1
|
Xiao G, Gao S, Xie Y, Wang Z, Shu M. Efficacy and Safety of Evolocumab and Alirocumab as PCSK9 Inhibitors in Pediatric Patients with Familial Hypercholesterolemia: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1646. [PMID: 39459433 PMCID: PMC11509226 DOI: 10.3390/medicina60101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: The proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors evolocumab and alirocumab are recently developed promising drugs used for treatment of familial hypercholesterolemia (FH). This systematic review and meta-analysis aimed to thoroughly evaluate the efficacy and safety of evolocumab and alirocumab among pediatric patients with FH. Materials and Methods: A comprehensive search was conducted in PubMed, Embase, CENTRAL (Cochrane Central Register of Controlled Trials), and ClinicalTrials.gov from inception through July 2024 to identify primary interventional studies among pediatric patients with FH. Meta-analyses were performed if appropriate. Statistics were analyzed using Review Manager version 5.4 and Stata version 16.0. Results: Fourteen articles reporting nine unique studies were included. There were three randomized controlled trials (RCTs) assessing evolocumab or alirocumab involving a total of 320 pediatric patients, one cross-over trial and five single-arm or observational studies. Pooled results showed significant efficacy of evolocumab/alirocumab in reducing low-density lipoprotein cholesterol (LDL-C) (weighted mean difference [WMD]: -37.92%, 95% confidence interval [CI]: -43.06% to -32.78%; I2 = 0.0%, p = 0.60), apolipoprotein B (WMD: -33.67%, 95% CI: -38.12% to -29.22%; I2 = 0.0%, p = 0.71), and also lipoprotein(a) (WMD: -16.94%, 95% CI: -26.20% to -7.69%; I2 = 0.0%, p = 0.71) among pediatric patients with FH. The efficacies of evolocumab/alirocumab on LDL-C reduction within pediatric patients with heterozygous FH (HeFH) were consistent between studies, whereas in patients with homozygous FH (HoFH), it varied dramatically. Pediatric patients with the null/null variant may respond to the treatment. PCSK9 inhibitors were generally well tolerated within most pediatric patients, in line with previous studies among adult populations. Conclusions: The PCSK9 inhibitors evolocumab/alirocumab significantly reduced LDL-C and some other lipid parameters, such as apolipoprotein B, in pediatric patients with HeFH. These drugs may be appropriate as a potential therapy for pediatric patients with HoFH who cannot achieve LDL-C targets with other treatments. Evolocumab/alirocumab was generally well tolerated in the pediatric population.
Collapse
Affiliation(s)
- Guoguang Xiao
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu 610041, China; (G.X.); (S.G.); (Y.X.)
- Department of Pediatrics, West China Xiamen Hospital of Sichuan University, Xiamen 361022, China
| | - Shan Gao
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu 610041, China; (G.X.); (S.G.); (Y.X.)
| | - Yongmei Xie
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu 610041, China; (G.X.); (S.G.); (Y.X.)
| | - Zhiling Wang
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu 610041, China; (G.X.); (S.G.); (Y.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Min Shu
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu 610041, China; (G.X.); (S.G.); (Y.X.)
- Department of Pediatrics, West China Xiamen Hospital of Sichuan University, Xiamen 361022, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| |
Collapse
|
2
|
Cao Zhang AM, Ziogos E, Harb T, Gerstenblith G, Leucker TM. Emerging clinical role of proprotein convertase subtilisin/kexin type 9 inhibition-Part two: Current and emerging concepts in the clinical use of PCSK9 inhibition. Eur J Clin Invest 2024; 54:e14272. [PMID: 38924090 DOI: 10.1111/eci.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have emerged as a novel class of drugs with cardioprotective effects through their lipid-lowering effects. OBJECTIVE This review aims to discuss existing and novel strategies of PCSK9 inhibition, providing an overview of established randomized controlled trials and ongoing outcome trials that assess the efficacy and long-term safety of PCSK9 inhibitors. It also explores the evolving role of PCSK9 beyond lipid metabolism and outlines the pleiotropic actions of PCSK9 inhibition in various disorders and future directions including novel strategies to target PCSK9. CONCLUSION PCSK9 inhibition shows promise not only in lipid metabolism but also in other disease processes, including atherosclerotic plaque remodeling, acute coronary syndrome, stroke, inflammation, and immune response.
Collapse
Affiliation(s)
- Alexander M Cao Zhang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Efthymios Ziogos
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tarek Harb
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gary Gerstenblith
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thorsten M Leucker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Zahger D, Schwartz GG, Du W, Szarek M, Bhatt DL, Bittner VA, Budaj AJ, Diaz R, Goodman SG, Jukema JW, Kiss RG, Harrington RA, Moriarty PM, Scemama M, Manvelian G, Pordy R, White HD, Zeiher AM, Fazio S, Geba GP, Steg PG. Triglyceride Levels, Alirocumab Treatment, and Cardiovascular Outcomes After an Acute Coronary Syndrome. J Am Coll Cardiol 2024; 84:994-1006. [PMID: 39232634 DOI: 10.1016/j.jacc.2024.06.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND It is unknown whether clinical benefit of proprotein convertase subtilisin/kexin type 9 inhibitors is associated with baseline or on-treatment triglyceride concentrations. OBJECTIVES This study sought to examine relations between triglyceride levels and the effect of alirocumab vs placebo on cardiovascular outcomes using prespecified and post hoc analyses of the ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) trial. METHODS Patients with recent acute coronary syndrome (ACS) (n = 18,924) and elevated atherogenic lipoproteins despite optimized statin therapy were randomized to alirocumab 75 to 150 mg or matching placebo every 2 weeks subcutaneously. Major adverse cardiovascular events (MACE) were examined in relation to continuous or dichotomous triglyceride concentrations. RESULTS Median baseline triglyceride concentration was 129 mg/dL. In both treatment groups, a 10-mg/dL higher baseline concentration was associated with an adjusted MACE HR of 1.008 (95% CI: 1.003-1.013; P < 0.005). Baseline triglycerides ≥150 vs <150 mg/dL were associated with a HR of 1.184 (95% CI: 1.080-1.297; P < 0.005). Versus placebo, alirocumab reduced low-density lipoprotein cholesterol from baseline (average, 54.7%) and reduced MACE (HR: 0.85; 95% CI: 0.78-0.93). At month 4, triglyceride levels were reduced from baseline by median 17.7 mg/dL (P < 0.001) and 0.9 mg/dL (P = NS) with alirocumab and placebo, respectively. A 10-mg/dL decline from baseline in triglycerides was associated with lower subsequent risk of MACE with placebo (HR: 0.988; 95% CI: 0.982-0.995; P < 0.005) but not with alirocumab (HR: 0.999; 95% CI: 0.987-1.010; P = 0.82). CONCLUSIONS Among patients with recent ACS on optimized statin therapy, baseline triglycerides was associated with cardiovascular risk. However, the reduction in triglycerides with alirocumab did not contribute to its clinical benefit. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402).
