1
|
Deng X, Yang Z, Chan KW, Ismail N, Abu Bakar MZ. 5-Fluorouracil in Combination with Calcium Carbonate Nanoparticles Loaded with Antioxidant Thymoquinone against Colon Cancer: Synergistically Therapeutic Potential and Underlying Molecular Mechanism. Antioxidants (Basel) 2024; 13:1030. [PMID: 39334689 PMCID: PMC11429434 DOI: 10.3390/antiox13091030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Colon cancer is the third most common cancer worldwide, with high mortality. Adverse side effects and chemoresistance of the first-line chemotherapy 5-fluorouracil (5-FU) have promoted the widespread use of combination therapies. Thymoquinone (TQ) is a natural compound with potent antioxidant activity. Loading antioxidants into nano delivery systems has been a major advance in enhancing their bioavailability to improve clinical application. Hence, this study aimed to prepare the optimal TQ-loaded calcium carbonate nanoparticles (TQ-CaCO3 NPs) and investigate their therapeutic potential and underlying molecular mechanisms of TQ-CaCO3 NPs in combination with 5-FU against colon cancer. Firstly, we developed purely aragonite CaCO3 NPs with a facile mechanical ball-milling method. The pH-sensitive and biocompatible TQ-CaCO3 NPs with sustained release properties were prepared using the optimal synthesized method (a high-speed homogenizer). The in vitro study revealed that the combination of TQ-CaCO3 NPs (15 μM) and 5-FU (7.5 μM) inhibited CT26 cell proliferation and migration, induced cell apoptosis and cell cycle arrest in the G0/G1 phase, and suppressed the CT26 spheroid growth, exhibiting a synergistic effect. Finally, network pharmacology and molecular docking results indicated the potential targets and crucial signaling pathways of TQ-CaCO3 NPs in combination with 5-FU against colon cancer. Therefore, TQ-CaCO3 NPs combined with 5-FU could enhance the anti-colon cancer effects of 5-FU with broader therapeutic targets, warranting further application for colon cancer treatment.
Collapse
Affiliation(s)
- Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Zhang C, Yin Z, Hu F, Lin X, Guan Q, Zhang F, Zhang X. Omega-3 Polyunsaturated Fatty Acids Alleviate Intestinal Barrier Dysfunction in Obstructive Jaundice Rats. Mol Biotechnol 2024; 66:1954-1960. [PMID: 37507597 DOI: 10.1007/s12033-023-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Obstructive jaundice (OJ) can cause multiple pathophysiological consequences including intestinal barrier dysfunction. Omega-3 has been indicated to have a promising therapeutic effect on OJ. This study aimed to further investigate the functions of omega-3 on OJ-induced intestinal injury. A rat OJ model was established by bile duct ligation with or without omega-3 administration. ELISA was utilized for measuring serum levels of inflammatory cytokines. Hematoxylin-eosin staining and TUNEL staining were employed for detecting the morphological changes and cell apoptosis in rat intestine. Western blotting was utilized for evaluating expression of tight junction proteins in the intestinal tissues. Omgea-3 offset the reduction in body weight of OJ rats. Omega-3 alleviated inflammatory response, pathological damages and cell apoptosis in the intestine of OJ rats. Additionally, omega-3 enhanced levels of tight junction proteins in the intestinal tissues of OJ rats. Omega-3 ameliorates OJ-triggered impairment of intestinal barrier function in rats.
Collapse
Affiliation(s)
- Changxi Zhang
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Zhicheng Yin
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Feng'ai Hu
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Xutao Lin
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Qinghai Guan
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Fan Zhang
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Xingyuan Zhang
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China.
