12/16/2022] Open
Abstract
In this study, we precisely showed how the Rg3-enriched red ginseng extract (Rg3-RGE) lowers glucose, triglyceride, and low-density lipoprotein (LDL) levels in LDL–/– mice. Aspartate aminotransferase/serum glutamic-oxaloacetic transaminase), alanine aminotransferase /serum glutamate-pyruvate transaminase, and steatohepatitis were found to be reduced, and atheroma formation was inhibited by Rg3-enriched red ginseng extract.
Collapse
Affiliation(s)
- Evelyn Saba
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon, Republic of Korea
| | - Sung-Dae Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
| | - Sang-Joon Park
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dongmi Kwak
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jun-Hwan Oh
- R&D Headquarters, Korean Ginseng Corporation, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- R&D Headquarters, Korean Ginseng Corporation, Daejeon, Republic of Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
41
|
Non-alcoholic fatty liver disease (NAFLD) and 10-year risk of cardiovascular diseases. Clin Res Hepatol Gastroenterol 2017; 41:31-38. [PMID: 27597641 DOI: 10.1016/j.clinre.2016.07.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/15/2016] [Accepted: 07/18/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS The association between cardiovascular diseases (CVD) and non-alcoholic fatty liver disease (NAFLD) was confirmed by a large body of evidence. This study was conducted to determine the association between NAFLD and 10-year CVD risk. METHODS This study utilized the data of 2804 subjects aged 40-74 years from a cohort study of northern Iran. Two CVD risk assessment tools, American College of Cardiology/American Heart Association and Framingham general cardiovascular risk profile for use in primary care, were utilized to determine the 10-year CVD risk in patients with NAFLD and the individuals without this condition. The mean risks were compared between these two groups. RESULTS Using ACC/AHA approach, the mean risk in male participants suffering NAFLD was 14.2%, while in men without NAFLD was 11.7% (P-value < 0.0001). Using Framingham approach, the mean risks were 16.0 and 12.7% in men with and without NAFLD, respectively (P-value < 0.0001). Using ACC/AHA approach, the mean risks in female participants with and without NAFLD were 6.7 and 4.6%, respectively (P-value < 0.0001). Applying Framingham approach, the mean risk was 8.2% in women with NAFLD and 5.4% in women without NAFLD (P-value < 0.0001). CONCLUSION The individuals with NAFLD had a higher risk of 10-year CVD events than individuals without NAFLD, according to both ACC/AHA tool and primary care version of Framingham tool. A large proportion of NAFLD patients fulfill the criteria of statin therapy recommendation, suggesting that statin therapy could reduce 10-year CVD risk in NAFLD patients.
Collapse
|
42
|
Michalak A, Mosińska P, Fichna J. Polyunsaturated Fatty Acids and Their Derivatives: Therapeutic Value for Inflammatory, Functional Gastrointestinal Disorders, and Colorectal Cancer. Front Pharmacol 2016; 7:459. [PMID: 27990120 PMCID: PMC5131004 DOI: 10.3389/fphar.2016.00459] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are bioactive lipids which modulate inflammation and immunity. They gained recognition in nutritional therapy and are recommended dietary supplements. There is a growing body of evidence suggesting the usefulness of PUFAs in active therapy of various gastrointestinal (GI) diseases. In this review we briefly cover the systematics of PUFAs and their metabolites, and elaborate on their possible use in inflammatory bowel disease (IBD), functional gastrointestinal disorders (FGIDs) with focus on irritable bowel syndrome (IBS), and colorectal cancer (CRC). Each section describes the latest findings from in vitro and in vivo studies, with reports of clinical interventions when available.
Collapse
Affiliation(s)
| | | | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of LodzLodz, Poland
| |
Collapse
|
43
|
Yao H, Qiao YJ, Zhao YL, Tao XF, Xu LN, Yin LH, Qi Y, Peng JY. Herbal medicines and nonalcoholic fatty liver disease. World J Gastroenterol 2016; 22:6890-6905. [PMID: 27570425 PMCID: PMC4974587 DOI: 10.3748/wjg.v22.i30.6890] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/22/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), which is characterized by excessive fat accumulation in the liver of patients who consume little or no alcohol, becomes increasingly common with rapid economic development. Long-term excess fat accumulation leads to NAFLD and represents a global health problem with no effective therapeutic approach. NAFLD is considered to be a series of complex, multifaceted pathological processes involving oxidative stress, inflammation, apoptosis, and metabolism. Over the past decades, herbal medicines have garnered growing attention as potential therapeutic agents to prevent and treat NAFLD, due to their high efficacy and low risk of side effects. In this review, we evaluate the use of herbal medicines (including traditional Chinese herbal formulas, crude extracts from medicinal plants, and pure natural products) to treat NAFLD. These herbal medicines are natural resources that can inform innovative drug research and the development of treatments for NAFLD in the future.
Collapse
|