Collapse
Affiliation(s)
- Doron Zahger
- Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Gregory G Schwartz
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Weiming Du
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Michael Szarek
- CPC Clinical Research, Aurora, Colorado, USA; Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA; State University of New York, Downstate Health Sciences University, Brooklyn, New York, USA
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, New York, USA
| | - Vera A Bittner
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrzej J Budaj
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, Warsaw, Poland
| | - Rafael Diaz
- Estudios Cardiológicos Latinoamérica, Instituto Cardiovascular de Rosario, Rosario, Argentina
| | - Shaun G Goodman
- Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada; St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Robert G Kiss
- Military Hospital, Budapest, Hungary; Heart and Vascular Centre, Department of Cardiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Robert A Harrington
- Stanford Center for Clinical Research, Department of Medicine, Stanford University, Stanford, California, USA
| | | | | | | | - Robert Pordy
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Harvey D White
- Green Lane Cardiovascular Services, Te Whatu Ora-Health New Zealand, Te Toka Tumai, Auckland, New Zealand
| | - Andreas M Zeiher
- Department of Medicine III, Goethe University, Frankfurt am Main, Germany
| | - Sergio Fazio
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Gregory P Geba
- Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Ph Gabriel Steg
- INSERM U-1148, Université de Paris-Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France; FACT (French Alliance for Cardiovascular Trials), Paris, France
| |
Collapse
|
4
|
Toth PP. Triglycerides and Cardiovascular Risk: Getting to the Heart of the Matter. J Am Coll Cardiol 2024; 84:1007-1009. [PMID: 39232627 DOI: 10.1016/j.jacc.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Affiliation(s)
- Peter P Toth
- CGH Medical Center, Sterling, Illinois, USA; Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Wang L, Zhang Q, Wu Z, Huang X. A significant presence in atherosclerotic cardiovascular disease: Remnant cholesterol: A review. Medicine (Baltimore) 2024; 103:e38754. [PMID: 38968507 PMCID: PMC11224847 DOI: 10.1097/md.0000000000038754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024] Open
Abstract
The current first-line treatment for atherosclerotic cardiovascular disease (ASCVD) involves the reduction of a patient's low-density lipoprotein cholesterol (LDL-C) levels through the use of lipid-lowering drugs. However, even when other risk factors such as hypertension and diabetes are effectively managed, there remains a residual cardiovascular risk in these patients despite achieving target LDL-C levels with statins and new lipid-lowering medications. This risk was previously believed to be associated with lipid components other than LDL, such as triglycerides. However, recent studies have unveiled the crucial role of remnant cholesterol (RC) in atherosclerosis, not just triglycerides. The metabolized product of triglyceride-rich lipoproteins is referred to as triglyceride-rich remnant lipoprotein particles, and its cholesterol component is known as RC. Numerous pieces of evidence from epidemiological investigations and genetic studies demonstrate that RC plays a significant role in predicting the incidence of ASCVD. As a novel marker for atherosclerosis prediction, when LDL-C is appropriately controlled, RC should be prioritized for attention and intervention among individuals at high risk of ASCVD. Therefore, reducing RC levels through the use of various lipid-lowering drugs may yield long-term benefits. Nevertheless, routine testing of RC in clinical practice remains controversial, necessitating further research on the treatment of elevated RC levels to evaluate the advantages of reducing RC in patients at high risk of ASCVD.
Collapse
Affiliation(s)
- Li Wang
- Department of Cardiology, Quanzhou Traditional Chinese Medicine Hospital, Quanzhou, Fujian Province, China
| | - Qingmei Zhang
- Department of Pediatrics, Quanzhou First Hospital, Quanzhou, Fujian Province, China
| | - Zhiyang Wu
- Department of Cardiology, Quanzhou Traditional Chinese Medicine Hospital, Quanzhou, Fujian Province, China
| | - Xiwei Huang
- Department of Emergency Medicine, Puning People’s Hospital, Jieyang City, Guangdong Province, China
| |
Collapse
|
6
|
Liao J, Qiu M, Su X, Qi Z, Xu Y, Liu H, Xu K, Wang X, Li J, Li Y, Han Y. The residual risk of inflammation and remnant cholesterol in acute coronary syndrome patients on statin treatment undergoing percutaneous coronary intervention. Lipids Health Dis 2024; 23:172. [PMID: 38849939 PMCID: PMC11157837 DOI: 10.1186/s12944-024-02156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Residual risk assessment for acute coronary syndrome (ACS) patients after sufficient medical management remains challenging. The usefulness of measuring high-sensitivity C-reactive protein (hsCRP) and remnant cholesterol (RC) in assessing the level of residual inflammation risk (RIR) and residual cholesterol risk (RCR) for risk stratification in these patients needs to be evaluated. METHODS Patients admitted for ACS on statin treatment who underwent percutaneous coronary intervention (PCI) between March 2016 and March 2019 were enrolled in the analysis. The included patients were stratified based on the levels of hsCRP and RC during hospitalization. The primary outcome was ischemic events at 12 months, defined as a composite of cardiac death, myocardial infarction, or stroke. The secondary outcomes included 12-month all-cause death and cardiac death. RESULTS Among the 5778 patients, the median hsCRP concentration was 2.60 mg/L and the median RC concentration was 24.98 mg/dL. The RIR was significantly associated with ischemic events (highest hsCRP tertile vs. lowest hsCRP tertile, adjusted hazard ratio [aHR]: 1.52, 95% confidence interval [CI]: 1.01-2.30, P = 0.046), cardiac death (aHR: 1.77, 95% CI:1.02-3.07, P = 0.0418) and all-cause death (aHR: 2.00, 95% CI: 1.24-3.24, P = 0.0048). The RCR was also significantly associated with these outcomes, with corresponding values for the highest tertile of RC were 1.81 (1.21-2.73, P = 0.0043), 2.76 (1.57-4.86, P = 0.0004), and 1.72 (1.09-2.73, P = 0.0208), respectively. The risks of ischemic events (aHR: 2.80, 95% CI: 1.75-4.49, P < 0.0001), cardiac death (aHR: 4.10, 95% CI: 2.18-7.70, P < 0.0001), and all-cause death (aHR: 3.00, 95% CI, 1.73-5.19, P < 0.0001) were significantly greater in patients with both RIR and RCR (highest hsCRP and RC tertile) than in patients with neither RIR nor RCR (lowest hsCRP and RC tertile). Notably, the RIR and RCR was associated with an increased risk of ischemic events especially in patients with adequate low-density lipoprotein cholesterol (LDL-C) control (LDL-C < 70 mg/dl) (Pinteraction=0.04). Furthermore, the RIR and RCR provide more accurate evaluations of risk in addition to the GRACE score in these patients [areas under the curve (AUC) for ischemic events: 0.64 vs. 0.66, P = 0.003]. CONCLUSION Among ACS patients receiving contemporary statin treatment who underwent PCI, high risks of both residual inflammation and cholesterol, as assessed by hsCRP and RC, were strongly associated with increased risks of ischemic events, cardiac death, and all-cause death.
Collapse
Affiliation(s)
- Jia Liao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Miaohan Qiu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xiaolin Su
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Zizhao Qi
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Ying Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Haiwei Liu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Kai Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xiaozeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Jing Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Yi Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| |
Collapse
|
7
|
Li M, Wang M, Zhao Y, Zhong R, Chen W, Lei X, Wu X, Han J, Lei L, Wang Q, Luo G, Wei M. Effects of elevated remnant cholesterol on outcomes of acute ischemic stroke patients receiving mechanical thrombectomy. J Thromb Thrombolysis 2024; 57:390-401. [PMID: 38180591 DOI: 10.1007/s11239-023-02939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE Large cohort studies provided evidence that elevated remnant cholesterol (RC) was an important risk factor for ischemic stroke. However, the association between high RC and clinical outcomes in acute ischemic stroke (AIS) individuals was still undetermined. METHODS This retrospective study enrolled 165 AIS patients undergoing mechanical thrombectomy in one tertiary stroke center. We divided patients into two groups based on the median of their RC levels (0.49 mmol/L). The modified Rankin Scale (mRS) was used to evaluate the primary outcome 90 days after the onset of symptoms. The mRS scores ≤ 2 and ≤ 1 at 90 days were deemed as favorable and excellent outcomes, respectively. RESULTS In the overall AIS patients undergoing mechanical thrombectomy, there was no obvious distinction between the high and low RC group at 90-day favorable outcome (41.0% vs. 47.1%, P = 0.431) or excellent outcome (23.1% vs. 31.0%, P = 0.252). In the subgroup analysis stratified by stroke etiology, non-large artery atherosclerosis (non-LAA) stroke patients yielded with less favorable or excellent prognosis in the high RC group (26.8% vs. 46.8%, adjusted OR = 0.31, 95%CI: 0.11-0.85, P = 0.023; or 12.2% vs. 29.0%, adjusted OR = 0.18, 95%CI: 0.04-0.80, P = 0.024, respectively.). Post hoc power analyses indicated that the power was sufficient for favorable outcome (80.38%) and excellent outcome (88.72%) in non-LAA stroke patients. Additionally, RC can enhance the risk prediction value of a poor outcome (mRS scores 3-6) based on traditional risk indicators (including age, initial NIHSS score, operative duration, and neutrophil-to-lymphocyte ratio) for non-LAA stroke patients (AUC = 0.86, 95%CI: 0.79-0.94, P < 0.001). CONCLUSION In AIS patients undergoing mechanical thrombectomy, elevated RC was independently related to poor outcome for non-LAA stroke patients, but not to short-term prognosis of LAA stroke patients.