| |
Collapse
|
3
|
Aref M, FaragAllah EM, Goda NIA, Abu-Alghayth MH, Abomughaid MM, Mahboub HH, Alwutayd KM, Elsherbini HA. Chia seeds ameliorate cardiac disease risk factors via alleviating oxidative stress and inflammation in rats fed high-fat diet. Sci Rep 2024; 14:2940. [PMID: 38316807 PMCID: PMC10844609 DOI: 10.1038/s41598-023-41370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/25/2023] [Indexed: 02/07/2024] Open
Abstract
Obesity upsurges the risk of developing cardiovascular disease, primarily heart failure and coronary heart disease. Chia seeds have a high concentration of dietary fiber and increased concentrations of anti-inflammatoryand antioxidant compounds. They are used for weight loss plus enhancing blood glucose and lipid profile. The current perspective was commenced to examine the protective influence of chia seeds ingestion on cardiovascular disease risk factors in high-fat diet-fed rats. Forty male albino rats (with an initial body weight of 180-200 g) were used in this study. Rats were randomly and equally divided into 4 groups: Group I was the control group and group II was a control group with chia seeds supplementation. Group III was a high-fat diet group (HFD) that received HFD for 10 weeks and group IV was fed on HFD plus chia seeds for 10 weeks. In all groups Echocardiographic measurements were performed, initial and final BMI, serum glucose, AC/TC ratio, lipid profile, insulin (with a computed HOMA-IR), creatinine phosphokinase-muscle/brain (CPK-MB), CRP, and cardiac troponin I (cTnI) and MAP were estimated. Whole heart weight (WHW) was calculated, and then WHW/body weight (BW) ratio was estimated. Eventually, a histopathological picture of cardiac tissues was performed to assess the changes in the structure of the heart under Haematoxylin and Eosin and Crossmon's trichrome stain. Ingestion of a high diet for 10 weeks induced a clear elevation in BMI, AC/ TC, insulin resistance, hyperlipidemia, CRP, CPK-MB, and cTnI in all HFD groups. Moreover, there was a significant increase in MAP, left ventricular end diastolic diameter (LVEDD), and left ventricular end systolic diameter (LVESD). Furthermore, histological cardiac examination showed structural alteration of the normal structure of the heart tissue with an increase in collagen deposition. Also, the Bcl-2 expression in the heart muscle was significantly lower, but Bax expression was significantly higher. Chia seeds ingestion combined with HFD noticeably ameliorated the previously-recorded biochemical biomarkers, hemodynamic and echocardiography measures, and histopathological changes. Outcomes of this report reveal that obesity is a hazard factor for cardiovascular disease and chia seeds could be a good candidate for cardiovascular system protection.
Collapse
Affiliation(s)
- Mohamed Aref
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Sharkia, Egypt
| | | | - Nehal I A Goda
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, 67714, Bisha, Saudi Arabia
| | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, 67714, Bisha, Saudi Arabia
| | - Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt.
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Hadeel A Elsherbini
- Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Ghasemi F, Nili-Ahmadabadi A, Omidifar N, Nili-Ahmadabadi M. Protective potential of thymoquinone against cadmium, arsenic, and lead toxicity: A short review with emphasis on oxidative pathways. J Appl Toxicol 2023; 43:1764-1777. [PMID: 36872630 DOI: 10.1002/jat.4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Heavy metals are among the most important environmental pollutions used in various industries. Their extensive use has increased human susceptibility to different chronic diseases. Toxic metal exposure, especially cadmium, arsenic, and lead, causes oxidative damages, mitochondrial dysfunction, and genetic and epigenetic modifications. Meanwhile, thymoquinone (TQ) is an effective component of Nigella sativa oil that plays an important role in preventing the destructive effects of heavy metals. The present review discusses how TQ can protect various tissues against oxidative damage of heavy metals. This review is based on the research reported about the protective effects of TQ in the toxicity of heavy metals, approximately the last 10 years (2010-2021). Scientific databases, including Scopus, Web of Science, and PubMed, were searched using the following keywords either alone or in combination: cadmium, arsenic, lead, TQ, and oxidative stress. TQ, as a potent antioxidant, can distribute to cellular compartments and prevent oxidative damage of toxic metals. However, depending on the type of toxic metal and the carrier system used to release TQ in biological systems, its therapeutic dosage range may be varied.
