1
|
Sivri D, Akdevelioğlu Y. Effect of Fatty Acids on Glucose Metabolism and Type 2 Diabetes. Nutr Rev 2024:nuae165. [PMID: 39530757 DOI: 10.1093/nutrit/nuae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes is an inflammatory, non-infectious disease characterized by dysfunctional pancreatic β-cells and insulin resistance. Although lifestyle, genetic, and environmental factors are associated with a high risk of type 2 diabetes, nutrition remains one of the most significant factors. Specific types and increased amounts of dietary fatty acids are associated with type 2 diabetes and its complications. Dietary recommendations for the prevention of type 2 diabetes advocate for a diet that is characterized by reduced saturated fatty acids and trans fatty acids alongside an increased consumption of monounsaturated fatty acids, polyunsaturated fatty acids, and omega-3 fatty acids. Although following the recommendations for dietary fatty acid intake is important for reducing type 2 diabetes and its related complications, the underlying mechanisms remain unclear. This review will provide an update on the mechanisms of action of fatty acids on glucose metabolism and type 2 diabetes, as well as dietary recommendations for the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Dilek Sivri
- Department of Nutrition and Dietetics, Faculty of Health Science, Anadolu University, Eskişehir, Türkiye
| | - Yasemin Akdevelioğlu
- Department of Nutrition and Dietetics, Faculty of Health Science, Gazi University, Ankara, Türkiye
| |
Collapse
|
2
|
Fang X, Lee S, Rayalam S, Park HJ. Docosahexaenoic acid supplementation and infant brain development: role of gut microbiome. Nutr Res 2024; 131:1-13. [PMID: 39342808 DOI: 10.1016/j.nutres.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Perinatal stage represents a critical period for brain development. Docosahexaenoic acid (DHA) is a ω-3 polyunsaturated fatty acid preferentially accumulated in the brain that may benefit neurodevelopment. Microbial colonization and maturation parallel with the rapid development of infant metabolic and brain function that may influence the effects of DHA on neurological development. This review aims to summarize the current literature on the mediating effects of DHA on brain and gut microbiome development and attempts to reevaluate the efficacy of DHA from a gut microbiome-mediated perspective. Specifically, the regulatory roles of DHA on hypothalamic-pituitary-adrenal axis, inflammation, and neuroactive mediators may be partly moderated through gut microbiome. Consideration of the gut microbiome and gut-brain communication, when evaluating the efficacy of DHA, may provide new insights in better understanding the mechanisms of DHA and impart advantages to future development of nutritional therapy based on the nutrient-microbiome interaction.
Collapse
Affiliation(s)
- Xi Fang
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA
| | - Soon Lee
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA
| | - Hea Jin Park
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA.
| |
Collapse
|
3
|
Chero-Sandoval L, Higuera-Gómez A, Martínez-Urbistondo M, Castejón R, Mellor-Pita S, Moreno-Torres V, de Luis D, Cuevas-Sierra A, Martínez JA. Comparative assessment of phenotypic markers in patients with chronic inflammation: Differences on Bifidobacterium concerning liver status. Eur J Clin Invest 2024:e14339. [PMID: 39468772 DOI: 10.1111/eci.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The relationship between systemic lupus erythematosus (SLE) and low-grade metabolic inflammation (MI) with the microbiota is crucial for understanding the pathogenesis of these diseases and developing effective therapeutic interventions. In this context, it has been observed that the gut microbiota plays a key role in the immune regulation and inflammation contributing to the exacerbation through inflammatory mediators. This research aimed to describe similarities/differences in anthropometric, biochemical, inflammatory, and hepatic markers as well as to examine the putative role of gut microbiota concerning two inflammatory conditions: SLE and MI. METHODS Data were obtained from a cohort comprising adults with SLE and MI. Faecal samples were determined by 16S technique. Statistical analyses compared anthropometric and clinical variables, and LEfSe and MetagenomeSeq were used for metagenomic data. An interaction analysis was fitted to investigate associations of microbiota with fatty liver index (FLI) depending on the inflammatory condition. RESULTS Participants with low-grade MI showed worse values in anthropometry and biochemicals compared with patients with SLE. The liver profile of patients with MI was unhealthier, while no relevant differences were found in most of the inflammatory markers between groups. LEfSe analysis revealed an overrepresentation of Bifidobacteriaceae family in SLE group. An interactive association between gut Bifidobacterium abundance and type of disease was identified for FLI values, suggesting an effect modification of the gut microbiota concerning liver markers depending on the inflammatory condition. CONCLUSION This study found phenotypical and microbial similarities and disparities between these two inflammatory conditions, evidenced in clinical and hepatic markers, and showed the interactive interplay between gut Bifidobacterium and liver health (measured by FLI) that occur in a different manner depending on the type of inflammatory disease. These results underscore the importance of personalized approaches and individual microbiota in the screening of different inflammatory situations, considering unique hepatic and microbiota profiles.
Collapse
Affiliation(s)
- Lourdes Chero-Sandoval
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
- Department of Endocrinology and Nutrition, University Clinical Hospital, University of Valladolid, Valladolid, Spain
| | - Andrea Higuera-Gómez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
| | | | - Raquel Castejón
- Internal Medicine Service, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Susana Mellor-Pita
- Internal Medicine Service, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Víctor Moreno-Torres
- Internal Medicine Service, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
- Health Sciences School and Medical Centre, International University of the Rioja (UNIR), Madrid, Spain
| | - Daniel de Luis
- Department of Endocrinology and Nutrition, University Clinical Hospital, University of Valladolid, Valladolid, Spain
- Centre of Endocrinology and Nutrition, University of Valladolid, Valladolid, Spain
| | - Amanda Cuevas-Sierra
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
- Health Sciences School and Medical Centre, International University of the Rioja (UNIR), Madrid, Spain
| | - J Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Madrid, Spain
- Centre of Endocrinology and Nutrition, University of Valladolid, Valladolid, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
4
|
Bakinowska E, Stańska W, Kiełbowski K, Szwedkowicz A, Boboryko D, Pawlik A. Gut Dysbiosis and Dietary Interventions in Rheumatoid Arthritis-A Narrative Review. Nutrients 2024; 16:3215. [PMID: 39339815 PMCID: PMC11435214 DOI: 10.3390/nu16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic and progressive autoimmune disease. The pathogenesis of RA is complex and involves interactions between articular cells, such as fibroblast-like synoviocytes, and immune cells. These cells secrete pro-inflammatory cytokines, chemokines, metalloproteinases and other molecules that together participate in joint degradation. The current evidence suggests the important immunoregulatory role of the gut microbiome, which can affect susceptibility to diseases and infections. An altered microbiome, a phenomenon known as gut dysbiosis, is associated with the development of inflammatory diseases. Importantly, the profile of the gut microbiome depends on dietary habits. Therefore, dietary elements and interventions can indirectly impact the progression of diseases. This review summarises the evidence on the involvement of gut dysbiosis and diet in the pathogenesis of RA.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Wiktoria Stańska
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Agata Szwedkowicz
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
Kumbhare SV, Pedroso I, Joshi B, Muthukumar KM, Saravanan SK, Irudayanathan C, Kochhar GS, Dulai PS, Sinha R, Almonacid DE. Longitudinal gut microbial signals are associated with weight loss: insights from a digital therapeutics program. Front Nutr 2024; 11:1363079. [PMID: 39040930 PMCID: PMC11262244 DOI: 10.3389/fnut.2024.1363079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction The gut microbiome's influence on weight management has gained significant interest for its potential to support better obesity therapeutics. Patient stratification leading to personalized nutritional intervention has shown benefits over one-size-fit-all diets. However, the efficacy and impact on the gut's microbiome of personalizing weight loss diets based on individual factors remains under-investigated. Methods This study assessed the impact of Digbi Health's personalized dietary and lifestyle program on weight loss and the gut microbiome end-points in 103 individuals. Participants' weight loss patterns and gut microbiome profiles were analyzed from baseline to follow-up samples. Results Specific microbial genera, functional pathways, and communities associated with BMI changes and the program's effectiveness were identified. 80% of participants achieved weight loss. Analysis of the gut microbiome identified genera and functional pathways associated with a reduction in BMI, including Akkermansia, Christensenella, Oscillospiraceae, Alistipes, and Sutterella, short-chain fatty acid production, and degradation of simple sugars like arabinose, sucrose, and melibiose. Network analysis identified a microbiome community associated with BMI, which includes multiple taxa known for associations with BMI and obesity. Discussion The personalized dietary and lifestyle program positively impacted the gut microbiome and demonstrated significant associations between gut microbial changes and weight loss. These findings support the use of the gut microbiome as an endpoint in weight loss interventions, highlighting potential microbiome biomarkers for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gursimran S. Kochhar
- Division of Gastroenterology, Hepatology and Nutrition, Allegheny Health Network, Pittsburgh, PA, United States
| | - Parambir S. Dulai
- Division of Gastroenterology, Northwestern University, Chicago, IL, United States
| | | | | |
Collapse
|
6
|
Schuchardt JP, Beinhorn P, Hu XF, Chan HM, Roke K, Bernasconi A, Hahn A, Sala-Vila A, Stark KD, Harris WS. Omega-3 world map: 2024 update. Prog Lipid Res 2024; 95:101286. [PMID: 38879135 DOI: 10.1016/j.plipres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
In 2016, the first worldwide n3 PUFA status map was published using the Omega-3 Index (O3I) as standard biomarker. The O3I is defined as the percentage of EPA + DHA in red blood cell (RBC) membrane FAs. The purpose of the present study was to update the 2016 map with new data. In order to be included, studies had to report O3I and/or blood EPA + DHA levels in metrics convertible into an estimated O3I, in samples drawn after 1999. To convert the non-RBC-based EPA + DHA metrics into RBC we used newly developed equations. Baseline data from clinical trials and observational studies were acceptable. A literature search identified 328 studies meeting inclusion criteria encompassing 342,864 subjects from 48 countries/regions. Weighted mean country O3I levels were categorized into very low ≤4%, low >4-6%, moderate >6-8%, and desirable >8%. We found that the O3I in most countries was low to very low. Notable differences between the current and 2016 map were 1) USA, Canada, Italy, Turkey, UK, Ireland and Greece (moving from the very low to low category); 2) France, Spain and New Zealand (low to moderate); and 3) Finland and Iceland (moderate to desirable). Countries such as Iran, Egypt, and India exhibited particularly poor O3I levels.
Collapse
Affiliation(s)
- Jan Philipp Schuchardt
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany.
| | - Philine Beinhorn
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany
| | - Xue Feng Hu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kaitlin Roke
- Global Organization for EPA and DHA Omega-3s (GOED), 222 South Main Street, Suite 500, Salt Lake City, UT 84101, United States
| | - Aldo Bernasconi
- Global Organization for EPA and DHA Omega-3s (GOED), 222 South Main Street, Suite 500, Salt Lake City, UT 84101, United States
| | - Andreas Hahn
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany
| | - Aleix Sala-Vila
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Hospital del Mar Medical Research Institute, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - William S Harris
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, United States
| |
Collapse
|
7
|
Kerman BE, Self W, Yassine HN. Can the gut microbiome inform the effects of omega-3 fatty acid supplementation trials on cognition? Curr Opin Clin Nutr Metab Care 2024; 27:116-124. [PMID: 38170690 PMCID: PMC10872319 DOI: 10.1097/mco.0000000000001007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW Most omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation clinical trials report inconsistent or null findings on measures of cognition or Alzheimer's disease (AD) with a relatively large variability in the response to n-3 PUFA supplementation. The purpose of this review is to identify whether the gut microbiome together with the metabolome can provide critical insights to understand this heterogeneity in the response to n-3 PUFA supplementation. RECENT FINDINGS A Western diet with high saturated fat and omega-6 fatty acid content, obesity, and lack of exercise puts strain on the gut microbiome resulting in imbalance, dysbiosis, reduced bacterial diversity, and increased abundance of the pro-inflammatory taxa. A plant-based diet has beneficial effects on the gut microbiota even when deficient in n-3 PUFAs. Human and animal studies show that increased intake of the n-3 PUFAs correlates with increased beneficial intestinal bacteria when compared to a Western diet. SUMMARY The composition of the gut microbiota can help define the effects of n-3 PUFA supplementation on the brain and lead to more personalized nutritional interventions.