Collapse
Affiliation(s)
- Mengmeng Li
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wang
- Department of Neurology, Xi'an Children's Hospital, Xi'an, China
| | - Yixin Zhao
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Zhong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wanying Chen
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiangyu Lei
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyu Wu
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaxin Han
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Lei
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingfan Wang
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guogang Luo
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Meng Wei
- Stroke Centre, Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
8
|
Wadström BN, Wulff AB, Pedersen KM, Nordestgaard BG. Do Triglyceride-Rich Lipoproteins Equal Low-Density Lipoproteins in Risk of ASCVD? Curr Atheroscler Rep 2023; 25:795-803. [PMID: 37768410 DOI: 10.1007/s11883-023-01153-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW Recent large clinical trials have failed to show that triglyceride-rich lipoprotein-lowering therapies decrease the risk of atherosclerotic cardiovascular disease (ASCVD). In this review, we reconcile these findings with evidence showing that elevated levels of triglyceride-rich lipoproteins and the cholesterol they contain, remnant cholesterol, cause ASCVD alongside low-density lipoprotein (LDL) cholesterol. RECENT FINDINGS Results from observational epidemiology, genetic epidemiology, and randomized controlled trials indicate that lowering of remnant cholesterol and LDL cholesterol decrease ASCVD risk by a similar magnitude per 1 mmol/L (39 mg/dL) lower non-high-density lipoprotein cholesterol (remnant cholesterol+LDL cholesterol). Indeed, recent guidelines for ASCVD prevention recommend the use of non-high-density lipoprotein cholesterol instead of LDL cholesterol. Current consensus is moving towards recognizing remnant cholesterol and LDL cholesterols as equals per 1 mmol/L (39 mg/dL) higher levels in the risk assessment of ASCVD; hence, triglyceride-rich lipoprotein-lowering therapies should also lower levels of non-HDL cholesterol to reduce ASCVD risk.
Collapse
Affiliation(s)
- Benjamin N Wadström
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, M3, DK-2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b 33.5, DK-2200, Copenhagen, Denmark
| | - Anders B Wulff
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, M3, DK-2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b 33.5, DK-2200, Copenhagen, Denmark
| | - Kasper M Pedersen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, M3, DK-2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b 33.5, DK-2200, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark.
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, M3, DK-2730, Herlev, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b 33.5, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
9
|
Giglio RV, Muzurović EM, Patti AM, Toth PP, Agarwal MA, Almahmeed W, Klisic A, Ciaccio M, Rizzo M. Treatment with Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors (PCSK9i): Current Evidence for Expanding the Paradigm? J Cardiovasc Pharmacol Ther 2023; 28:10742484231186855. [PMID: 37448204 DOI: 10.1177/10742484231186855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Background: Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) are low-density lipoprotein cholesterol (LDL-C)-lowering drugs that play a critical role in lipoprotein clearance and metabolism. PCSK9i are used in patients with familial hypercholesterolemia and for the secondary prevention of acute cardiovascular events in patients with atherosclerotic cardiovascular disease (CVD). Methods: We focused on the literature from 2015, the year of approval of the PCSK9 monoclonal antibodies, to the present on the use of PCSK9i not only in the lipid field but also by evaluating their effects on metabolic factors. Results: PCSK9 inhibits cholesterol efflux from macrophages and contributes to the formation of macrophage foam cells. PCSK9 has the ability to bind to Toll-like receptors, thus mediating the inflammatory response and binding to scavenger receptor B/cluster of differentiation 36. PCSK9i lower the entire spectrum of apolipoprotein B-100 containing lipoproteins (LDL, very LDLs, intermediate-density lipoproteins, and lipoprotein[a]) in high CVD-risk patients. Moreover, PCSK9 inhibitors are neutral on risk for new-onset diabetes mellitus and might have a beneficial impact on the development of nonalcoholic fatty liver disease by improving lipid and inflammatory biomarker profiles, steatosis biomarkers such as the triglyceride-glucose index, and hepatic steatosis index, although there are no comprehensive studies with long-term follow-up studies. Conclusion: The discovery of PCSK9i has opened a new era in therapeutic management in patients with hypercholesterolemia and high cardiovascular risk. Increasingly, there has been mounting scientific and clinical evidence supporting the safety and tolerability of PCSK9i.
Collapse
Affiliation(s)
- Rosaria Vincenza Giglio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University-Hospital, Palermo, Italy
| | - Emir M Muzurović
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Podgorica, Montenegro
| | - Angelo Maria Patti
- Internal Medicine Unit, "Vittorio Emanuele II" Hospital, Castelvetrano, Italy
| | - Peter P Toth
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manyoo A Agarwal
- Heart and Vascular Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Wael Almahmeed
- Heart and Vascular Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
- Primary Health Care Center, Podgorica, Montenegro
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy
- Department of Laboratory Medicine, University-Hospital, Palermo, Italy
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
- Division of Endocrinology, Diabetes and Metabolism, University of South Carolina School of Medicine Columbia, Columbia, SC, USA
| |
Collapse
|
10
|
Novel Pharmaceutical and Nutraceutical-Based Approaches for Cardiovascular Diseases Prevention Targeting Atherogenic Small Dense LDL. Pharmaceutics 2022; 14:pharmaceutics14040825. [PMID: 35456658 PMCID: PMC9027611 DOI: 10.3390/pharmaceutics14040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Compelling evidence supports the causative link between increased levels of low-density lipoprotein cholesterol (LDL-C) and atherosclerotic cardiovascular disease (CVD) development. For that reason, the principal aim of primary and secondary cardiovascular prevention is to reach and sustain recommended LDL-C goals. Although there is a considerable body of evidence that shows that lowering LDL-C levels is directly associated with CVD risk reduction, recent data shows that the majority of patients across Europe cannot achieve their LDL-C targets. In attempting to address this matter, a new overarching concept of a lipid-lowering approach, comprising of even more intensive, much earlier and longer intervention to reduce LDL-C level, was recently proposed for high-risk patients. Another important concern is the residual risk for recurrent cardiovascular events despite optimal LDL-C reduction, suggesting that novel lipid biomarkers should also be considered as potential therapeutic targets. Among them, small dense LDL particles (sdLDL) seem to have the most significant potential for therapeutic modulation. This paper discusses the potential of traditional and emerging lipid-lowering approaches for cardiovascular prevention by targeting sdLDL particles.
Collapse
|
11
|
Al Sayed N, Almahmeed W, Alnouri F, Al Waili K, Sabbour H, Sulaiman K, Zubaid M, Ray KK, Al-Rasadi K. Consensus clinical recommendations for the management of plasma lipid disorders in the Middle East – 2021 update. Atherosclerosis 2021; 343:28-50. [DOI: 10.1016/j.atherosclerosis.2021.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
|
12
|
Banerjee Y, Pantea Stoian A, Cicero AFG, Fogacci F, Nikolic D, Sachinidis A, Rizvi AA, Janez A, Rizzo M. Inclisiran: a small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin Drug Saf 2021; 21:9-20. [PMID: 34596005 DOI: 10.1080/14740338.2022.1988568] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Inclisiran is a novel posttranscriptional gene silencing therapy that inhibits proprotein convertase subtilisin/kexin type 9 (PCSK9) synthesis by RNA interference and has a potent, dose-dependent, durable effect in lowering LDL-C, and therefore is an effective drug to treat dyslipidemia, reducing the risk for acute cardiovascular (CV) events. It is safe and well-tolerated. AREAS COVERED This paper aims to review the mechanism of action of inclisiran while evaluating its efficacy and safety in the treatment of dyslipidemia from data of the clinical trials in the ORION program. EXPERT OPINION Data from the clinical trials in the ORION program demonstrated efficacy and safety of inclisiran in patients with dyslipidemia. Adverse events were similar in the inclisiran and placebo groups in the clinical trials, although injection-site reactions were more frequent with inclisiran than with placebo. Although the combination of efficacy and safety makes inclisiran a good option for the treatment of dyslipidemia compared to other PCSK9 targeting therapeutic strategies, however, further studies should exclude the possibility that inclisiran, through lower-affinity interactions, may influence other mRNAs in the physiological milieu.