Collapse
Affiliation(s)
- Farzad Ghasemi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Navid Omidifar
- Medical Education Research Center, Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nili-Ahmadabadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Danaei GH, Amali A, Karami M, Khorrami MB, Riahi-Zanjani B, Sadeghi M. The significance of thymoquinone administration on liver toxicity of diazinon and cholinesterase activity; a recommendation for prophylaxis among individuals at risk. BMC Complement Med Ther 2022; 22:321. [PMID: 36464690 PMCID: PMC9720986 DOI: 10.1186/s12906-022-03806-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diazinon (DZN), a widely used chemical herbicide for controlling agricultural pests, is an important organophosphorus pesticide and an environmental pollutant which induces toxic effects on living organisms during long-term exposure. Thymoquinone (TQ) is a phytochemical bioactive compound with antioxidant and anti-inflammatory properties. We aimed to evaluate the protective effects of TQ against DZN-induced hepatotoxicity through alleviating oxidative stress and enhancing cholinesterase (ChE) enzyme activity. METHODS Rats were randomly divided into six groups (n = 8); a negative control group receiving corn oil; a group only receiving DZN (20 mg/kg/day); a group treated with TQ (10 mg/kg/day), and three treatment groups as TQ + DZN, receiving different doses of TQ (2.5, 5, and 10 mg/kg/day). All experimental animals were orally treated for 28 consecutive days. The levels of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactic acid dehydrogenase (LDH) were determined. In addition, ChE activity and histopathological changes were evaluated. RESULTS The results showed that DZN decreased GSH level (p < 0.01) and SOD activity (p < 0.01) in parallel to an increase in MDA level (p < 0.01) and increased the activity of AST, ALT, ALP, and LDH (p < 0.01) in comparison to the negative control group. Our findings demonstrated that TQ administration could diminish hepatotoxicity and reduce oxidative damage in DZN-treated rats, which could be linked to its antioxidant and free radical scavenging properties. It was also observed that TQ 10 mg/kg remarkably increased the activity of acetylcholinesterase, butyrylcholinesterase, and SOD enzymes, elevated GSH, decreased MDA, and reduced pathological alternations of the liver induced by DZN. CONCLUSION Thymoquinone 10 mg/kg increased the activity of plasma and blood cholinesterases and reduced DZN-induced alternations of the liver. Improvement of butyryl- and acetylcholinesterase activity suggests that maybe TQ supplement could be beneficial as pre-exposure prophylaxis among farm workers spraying pesticides.
Collapse
Affiliation(s)
- Gholam-Hassan Danaei
- grid.411583.a0000 0001 2198 6209Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arian Amali
- grid.411768.d0000 0004 1756 1744Student Research Committee, Paramedical Department, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Mohammad Karami
- grid.411623.30000 0001 2227 0923Department of Pharmacology and Toxicology, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Bamdad Riahi-Zanjani
- grid.411583.a0000 0001 2198 6209Medical Toxicology Research Center (MTRC), Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmood Sadeghi
- grid.411701.20000 0004 0417 4622Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
6
|
Effects of Thymoquinone Alone or in Combination with Losartan on the Cardiotoxicity Caused by Oxidative Stress and Inflammation in Hypercholesterolemia. J Cardiovasc Dev Dis 2022; 9:jcdd9120428. [PMID: 36547425 PMCID: PMC9782872 DOI: 10.3390/jcdd9120428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Dietary cholesterol accelerates oxidative and pro-inflammatory processes, causing hypercholesterolemia and cardiovascular diseases. Thus, the purpose of the current study is to compare the protective effects of thymoquinone (TQ) alone or in combination with losartan (LT) against the heart damage caused by a high-cholesterol diet (HCD). HCD-fed rat groups revealed an elevated activity of indicators of cardiac enzymes in the serum. Serum and cardiac lipids were also found to be significantly higher in HCD-fed rat groups. Cardiac pro-inflammatory and oxidative markers were also increased in HCD-fed rat groups, whereas antioxidant indicators were decreased. However, all of these biochemical, inflammatory, antioxidant, and oxidative change indicators returned to levels similar to those of normal rats after treatment with TQ alone or in combination with LT administered to HCD-fed rat groups. Hypercholesterolemia considerably induced the lipid peroxidation product, thiobarbituric acid reaction substances (TBARs), and oxidative radicals in cardiac cells, which were attenuated by QT and LT treatments, particularly when combined. Finally, QT, LT, and their combination were able to reduce the histological changes changes brought on by cholesterol excess in cardiac tissues. In conclusion, administration of TQ in a combination with LT which has a better protective effect, significantly reduced the hypercholesterolemic-induced oxidative and inflammatory changes that occurred in cardiac tissue.
Collapse
|
7
|
Liu Y, Huang L, Kim MY, Cho JY. The Role of Thymoquinone in Inflammatory Response in Chronic Diseases. Int J Mol Sci 2022; 23:ijms231810246. [PMID: 36142148 PMCID: PMC9499585 DOI: 10.3390/ijms231810246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Anti-inflammatory therapies have been shown to be effective in the prevention of various cardiovascular diseases, tumors, and cancer complications. Thymoquinone (TQ), the main active constituent of Nigella sativa, has shown promising therapeutic properties in many in vivo and in vitro models. However, TQ has poor bioavailability and is hydrophobic, prohibiting clinical trials with TQ alone. Studies have explored the combination of TQ with biological nanomaterials to improve its bioavailability. The TQ nanoparticle formulation shows better bioavailability than free TQ, and these formulations are ready for clinical trials to determine their potential as therapeutic agents. In this paper, we review current knowledge about the interaction between TQ and the inflammatory response and summarize the research prospects in Korea and abroad. We discuss the different biological activities of TQ and various combination therapies of TQ and nanomaterials in clinical trials.