Collapse
Affiliation(s)
- Bilal E Kerman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Wade Self
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hussein N Yassine
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
8
|
Farahbod K, Slouha E, Gerts A, Rezazadah A, Clunes LA, Kollias TF. The Effects of Diet Intervention on the Gut Microbiota in Type 2 Diabetes Mellitus: A Systematic Review. Cureus 2024; 16:e56737. [PMID: 38646363 PMCID: PMC11033091 DOI: 10.7759/cureus.56737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
The GI tract hosts a dynamic community known as the gut microbiota, which encompasses thriving bacteria that actively contribute to the physiological functions of the human body. The intricacies of its composition are profoundly influenced by dietary preferences, where the quality, quantity, and frequency of food consumption play a pivotal role in either fostering or impeding specific bacterial strains. Type 2 diabetes mellitus (T2DM) is a prevalent and deleterious condition that originates from excessive hyperglycemia. Do lifestyle interventions targeting dietary adjustments, nutritional supplements, physical activity, and weight management programs exhibit a significant relationship in altering the composition of the gut microbiome and managing T2DM? This paper aims to evaluate the effects of lifestyle interventions on patients with T2DM and the implications of these changes on disease outcomes and progression. Lifestyle interventions can significantly impact the management of T2DM, especially those targeting dietary adjustments, nutritional supplements, physical activity, and weight management programs. The adoption of a high-fiber diet and increased fruit consumption have shown positive impacts on both insulin sensitivity and the composition of the gut microbiota. Additionally, promising outcomes emerge from supplementing with Omega-3 fatty acids, Vitamin K2 (MK-7), and transglucosidase, which influence insulin levels, glycemic control, and gut microbiota composition. Personalized diet interventions and the transformative effects of the Mediterranean diet present positive outcomes in metabolic control. The intensity of exercise plays a pivotal role in shaping the composition of the gut microbiota, with moderate-intensity continuous exercise displaying positive effects on anti-inflammatory microbes. Chronic exercise showcases favorable impacts on glycemic control and systemic inflammation. Emphasizing the intricate relationship between dietary habits, gut microbiota, and the risk of T2DM underscores the potential of the gut microbiota as a universal biomarker for assessing diabetes risk. Nutritional supplements and exercise interventions provide potential avenues for the management of T2DM, emphasizing the necessity for tailored strategies. Further research is encouraged to delve into the long-term effects and intricate interplay between lifestyle factors and the gut microbiome, enhancing our understanding of T2DM pathophysiology for targeted therapeutic approaches.
Collapse
Affiliation(s)
- Kiana Farahbod
- Department of Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Ethan Slouha
- Department of Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Andrew Gerts
- Department of Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Atbeen Rezazadah
- Department of Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Lucy A Clunes
- Department of Pharmacology, St. George's University School of Medicine, St. George's, GRD
| | - Theofanis F Kollias
- Department Microbiology, Immunology, and Pharmacology, St. George's University School of Medicine, St. George's, GRD
| |
Collapse
|
9
|
Sastre M, Cimbalo A, Mañes J, Manyes L. Gut Microbiota and Nutrition: Strategies for the Prevention and Treatment of Type 2 Diabetes. J Med Food 2024; 27:97-109. [PMID: 38381517 DOI: 10.1089/jmf.2022.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
The prevalence of diabetes has increased in last decades worldwide and is expected to continue to do so in the coming years, reaching alarming figures. Evidence have shown that patients with type 2 diabetes (T2D) have intestinal microbial dysbiosis. Moreover, several mechanisms link the microbiota with the appearance of insulin resistance and diabetes. Diet is a crucial factor related to changes in the composition, diversity, and activity of gut microbiota (GM). In this review, the current and future possibilities of nutrient-GM interactions as a strategy to alleviate T2D are discussed, as well as the mechanisms related to decreased low-grade inflammation and insulin resistance. A bibliographic search of clinical trials in Pubmed, Web of Science, and Scopus was carried out, using the terms "gut microbiota, diet and diabetes." The data analyzed in this review support the idea that dietary interventions targeting changes in the microbiota, including the use of prebiotics and probiotics, can improve glycemic parameters. However, these strategies should be individualized taking into account other internal and external factors. Advances in the understanding of the role of the microbiota in the development of metabolic diseases such as T2D, and its translation into a therapeutic approach for the management of diabetes, are necessary to allow a comprehensive approach.
Collapse
Affiliation(s)
- Maria Sastre
- Laboratory of Food Chemistry and Toxicology, University of Valencia, Valencia, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, University of Valencia, Valencia, Spain
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, University of Valencia, Valencia, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, University of Valencia, Valencia, Spain
| |
Collapse
|
10
|
Xu X, Zhang F, Ren J, Zhang H, Jing C, Wei M, Jiang Y, Xie H. Dietary intervention improves metabolic levels in patients with type 2 diabetes through the gut microbiota: a systematic review and meta-analysis. Front Nutr 2024; 10:1243095. [PMID: 38260058 PMCID: PMC10800606 DOI: 10.3389/fnut.2023.1243095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Background Poor dietary structure plays a pivotal role in the development and progression of type 2 diabetes and is closely associated with dysbiosis of the gut microbiota. Thus, the objective of this systematic review was to assess the impact of dietary interventions on improving gut microbiota and metabolic levels in patients with type 2 diabetes. Methods We conducted a systematic review and meta-analysis following the PRISMA 2020 guidelines. Results Twelve studies met the inclusion criteria. In comparison to baseline measurements, the high-fiber diet produced substantial reductions in FBG (mean difference -1.15 mmol/L; 95% CI, -2.24 to -0.05; I2 = 94%; P = 0.04), HbA1c (mean difference -0.99%; 95% CI, -1.93 to -0.03; I2 = 89%; P = 0.04), and total cholesterol (mean difference -0.95 mmol/L; 95% CI, -1.57 to -0.33; I2 = 77%; P = 0.003); the high-fat and low-carbohydrate diet led to a significant reduction in HbA1c (mean difference -0.98; 95% CI, -1.50 to -0.46; I2 = 0%; P = 0.0002). Within the experimental group (intervention diets), total cholesterol (mean difference -0.69 mmol/L; 95% CI, -1.27 to -0.10; I2 = 52%; P = 0.02) and LDL-C (mean difference -0.45 mmol/L; 95% CI, -0.68 to -0.22; I2 = 0%; P < 0.0001) experienced significant reductions in comparison to the control group (recommended diets for type 2 diabetes). However, no statistically significant differences emerged in the case of FBG, HbA1c, HOMA-IR, and HDL-C between the experimental and control groups. The high dietary fiber diet triggered an augmented presence of short-chain fatty acid-producing bacteria in the intestines of individuals with T2DM. In addition, the high-fat and low-carbohydrate diet resulted in a notable decrease in Bacteroides abundance while simultaneously increasing the relative abundance of Eubacterium. Compared to a specific dietary pattern, personalized diets appear to result in the production of a greater variety of beneficial bacteria in the gut, leading to more effective blood glucose control in T2D patients. Conclusion Dietary interventions hold promise for enhancing metabolic profiles in individuals with T2D through modulation of the gut microbiota. Tailored dietary regimens appear to be more effective than standard diets in improving glucose metabolism. However, given the limited and highly heterogeneous nature of the current sample size, further well-designed and controlled intervention studies are warranted in the future.
Collapse
Affiliation(s)
- Xiaoyu Xu
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Fan Zhang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Jiajia Ren
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Haimeng Zhang
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Cuiqi Jing
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Muhong Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Bengbu Medical University, Bengbu, China
| | - Yuhong Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Bengbu Medical University, Bengbu, China
| | - Hong Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Bengbu Medical University, Bengbu, China
| |
Collapse
|
11
|
Świrkosz G, Szczygieł A, Logoń K, Wrześniewska M, Gomułka K. The Role of the Microbiome in the Pathogenesis and Treatment of Ulcerative Colitis-A Literature Review. Biomedicines 2023; 11:3144. [PMID: 38137365 PMCID: PMC10740415 DOI: 10.3390/biomedicines11123144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease affecting the colon and rectum. UC's pathogenesis involves colonic epithelial cell abnormalities and mucosal barrier dysfunction, leading to recurrent mucosal inflammation. The purpose of the article is to show the complex interplay between ulcerative colitis and the microbiome. The literature search was conducted using the PubMed database. After a screening process of studies published before October 2023, a total of 136 articles were selected. It has been discovered that there is a fundamental correlation of a robust intestinal microbiota and the preservation of gastrointestinal health. Dysbiosis poses a grave risk to the host organism. It renders the host susceptible to infections and has been linked to the pathogenesis of chronic diseases, with particular relevance to conditions such as ulcerative colitis. Current therapeutic strategies for UC involve medications such as aminosalicylic acids, glucocorticoids, and immunosuppressive agents, although recent breakthroughs in monoclonal antibody therapies have significantly improved UC treatment. Furthermore, modulating the gut microbiome with specific compounds and probiotics holds potential for inflammation reduction, while fecal microbiota transplantation shows promise for alleviating UC symptoms. This review provides an overview of the gut microbiome's role in UC pathogenesis and treatment, emphasizing areas for further research.
Collapse
Affiliation(s)
- Gabriela Świrkosz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Aleksandra Szczygieł
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Katarzyna Logoń
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Martyna Wrześniewska
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland;
| |
Collapse
|
12
|
Abril AG, Carrera M, Pazos M. Immunomodulatory effect of marine lipids on food allergy. Front Nutr 2023; 10:1254681. [PMID: 38035353 PMCID: PMC10683508 DOI: 10.3389/fnut.2023.1254681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Seafood is highly enriched in n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs), particularly eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), in contrast to the ultra-processed foods included in the modern Western diet that have high levels of n-6 linoleic acid (LA, 18:2 n-6), precursor for the pro-inflammatory n-6 arachidonic acid (ARA, 20:4 n-6). The capacity of marine lipids to reduce plasmatic triglycerides and blood pressure have been well-described. Moreover, recent studies have also raised evidence of a potential regulatory action of marine lipids on inflammation, the immune system, and food allergy (FA). FA is considered one of the main concerns to become life threatening in food safety. The prevalence of this emerging global problem has been increasing during the last two decades, especially in industrialized countries. About a 6-8% of young children and 2-4% of adults is estimated to be affected by FA. The main objective of the current study is to update the existing knowledge, but also the limitations, on the potential impact of marine lipids and their lipid mediators in regulating immunity, inflammation, and ultimately, food allergies. In particular, the focus is on the effect of marine lipids in modulating the key factors that control the sensitization and effector phases of FA, including gut microbiota (GM), inflammation, and immune system response. Results in animal models highlight the positive effect that consuming marine lipids, whether as a supplement or through seafood consumption, may have a relevant role in improving gut dysbiosis and inflammation, and preventing or reducing the severity of FA. However, more systematic studies in humans are needed to optimize such beneficial actions to each particular FA, age, and medical condition to reach an effective clinical application of marine lipids to improve FAs and their outcomes.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| | - Manuel Pazos
- Department of Food Technology, Institute of Marine Research (IM-CSIC), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
13
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Abreu Nascimento MD, Matta Alvarez Pimenta ND, Aiceles de Medeiros Pinto Polastri V, Cardoso Chamon R, Sarto Figueiredo M. Immunonutrients and intestinal microbiota: a gap in the literature. Crit Rev Food Sci Nutr 2023:1-14. [PMID: 37751225 DOI: 10.1080/10408398.2023.2260468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The human intestinal microbiota is composed of a wide variety of microorganisms that play an important role in intestinal permeability, digestion, and especially, in the maturation of host's immune system. At the same time, effectiveness of immunomodulatory nutrients is known, especially in situations of stress and in strengthening body's defenses. However, the influence of the use of immunonutrients on microbiota's composition and variability is still poorly investigated. Studies indicate that the use of immunomodulators such as omega 3, glutamine, and arginine, can play a role in its modulation, through the immunological enhancement of the hosts. Therefore, this article sought to concentrate the latest evidence on the influence of the use of the main immunonutrients used in clinical practice on human gut microbiota, and their potential benefits.