Collapse
Affiliation(s)
- Yajnavalka Banerjee
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates and Centre of Medical Education, University of Dundee, UK
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Italy
| | - Federica Fogacci
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Italy
| | - Dragana Nikolic
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy
| | - Alexandros Sachinidis
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy
| | - Ali A Rizvi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC, USA.,Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Ljubljana, Slovenia
| | - Manfredi Rizzo
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
13
|
Andreadou I, Tsoumani M, Vilahur G, Ikonomidis I, Badimon L, Varga ZV, Ferdinandy P, Schulz R. PCSK9 in Myocardial Infarction and Cardioprotection: Importance of Lipid Metabolism and Inflammation. Front Physiol 2020; 11:602497. [PMID: 33262707 PMCID: PMC7688516 DOI: 10.3389/fphys.2020.602497] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Extensive evidence from epidemiologic, genetic, and clinical intervention studies has indisputably shown that elevated low-density lipoprotein cholesterol (LDL-C) concentrations play a central role in the pathophysiology of atherosclerotic cardiovascular disease. Apart from LDL-C, also triglycerides independently modulate cardiovascular risk. Reduction of proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for reducing plasma LDL-C, but it is also associated with a reduction in triglyceride levels potentially through modulation of the expression of free fatty acid transporters. Preclinical data indicate that PCSK9 is up-regulated in the ischaemic heart and decreasing PCSK9 expression impacts on infarct size, post infarct inflammation and remodeling as well as cardiac dysfunction following ischaemia/reperfusion. Clinical data support that notion in that PCSK9 inhibition is associated with reductions in the incidence of myocardial infarction, stroke, and coronary revascularization and an improvement of endothelial function in subjects with increased cardiovascular risk. The aim of the current review is to summarize the current knowledge on the importance of free fatty acid metabolism on myocardial ischaemia/reperfusion injury and to provide an update on recent evidence on the role of hyperlipidemia and PCSK9 in myocardial infarction and cardioprotection.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Tsoumani
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV, Instituto Salud Carlos III, Madrid, Spain
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV, Instituto Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, Autonomous University of Barcelona (UAB), Barcelona Spain
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
14
|
Treatment with PCSK9 inhibitors induces a more anti-atherogenic HDL lipid profile in patients at high cardiovascular risk. Vascul Pharmacol 2020; 135:106804. [PMID: 32987194 DOI: 10.1016/j.vph.2020.106804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Proprotein Convertase Subtilisin/Kexin type 9 inhibitors (PCSK9-I) have been reported to cause a moderate increase in high-density lipoprotein (HDL) cholesterol in human studies. We thus evaluated the effect of two approved PCSK9-I on the concentration and lipid composition of HDL particle subclasses. SUBJECTS AND METHODS 95 patients (62.8 ± 10.3 years old, 58% men), with or without statin and/or ezetimibe treatment and eligible for PCSK9-I therapy, received either evolocumab (140 mg) or alirocumab (75 or 150 mg). Their HDL particle profiles were measured by NMR spectroscopy at baseline and after 4 weeks of PCSK9-I treatment. RESULTS PCSK9-I treatment increased the level of HDL-C by 7%. The level of medium-sized HDL particles (M-HDL-P) increased (+8%) while the level of XL-HDL-P decreased (-19%). The lipid core composition was altered in the smaller S- and M-HDL-P, with a reduction in triglycerides (TG) and an enrichment in cholesterol esters (CE), whereas the for the larger XL- and L-HDL-P the relative CE content decreased and the TG content increased. Ezetimibe therapy differentially impacted the HDL particle distribution, independently of statin use, with an increase in S-HDL-P in patients not receiving ezetimibe. CONCLUSIONS As S- and M-HDL-P levels are inversely related to cardiovascular risk, PCSK9-I treatment may result in a more atheroprotective HDL particle profile, particularly in patients not concomitantly treated with ezetimibe.
Collapse
|
15
|
Kolovou V, Katsiki N, Makrygiannis S, Mavrogieni S, Karampetsou N, Manolis A, Melidonis A, Mikhailidis DP, Kolovou GD. Lipoprotein Apheresis and Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors in Patients With Heterozygous Familial Hypercholesterolemia: A One Center Study. J Cardiovasc Pharmacol Ther 2020; 26:51-58. [PMID: 32729335 DOI: 10.1177/1074248420943079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM We evaluated the lipid-lowering (LL) effect of proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) in patients with heterozygous familial hypercholesterolemia (HeFH) treated with LL-drugs and lipoprotein apheresis (LA). PATIENTS AND METHODS The PCSK9i treatment (evolocumab 420 mg/4 weeks, alirocumab 150 mg/2 weeks, or alirocumab 75 mg/2 weeks: 9, 6, and 2 patients, respectively) was initiated in patients with HeFH (n = 17; aged 35-69 years, 10 men, previously treated with statins + ezetimibe ± colesevelam and LA sessions for 2-12 years). A lipid profile was obtained before and immediately after the LA session and before, 1 and 2 months after switching to PCSK9i treatment. The duration of PCSK9i therapy ranged from 3 to 18 months. RESULTS Median total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) levels before LA were 268, 198, 46, and 126 mg/dL, respectively, and decreased (at the end of the LA session) to 117, 50, 40, and 51 mg/dL, respectively (P < .001 for TC and P = .001 for all other comparisons). The median time-averaged LDL-C levels following LA were 155 (121, 176; median [25th, 75th percentile]) mg/dL. Median TC, LDL-C, and TG levels before PCSK9i therapy were 269, 190, and 127 mg/dL and decreased to 152, 100, and 95 mg/dL, respectively (P = .002, P < .002, and P < .03, respectively). Steady LDL-C levels with PCSK9i treatment were significantly lower compared with time-averaged LDL-C levels following LA (median value: 100 vs 155 mg/dL; P = .008). With PCSK9i, from 13 patients with CHD, 6 (46.1%) patients achieved LDL-C <70 mg/dL, and 2 patients (15.4%) achieved LDL-C <100 mg/dL. Lipoprotein apheresis was discontinued in all patients except for 2 who continued once monthly. CONCLUSIONS PCSK9i can reduce LDL-C more consistently over time compared with a transient decrease following LA in HeFH patients. PCSK9i therapy may reduce the frequency of LA. Larger trials are required to establish the clinical implications of PCSK9i in patients previously on LA.
Collapse
Affiliation(s)
- Vana Kolovou
- Department of Cardiology, 69106Onassis Cardiac Surgery Center, Athens, Greece.,Molecular Immunology Laboratory, 69106Onassis Cardiac Surgery Center, Athens, Greece
| | - Niki Katsiki
- Division of Endocrinology and Metabolism, First Department of Internal Medicine, Diabetes Center, AHEPA University Hospital, Thessaloniki, Greece
| | - Stamatis Makrygiannis
- 1st Department of Cardiology, "Hygeia" Diagnostic and Therapeutic Centre of Athens, Athens, Greece
| | - Sophie Mavrogieni
- Department of Cardiology, 69106Onassis Cardiac Surgery Center, Athens, Greece
| | - Nikoletta Karampetsou
- Laboratory of Experimental Surgery and Surgical Research 'N.S. Christeas', National and Kapodistrian University of Athens Medical School, Athens, Greece
| | | | | | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, 9687University College London Medical School, University College London (UCL), London, UK
| | - Genovefa D Kolovou
- Metropolitan Hospital, Cardiometabolic Center, Lipoprotein Apheresis and Lipid Disorders Clinic, Athens, Greece
| |
Collapse
|
16
|
Lorenzatti AJ, Toth PP. New Perspectives on Atherogenic Dyslipidaemia and Cardiovascular Disease. Eur Cardiol 2020; 15:1-9. [PMID: 32180834 PMCID: PMC7066832 DOI: 10.15420/ecr.2019.06] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, atherogenic dyslipidaemia has become one of the most common phenotypic presentations of lipid abnormalities, being strongly and unequivocally associated with an increased risk of cardiovascular (CV) disease. Despite the excellent results achieved from statin and non-statin management of LDL cholesterol and CV events prevention, there still remains a significant residual risk, associated with the prevalence of non-LDL cholesterol lipid patterns characterised by elevated triglyceride levels, low HDL cholesterol, a preponderance of small and dense LDL particles, accumulation of remnant lipoproteins and postprandial hyperlipidaemia. These qualitative and quantitative lipid modifications are largely associated with insulin resistance, type 2 diabetes and obesity, the prevalence of which has grown to epidemic proportions throughout the world. In this review, we analyse the pathophysiology of this particular dyslipidaemia, its relationship with the development of atherosclerotic CV disease and, finally, briefly describe the therapeutic approaches, including changes in lifestyle and current pharmacological interventions to manage these lipid alterations aimed at preventing CV events.