Collapse
Affiliation(s)
- Yan Liu
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| | - Mi-Yeon Kim
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
8
|
Baghcheghi Y, Beheshti F, Seyedi F, Hosseini M, Hedayati-Moghadam M. Thymoquinone improved redox homeostasis in the heart and aorta of hypothyroid rats. Clin Exp Hypertens 2022; 44:656-662. [PMID: 35942678 DOI: 10.1080/10641963.2022.2108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Propylthiouracil (PTU) is a common drug that is used in medicine for treating hyperthyroidism. Furthermore, hypothyroidism can also be induced with PTU. Considering the antioxidant effects of thymoquinone (TMQ), this study was designed to find out whether TMQ could counteract the oxidative damage in the heart and aorta tissues induced by hypothyroidism in rats. METHODS Animals were arranged into four groups: (1) Control, (2) PTU, (3) PTU-TMQ 5, and (4) PTU-TMQ 10. Hypothyroidism was induced in rats by giving 0.05% PTU in drinking water. PTU and TMQ (5 and 10 mg/kg, ip) treatments were done for 42 days. Finally, the animals were sacrificed and the serum of the rats was collected for thyroxine level assessment. The heart and aorta tissues were also removed for biochemical oxidative stress markers measurement. RESULTS A lower serum thyroxine level was observed after PTU treatment compared to the control group. Hypothyroidism also was accompanied by a decrease of thiol content, and superoxide dismutase (SOD), and catalase (CAT) activities in the heart and aorta tissues while increased malondialdehyde (MDA). Furthermore, a significant reduction in oxidative damage was noted in the heart and aorta following the administration of TMQ (5 and 10 mg/kg) which was indicated by the reduction in MDA and improved activities of SOD, CAT, and thiol. CONCLUSION In this study, TMQ was found to improve oxidative damages in the heart and aorta tissues of hypothyroid rats.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Fatemeh Seyedi
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran.,Department of Anatomical Sciences, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran.,Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
9
|
Effect of Thymoquinone on Renal Damage Induced by Hyperlipidemia in LDL Receptor-Deficient (LDL-R -/ -) Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7709926. [PMID: 35845925 PMCID: PMC9279052 DOI: 10.1155/2022/7709926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
Hyperlipidemia is a well-established risk factor for kidney injury, which can lead to chronic kidney disease (CKD). Thymoquinone (TQ) is one of the most active ingredients in Nigella sativa seeds. It has various beneficial properties, including antioxidant and anti-inflammatory activities. TQ also exerts positive effects on doxorubicin- (DOX-) induced nephropathy and ischemia-reperfusion-induced kidney injury in rats. Therefore, in this study, we investigated the possible protective effects of TQ against kidney injury in low-density lipoprotein receptor-deficient (LDL-R-/-) mice. Eight-week-old male LDL-R-/- mice were randomly divided into the following three groups: normal diet (ND group), high-fat diet (HFD group), and HFD combined with TQ (HFD+TQ group). The mice were fed the same diet for eight weeks. After eight weeks, we performed serological analysis of the mice in all three groups. We histologically analyzed the kidney tissue and also investigated the expression of proinflammatory cytokines in the kidney tissue. Metabolic characteristics, including total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), and creatinine (CRE) levels, were lower in the LDL-R-/- HFD+TQ mice than in the HFD mice. Periodic acid-Schiff (PAS) and Masson's trichrome staining revealed excessive lipid deposition and collagen accumulation in the kidneys of the LDL-R-/- HFD mice, which were significantly reduced in the LDL-R-/- HFD+TQ mice. Furthermore, macrophages and levels of proinflammatory cytokines were lower in the kidney tissues of the LDL-R-/- HFD+TQ mice than in those of the LDL-R-/- HFD mice. Moreover, profibrosis- and oxidative stress-related protein expression was lower in the kidney tissues of the LDL-R-/- HFD+TQ mice than in those of the LDL-R-/- HFD mice. These results indicate that TQ may be a potential therapeutic agent for kidney damage caused by hyperlipidemia.