Collapse
Affiliation(s)
| | - Nina da Matta Alvarez Pimenta
- Graduate Program in Nutrition Science, Faculty of Nutrition, Fluminense Federal University, Niterói, Brazil, Niterói, Brazil
| | | | - Raiane Cardoso Chamon
- Graduate Program in Pathology, Department of Pathology, Faculty of Medicine, Fluminense Federal University, Niterói, Brazil
| | | |
Collapse
|
15
|
Yousof SM, Alghamdi BS, Alqurashi T, Alam MZ, Tash R, Tanvir I, Kaddam LA. Modulation of Gut Microbiome Community Mitigates Multiple Sclerosis in a Mouse Model: The Promising Role of Palmaria palmata Alga as a Prebiotic. Pharmaceuticals (Basel) 2023; 16:1355. [PMID: 37895826 PMCID: PMC10610500 DOI: 10.3390/ph16101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Red marine algae have shown the potential to reduce inflammation, influence microbiota, and provide neuroprotection. OBJECTIVE To examine the prebiotic properties of Palmaria palmata aqueous extract (Palmaria p.) and its potential as a neuroprotective agent in multiple sclerosis (MS). METHODS eighty-eight adult Swiss mice were divided into four male and four female groups, including a control group (distilled water), Palmaria p.-treated group (600 mg/kg b.w.), cuprizone (CPZ)-treated group (mixed chow 0.2%), and a group treated with both CPZ and Palmaria p. The experiment continued for seven weeks. CPZ treatment terminated at the end of the 5th week, with half of the mice sacrificed to assess the demyelination stage. To examine the spontaneous recovery, the rest of the mice continued until the end of week seven. Behavioral (grip strength (GS) and open field tests (OFT)), microbiome, and histological assessments for general morphology of corpus callous (CC) were all conducted at the end of week five and week 7. RESULTS Palmaria p. can potentially protect against CPZ-induced MS with variable degrees in male and female Swiss mice. This protection was demonstrated through three key findings: (1) increased F/B ratio and expansion of the beneficial Lactobacillus, Proteobacteria, and Bactriodia communities. (2) Protection against the decline in GS induced by CPZ and prevented CPZ-induced anxiety in OFT. (3) Preservation of structural integrity. CONCLUSIONS Because of its propensity to promote microbiota alterations, its antioxidant activity, and its content of -3 fatty acids, Palmaria p. could be a promising option for MS patients and could be beneficial as a potential probiotic for the at-risk groups as a preventive measure against MS.
Collapse
Affiliation(s)
- Shimaa Mohammad Yousof
- Department of Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Badrah S. Alghamdi
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Preclinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamer Alqurashi
- Faculty of Medicine in Rabigh, Pharmacology Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reham Tash
- Department of Anatomy, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo 3753450, Egypt
| | - Imrana Tanvir
- Department of Pathology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Lamis AbdelGadir Kaddam
- Department of Physiology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Physiology Department Faculty of Medicine, Alneelain University, Khartoum 11211, Sudan
| |
Collapse
|
16
|
Morsy BM, El Domiaty S, Meheissen MAM, Heikal LA, Meheissen MA, Aly NM. Omega-3 nanoemulgel in prevention of radiation-induced oral mucositis and its associated effect on microbiome: a randomized clinical trial. BMC Oral Health 2023; 23:612. [PMID: 37648997 PMCID: PMC10470147 DOI: 10.1186/s12903-023-03276-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Oral mucositis (OM) is recognized as one of the most frequent debilitating sequelae encountered by head and neck cancer (HNC) patients treated by radiotherapy. This results in severe mucosal tissue inflammation and oral ulcerations that interfere with patient's nutrition, quality of life (QoL) and survival. Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) have recently gained special interest in dealing with oral diseases owing to its anti-inflammatory, anti-oxidant and wound healing properties. Thus, this study aims to assess topical Omega-3 nanoemulgel efficacy in prevention of radiation-induced oral mucositis and regulation of oral microbial dysbiosis. MATERIALS AND METHODS Thirty-four head and neck cancer patients planned to receive radiotherapy were randomly allocated into two groups: Group I: conventional preventive treatment and Group II: topical Omega-3 nanoemulgel. Patients were evaluated at baseline, three and six weeks after treatment using the World Health Organization (WHO) grading system for oral mucositis severity, Visual Analogue Scale (VAS) for perceived pain severity, and MD-Anderson Symptom Inventory for Head and Neck cancer (MDASI-HN) for QoL. Oral swabs were collected to assess oral microbiome changes. RESULTS VAS scores and WHO mucositis grades were significantly lower after six weeks of treatment with topical Omega-3 nanoemulgel when compared to the conventional treatment. The total MDASI score was significantly higher in the control group after three weeks of treatment, and the head and neck subscale differed significantly at both three and six weeks. A significant reduction in Firmicutes/Bacteroidetes ratio was observed after six weeks in the test group indicating less microbial dysbiosis. CONCLUSIONS Topical Omega-3 nanoemulgel demonstrated a beneficial effect in prevention of radiation-induced oral mucositis with a possibility of regulating oral microbial dysbiosis.
Collapse
Affiliation(s)
- Basma M Morsy
- Oral Medicine, Periodontology, Oral Diagnosis, and Oral Radiology Department, Faculty of Dentistry, Alexandria University, Champolion St, 21527, Alexandria Governorate, Egypt.
| | - Shahira El Domiaty
- Oral Medicine, Periodontology, Oral Diagnosis, and Oral Radiology Department, Faculty of Dentistry, Alexandria University, Champolion St, 21527, Alexandria Governorate, Egypt
| | - Mohamed A M Meheissen
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria Governorate, Egypt
| | - Marwa A Meheissen
- Medical Microbiology and Immunology Department, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Nourhan M Aly
- Pediatric Dentistry and Dental Public Health Department, Faculty of Dentistry, Alexandria University, Alexandria Governorate, Egypt
| |
Collapse
|
17
|
Bae JH, Lim H, Lim S. The Potential Cardiometabolic Effects of Long-Chain ω-3 Polyunsaturated Fatty Acids: Recent Updates and Controversies. Adv Nutr 2023; 14:612-628. [PMID: 37031750 PMCID: PMC10334139 DOI: 10.1016/j.advnut.2023.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
Various health-related effects of long-chain (LC) ω-3 PUFAs, EPA, and DHA have been suggested. LC ω-3 PUFAs reduce TG concentrations and have anti-inflammatory, immunomodulatory, antiplatelet, and vascular protective effects. Controversially, they might help in restoring glucose homeostasis via the gut microbiota. However, previous studies have not shown the clear benefits of LC ω-3 PUFAs for CVDs. REDUCE-IT and STRENGTH-representative randomized controlled trials (RCTs) that examined whether LC ω-3 PUFAs would prevent major adverse cardiovascular (CV) events (MACE)-showed conflicting results with differences in the types, doses, or comparators of LC ω-3 PUFAs and study populations. Therefore, we performed a meta-analysis using major RCTs to address this inconsistency and assess the clinical and biological effects of LC ω-3 PUFAs. We included RCTs that involved ≥500 participants with ≥1 y follow-up. Of 17 studies involving 143,410 people, LC ω-3 PUFA supplementation showed beneficial effects on CV death (RR: 0.94; 95% CI: 0.88, 0.99; P = 0.029) and fatal or nonfatal MI (RR: 0.83; 95% CI: 0.72, 0.95; P = 0.010). RCTs on EPA alone showed better results for 3-point MACE, CV death, and fatal or nonfatal MI. However, the benefits were not found for fatal or nonfatal stroke, all-cause mortality, and hospitalization for heart failure. Of note, studies of both the EPA/DHA combination and EPA alone showed a significant increase in risk of new-onset atrial fibrillation. Thus, well-designed studies are needed to investigate the underlying mechanisms involved in the distinct effects of EPA compared with DHA on cardiometabolic diseases. This review discusses the potential benefits and safety of LC ω-3 PUFAs from a cardiometabolic perspective focusing on recent updates and controversies.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyunjung Lim
- Department of Medical Nutrition, Research Institute of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
18
|
Di Rosa C, Di Francesco L, Spiezia C, Khazrai YM. Effects of Animal and Vegetable Proteins on Gut Microbiota in Subjects with Overweight or Obesity. Nutrients 2023; 15:2675. [PMID: 37375578 DOI: 10.3390/nu15122675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The gut microbiota plays a pivotal role in the balance between host health and obesity. The composition of the gut microbiota can be influenced by external factors, among which diet plays a key role. As the source of dietary protein is important to achieve weight loss and gut microbiota modulation, in the literature there is increasing evidence to suggest consuming more plant proteins than animal proteins. In this review, a literature search of clinical trials published until February 2023 was conducted to examine the effect of different macronutrients and dietary patterns on the gut microbiota in subjects with overweight and obesity. Several studies have shown that a higher intake of animal protein, as well as the Western diet, can lead to a decrease in beneficial gut bacteria and an increase in harmful ones typical of obesity. On the other hand, diets rich in plant proteins, such as the Mediterranean diet, lead to a significant increase in anti-inflammatory butyrate-producing bacteria, bacterial diversity and a reduction in pro-inflammatory bacteria. Therefore, since diets rich in fiber, plant protein, and an adequate amount of unsaturated fat may help to beneficially modulate the gut microbiota involved in weight loss, further studies are needed.
Collapse
Affiliation(s)
- Claudia Di Rosa
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Ludovica Di Francesco
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Chiara Spiezia
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Yeganeh Manon Khazrai
- Research Unit of Food Science and Human Nutrition, Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
- Operative Research Unit of Nutrition and Prevention, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| |
Collapse
|
19
|
Cuciniello R, Di Meo F, Filosa S, Crispi S, Bergamo P. The Antioxidant Effect of Dietary Bioactives Arises from the Interplay between the Physiology of the Host and the Gut Microbiota: Involvement of Short-Chain Fatty Acids. Antioxidants (Basel) 2023; 12:antiox12051073. [PMID: 37237938 DOI: 10.3390/antiox12051073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The maintenance of redox homeostasis is associated with a healthy status while the disruption of this mechanism leads to the development of various pathological conditions. Bioactive molecules such as carbohydrates accessible to the microbiota (MACs), polyphenols, and polyunsaturated fatty acids (PUFAs) are food components best characterized for their beneficial effect on human health. In particular, increasing evidence suggests that their antioxidant ability is involved in the prevention of several human diseases. Some experimental data indicate that the activation of the nuclear factor 2-related erythroid 2 (Nrf2) pathway-the key mechanism in the maintenance of redox homeostasis-is involved in the beneficial effects exerted by the intake of PUFAs and polyphenols. However, it is known that the latter must be metabolized before becoming active and that the intestinal microbiota play a key role in the biotransformation of some ingested food components. In addition, recent studies, indicating the efficacy of the MACs, polyphenols, and PUFAs in increasing the microbial population with the ability to yield biologically active metabolites (e.g., polyphenol metabolites, short-chain fatty acids (SCFAs)), support the hypothesis that these factors are responsible for the antioxidant action on the physiology of the host. The underlying mechanisms through which MACs, polyphenols, and PUFAs might influence the redox status have not been fully elucidated, but based on the efficacy of SCFAs as Nrf2 activators, their contribution to the antioxidant efficacy of dietary bioactives cannot be excluded. In this review, we aimed to summarize the main mechanisms through which MACs, polyphenols, and PUFAs can modulate the host's redox homeostasis through their ability to directly or indirectly activate the Nrf2 pathway. We discuss their probiotic effects and the role played by the alteration of the metabolism/composition of the gut microbiota in the generation of potential Nrf2-ligands (e.g., SCFAs) in the host's redox homeostasis.
Collapse
Affiliation(s)
- Rossana Cuciniello
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Francesco Di Meo
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
- Department of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Stefania Filosa
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Stefania Crispi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
| | - Paolo Bergamo
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino, 111-80131 Naples, Italy
| |
Collapse
|
20
|
Rehman A, Pham V, Seifert N, Richard N, Sybesma W, Steinert RE. The Polyunsaturated Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid, and Vitamin K 1 Modulate the Gut Microbiome: A Study Using an In Vitro Shime Model. J Diet Suppl 2023; 21:135-153. [PMID: 37078491 DOI: 10.1080/19390211.2023.2198007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) and vitamins exert multiple beneficial effects on host health, some of which may be mediated through the gut microbiome. We investigated the prebiotic potential of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and lipid-soluble phylloquinone (vitamin K1), each at 0.2x, 1x and 5x using the simulator of the human intestinal microbial ecosystem (SHIME®) to exclude in vivo systemic effects and host-microbe interactions.Microbial community composition and, diversity [shotgun metagenomic sequencing] and microbial activity [pH, gas pressure, and production of short-chain fatty acids (SCFAs)] were measured over a period of 48 h. Fermentations supernatants were used to investigate the effect on gut barrier integrity using a Caco-2/goblet cell co-culture model.We found that EPA, DHA and vitamin K1 increased alpha-diversity at 24 h when compared with control. Moreover, there was an effect on beta-diversity with changes in gut microbial composition, such as an increase in the Firmicutes/Bacteroidetes (F/B) ratio and a consistent increase in Veillonella and Dialister abundances with all treatments. DHA, EPA, and vitamin K1 also modulated metabolic activity of the gut microbiome by increasing total SCFAs which was related mainly to an increase in propionate (highest with EPA and vitamin K1 at 0.2x). Finally, we found that EPA and DHA increased gut barrier integrity with DHA at 1x and EPA at 5x (p < 0.05, respectively). In conclusion, our in vitro data further establish a role of PUFAs and vitamin K to modulate the gut microbiome with effects on the production of SCFAs and barrier integrity.