Collapse
Affiliation(s)
- Alberto J Lorenzatti
- DAMIC Medical Institute, Rusculleda Foundation for Research, Cordoba, Argentina.,Department of Cardiology, Cordoba Hospital, Cordoba, Argentina
| | - Peter P Toth
- CGH Medical Center, Sterling, IL, US.,Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, US
| |
Collapse
|
17
|
The PCSK9 revolution: Current status, controversies, and future directions. Trends Cardiovasc Med 2019; 30:179-185. [PMID: 31151804 DOI: 10.1016/j.tcm.2019.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) has revolutionized our understanding of cholesterol homeostasis and added to our arsenal against atherosclerotic cardiovascular disease (ASCVD). In a span of approximately 15 years, PCSK9 has morphed from an esoteric and rare cause of familial hypercholesterolemia (FH) into the most efficient cholesterol-lowering target ever known, with the completion of two large scale cardiovascular outcome trials showing positive results. Current Food and Drug Administration (FDA) approved modalities to inhibit PCSK9 are in the form of monoclonal antibodies which display an unparalleled degree of low-density lipoprotein cholesterol (LDL-C) lowering and expand upon the notion that lower LDL-C is better for ASCVD risk reduction. However, the accelerated pace of discovery and therapeutic development has left large gaps in our knowledge regarding the physiology and function of PCSK9. The aim of this review is to provide context to the discovery, history, treatment and current status of PCSK9 and its therapeutic inhibitors and highlight areas of controversy and future directions.
Collapse
|
18
|
Hollstein T, Vogt A, Grenkowitz T, Stojakovic T, März W, Laufs U, Bölükbasi B, Steinhagen-Thiessen E, Scharnagl H, Kassner U. Treatment with PCSK9 inhibitors reduces atherogenic VLDL remnants in a real-world study. Vascul Pharmacol 2019; 116:8-15. [DOI: 10.1016/j.vph.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/28/2019] [Accepted: 03/22/2019] [Indexed: 11/15/2022]
|
19
|
The effect of chronic kidney disease on lipid metabolism. Int Urol Nephrol 2018; 51:265-277. [DOI: 10.1007/s11255-018-2047-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022]
|
20
|
Target-Mediated Drug Disposition Population Pharmacokinetics Model of Alirocumab in Healthy Volunteers and Patients: Pooled Analysis of Randomized Phase I/II/III Studies. Clin Pharmacokinet 2018; 56:1155-1171. [PMID: 28063030 PMCID: PMC5591810 DOI: 10.1007/s40262-016-0505-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background and Objective Proprotein convertase subtilisin/kexin type 9 inhibition with monoclonal antibodies such as alirocumab significantly reduces low-density lipoprotein-cholesterol levels ± other lipid-lowering therapies. We aimed to develop and qualify a population pharmacokinetics (PopPK) model for alirocumab in healthy subjects and patients, taking into account the mechanistic target-mediated drug disposition (TMDD) process. Methods This TMDD model was developed using a subset of the alirocumab clinical trial database, including nine phase I/II/III studies (n = 527); the model was subsequently expanded to a larger data set of 13 studies (n = 2870). Potential model parameters and covariate relationships were explored, and predictive ability was qualified using a visual predictive check. Results The TMDD model was built using the quasi-steady-state approximation. The final TMDD–quasi-steady-state model included a significant relationship between distribution volume of the central compartment and disease state: distribution volume of the central compartment was 1.56-fold higher in patients vs. healthy subjects. Separately, application of the model to the expanded data set revealed a significant relationship between linear clearance and statin co-administration: linear clearance was 1.27-fold higher with statins. The good predictive performance of the TMDD model was assessed based on graphical and numerical quality criteria, together with the visual predictive check and comparison of the predictions to those from a PopPK model with parallel linear and Michaelis–Menten clearances (i.e., simplification of the TMDD PopPK model). Conclusions This mechanistic TMDD PopPK model integrates the interaction of alirocumab with its target and accurately predicts both alirocumab and total proprotein convertase subtilisin/kexin type 9 concentrations in healthy subjects and patients. Electronic supplementary material The online version of this article (doi:10.1007/s40262-016-0505-1) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Dijk W, Le May C, Cariou B. Beyond LDL: What Role for PCSK9 in Triglyceride-Rich Lipoprotein Metabolism? Trends Endocrinol Metab 2018; 29:420-434. [PMID: 29665987 DOI: 10.1016/j.tem.2018.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/10/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Elevated plasma triglyceride (TG) levels are an independent risk factor for cardiovascular disease (CVD). Proprotein convertase subtilisin-kexin 9 (PCSK9) - a protein therapeutically targeted to lower plasma cholesterol levels - might regulate plasma TG-rich lipoprotein (TRL) levels. We provide a timely and critical review of the current evidence for a role of PCSK9 in TRL metabolism by assessing the impact of PCSK9 gene variants, by reviewing recent clinical data with PCSK9 inhibitors, and by describing the potential mechanisms by which PCSK9 might regulate TRL metabolism. We conclude that the impact of PCSK9 on TRL metabolism is relatively modest, especially compared to its impact on cholesterol metabolism.
Collapse
Affiliation(s)
- Wieneke Dijk
- L'institut du thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Cédric Le May
- L'institut du thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Bertrand Cariou
- L'institut du thorax, INSERM, CNRS, Université de Nantes, Nantes, France; L'institut du thorax, Department of Endocrinology, CHU NANTES, Nantes, France.
| |
Collapse
|
22
|
Lappegård KT, Kjellmo CA, Ljunggren S, Cederbrant K, Marcusson-Ståhl M, Mathisen M, Karlsson H, Hovland A. Lipoprotein apheresis affects lipoprotein particle subclasses more efficiently compared to the PCSK9 inhibitor evolocumab, a pilot study. Transfus Apher Sci 2018; 57:91-96. [PMID: 29398508 DOI: 10.1016/j.transci.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022]
Abstract
Lipoprotein apheresis and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are last therapeutic resorts in patients with familial hypercholesterolemia (FH). We explored changes in lipoprotein subclasses and high-density lipoprotein (HDL) function when changing treatment from lipoprotein apheresis to PCSK9 inhibition. We measured the levels of low-density lipoprotein (LDL) and HDL particle subclasses, serum amyloid A1 (SAA1), paraoxonase-1 (PON1) activity and cholesterol efflux capacity (CEC) in three heterozygous FH patients. Concentrations of all LDL particle subclasses were reduced during apheresis (large 68.0 ± 17.5 to 16.3 ± 2.1 mg/dL, (p = 0.03), intermediate 38.3 ± 0.6 to 5.0 ± 3.5 mg/dL (p = 0.004) and small 5.0 ± 2.6 to 0.2 ± 0.1 mg/dL (p = 0.08)). There were non-significant reductions in the LDL subclasses during evolocumab treatment. There were non-significant reductions in subclasses of HDL particles during apheresis, and no changes during evolocumab treatment. CEC was unchanged throughout the study, while the SAA1/PON1 ratio was unchanged during apheresis but decreased during evolocumab treatment. In conclusion, there were significant reductions in large and intermediate size LDL particles during apheresis, and a non-significant reduction in small LDL particles. There were only non-significant reductions in the LDL subclasses during evolocumab treatment.