Collapse
|
10
|
Mahmud NM, Paraoan L, Khaliddin N, Kamalden TA. Thymoquinone in Ocular Neurodegeneration: Modulation of Pathological Mechanisms via Multiple Pathways. Front Cell Neurosci 2022; 16:786926. [PMID: 35308121 PMCID: PMC8924063 DOI: 10.3389/fncel.2022.786926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Thymoquinone is a naturally occurring compound and is the major component of Nigella sativa, also known as black seed or black cumin. For centuries thymoquinone has been used especially in the Middle East traditionally to treat wounds, asthma, allergies, fever, headache, cough, hypertension, and diabetes. Studies have suggested beneficial effects of thymoquinone to be attributed to its antioxidant, antibacterial, anti-oxidative stress, anti-inflammatory, and neuroprotective properties. Recently, there has been a surge of interest in thymoquinone as a treatment for neurodegeneration in the brain, such as that seen in Alzheimer’s (AD) and Parkinson’s diseases (PD). In vitro and in vivo studies on animal models of AD and PD suggest the main neuroprotective mechanisms are based on the anti-inflammatory and anti-oxidative properties of thymoquinone. Neurodegenerative conditions of the eye, such as Age-related Macular Degeneration (AMD) and glaucoma share at least in part similar mechanisms of neuronal cell death with those occurring in AD and PD. This review aims to summarize and critically analyze the evidence to date of the effects and potential neuroprotective actions of thymoquinone in the eye and ocular neurodegenerations.
Collapse
Affiliation(s)
- Nur Musfirah Mahmud
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nurliza Khaliddin
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
| | - Tengku Ain Kamalden
- UM Eye Research Centre, Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Tengku Ain Kamalden,
| |
Collapse
|
11
|
Leong XF, Choy KW, Alias A. Anti-Inflammatory Effects of Thymoquinone in Atherosclerosis: A Mini Review. Front Pharmacol 2022; 12:758929. [PMID: 34975474 PMCID: PMC8715035 DOI: 10.3389/fphar.2021.758929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis poses serious health problems and increases the risk of various cardiovascular diseases, including myocardial infarction, heart failure, ischemic stroke, and peripheral arterial disease. Atherosclerosis patients require long-term medications to prevent complications, some of which are costly and may result in unwanted adverse reactions. Natural products have emerged as potential sources of bioactive compounds that provide health benefits in cardiovascular diseases. Increased inflammation and vascular remodeling have been associated with atherosclerosis pathogenesis. The molecules involved in signaling pathways are considered valuable targets for new treatment approaches. Therefore, this review aimed to summarize the available evidence of the anti-inflammatory effects of thymoquinone, the major active compound isolated from Nigella sativa L., via inflammatory signaling pathways in atherosclerosis. Specifically, nuclear factor-κB and mitogen-activated protein kinase signaling pathways were considered. Furthermore, the potential toxic effects elicited by thymoquinone were addressed. These findings suggest a potential role of thymoquinone in managing atherosclerosis, and further studies are required to ascertain its effectiveness and safety profile.
Collapse
Affiliation(s)
- Xin-Fang Leong
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Aspalilah Alias
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Ran J, Xu H, Li W. Cardioprotective effects of co-administration of thymoquinone and ischemic postconditioning in diabetic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:892-899. [PMID: 34712418 PMCID: PMC8528251 DOI: 10.22038/ijbms.2021.47670.10981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 05/09/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Ischemia/reperfusion (I/R) is a leading cause of myocardial infarction (MI) injury, contributing to excess injury to cardiac tissues involved in inflammation, apoptosis, and oxidative stress. The present study was conducted to examine the effects of combined thymoquinone (TQ) with ischemic postconditioning (IPostC) therapy on apoptosis and inflammation due to I/R injury in diabetic rat hearts. MATERIALS AND METHODS A single dose injection of streptozotocin (STZ; 60 mg/kg) was administered to thirty-two Wistar male rats to induce diabetes. Hearts were fixed on a Langendorff setting and exposed to a 30 min regional ischemia subsequently to 60 min reperfusion. IPostC was induced at the onset of reperfusion by 3 cycles of 30 sec R/I. ELISA, Western blotting assay, and TUNEL staining were applied to assess the cardioprotective effect of IPostC and TQ against I/R injury in diabetic and non-diabetic rats. RESULTS Administration of TQ alone in non-diabetic isolated hearts significantly diminished CK-MB, TNF-α, IL-1β, and apoptosis and enhanced p-GSK-3β and Bcl-2 (P<0.05). Following administration of TQ, the cardioprotective effects of IPostC by elevating p-GSK-3β and Bcl-2 and alleviating apoptosis and inflammation were reestablished compared with non-IPostC diabetic hearts. CONCLUSION These results provide substantial evidence that co-administration of TQ plus IPostC can exert cardioprotective effects on diabetic myocardium during I/R damage by attenuating the inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Junchuan Ran