Collapse
Affiliation(s)
- Ateequr Rehman
- Human Nutrition and Health, DSM Nutritional Products Ltd, Basel, Switzerland
| | - Van Pham
- Human Nutrition and Health, DSM Nutritional Products Ltd, Basel, Switzerland
| | - Nicole Seifert
- Human Nutrition and Health, DSM Nutritional Products Ltd, Basel, Switzerland
| | - Nathalie Richard
- Human Nutrition and Health, DSM Nutritional Products Ltd, Basel, Switzerland
| | - Wilbert Sybesma
- Human Nutrition and Health, DSM Nutritional Products Ltd, Basel, Switzerland
| | - Robert E Steinert
- Human Nutrition and Health, DSM Nutritional Products Ltd, Basel, Switzerland
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Zeng G, You D, Ye L, Wu Y, Shi H, Lin J, Jiang Z, Wei J. n-3 PUFA poor seafood consumption is associated with higher risk of gout, whereas n-3 PUFA rich seafood is not: NHANES 2007–2016. Front Nutr 2023; 10:1075877. [PMID: 37081920 PMCID: PMC10110868 DOI: 10.3389/fnut.2023.1075877] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Background and aimsGout, the most prevalent inflammatory arthritis, has undesirable effects on the quality of life. Omega-3 polyunsaturated fatty acids (n-3 PUFA) has a strong link with anti-inflammatory impacts. However, whether the harmful effects of seafood in relation to gout may vary owing to different levels of n-3 PUFA in seafood is still unclear. It was the goal of this study to examine the relationship between n-3 PUFA poor/rich seafood consumption and gout.MethodsBetween 2007 and 2016, five NHANES cycles were performed, with 12,505 subjects having complete data for gout and two 24-h dietary intake interviews. The 24-h dietary recalls were utilized to evaluate dietary habits. Gout was defined based on questionnaires. Weighted logistic regression models were conducted to investigate the association between n-3 PUFA poor/rich seafood consumption and gout. Moreover, subgroup analysis was utilized to estimate the stability of results. Covariates including age, gender, race/ethnicity, income, education, body mass index, chronic kidney disease, diabetes mellitus, hypertension, smoking status, and drinking status were stratified in different models.ResultsIn the fully adjusted model, each unit of increase of n-3 PUFA poor seafood intake was associated with an 8.7% increased risk of gout (OR = 1.087, 95% CI: 1.039, 1.138, P < 0.001), whereas, no correlation was found between n-3 PUFA rich seafood consumption and gout. It also provided a proof-of-concept regarding the potential for n-3 PUFA rich seafood to counteract harmful effects of purines in relation to gout. A dose-response analysis showed that there was a non-linear relationship between n-3 PUFA rich seafood intake and the risk of gout in the female group.ConclusionFindings suggest that n-3 PUFA poor seafood consumption is associated with higher risk of gout, whereas n-3 PUFA rich seafood is not.
Collapse
Affiliation(s)
- Guixing Zeng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongxin You
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingyan Ye
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchi Wu
- Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Hualin Shi
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiarong Lin
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyan Jiang
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Junping Wei
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Junping Wei,
| |
Collapse
|
22
|
Ağagündüz D, Icer MA, Yesildemir O, Koçak T, Kocyigit E, Capasso R. The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. J Transl Med 2023; 21:240. [PMID: 37009872 PMCID: PMC10068184 DOI: 10.1186/s12967-023-04088-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the main types of Noncommunicable diseases (NCDs), is a systemic inflammatory disease characterized by dysfunctional pancreatic β-cells and/or peripheral insulin resistance, resulting in impaired glucose and lipid metabolism. Genetic, metabolic, multiple lifestyle, and sociodemographic factors are known as related to high T2DM risk. Dietary lipids and lipid metabolism are significant metabolic modulators in T2DM and T2DM-related complications. Besides, accumulated evidence suggests that altered gut microbiota which plays an important role in the metabolic health of the host contributes significantly to T2DM involving impaired or improved glucose and lipid metabolism. At this point, dietary lipids may affect host physiology and health via interaction with the gut microbiota. Besides, increasing evidence in the literature suggests that lipidomics as novel parameters detected with holistic analytical techniques have important roles in the pathogenesis and progression of T2DM, through various mechanisms of action including gut-brain axis modulation. A better understanding of the roles of some nutrients and lipidomics in T2DM through gut microbiota interactions will help develop new strategies for the prevention and treatment of T2DM. However, this issue has not yet been entirely discussed in the literature. The present review provides up-to-date knowledge on the roles of dietary lipids and lipidomics in gut-brain axis in T2DM and some nutritional strategies in T2DM considering lipids- lipidomics and gut microbiota interactions are given.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey.
| | - Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, 05100, Amasya, Turkey
| | - Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, 16059, Bursa, Turkey
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, 52200, Ordu, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Naples, Italy.
| |
Collapse
|
23
|
Wang Y, Uffelman CN, Bergia RE, Clark CM, Reed JB, Cross TWL, Lindemann SR, Tang M, Campbell WW. Meat Consumption and Gut Microbiota: a Scoping Review of Literature and Systematic Review of Randomized Controlled Trials in Adults. Adv Nutr 2023; 14:215-237. [PMID: 36822879 PMCID: PMC10229385 DOI: 10.1016/j.advnut.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 12/23/2022] Open
Abstract
Emerging research indicates the importance of gut microbiota in mediating the relationship between meat intake and human health outcomes. We aimed to assess the state of available scientific literature on meat intake and gut microbiota in humans (PROSPERO, International Prospective Register of Systematic Reviews, CRD42020135649). We first conducted a scoping review to identify observational and interventional studies on this topic. Searches were performed for English language articles using PubMed, Cochrane Library, Scopus, and CINAHL (Cumulated Index to Nursing and Allied Health Literature) databases from inception to August 2021 and using keywords related to meat (inclusive of mammalian, avian, and aquatic subtypes) and gut microbiota. Of 14,680 records, 85 eligible articles were included in the scoping review, comprising 57 observational and 28 interventional studies. One prospective observational study and 13 randomized controlled trials (RCTs) were identified in adults without diagnosed disease. We included the 13 RCTs, comprising 18 comparisons, in the systematic review to assess the effects of higher and lower intakes of total meat and meat subtypes on the gut microbiota composition. The bacterial composition was differentially affected by consuming diets with and without meat or with varied meat subtypes. For example, higher meat intake tended to decrease population sizes of genera Anerostipes and Faecalibacterium, but it increased the population size of Roseburia across studies. However, the magnitude and directionality of most microbial responses varied, with inconsistent patterns of responses across studies. The data were insufficient for comparison within or between meat subtypes. The paucity of research, especially among meat subtypes, and heterogeneity of findings underscore the need for more well-designed prospective studies and full-feeding RCTs to address the relationships between and effects of consuming total meat and meat subtypes on gut microbiota, respectively.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Cassi N Uffelman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Robert E Bergia
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Caroline M Clark
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Jason B Reed
- Libraries and School of Information Studies, Purdue University, West Lafayette, IN, USA
| | - Tzu-Wen L Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | | - Minghua Tang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
24
|
Schreiner T, Eggerstorfer NM, Morlock GE. Ten-dimensional hyphenation including simulated static gastro-intestinal digestion on the adsorbent surface, planar assays, and bioactivity evaluation for meal replacement products. Food Funct 2023; 14:344-353. [PMID: 36511163 DOI: 10.1039/d2fo02610d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Meal replacement products are normally consumed in weight-loss interventions and the treatment of obesity and diabetes. Changing lifestyles and eating habits made meal replacement products in the forms of shakes and bars a good alternative as To-go-meals, promoted as balanced in its composition and thus healthier compared to other ready-to-eat meals. This study aimed to evaluate the bioactivity of six differently flavoured powdered meal replacement products. Their analysis was made by a ten-dimensional hyphenation composed of digestion on the adsorbent surface, followed by normal-phase high-performance thin-layer chromatographic separation, multi-imaging, and planar assay application (effect-directed analysis), and then heart-cut elution/transfer of bioactive compound zones to reversed-phase high-performance liquid chromatography, diode array detection, and high-resolution tandem mass spectrometry. The on-surface digestion of saccharides, fats, and proteins through intestinal enzymatic activity revealed new breakdown products. These exhibited bioactivity in their different effect-profiles obtained by the Gram-negative Aliivibrio fischeri bioassay as well as α-/β-glucosidase and acetyl-/butyrylcholinesterease inhibition assays. The main bioactive compounds arising through simulated static pancreatic digestion were saturated and unsaturated free fatty acids. The synthetic sweetener sucralose was not influenced by simulated static intestinal digestion, but showed antimicrobial activity. In the prepared drinking meals with coffee and choco flavour, the acetylcholinesterase-inhibiting methylxanthines caffeine and theobromine were identified as bioactive compounds. Some other bioactive constituents could not be assigned to specific molecules and require further analyses. Although the studied meal replacement products showed health-beneficial properties through antimicrobial properties or inhibition of enzymes involved in the expression of the civilisation diseases, such as diabetes and Alzheimer's disease, plant foods, herbs and spices have been shown to be even richer and more versatile in bioactive compounds.
Collapse
Affiliation(s)
- Tamara Schreiner
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Naila Margot Eggerstorfer
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Gertrud Elisabeth Morlock
- Justus Liebig University Giessen, Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
25
|
Santos HO, May TL, Bueno AA. Eating more sardines instead of fish oil supplementation: Beyond omega-3 polyunsaturated fatty acids, a matrix of nutrients with cardiovascular benefits. Front Nutr 2023; 10:1107475. [PMID: 37143475 PMCID: PMC10153001 DOI: 10.3389/fnut.2023.1107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFA) play a significant role in the prevention and management of cardiometabolic diseases associated with a mild chronic pro-inflammatory background, including type 2 diabetes, hypertension, hypertriglyceridaemia, and fatty liver disease. The effects of n-3 PUFA supplements specifically, remain controversial regarding reducing risks of cardiovascular events. n-3 PUFA supplements come at a cost for the consumer and can result in polypharmacy for patients on pharmacotherapy. Sardines are a well-known, inexpensive source of n-3 PUFA and their consumption could reduce the need for n-3 PUFA supplementation. Moreover, sardines contain other cardioprotective nutrients, although further insights are crucial to translate a recommendation for sardine consumption into clinical practice. The present review discusses the matrix of nutrients contained in sardines which confer health benefits for cardiometabolism, beyond n-3 PUFA. Sardines contain calcium, potassium, magnesium, zinc, iron, taurine, arginine and other nutrients which together modulate mild inflammation and exacerbated oxidative stress observed in cardiovascular disease and in haemodynamic dysfunction. In a common serving of sardines, calcium, potassium, and magnesium are the minerals at higher amounts to elicit clinical benefits, whilst other nutrients are present in lower but valuable amounts. A pragmatic approach towards the consumption of such nutrients in the clinical scenario should be adopted to consider the dose-response relationship effects on physiological interactions. As most recommendations currently available are based on an indirect rationale of the physiological actions of the nutrients found in sardines, randomised clinical trials are warranted to expand the evidence on the benefits of sardine consumption.