Collapse
Affiliation(s)
- Knut Tore Lappegård
- Division of Internal Medicine, Nordland Hospital, Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | | | - Stefan Ljunggren
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | | - Helen Karlsson
- Occupational and Environmental Medicine Center, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anders Hovland
- Division of Internal Medicine, Nordland Hospital, Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway.
| |
Collapse
|
23
|
Androulakis E, Zacharia E, Papageorgiou N, Lioudaki E, Bertsias D, Charakida M, Siasos G, Tousoulis D. High-density Lipoprotein and Low-density Lipoprotein Therapeutic Approaches in Acute Coronary Syndromes. Curr Cardiol Rev 2017; 13:168-182. [PMID: 28190386 PMCID: PMC5633711 DOI: 10.2174/1573403x13666170209145622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low-density lipoprotein cholesterol (LDL), and especially its oxidized form, renders the atherosclerotic plaque vulnerable to rupture in acute coronary syndromes (ACS). On the other hand, high-density lipoprotein (HDL) is considered an anti-atherogenic molecule. The more recent HDL-targeted drugs may prove to be superior to those used before. Indeed, delipidated HDL and HDL mimetics are efficient in increasing HDL levels, while the apoA-I upregulation with RVX-208 appears to offer a clinical benefit which is beyond the HDL related effects. HDL treatment however has not shown a significant improvement in the outcomes of patients with ACS so far, studies have therefore focused again on LDL. In addition to statins and ezetimibe, novel drugs such as PSCK9 inhibitors and apolipoprotein B inhibitors appear to be both effective and safe for patients with hyperlipidemia. CONCLUSION Data suggest these could potentially improve the cardiovascular outcomes of patient with ACS. Yet, there is still research to be done, in order to confirm whether ACS patients would benefit from LDL- or HDL-targeted therapies or a combination of both.
Collapse
Affiliation(s)
| | - Effimia Zacharia
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Nikolaos Papageorgiou
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, London, United Kingdom
| | - Eirini Lioudaki
- Epsom and St Helier University Hospitals, London, United Kingdom
| | - Dimitris Bertsias
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Marietta Charakida
- Department of Cardiovascular Imaging, King's College London, United Kingdom
| | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| |
Collapse
|
24
|
Wan H, Gumbiner B, Joh T, Riel T, Udata C, Forgues P, Garzone PD. Effects of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibition with Bococizumab on Lipoprotein Particles in Hypercholesterolemic Subjects. Clin Ther 2017; 39:2243-2259.e5. [DOI: 10.1016/j.clinthera.2017.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/28/2017] [Accepted: 09/15/2017] [Indexed: 01/08/2023]
|
25
|
Kohli M, Patel K, MacMahon Z, Ramachandran R, Crook MA, Reynolds TM, Wierzbicki AS. Pro-protein subtilisin kexin-9 (PCSK9) inhibition in practice: lipid clinic experience in 2 contrasting UK centres. Int J Clin Pract 2017; 71. [PMID: 28994502 DOI: 10.1111/ijcp.13032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Prescribing criteria have been suggested for proprotein convertase subtilisin kexin-9 (PCSK-9) inhibitors but few studies exist of their real-world effectiveness. METHODS This study audited PCSK-9 inhibitor therapy in 105 consecutive patients from two hospital centres-a university hospital (UH; n = 70) and a district general hospital (DGH; n = 35). Baseline characteristics including cardiovascular disease risk factors, NICE qualification criteria, efficacy and side effects were assessed. RESULTS Baseline LDL-C levels were similar in both centres. NICE criteria were met for 2.05 items in the whole study (UH patients 1.7 and DGH patients 2.7). District general hospital patients were more likely to have familial hypercholesterolaemia (89 vs 69%; P = .02); intolerance to statins (94 vs 52%; P < .001) and polyvascular disease (42% vs 17%; P = .005). Prescriptions (evolocumab 73%; alirocumab 23%) were collected by 76% of patients (UH 64% vs DGH 100%). Therapy was discontinued by time of review in 15% of patients (UH 7% vs DGH 25%; P = .02). In adherent patients PCSK-9 inhibitor treatment reduced TC by 28% (2.24 ± 2.39 mmol/L; P < .001) and LDL-C by 49% (2.10 ± 1.33 mmol/L; P < .001). A LDL-C < 2.5 mmol/L was achieved in 30% of patients and <2.0 mmol/L in 20%. PCSK-9 therapy was effective and safe in patients with increased lipoprotein (a), diagnosed muscle diseases (including myopathies and muscular dystrophy) or poststatin rhabdomyolysis, nephrotic syndrome or HIV disease. Mixed results were obtained in patients with significant mixed hyperlipidaemia. CONCLUSIONS This study suggests that PCSK-9 inhibitors are effective but that prescriptions should not be changed to long-term delivery until patients have been reviewed and shown to be adherent.
Collapse
Affiliation(s)
- Monika Kohli
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, London, UK
| | - Kinjal Patel
- Department of Metabolic Medicine/Chemical Pathology, Queen's Hospital, Burton-on-Trent, UK
| | - Zofia MacMahon
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, London, UK
| | - Radha Ramachandran
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, London, UK
| | - Martin A Crook
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, London, UK
| | - Timothy M Reynolds
- Department of Metabolic Medicine/Chemical Pathology, Queen's Hospital, Burton-on-Trent, UK
| | - Anthony S Wierzbicki
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St Thomas' Hospitals, London, UK
| |
Collapse
|
26
|
Fazio S, Minnier J, Shapiro MD, Tsimikas S, Tarugi P, Averna MR, Arca M, Tavori H. Threshold Effects of Circulating Angiopoietin-Like 3 Levels on Plasma Lipoproteins. J Clin Endocrinol Metab 2017; 102. [PMID: 28633452 PMCID: PMC5587068 DOI: 10.1210/jc.2016-4043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT Angiopoietin-like 3 (ANGPTL3) deficiency in plasma due to loss-of-function gene mutations results in familial combined hypobetalipoproteinemia type 2 (FHBL2) in homozygotes. However, the lipid phenotype in heterozygotes is much milder and does not appear to relate directly to ANGPTL3 levels. Furthermore, the low-density lipoprotein (LDL) phenotype in carriers of ANGPTL3 mutations is unexplained. OBJECTIVE To determine whether reduction below a critical threshold in plasma ANGPTL3 levels is a determinant of lipoprotein metabolism in FHBL2, and to determine whether proprotein convertase subtilisin kexin type 9 (PCSK9) is involved in determining low LDL levels in this condition. DESIGN We studied subjects from 19 families with ANGPTL3 mutations and subjects with familial combined hypobetalipoproteinemia type 1 (FHBL1) due to truncated apolipoprotein B (apoB) species. RESULTS First, total cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, and HDL and LDL particle concentration correlated with plasma ANGPTL3 levels but only when the latter was <25% of normal (<60 ng/dL). Second, the very low-density lipoprotein particle concentration correlated strongly with plasma ANGPTL3 when the latter was <58% of normal. Third, both FHBL1 and FHBL2 subjects showed low levels of mature and LDL-bound PCSK9 and higher levels of its furin-cleaved form. Finally, LDL-bound PCSK9 is protected from cleavage by furin and binds to the LDL receptor more strongly than apoB-free PCSK9. CONCLUSIONS Our results suggest that the hypolipidemic effects of ANGPTL3 mutations in FHBL2 are dependent on a threshold of plasma ANGPTL3 levels, with differential effects on various lipoprotein particles. The increased inactivation of PCSK9 by furin in FHBL1 and FHBL2 is likely to cause increased LDL clearance and suggests novel therapeutic avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hagai Tavori
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
27
|
Filippatos TD, Kei A, Rizos CV, Elisaf MS. Effects of PCSK9 Inhibitors on Other than Low-Density Lipoprotein Cholesterol Lipid Variables. J Cardiovasc Pharmacol Ther 2017; 23:3-12. [DOI: 10.1177/1074248417724868] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Low-density lipoprotein cholesterol (LDL-C) is a major cardiovascular risk factor, but other lipid variables such as triglycerides (TRGs), high-density lipoprotein cholesterol (HDL-C) and lipoprotein a [Lp(a)] also affect cardiovascular risk. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors significantly lower LDL-C concentration but also modestly improve the concentrations of TRGs and HDL-C and more robustly decrease Lp(a) levels. The review presents the associated mechanisms of the beneficial effects of PCSK9 inhibitors on the other than LDL-C lipid variables, including the effects on lipid/apolipoprotein secretion and clearance and the heteroexchange between lipoproteins, as well as the possible effects on other variables involved in lipid metabolism such as sortilin. Proprotein convertase subtilisin/kexin type 9 inhibitors improve the overall lipid profile, and these beneficial effects may play a role in the reduction of cardiovascular risk.