Collapse
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
- *Correspondence: Heitor O. Santos,
| | - Theresa L. May
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Allain A. Bueno
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
26
|
Yan J, Wang L, Gu Y, Hou H, Liu T, Ding Y, Cao H. Dietary Patterns and Gut Microbiota Changes in Inflammatory Bowel Disease: Current Insights and Future Challenges. Nutrients 2022; 14:nu14194003. [PMID: 36235658 PMCID: PMC9572174 DOI: 10.3390/nu14194003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a result of a complex interplay between genes, host immune response, gut microbiota, and environmental factors. As one of the crucial environmental factors, diet plays a pivotal role in the modulation of gut microbiota community and the development of IBD. In this review, we present an overview of dietary patterns involved in the pathogenesis and management of IBD, and analyze the associated gut microbial alterations. A Westernized diet rich in protein, fats and refined carbohydrates tends to cause dysbiosis and promote IBD progression. Some dietary patterns have been found effective in obtaining IBD clinical remission, including Crohn's Disease Exclusion Diet (CDED), Mediterranean diet (MD), Anti-Inflammatory Diet (AID), the low-"Fermentable Oligo-, Di-, Mono-saccharides and Polyols" (FODMAP) diet, Specific Carbohydrate Diet (SCD), and plant-based diet, etc. Overall, many researchers have reported the role of diet in regulating gut microbiota and the IBD disease course. However, more prospective studies are required to achieve consistent and solid conclusions in the future. This review provides some recommendations for studies exploring novel and potential dietary strategies that prevent IBD.
Collapse
Affiliation(s)
- Jing Yan
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Nutrition, the Second Affiliated Hospital, Air Force Medical University, Xi’an 710038, China
| | - Lei Wang
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Gastroenterology and Hepatology, the Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Yu Gu
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huiqin Hou
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tianyu Liu
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yiyun Ding
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hailong Cao
- Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Tianjin Institute of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence:
| |
Collapse
|
27
|
Li X, Qin H, Li T. Advances in the study of the relationship between Alzheimer's disease and the gastrointestinal microbiome. IBRAIN 2022; 8:465-475. [PMID: 37786585 PMCID: PMC10528962 DOI: 10.1002/ibra.12065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 10/04/2023]
Abstract
There are many trillions of bacteria in the gastrointestinal microbiome (GM). Their ecological dysregulation can contribute to the development of certain neurodegenerative diseases, including Alzheimer's disease (AD). AD is common dementia and its incidence is increasing year by year. However, the relationship between GM and AD is unclear. Therefore, this review discusses the relationship between GM and AD, elaborates on the possible factors that can affect this relationship through the inflammation of the brain induced by blood-brain damage and accumulation of amyloid deposit, and proposes feasible ways to treat AD through GM-related substances, such as probiotics, Mega-3, and gut hormones, including their shortcomings as well.
Collapse
Affiliation(s)
- Xin‐Yan Li
- Southwest Medical UniversityLuzhouSichuanChina
| | - Hao‐Yue Qin
- Southwest Medical UniversityLuzhouSichuanChina
| | - Ting‐Ting Li
- Department of Anesthesiology, Institute of Neurological Disease, West China HospitalSichuan UniversityChengduChina
- Department of Anestheiology, West China Tianfu HospitalSichuan UniversityChengduChina
| |
Collapse
|
28
|
Bock PM, Martins AF, Ramalho R, Telo GH, Leivas G, Maraschin CK, Schaan BD. The impact of dietary, surgical, and pharmacological interventions on gut microbiota in individuals with diabetes mellitus: A systematic review. Diabetes Res Clin Pract 2022; 189:109944. [PMID: 35697155 DOI: 10.1016/j.diabres.2022.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/09/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
AIMS To conduct a systematic review assessing the association between dietary, surgical, and pharmacological interventions and changes in the gut microbiota of individuals with diabetes. METHODS The MEDLINE, EMBASE, and Cochrane Library databases were searched focusing on the effects of dietary, bariatric surgery, and pharmacological interventions on gut microbiota in adults with diabetes. Studies were classified based on qualitative changes using a simple vote-counting method, evaluating reduction, no effect, or an increase in the gut microbiota outcomes. RESULTS 6,004 studies were retained to review their titles and abstracts. A total of 149 full-text articles were reassessed, of which 49 were included in the final analysis. This review indicates that dietary, surgical, and pharmacological interventions increase or decrease bacterial populations from more than 60 families, genera, or species. In general, the interventions led to an increase in the bacterial population from phylum Firmicutes, mainly Lactobacillus species, compared to the gram-negative bacterial population from phylum Bacteroidetes. CONCLUSIONS The results of the included studies suggest that interventions aimed at reducing species related to uncontrolled diabetes and increasing species related to the healthy gut are potential adjuvants in treating diabetes; however, well-conducted interventional studies targeting gut microbiota are necessary.
Collapse
Affiliation(s)
- Patricia M Bock
- Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, Brazil; Faculdades Integradas de Taquara, Taquara, Brazil; National Institute of Science and Technology for Health Technology Assessment (IATS) - CNPq/Brazil, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Andreza F Martins
- Universidade Federal do Rio Grande do Sul, Department of Microbiology, Immunology, and Parasitology, Porto Alegre, Brazil
| | - Rafaela Ramalho
- Universidade Federal do Rio Grande do Sul, Department of Microbiology, Immunology, and Parasitology, Porto Alegre, Brazil
| | - Gabriela H Telo
- Pontifícia Universidade Católica do Rio Grande do Sul, School of Medicine, Internal Medicine Division, Porto Alegre, Brazil
| | - Gabriel Leivas
- Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, Brazil
| | - Clara K Maraschin
- Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, Brazil
| | - Beatriz D Schaan
- Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Department of Internal Medicine, Graduate Program in Medical Sciences: Endocrinology, Porto Alegre, Brazil; National Institute of Science and Technology for Health Technology Assessment (IATS) - CNPq/Brazil, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
29
|
The Role of the Gut Microbiota in the Effects of Early-Life Stress and Dietary Fatty Acids on Later-Life Central and Metabolic Outcomes in Mice. mSystems 2022; 7:e0018022. [PMID: 35695433 PMCID: PMC9238388 DOI: 10.1128/msystems.00180-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Early-life stress (ELS) leads to increased vulnerability for mental and metabolic disorders. We have previously shown that a low dietary ω-6/ω-3 polyunsaturated fatty acid (PUFA) ratio protects against ELS-induced cognitive impairments. Due to the importance of the gut microbiota as a determinant of long-term health, we here study the impact of ELS and dietary PUFAs on the gut microbiota and how this relates to the previously described cognitive, metabolic, and fatty acid profiles. Male mice were exposed to ELS via the limited bedding and nesting paradigm (postnatal day (P)2 to P9 and to an early diet (P2 to P42) with an either high (15) or low (1) ω-6 linoleic acid to ω-3 alpha-linolenic acid ratio. 16S rRNA was sequenced and analyzed from fecal samples at P21, P42, and P180. Age impacted α- and β-diversity. ELS and diet together predicted variance in microbiota composition and affected the relative abundance of bacterial groups at several taxonomic levels in the short and long term. For example, age increased the abundance of the phyla Bacteroidetes, while it decreased Actinobacteria and Verrucomicrobia; ELS reduced the genera RC9 gut group and Rikenella, and the low ω-6/ω-3 diet reduced the abundance of the Firmicutes Erysipelotrichia. At P42, species abundance correlated with body fat mass and circulating leptin (e.g., Bacteroidetes and Proteobacteria taxa) and fatty acid profiles (e.g., Firmicutes taxa). This study gives novel insights into the impact of age, ELS, and dietary PUFAs on microbiota composition, providing potential targets for noninvasive (nutritional) modulation of ELS-induced deficits. IMPORTANCE Early-life stress (ELS) leads to increased vulnerability to develop mental and metabolic disorders; however, the biological mechanisms leading to such programming are not fully clear. Increased attention has been given to the importance of the gut microbiota as a determinant of long-term health and as a potential target for noninvasive nutritional strategies to protect against the negative impact of ELS. Here, we give novel insights into the complex interaction between ELS, early dietary ω-3 availability, and the gut microbiota across ages and provide new potential targets for (nutritional) modulation of the long-term effects of the early-life environment via the microbiota.
Collapse
|
30
|
Keskitalo A, Munukka E, Aatsinki A, Saleem W, Kartiosuo N, Lahti L, Huovinen P, Elo LL, Pietilä S, Rovio SP, Niinikoski H, Viikari J, Rönnemaa T, Lagström H, Jula A, Raitakari O, Pahkala K. An Infancy-Onset 20-Year Dietary Counselling Intervention and Gut Microbiota Composition in Adulthood. Nutrients 2022; 14:2667. [PMID: 35807848 PMCID: PMC9268486 DOI: 10.3390/nu14132667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
The randomized controlled Special Turku Coronary Risk Factor Intervention Project (STRIP) has completed a 20-year infancy-onset dietary counselling intervention to reduce exposure to atherosclerotic cardiovascular disease risk factors via promotion of a heart-healthy diet. The counselling on, e.g., low intake of saturated fat and cholesterol and promotion of fruit, vegetable, and whole-grain consumption has affected the dietary characteristics of the intervention participants. By leveraging this unique cohort, we further investigated whether this long-term dietary intervention affected the gut microbiota bacterial profile six years after the intervention ceased. Our sub-study comprised 357 individuals aged 26 years (intervention n = 174, control n = 183), whose gut microbiota were profiled using 16S rRNA amplicon sequencing. We observed no differences in microbiota profiles between the intervention and control groups. However, out of the 77 detected microbial genera, the Veillonella genus was more abundant in the intervention group compared to the controls (log2 fold-change 1.58, p < 0.001) after adjusting for multiple comparison. In addition, an association between the study group and overall gut microbiota profile was found only in males. The subtle differences in gut microbiota abundances observed in this unique intervention setting suggest that long-term dietary counselling reflecting dietary guidelines may be associated with alterations in gut microbiota.
Collapse
Affiliation(s)
- Anniina Keskitalo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (A.K.); (N.K.); (S.P.R.); (H.N.); (O.R.)
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
- Department of Clinical Microbiology, Turku University Hospital, 20520 Turku, Finland;
| | - Eveliina Munukka
- Microbiome Biobank, Institute of Biomedicine, University of Turku, 20520 Turku, Finland;
| | - Anna Aatsinki
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
| | - Wisam Saleem
- Department of Computing, Faculty of Technology, University of Turku, 20520 Turku, Finland; (W.S.); (L.L.)
| | - Noora Kartiosuo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (A.K.); (N.K.); (S.P.R.); (H.N.); (O.R.)
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
- Department of Mathematics and Statistics, University of Turku, 20520 Turku, Finland
| | - Leo Lahti
- Department of Computing, Faculty of Technology, University of Turku, 20520 Turku, Finland; (W.S.); (L.L.)
| | - Pentti Huovinen
- Department of Clinical Microbiology, Turku University Hospital, 20520 Turku, Finland;
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland;
| | - Laura L. Elo
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland;
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland;
| | - Sami Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland;
| | - Suvi P. Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (A.K.); (N.K.); (S.P.R.); (H.N.); (O.R.)
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
| | - Harri Niinikoski
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (A.K.); (N.K.); (S.P.R.); (H.N.); (O.R.)
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
- Department of Physiology/Department of Pediatrics, University of Turku, 20520 Turku, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, 20520 Turku, Finland; (J.V.); (T.R.)
- Division of Medicine, Turku University Hospital, 20520 Turku, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, 20520 Turku, Finland; (J.V.); (T.R.)
- Division of Medicine, Turku University Hospital, 20520 Turku, Finland
| | - Hanna Lagström
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
- Department of Public Health, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Antti Jula
- Department of Public Health Solutions, Institute for Health and Welfare, 20520 Turku, Finland;
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (A.K.); (N.K.); (S.P.R.); (H.N.); (O.R.)
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, 20520 Turku, Finland
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (A.K.); (N.K.); (S.P.R.); (H.N.); (O.R.)
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
- Paavo Nurmi Centre & Unit for Health and Physical Activity, University of Turku, 20520 Turku, Finland
| |
Collapse
|
31
|
Westheim AJF, Stoffels LM, Dubois LJ, van Bergenhenegouwen J, van Helvoort A, Langen RCJ, Shiri-Sverdlov R, Theys J. Fatty Acids as a Tool to Boost Cancer Immunotherapy Efficacy. Front Nutr 2022; 9:868436. [PMID: 35811951 PMCID: PMC9260274 DOI: 10.3389/fnut.2022.868436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Although immunotherapy represents one of the most potent therapeutic anti-cancer approaches, only a limited number of patients shows clinical benefit. Recent evidence suggests that patients' nutritional status plays a major role in immunotherapy outcome. Fatty acids are essential in a balanced diet and well-known to influence the immune response. Moreover, short-chain fatty acids (SCFAs) show beneficial effects in metabolic disorders as well as in cancer and polyunsaturated fatty acids (PUFAs) contribute to body weight and fat free mass preservation in cancer patients. In line with these data, several studies imply a role for SCFAs and PUFAs in boosting the outcome of immunotherapy. In this review, we specifically focus on mechanistic data showing that SCFAs modulate the immunogenicity of tumor cells and we discuss the direct effects of SCFAs and PUFAs on the immune system in the context of cancer. We provide preclinical and clinical evidence indicating that SCFAs and PUFAs may have the potential to boost immunotherapy efficacy. Finally, we describe the challenges and address opportunities for successful application of nutritional interventions focusing on SCFAs and PUFAs to increase the therapeutic potential of immunotherapeutic approaches for cancer.
Collapse
Affiliation(s)
- Annemarie J. F. Westheim
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Lara M. Stoffels
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Ludwig J. Dubois
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Danone Nutricia Research, Utrecht, Netherlands
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ardy van Helvoort
- Danone Nutricia Research, Utrecht, Netherlands
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- *Correspondence: Jan Theys
| |
Collapse
|
32
|
Attaye I, Warmbrunn MV, Boot ANAF, van der Wolk SC, Hutten BA, Daams JG, Herrema H, Nieuwdorp M. A Systematic Review and Meta-analysis of Dietary Interventions Modulating Gut Microbiota and Cardiometabolic Diseases-Striving for New Standards in Microbiome Studies. Gastroenterology 2022; 162:1911-1932. [PMID: 35151697 DOI: 10.1053/j.gastro.2022.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS Cardiometabolic diseases (CMDs) have shared properties and causes. Insulin resistance is a risk factor and characteristic of CMDs and has been suggested to be modulated by plasma metabolites derived from gut microbiota (GM). Because diet is among the most important modulators of GM, we performed a systematic review of the literature to assess whether CMDs can be modulated via dietary interventions targeting the GM. METHODS A systematic review of the literature for clinical studies was performed on Ovid MEDLINE and Ovid Embase. Studies were assessed for risk of bias and patterns of intervention effects. A meta-analysis with random effects models was used to evaluate the effect of dietary interventions on clinical outcomes. RESULTS Our search yielded 4444 unique articles, from which 15 randomized controlled trials and 6 nonrandomized clinical trials were included. The overall risk of bias was high in all studies. In general, most dietary interventions changed the GM composition, but no consistent effect could be found. Results of the meta-analyses showed that only diastolic blood pressure is decreased across interventions compared with controls (mean difference: -3.63 mm Hg; 95% confidence interval, -7.09 to -0.17; I2 = 0%, P = .04) and that a high-fiber diet was associated with reduced triglyceride levels (mean difference: -0.69 mmol/L; 95% confidence interval, -1.36 to -0.02; I2 = 59%, P = .04). Other CMD parameters were not affected. CONCLUSIONS Dietary interventions modulate GM composition, blood pressure, and circulating triglycerides. However, current studies have a high methodological heterogeneity and risk of bias. Well-designed and controlled studies are thus necessary to better understand the complex interaction between diet, microbiome, and CMDs. PROSPERO CRD42020188405.
Collapse
Affiliation(s)
- Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Moritz V Warmbrunn
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Aureline N A F Boot
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Suze C van der Wolk
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Barbara A Hutten
- Department of Epidemiology and Data Science, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Joost G Daams
- Medical Library, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Lawrence K, Myrissa K, Toribio-Mateas M, Minini L, Gregory AM. Trialling a microbiome-targeted dietary intervention in children with ADHD-the rationale and a non-randomised feasibility study. Pilot Feasibility Stud 2022; 8:108. [PMID: 35606889 PMCID: PMC9125862 DOI: 10.1186/s40814-022-01058-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Dietary interventions have been previously explored in children with ADHD. Elimination diets and supplementation can produce beneficial behaviour changes, but little is known about the mechanisms mediating change. We propose that these interventions may work, in part, by causing changes in the gut microbiota. A microbiome-targeted dietary intervention was developed, and its feasibility assessed. Methods A non-randomised feasibility study was conducted on nine non-medicated children with ADHD, aged 8–13 years (mean 10.39 years), using a prospective one-group pre-test/post-test design. Participants were recruited from ADHD support groups in London and took part in the 6-week microbiome-targeted dietary intervention, which was specifically designed to impact the composition of gut bacteria. Children were assessed pre- and post-intervention on measures of ADHD symptomatology, cognition, sleep, gut function and stool-sample microbiome analysis. The primary aim was to assess the study completion rate, with secondary aims assessing adherence, adverse events (aiming for no severe and minimal), acceptability and suitability of outcome measures. Results Recruitment proved to be challenging and despite targeting 230 participants directly through support groups, and many more through social media, nine families (of the planned 10) signed up for the trial. The completion rate for the study was excellent at 100%. Exploration of secondary aims revealed that (1) adherence to each aspect of the dietary protocol was very good; (2) two mild adverse events were reported; (3) parents rated the treatment as having good acceptability; (4) data collection and outcome measures were broadly feasible for use in an RCT with a few suggestions recommended; (5) descriptive data for outcome measures is presented and suggests that further exploration of gut microbiota, ADHD symptoms and sleep would be helpful in future research. Conclusions This study provides preliminary evidence for the feasibility of a microbiome-targeted dietary intervention in children with ADHD. Recruitment was challenging, but the diet itself was well-tolerated and adherence was very good. Families wishing to trial this diet may find it an acceptable intervention. However, recruitment, even for this small pilot study, was challenging. Because of the difficulty experienced recruiting participants, future randomised controlled trials may wish to adopt a simpler dietary approach which requires less parental time and engagement, in order to recruit the number of participants required to make meaningful statistical interpretations of efficacy. Trial registration ClinicalTrials.gov Identifier: NCT03737877. Registered 13 November 2018—retrospectively registered, within 2 days of the first participant being recruited. Supplementary Information The online version contains supplementary material available at 10.1186/s40814-022-01058-4.
Collapse
Affiliation(s)
- Kate Lawrence
- Department of Psychology & Pedagogic Science, Faculty of Sport, Allied Health and Performance Science, St Mary's University, Twickenham, London, UK.
| | - Kyriaki Myrissa
- Department of Health Sciences, Faculty of Sport, Allied Health and Performance Science, St Mary's University, Twickenham, London, UK
| | - Miguel Toribio-Mateas
- School of Health and Education, Middlesex University, London, UK.,School of Applied Science, London South Bank University, London, UK
| | - Lori Minini
- Department of Psychology & Pedagogic Science, Faculty of Sport, Allied Health and Performance Science, St Mary's University, Twickenham, London, UK
| | - Alice M Gregory
- Department of Psychology, Goldsmiths, University of London, London, UK
| |
Collapse
|
34
|
Olendzki B, Bucci V, Cawley C, Maserati R, McManus M, Olednzki E, Madziar C, Chiang D, Ward DV, Pellish R, Foley C, Bhattarai S, McCormick BA, Maldonado-Contreras A. Dietary manipulation of the gut microbiome in inflammatory bowel disease patients: Pilot study. Gut Microbes 2022; 14:2046244. [PMID: 35311458 PMCID: PMC8942410 DOI: 10.1080/19490976.2022.2046244] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Diet is a modifiable, noninvasive, inexpensive behavior that is crucial in shaping the intestinal microbiome. A microbiome "imbalance" or dysbiosis in inflammatory bowel disease (IBD) is linked to inflammation. Here, we aim to define the impact of specific foods on bacterial species commonly depleted in patients with IBD to better inform dietary treatment. We performed a single-arm, pre-post intervention trial. After a baseline period, a dietary intervention with the IBD-Anti-Inflammatory Diet (IBD-AID) was initiated. We collected stool and blood samples and assessed dietary intake throughout the study. We applied advanced computational approaches to define and model complex interactions between the foods reported and the microbiome. A dense dataset comprising 553 dietary records and 340 stool samples was obtained from 22 participants. Consumption of prebiotics, probiotics, and beneficial foods correlated with increased abundance of Clostridia and Bacteroides, commonly depleted in IBD cohorts. We further show that specific foods categorized as prebiotics or adverse foods are correlated to levels of cytokines in serum (i.e., GM-CSF, IL-6, IL-8, TNF-alpha) that play a central role in IBD pathogenesis. By using robust predictive analytics, this study represents the first steps to detangle diet-microbiome and diet-immune interactions to inform personalized nutrition for patients suffering from dysbiosis-related IBD.
Collapse
Affiliation(s)
- Barbara Olendzki
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Vanni Bucci
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Caitlin Cawley
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rene Maserati
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Margaret McManus
- Center for Clinical and Translational Science, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Effie Olednzki
- Center for Applied Nutrition, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Camilla Madziar
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - David Chiang
- Department of Medicine,University of Massachusetts Medical SchoolWorcester, Massachusetts, USA
| | - Doyle V. Ward
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Randall Pellish
- UMass Memorial Medical Center University Campus, Department of Gastroenterology
| | - Christine Foley
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shakti Bhattarai
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics. University of Massachusetts Medical School, Worcester, Massachusetts, USA,CONTACT Ana Maldonado-Contreras Department of Microbiology and Physiological Systems and Program of Microbiome Dynamics, 368 Plantation Street, Albert Sherman Center, Office AS.81045, Worcester, Massachusetts, 01605, Worcester, Massachusetts, USA
| |
Collapse
|
35
|
Zorgetto-Pinheiro VA, Machate DJ, Figueiredo PS, Marcelino G, Hiane PA, Pott A, Guimarães RDCA, Bogo D. Omega-3 Fatty Acids and Balanced Gut Microbiota on Chronic Inflammatory Diseases: A Close Look at Ulcerative Colitis and Rheumatoid Arthritis Pathogenesis. J Med Food 2022; 25:341-354. [PMID: 35438557 DOI: 10.1089/jmf.2021.0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this article was to review experimental and clinical studies regarding the use of omega-3 fatty acids on the prevention and control of chronic inflammatory diseases with autoimmune background through the gut microbiota modulation. For this, natural omega-3 sources are presented emphasizing the importance of a healthy diet for the body's homeostasis and the enzymatic processes that these fatty acids go through once inside the body. The pathogenesis of ulcerative colitis and rheumatoid arthritis are revisited under the light of the gut microbiota dysbiosis approach and how those fatty acids are able to prevent and control these two pathological conditions that are responsible for the global chronic burden and functional disability and life-threatening comorbidities if not treated properly. As a matter of reflection, as we are living a pandemic crisis owing to COVID-19 infection, we present the potential of omega-3 in preventing a poor prognosis once they contribute to balancing the immune system modulation the inflammatory process.