Collapse
Affiliation(s)
| | - Anastazia Kei
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Christos V. Rizos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Moses S. Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW To review recent advances in the field of remnant lipoproteins and remnant cholesterol with a focus on cardiovascular disease risk. RECENT FINDINGS In line with previous years' research, current observational, genetic, and mechanistic studies find remnant lipoproteins (defined in different ways) to be involved in atherosclerosis development and cardiovascular disease risk. High concentrations of remnant cholesterol could explain some of the residual risk of cardiovascular disease seen after LDL cholesterol lowering. This will be increasingly important as populations worldwide become more obese and more have diabetes, both of which elevate remnant cholesterol concentrations. Many smaller scale studies and post hoc analyses show that remnant cholesterol can be lowered by different types of drugs; however, results from large scale studies with the primary aim of reducing cardiovascular disease risk through lowering of remnant cholesterol in individuals with elevated concentrations are still missing, although some are under way. SUMMARY Remnant cholesterol is a risk factor for cardiovascular disease, and can be lowered by different types of drugs; however, large scale studies of cardiovascular disease risk reduction through remnant lipoprotein lowering are under way.
Collapse
Affiliation(s)
- Anette Varbo
- aDepartment of Clinical Biochemistry bThe Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital cFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
29
|
Müller-Wieland D, Leiter LA, Cariou B, Letierce A, Colhoun HM, Del Prato S, Henry RR, Tinahones FJ, Aurand L, Maroni J, Ray KK, Bujas-Bobanovic M. Design and rationale of the ODYSSEY DM-DYSLIPIDEMIA trial: lipid-lowering efficacy and safety of alirocumab in individuals with type 2 diabetes and mixed dyslipidaemia at high cardiovascular risk. Cardiovasc Diabetol 2017; 16:70. [PMID: 28545518 PMCID: PMC5445362 DOI: 10.1186/s12933-017-0552-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is often associated with mixed dyslipidaemia, where non-high-density lipoprotein cholesterol (non-HDL-C) levels may more closely align with cardiovascular risk than low-density lipoprotein cholesterol (LDL-C). We describe the design and rationale of the ODYSSEY DM-DYSLIPIDEMIA study that assesses the efficacy and safety of alirocumab, a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor, versus lipid-lowering usual care in individuals with T2DM and mixed dyslipidaemia at high cardiovascular risk with non-HDL-C inadequately controlled despite maximally tolerated statin therapy. For the first time, atherogenic cholesterol-lowering with a PCSK9 inhibitor will be assessed with non-HDL-C as the primary endpoint with usual care as the comparator. Methods DM-DYSLIPIDEMIA is a Phase 3b/4, randomised, open-label, parallel group, multinational study that planned to enrol 420 individuals. Main inclusion criteria were T2DM and mixed dyslipidaemia (non-HDL-C ≥100 mg/dl [≥2.59 mmol/l], and triglycerides ≥150 and <500 mg/dl [≥1.70 and <5.65 mmol/l]) with documented atherosclerotic cardiovascular disease or ≥1 additional cardiovascular risk factor. Participants were randomised (2:1) to alirocumab 75 mg every 2 weeks (Q2W) or lipid-lowering usual care on top of maximally tolerated statin (or no statin if intolerant). If randomised to usual care, investigators were able to add their pre-specified choice of one of the following to the patient’s current statin regimen: ezetimibe, fenofibrate, omega-3 fatty acids or nicotinic acid, in accordance with local standard-of-care. Alirocumab-treated individuals with non-HDL-C ≥100 mg/dl at week 8 will undergo a blinded dose increase to 150 mg Q2W at week 12. The primary efficacy endpoint is non-HDL-C change from baseline to week 24 with alirocumab versus usual care; other lipid levels (including LDL-C), glycaemia-related measures, safety and tolerability will also be assessed. Alirocumab will be compared to fenofibrate in a secondary analysis. Results Recruitment completed with 413 individuals randomised in 14 countries worldwide. Results of this trial are expected in the second quarter of 2017. Conclusions ODYSSEY DM-DYSLIPIDEMIA will provide information on the efficacy and safety of alirocumab versus lipid-lowering usual care in individuals with T2DM and mixed dyslipidaemia at high cardiovascular risk using non-HDL-C as the primary efficacy endpoint. Trial registration NCT02642159 (registered December 24, 2015) Electronic supplementary material The online version of this article (doi:10.1186/s12933-017-0552-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dirk Müller-Wieland
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Lawrence A Leiter
- Li Ka Shing Knowledge Institute and Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Alexia Letierce
- Biostatistics and Programming Department, Sanofi, Chilly-Mazarin, France
| | | | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Robert R Henry
- University of California San Diego School of Medicine, Center for Metabolic Research, Veterans Affairs, San Diego Healthcare System, San Diego, CA, USA
| | | | | | - Jaman Maroni
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, London, UK
| | | |
Collapse
|
30
|
Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Res Cardiol 2017; 112:32. [PMID: 28439730 PMCID: PMC5403857 DOI: 10.1007/s00395-017-0619-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022]
Abstract
Ischemic heart disease is the main cause of death worldwide and is accelerated by increased levels of low-density lipoprotein cholesterol (LDL-C). Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a potent circulating regulator of LDL-C through its ability to induce degradation of the LDL receptor (LDLR) in the lysosome of hepatocytes. Only in the last few years, a number of breakthroughs in the understanding of PCSK9 biology have been reported illustrating how PCSK9 activity is tightly regulated at several levels by factors influencing its transcription, secretion, or by extracellular inactivation and clearance. Two humanized antibodies directed against the LDLR-binding site in PCSK9 received approval by the European and US authorities and additional PCSK9 directed therapeutics are climbing up the phases of clinical trials. The first outcome data of the PCSK9 inhibitor evolocumab reported a significant reduction in the composite endpoint (cardiovascular death, myocardial infarction, or stroke) and further outcome data are awaited. Meanwhile, it became evident that PCSK9 has (patho)physiological roles in several cardiovascular cells. In this review, we summarize and discuss the recent biological and clinical data on PCSK9, the regulation of PCSK9, its extra-hepatic activities focusing on cardiovascular cells, molecular concepts to target PCSK9, and finally briefly summarize the data of recent clinical studies.
Collapse
|
31
|
Abstract
INTRODUCTION Cardiovascular morbidity and mortality are of increasing concern, not only to patients but also to the health care profession and service providers. The preventative benefit of treatment of dyslipidaemia is unquestioned but there is a large, so far unmet need to improve clinical outcome. There are exciting new discoveries of targets that may translate into improved clinical outcome. Areas covered: This review highlights some new pathways in cholesterol and triglyceride metabolism and examines new targets, new drugs and new molecules. The review includes the results of recent trials of relatively new drugs that have shown benefit in cardiovascular endpoint outcomes, drugs that have been licenced without endpoint trials yet available and new drugs that have not yet been licenced but have produced exciting results in animal studies and some in early phase 2 human studies. Expert opinion: The new areas that have been discovered as the cause of dyslipidaemia have opened up a host of new targets for new drugs including antisense RNA's, microRNA's and human monoclonal antibodies. The plethora of new targets and new drugs has made it an extraordinarily exciting time in the development of therapeutics to combat atherosclerosis.