Collapse
Affiliation(s)
- Verônica Assalin Zorgetto-Pinheiro
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - David Johane Machate
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Graduate Program in Science of Materials, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Priscila Silva Figueiredo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Arnildo Pott
- Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
36
|
Mora I, Arola L, Caimari A, Escoté X, Puiggròs F. Structured Long-Chain Omega-3 Fatty Acids for Improvement of Cognitive Function during Aging. Int J Mol Sci 2022; 23:3472. [PMID: 35408832 PMCID: PMC8998232 DOI: 10.3390/ijms23073472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Although the human lifespan has increased in the past century owing to advances in medicine and lifestyle, the human healthspan has not kept up the same pace, especially in brain aging. Consequently, the role of preventive health interventions has become a crucial strategy, in particular, the identification of nutritional compounds that could alleviate the deleterious effects of aging. Among nutrients to cope with aging in special cognitive decline, the long-chain omega-3 polyunsaturated fatty acids (ω-3 LCPUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have emerged as very promising ones. Due to their neuroinflammatory resolving effects, an increased status of DHA and EPA in the elderly has been linked to better cognitive function and a lower risk of dementia. However, the results from clinical studies do not show consistent evidence and intake recommendations for old adults are lacking. Recently, supplementation with structured forms of EPA and DHA, which can be derived natural forms or targeted structures, have proven enhanced bioavailability and powerful benefits. This review summarizes present and future perspectives of new structures of ω-3 LCPUFAs and the role of "omic" technologies combined with the use of high-throughput in vivo models to shed light on the relationships and underlying mechanisms between ω-3 LCPUFAs and healthy aging.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| |
Collapse
|
37
|
Zeng C, Liu X, Zhu S, Xiong D, Zhu L, Hou X, Zou K, Bai T. Resolvin D1 ameliorates hepatic steatosis by remodeling the gut microbiota and restoring the intestinal barrier integrity in DSS-induced chronic colitis. Int Immunopharmacol 2022; 103:108500. [PMID: 34974401 DOI: 10.1016/j.intimp.2021.108500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE The maintenance of intestinalmucosalbarrier function plays an important role in hepatic steatosis. Increasing evidence has shown that resolvin D1 (RVD1) exerts a potential effect on hepatic steatosis. The aims of this study were to explore the mechanisms of RVD1 on hepatic steatosis based on the gut-liver axis and intestinal barrier function. EXPERIMENTAL APPROACH We established a DSS-induced chronic colitis model to evaluate hepatic steatosis. RVD1 was administered i.p. during the last 4 weeks. The colon and liver samples were stained with hematoxylin and eosin for histopathological analysis. The expression levels of intestinal tight junction genes and inflammatory genes were determined by quantitative PCR. The serum levels of glucose, cholesterol, triglycerides and LPS were measured, and the gut microbiota was analyzed by 16S rRNA gene sequencing. KEY RESULTS RVD1 prevented weight loss, histopathological changes, and elevated levels of inflammatory cytokines. Moreover, RVD1 administration attenuated DSS-induced hepatic steatosis and inflammatory responses in mice. In addition, RVD1 improved intestinal barrier function by increasing levels of tight junction molecules and decreasing the plasma LPS levels. The RVD1-treated mice also showed a different gut microbiota composition compared with found in the mice belonging to the DSS group but similar to that in normal chow diet-fed mice. CONCLUSIONS AND IMPLICATIONS RVD1 treatment ameliorates DSS-induced hepatic steatosis by ameliorating gut inflammation, improving intestinal barrier function and modulating intestinal dysbiosis.
Collapse
Affiliation(s)
- Cui Zeng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinghuang Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Siran Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Danping Xiong
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kaifang Zou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
38
|
Egerton S, Donoso F, Fitzgerald P, Gite S, Fouhy F, Whooley J, Dinan TG, Cryan JF, Culloty SC, Ross RP, Stanton C. Investigating the potential of fish oil as a nutraceutical in an animal model of early life stress. Nutr Neurosci 2022; 25:356-378. [PMID: 32734823 DOI: 10.1080/1028415x.2020.1753322] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: Early life stress is a key predisposing factor for depression and anxiety disorders. Selective serotonin re-uptake inhibitors (SSRI) are frequently used as the first line of pharmacology treatment for depression but have several negative qualities, i.e. a delay or absence of effectiveness and negative side-effects. Therefore, there is a growing need for new nutraceutical-based strategies to blunt the effects of adverse-life events.Objectives: This study aimed to use the maternal separation model in rats to test the efficacy of fish oil dietary supplementation, on its own and in conjunction with the SSRI anti-depressant fluoxetine, as a treatment for depressive and anxiety-like symptoms associated with early life stress.Methods: Behavioural tests (open field test, elevated plus maze test and forced swim test) and biochemical markers (corticosterone, BDNF, brain fatty acids and short chain fatty acids) were used to analyse the effects of the dietary treatments. Gut microbial communities and relating metabolites (SCFA) were analysed to investigate possible changes in the microbiota-gut-brain axis.Results: Maternally separated rats showed depressive-like behaviours in the forced swim and open field tests. These behaviours were prevented significantly by fluoxetine administration and in part by fish oil supplementation. Associated biochemical changes reported include altered brain fatty acids, significantly lower plasma corticosterone levels (AUC) and reduced brain stem serotonin turnover, compared to untreated, maternally separated (MS) rats. Untreated MS animals had significantly lower ratios of SCFA producers such as Caldicoprobacteraceae, Streptococcaceae, Rothia, Lachnospiraceae_NC2004_group, and Ruminococcus_2, along with significantly reduced levels of total SCFA compared to non-separated animals. Compared to untreated MS animals, animals fed fish oil had significantly higher Bacteroidetes and Prevotellaceae and reduced levels of butyrate, while fluoxetine treatment resulted in significantly higher levels of Neochlamydia, Lachnoclostridium, Acetitomaculum and Stenotrophomonas and, acetate and propionate.Conclusion: Despite the limitations in extrapolating from animal behavioural data and the notable differences in pharmacokinetics between rodents and humans, the results of this study provide a further advancement into the understanding of some of the complex systems within which nutraceuticals and pharmaceuticals effect the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Sian Egerton
- School of Microbiology, University College Cork, Cork, Ireland
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Francisco Donoso
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | | | - Snehal Gite
- APC Microbiome Ireland, Cork, Ireland
- Biomarine Ingredients Ireland Ltd., Monaghan, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Jason Whooley
- Biomarine Ingredients Ireland Ltd., Monaghan, Ireland
| | - Ted G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Sarah C Culloty
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
39
|
Beneficial effects of eicosapentaenoic acid on the metabolic profile of obese female mice entails upregulation of HEPEs and increased abundance of enteric Akkermansia muciniphila. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159059. [PMID: 34619367 PMCID: PMC8627244 DOI: 10.1016/j.bbalip.2021.159059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Eicosapentaenoic acid (EPA) ethyl esters are of interest given their clinical approval for lowering circulating triglycerides and cardiometabolic disease risk. EPA ethyl esters prevent metabolic complications driven by a high fat diet in male mice; however, their impact on female mice is less studied. Herein, we first investigated how EPA influences the metabolic profile of female C57BL/6J mice consuming a high fat diet. EPA lowered murine fat mass accumulation, potentially through increased biosynthesis of 8-hydroxyeicosapentaenoic acid (HEPE), as revealed by mass spectrometry and cell culture studies. EPA also reversed the effects of a high fat diet on circulating levels of insulin, glucose, and select inflammatory/metabolic markers. Next, we studied if the improved metabolic profile of obese mice consuming EPA was associated with a reduction in the abundance of key gut Gram-negative bacteria that contribute toward impaired glucose metabolism. Using fecal 16S-ribosomal RNA gene sequencing, we found EPA restructured the gut microbiota in a time-dependent manner but did not lower the levels of key Gram-negative bacteria. Interestingly, EPA robustly increased the abundance of the Gram-negative Akkermansia muciniphila, which controls glucose homeostasis. Finally, predictive functional profiling of microbial communities revealed EPA-mediated reversal of high fat diet-associated changes in a wide range of genes related to pathways such as Th-17 cell differentiation and PI3K-Akt signaling. Collectively, these results show that EPA ethyl esters prevent some of the deleterious effects of a high fat diet in female mice, which may be mediated mechanistically through 8-HEPE and the upregulation of intestinal Akkermansia muciniphila.
Collapse
|
40
|
Frausto DM, Forsyth CB, Keshavarzian A, Voigt RM. Dietary Regulation of Gut-Brain Axis in Alzheimer's Disease: Importance of Microbiota Metabolites. Front Neurosci 2021; 15:736814. [PMID: 34867153 PMCID: PMC8639879 DOI: 10.3389/fnins.2021.736814] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that impacts 45 million people worldwide and is ranked as the 6th top cause of death among all adults by the Centers for Disease Control and Prevention. While genetics is an important risk factor for the development of AD, environment and lifestyle are also contributing risk factors. One such environmental factor is diet, which has emerged as a key influencer of AD development/progression as well as cognition. Diets containing large quantities of saturated/trans-fats, refined carbohydrates, limited intake of fiber, and alcohol are associated with cognitive dysfunction while conversely diets low in saturated/trans-fats (i.e., bad fats), high mono/polyunsaturated fats (i.e., good fats), high in fiber and polyphenols are associated with better cognitive function and memory in both humans and animal models. Mechanistically, this could be the direct consequence of dietary components (lipids, vitamins, polyphenols) on the brain, but other mechanisms are also likely to be important. Diet is considered to be the single greatest factor influencing the intestinal microbiome. Diet robustly influences the types and function of micro-organisms (called microbiota) that reside in the gastrointestinal tract. Availability of different types of nutrients (from the diet) will favor or disfavor the abundance and function of certain groups of microbiota. Microbiota are highly metabolically active and produce many metabolites and other factors that can affect the brain including cognition and the development and clinical progression of AD. This review summarizes data to support a model in which microbiota metabolites influence brain function and AD.
Collapse
Affiliation(s)
- Dulce M. Frausto
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Christopher B. Forsyth
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| | - Robin M. Voigt
- Rush Medical College, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
41
|
Ma MY, Li KL, Zheng H, Dou YL, Han LY, Wang L. Omega-3 index and type 2 diabetes: Systematic review and meta-analysis. Prostaglandins Leukot Essent Fatty Acids 2021; 174:102361. [PMID: 34740031 DOI: 10.1016/j.plefa.2021.102361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/10/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND OBJECTIVES The relationship between omega-3 index and type 2 diabetes (T2D) is not well established. It is unclear if the change of omega-3 index will affect T2D. Aiming of the present systematic review was to elucidate the correlation between omega-3 index and T2D. METHODS AND STUDY DESIGN A comprehensive search on PubMed, EMBASE and Web of Science (from 1948 to May 2021) was conducted. The overall effect size (standard mean difference) was combined using a random-effect model. RESULTS Eight eligible case-control studies were identified, and there were 1,357 patients with T2D and 1,616 non-diabetic controls. The result showed that the omega-3 index was significantly lower in diabetic cases than that in controls (SMD= -1.31; 95% confidence interval (CI): -1.40, -1.22), but with significant heterogeneity (I2 = 99.0%). In subgroup analysis based on race, a negative correlation was found in Asians (SMD = -1.71; 95% CI: -1.82, -1.60), and heterogeneity was substantially decreased (I2=0). CONCLUSIONS omega-3 index is negatively correlated with T2D, which indicated that increased dietary intake of omega-3 fatty acids might have beneficial on T2D prevention.
Collapse
Affiliation(s)
- Mu-Yuan Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ke-Lei Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
| | - Hui Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ya-Li Dou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li-Yao Han
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
42
|
Microbiome Changes after Type 2 Diabetes Treatment: A Systematic Review. ACTA ACUST UNITED AC 2021; 57:medicina57101084. [PMID: 34684121 PMCID: PMC8540512 DOI: 10.3390/medicina57101084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Background and objectives: Although the role of the gut microbiome in type 2 diabetes (T2D) pathophysiology is evident, current systematic reviews and meta-analyses analyzing T2D treatment mainly focus on metabolic outcomes. The objective of this study is to evaluate the microbiome and metabolic changes after different types of treatment in T2D patients. Materials and Methods: A systematic search of PubMed, Wiley online library, Science Direct, and Cochrane library electronic databases was performed. Randomized controlled clinical trials published in the last five years that included T2D subjects and evaluated the composition of the gut microbiome alongside metabolic outcomes before and after conventional or alternative glucose lowering therapy were selected. Microbiome changes were evaluated alongside metabolic outcomes in terms of bacteria taxonomic hierarchy, intestinal flora biodiversity, and applied intervention. Results: A total of 16 eligible studies involving 1301 participants were reviewed. Four trials investigated oral glucose-lowering treatment, three studies implemented bariatric surgery, and the rest analyzed probiotic, prebiotic, or synbiotic effects. The most common alterations were increased abundance of Firmicutes and Proteobacteria parallel to improved glycemic control. Bariatric surgery, especially Roux-en-Y gastric bypass, led to the highest variety of changed bacteria phyla. Lower diversity post-treatment was the most significant biodiversity result, which was present with improved glycemic control. Conclusions: Anti-diabetic treatment induced the growth of depleted bacteria. A gut microbiome similar to healthy individuals was achieved during some trials. Further research must explore the most effective strategies to promote beneficial bacteria, lower diversity, and eventually reach a non-T2D microbiome.
Collapse
|
43
|
Li J, Wan Y, Zheng Z, Zhang H, Li Y, Guo X, Li K, Li D. Maternal n-3 polyunsaturated fatty acids restructure gut microbiota of offspring mice and decrease their susceptibility to mammary gland cancer. Food Funct 2021; 12:8154-8168. [PMID: 34291263 DOI: 10.1039/d1fo00906k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Our previous studies have revealed that a maternal diet rich in n-3 polyunsaturated fatty acids (PUFAs) is associated with decreased mammary cancer risk in offspring. However, the underlying mechanism remains unclear. The present study aimed to investigate the possible mechanism by which maternal n-3 PUFAs decrease the mammary cancer risk of offspring in terms of gut microbiota. C57BL/6 pregnant mice were fed a control standard chow (CON), fish oil supplemented diet (n-3 Sup-FO), flaxseed oil supplemented diet (n-3 Sup-FSO) or n-3 PUFA deficient diet (n-3 Def) (n = 10) throughout gestation and lactation. After weaning, all offspring were fed a AIN-93G diet. The tumor incidence and volume were significantly increased in n-3 Def offspring compared with the other groups. Maternal n-3 PUFA supplementation resulted in a significantly increased α-diversity of the gut microbiota in n-3 Sup-FO and n-3 Sup-FSO offspring compared with that in n-3 Def offspring. The relative abundances of Akkermansia, Lactobacillus and Mucispirillum observed in adult offspring of both the n-3 Sup-FO and n-3 Sup-FSO groups were higher than those observed in the control group, whereas the maternal n-3 Def diet was associated with decreased abundances of Lactobacillus, Bifidobacterium and Barnesiella in 7-week-old offspring. The levels of the pro-inflammatory factors IL-1β, IL-6 and TNF-α were significantly lower in n-3 PUFA supplemented offspring than in n-3 Def offspring. In addition, the abundance of Mucispirillum was positively associated with the concentration of the anti-inflammatory factor IL-10, whereas the abundances of Bifidobacterium and Akkermansia were negatively associated with IL-1β and IL-6, respectively. Based on the bacterial composition of the gut microbiota, metabolites were predicted and the results showed that arachidonic acid metabolism and the MAPK signaling pathways were more enriched, while the butyric acid metabolic pathway was less enriched in offspring of the n-3 Def group than in those of the other three groups. Our findings suggest that decreased pro-inflammatory factors and changed gut microbiota are associated with the protective effects of maternal n-3 PUFAs against offspring's mammary tumorigenesis.
Collapse
Affiliation(s)
- Jiaomei Li
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
The role of a Mediterranean diet and physical activity in decreasing age-related inflammation through modulation of the gut microbiota composition. Br J Nutr 2021; 128:1299-1314. [PMID: 34423757 DOI: 10.1017/s0007114521003251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic inflammation is known to be a predominant factor in the development of many age-related conditions including CVD, type II diabetes and neurodegenerative diseases. Previous studies have demonstrated that during the ageing process there is an increase in inflammatory biomarkers, which may be partially brought about by detrimental changes in the gut microbiota. The Mediterranean diet (MedDiet) and physical activity (PA) are protective against inflammation and chronic disease, and emerging evidence has shown that these effects may be partially mediated through favourable changes in the gut microbiota. In this review, we have evaluated the published literature on the effect of a MedDiet and PA on the gut microbiota. We also discuss the relationship between the gut microbiota and inflammation with a focus on healthy ageing. While inconsistent study designs make forming definitive conclusions challenging, the current evidence suggests that both a MedDiet and PA are capable of modifying the gut microbiota in a way that is beneficial to host health. For example, the increases in the relative abundance of SCFA producing bacteria that are considered to possess anti-inflammatory properties. Modification of the gut microbiota through a MedDiet and PA presents as a potential method to attenuate age-related increases in inflammation, and additional studies utilising older individuals are needed to fill the knowledge gaps existing in current literature.
Collapse
|
45
|
Ghorbani Y, Schwenger KJP, Allard JP. Manipulation of intestinal microbiome as potential treatment for insulin resistance and type 2 diabetes. Eur J Nutr 2021; 60:2361-2379. [PMID: 33651137 DOI: 10.1007/s00394-021-02520-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Increasing evidence suggests that the intestinal microbiome (IM) and bacterial metabolites may influence glucose homeostasis, energy expenditure and the intestinal barrier integrity and lead to the presence of systemic low-grade inflammation, all of which can contribute to insulin resistance (IR) and type 2 diabetes (T2D). The purpose of this review is to explore the role of the IM and bacterial metabolites in the pathogenesis and treatment of these conditions. RESULTS This review summarizes research focused on how to modulate the IM through diet, prebiotics, probiotics, synbiotics and fecal microbiota transplant in order to treat IR and T2D. CONCLUSION There is an abundance of evidence suggesting a role for IM in the pathogenesis of IR and T2D based on reviewed studies using various methods to modulate IM and metabolites. However, the results are inconsistent. Future research should further assess this relationship.
Collapse
Affiliation(s)
- Yasaman Ghorbani
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital, University Health Network, Toronto, Canada
| | | | - Johane P Allard
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital, University Health Network, Toronto, Canada.
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, Canada.
- Department of Medicine, Division of Gastroenterology, Toronto General Hospital, 585 University Avenue, 9N-973, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
46
|
Ajabnoor SM, Thorpe G, Abdelhamid A, Hooper L. Long-term effects of increasing omega-3, omega-6 and total polyunsaturated fats on inflammatory bowel disease and markers of inflammation: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr 2021; 60:2293-2316. [PMID: 33084958 DOI: 10.1007/s00394-020-02413-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Effects of long-chain omega-3 (LCn3) and omega-6 fatty acids on prevention and treatment of inflammatory bowel diseases (IBD, including Crohn's Disease, CD and ulcerative colitis, UC), and inflammation are unclear. We systematically reviewed long-term effects of omega-3, omega-6 and total polyunsaturated fats (PUFA) on IBD diagnosis, relapse, severity, pharmacotherapy, quality of life and key inflammatory markers. METHODS We searched Medline, Embase, Cochrane CENTRAL, and trials registries, including RCTs in adults with or without IBD comparing higher with lower omega-3, omega-6 and/or total PUFA intake for ≥ 24 weeks that assessed IBD-specific outcomes or inflammatory biomarkers. RESULTS We included 83 RCTs (41,751 participants), of which 13 recruited participants with IBD. Increasing LCn3 may reduce risk of IBD relapse (RR 0.85, 95% CI 0.72-1.01) and IBD worsening (RR 0.85, 95% CI 0.71-1.03), and reduce erythrocyte sedimentation rate (ESR, SMD - 0.23, 95% CI - 0.44 to - 0.01), but may increase IBD diagnosis risk (RR 1.10, 95% CI 0.63-1.92), and faecal calprotectin, a specific inflammatory marker for IBD (MD 16.1 μg/g, 95% CI - 37.6 to 69.8, all low-quality evidence). Outcomes for alpha-linolenic acid, omega-6 and total PUFA were sparse, but suggested little or no effect where data were available. CONCLUSION This is the most comprehensive meta-analysis of RCTs investigating long-term effects of omega-3, omega-6 and total PUFA on IBD and inflammatory markers. Our findings suggest that supplementation with PUFAs has little or no effect on prevention or treatment of IBD and provides little support for modification of long-term inflammatory status.
Collapse
Affiliation(s)
- Sarah M Ajabnoor
- Norwich Medical School, University of East Anglia, Norwich, UK.
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80324, Jeddah, 21589, Saudi Arabia.
| | - Gabrielle Thorpe
- School of Health Sciences, University of East Anglia, Norwich, UK
| | | | - Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
47
|
Sanjulián L, Lamas A, Barreiro R, Cepeda A, Fente CA, Regal P. Bacterial Diversity of Breast Milk in Healthy Spanish Women: Evolution from Birth to Five Years Postpartum. Nutrients 2021; 13:2414. [PMID: 34371924 PMCID: PMC8308733 DOI: 10.3390/nu13072414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
The objective of this work was to characterize the microbiota of breast milk in healthy Spanish mothers and to investigate the effects of lactation time on its diversity. A total of ninety-nine human milk samples were collected from healthy Spanish women and were assessed by means of next-generation sequencing of 16S rRNA amplicons and by qPCR. Firmicutes was the most abundant phylum, followed by Bacteroidetes, Actinobacteria, and Proteobacteria. Accordingly, Streptococcus was the most abundant genus. Lactation time showed a strong influence in milk microbiota, positively correlating with Actinobacteria and Bacteroidetes, while Firmicutes was relatively constant over lactation. 16S rRNA amplicon sequencing showed that the highest alpha-diversity was found in samples of prolonged lactation, along with wider differences between individuals. As for milk nutrients, calcium, magnesium, and selenium levels were potentially associated with Streptococcus and Staphylococcus abundance. Additionally, Proteobacteria was positively correlated with docosahexaenoic acid (DHA) levels in breast milk, and Staphylococcus with conjugated linoleic acid. Conversely, Streptococcus and trans-palmitoleic acid showed a negative association. Other factors such as maternal body mass index or diet also showed an influence on the structure of these microbial communities. Overall, human milk in Spanish mothers appeared to be a complex niche shaped by host factors and by its own nutrients, increasing in diversity over time.
Collapse
Affiliation(s)
| | - Alexandre Lamas
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (L.S.); (R.B.); (A.C.); (C.A.F.)
| | | | | | | | - Patricia Regal
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (L.S.); (R.B.); (A.C.); (C.A.F.)
| |
Collapse
|
48
|
Gu M, Liu C, Yang T, Zhan M, Cai Z, Chen Y, Chen Q, Wang Z. High-Fat Diet Induced Gut Microbiota Alterations Associating With Ghrelin/Jak2/Stat3 Up-Regulation to Promote Benign Prostatic Hyperplasia Development. Front Cell Dev Biol 2021; 9:615928. [PMID: 34249898 PMCID: PMC8264431 DOI: 10.3389/fcell.2021.615928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
The role of high-fat diet (HFD) induced gut microbiota alteration and Ghrelin as well as their correlation in benign prostatic hyperplasia (BPH) were explored in our study. The gut microbiota was analyzed by 16s rRNA sequencing. Ghrelin levels in serum, along with Ghrelin and Ghrelin receptor in prostate tissue of mice and patients with BPH were measured. The effect of Ghrelin on cell proliferation, apoptosis, and induction of BPH in mice was explored. Our results indicated that BPH mice have the highest ratio of Firmicutes and Bacteroidetes induced by HFD, as well as Ghrelin level in serum and prostate tissue was significantly increased compared with control. Elevated Ghrelin content in the serum and prostate tissue of BPH patients was also observed. Ghrelin promotes cell proliferation while inhibiting cell apoptosis of prostate cells. The effect of Ghrelin on enlargement of the prostate was found almost equivalent to that of testosterone propionate (TP) which may be attenuated by Ghrelin receptor antagonist YIL-781. Ghrelin could up-regulate Jak2/pJak2/Stat3/pStat3 expression in vitro and in vivo. Our results suggested that Gut microbiota may associate with Ghrelin which plays an important role in activation of Jak2/Stat3 in BPH development. Gut microbiota and Ghrelin might be pathogenic factors for BPH and could be used as a target for mediation.
Collapse
Affiliation(s)
- Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong Liu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - TianYe Yang
- Department of Emergency, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikang Cai
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbo Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Potential benefits of high-added-value compounds from aquaculture and fish side streams on human gut microbiota. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Guedes M, Vieira SF, Reis RL, Ferreira H, Neves NM. Fishroesomes as carriers with antioxidant and anti-inflammatory bioactivities. Biomed Pharmacother 2021; 140:111680. [PMID: 34020247 DOI: 10.1016/j.biopha.2021.111680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022] Open
Abstract
The great diversity of marine habitats and organisms renders them a high-value source to find/develop novel drugs and formulations. Therefore, herein, sardine (Sardina pilchardus) roe was used as a lipidic source to produce liposomes. This fish product presents high nutritional value, being its lipidic content associated with important health benefits. Consequently, it can be advantageously used to produce therapeutically active delivery devices. Roe lipids were extracted using the Matyash method. After lipid film hydration and extrusion, sardine roe-derived large unilamellar liposomes (LUVs), designated as fishroesomes, presented a size of ≈330 nm and a significant negative surface charge (≈-27 mV). Radical scavenging assays demonstrated that fishroesomes efficiently neutralized peroxyl, hydroxyl and nitric oxide radicals. Moreover, fishroesomes significantly reduced the expression of pro-inflammatory cytokines and chemokines by LPS-stimulated macrophages at non-toxic concentrations for L929 and THP-1 cells. Consequently, the developed liposomes exhibit unique properties as bioactive drug carriers for inflammatory diseases treatment.
Collapse
Affiliation(s)
- Marta Guedes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sara F Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|