Collapse
Affiliation(s)
- Gerald H Tomkin
- a Diabetes Institute of Ireland , Beacon Clinic and Trinity College , Dublin 2 , Ireland
| | - Daphne Owens
- a Diabetes Institute of Ireland , Beacon Clinic and Trinity College , Dublin 2 , Ireland
| |
Collapse
|
32
|
Abstract
Ischemic heart disease is the main cause of death worldwide and it is accelerated by increased low-density lipoprotein (LDL) cholesterol (LDL-C) and/or lipoprotein (a) (Lp(a)) concentrations. Proprotein convertase subtilisin/kexin type 9 (PCSK9) alters both LDL-C and in part Lp(a) concentrations through its ability to induce degradation of the LDL receptor (LDLR). PCSK9, however, has additional targets which are potentially involved in lipid metabolism regulation such as the very low density lipoprotein receptor (VLDL), CD36 (cluster of differentiation 36) and the epithelial cholesterol transporter (NPC1L1) and it affects expression of apolipoprotein B48. The PCSK9 activity is tightly regulated at several levels by factors influencing its transcription, secretion, or by extracellular inactivation and clearance. Many comorbidities (kidney insufficiency, hypothyreoidism, hyperinsulinemia, inflammation) modify PCSK9 expression and release. Two humanized antibodies directed against extracellular PCSK9 received approval by the European and US authorities and additional PCSK9 directed therapeutics (such as silencing RNA) are already in clinical trials. Their results demonstrate a significant reduction in both LDL-C and Lp(a) concentrations – independent of the concomitant medication – and one of them reduced plaque size in high risk cardiovascular patients; results of two ongoing large clinical endpoints studies are awaited. In this review, we summarize and discuss the recent biological data on PCSK9, the regulation of PCSK9, and finally briefly summarize the data of recent clinical studies in the context of lipid metabolism.
Collapse
Affiliation(s)
- Rainer Schulz
- Department of Physiology, Justus-Liebig-Universität, Aulweg 129, 35392, Giessen, Germany.
| | - Klaus-Dieter Schlüter
- Department of Physiology, Justus-Liebig-Universität, Aulweg 129, 35392, Giessen, Germany
| |
Collapse
|
33
|
Efficacy and safety of alirocumab in insulin-treated patients with type 1 or type 2 diabetes and high cardiovascular risk: Rationale and design of the ODYSSEY DM-INSULIN trial. DIABETES & METABOLISM 2017; 43:453-459. [PMID: 28347654 DOI: 10.1016/j.diabet.2017.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/01/2017] [Indexed: 01/07/2023]
Abstract
AIMS The coadministration of alirocumab, a PCSK9 inhibitor for treatment of hypercholesterolaemia, and insulin in diabetes mellitus (DM) requires further study. Described here is the rationale behind a phase-IIIb study designed to characterize the efficacy and safety of alirocumab in insulin-treated patients with type 1 (T1) or type 2 (T2) DM with hypercholesterolaemia and high cardiovascular (CV) risk. METHODS ODYSSEY DM-INSULIN (NCT02585778) is a randomized, double-blind, placebo-controlled, multicentre study that planned to enrol around 400 T2 and up to 100 T1 insulin-treated DM patients. Participants had low-density lipoprotein cholesterol (LDL-C) levels at screening≥70mg/dL (1.81mmol/L) with stable maximum tolerated statin therapy or were statin-intolerant, and taking (or not) other lipid-lowering therapy; they also had established CV disease or at least one additional CV risk factor. Eligible patients were randomized 2:1 to 24weeks of alirocumab 75mg every 2weeks (Q2W) or a placebo. Alirocumab-treated patients with LDL-C≥70mg/dL at week 8 underwent a blinded dose increase to 150mg Q2W at week 12. Primary endpoints were the difference between treatment arms in percentage change of calculated LDL-C from baseline to week 24, and alirocumab safety. RESULTS This is an ongoing clinical trial, with 76 T1 and 441 T2 DM patients enrolled; results are expected in mid-2017. CONCLUSION The ODYSSEY DM-INSULIN study will provide information on the efficacy and safety of alirocumab in insulin-treated individuals with T1 or T2 DM who are at high CV risk and have hypercholesterolaemia not adequately controlled by the maximum tolerated statin therapy.
Collapse
|
34
|
Filippatos TD, Florentin M, Georgoula M, Elisaf MS. Pharmacological management of diabetic dyslipidemia. Expert Rev Clin Pharmacol 2016; 10:187-200. [DOI: 10.1080/17512433.2017.1263565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T. D. Filippatos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - M. Florentin
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - M. Georgoula
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - M. S. Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
35
|
Al Sayed N, Al Waili K, Alawadi F, Al-Ghamdi S, Al Mahmeed W, Al-Nouri F, Al Rukhaimi M, Al-Rasadi K, Awan Z, Farghaly M, Hassanein M, Sabbour H, Zubaid M, Barter P. Consensus clinical recommendations for the management of plasma lipid disorders in the Middle East. Int J Cardiol 2016; 225:268-283. [PMID: 27741487 DOI: 10.1016/j.ijcard.2016.09.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Plasma lipid disorders are key risk factors for the development of atherosclerotic cardiovascular disease (ASCVD) and are prevalent in the Middle East, with rates increasing in recent decades. Despite this, no region-specific guidelines for managing plasma lipids exist and there is a lack of use of guidelines developed in other regions. METHODS A multidisciplinary panel of regional experts was convened to develop consensus clinical recommendations for the management of plasma lipids in the Middle East. The panel considered existing international guidelines and regional clinical experience to develop recommendations. RESULTS The panel's recommendations include plasma lipid screening, ASCVD risk calculation and treatment considerations. The panel recommend that plasma lipid levels should be measured in all at-risk patients and at regular intervals in all adults from the age of 20years. A scoring system should be used to calculate ASCVD risk that includes known lipid and non-lipid risk factors. Primary treatment targets include low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol. Lifestyle modifications should be first-line treatment for all patients; the first-line pharmacological treatment targeting plasma lipids in patients at moderate-to-high risk of ASCVD is statin therapy, with a number of adjunctive or second-line agents available. Guidance is also provided on the management of underlying conditions and special populations; of particular pertinence in the region are familial hypercholesterolaemia, diabetes and metabolic dyslipidaemia. CONCLUSIONS These consensus clinical recommendations provide practicing clinicians with comprehensive, region-specific guidance to improve the detection and management of plasma lipid disorders in patients in the Middle East.
Collapse
Affiliation(s)
- Nasreen Al Sayed
- Gulf Diabetes Specialist Center, P.O. Box 21686, Manama, Bahrain.
| | - Khalid Al Waili
- Department of Clinical Biochemistry, Sultan Qaboos University Hospital, Al-Khod, P.O. Box 38, postal code 123, Muscat, Oman.
| | - Fatheya Alawadi
- Endocrine Department, Dubai Hospital, Dubai Health Authority, Dubai, United Arab Emirates.
| | - Saeed Al-Ghamdi
- Department of Medicine, King Abdulaziz University Hospital, P.O. Box 80215, Jeddah 21589, Saudi Arabia.
| | - Wael Al Mahmeed
- Heart and Vascular Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates.
| | - Fahad Al-Nouri
- Cardiovascular Prevention Unit, Prince Sultan Cardiac Center, Riyadh, Saudi Arabia.
| | - Mona Al Rukhaimi
- Dubai Medical College, P.O. Box 22331, Dubai, United Arab Emirates.
| | - Khalid Al-Rasadi
- Department of Biochemistry, Sultan Qaboos University Hospital, Al-Khod, P.O. Box 38, postal code 123, Muscat, Oman.
| | - Zuhier Awan
- King Abdulaziz University, Jeddah 22254, Saudi Arabia.
| | | | | | - Hani Sabbour
- Shaikh Khalifa Medical City, Cardiac Sciences Institute, Abu Dhabi, United Arab Emirates.
| | - Mohammad Zubaid
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait.
| | - Philip Barter
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|