- Department of Cardiology, Gansu Gem Flower Hospital, Lanzhou, Gansu, 730060, China
| | - Huanglin Xu
- Department of Cardiology, Xigu People's Hospital,Lanzhou, Gansu, 730060, China
| | - Wenyuan Li
- Department of Cardiology, Gansu Gem Flower Hospital, Lanzhou, Gansu, 730060, China
| |
Collapse
|
13
|
Majdalawieh AF, Yousef SM, Abu-Yousef IA. Thymoquinone, a major constituent in Nigella sativa seeds, is a potential preventative and treatment option for atherosclerosis. Eur J Pharmacol 2021; 909:174420. [PMID: 34391767 DOI: 10.1016/j.ejphar.2021.174420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is a widespread and progressive chronic arterial disease that remains the leading cause of mortality and morbidity worldwide. It is generally accepted that atherosclerosis is a multifactorial disease characterized by dyslipidemia and inflammation in the vessel walls. Nonpharmacological interventions to treat chronic diseases like atherosclerosis have gained considerable attention in recent years. Thymoquinone (TQ), the major bioactive constituent of Nigella sativa seeds, presents one such example of a natural therapeutic agent that has captured the attention of many researchers due to its wide array of medicinal properties, including its potent anti-atherosclerotic effects. Various in vitro and in vivo studies support the potential of TQ in ameliorating hyperlipidemia, hypercholesterolemia, oxidative stress, and inflammation, all of which are key hallmarks of atherosclerosis. However, to date, no review has been conducted to substantiate the role of TQ in preventing and/or treating atherosclerosis. This comprehensive review aims to examine recent in vitro and in vivo experimental findings reported on the potential anti-atherosclerotic effects of TQ. The roles of TQ in combatting hyperlipidemia, oxidative stress, and inflammation in atherosclerosis are highlighted. We also shed light on the role of TQ in preventing foam cell formation by decreasing low-density lipoprotein (LDL) availability and oxidation. Moreover, recent findings on the protective role of TQ on early markers of atherosclerosis, including homocysteinemia and endothelial dysfunction, are also underscored. Experimental evidence suggests that TQ can potentially be employed as a natural therapeutic agent with minimal side effects against the development and/or progression of atherosclerosis and its associated complications.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Sarah M Yousef
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
14
|
Malik S, Singh A, Negi P, Kapoor VK. Thymoquinone: A small molecule from nature with high therapeutic potential. Drug Discov Today 2021; 26:2716-2725. [PMID: 34303824 DOI: 10.1016/j.drudis.2021.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 05/23/2021] [Accepted: 07/17/2021] [Indexed: 12/14/2022]
Abstract
Thymoquinone (TQ; 2-isopropyl-5-methylbenzo-1, 4-quinone), the main active constituent of Nigella sativa, has been proven to have great therapeutic properties in numerous in vivo and in vitro models. Nevertheless, this molecule is not yet in clinical trials, largely because of its poor bioavailability and hydrophobicity. This review examines the different activities of TQ, as well as various combination therapies, nanotechnologies and clinical trials involving TQ. The TQ nanoparticle formulation shows better bioavailability than free TQ, and it is time for clinical trials of these formulations to realize the potential of TQ as a therapeutic.
Collapse
Affiliation(s)
- Safiya Malik
- School of Pharmaceutical Sciences, Shoolini University, Solan 173212, India
| | - Amardeep Singh
- School of Pharmaceutical Sciences, Shoolini University, Solan 173212, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, Solan 173212, India
| | - Vijay Kumar Kapoor
- School of Pharmaceutical Sciences, Shoolini University, Solan 173212, India.
| |
Collapse
|
15
|
Butt MS, Imran M, Imran A, Arshad MS, Saeed F, Gondal TA, Shariati MA, Gilani SA, Tufail T, Ahmad I, Rind NA, Mahomoodally MF, Islam S, Mehmood Z. Therapeutic perspective of thymoquinone: A mechanistic treatise. Food Sci Nutr 2021; 9:1792-1809. [PMID: 33747489 PMCID: PMC7958532 DOI: 10.1002/fsn3.2070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
The higher utilization of fruits and vegetables is well known to cure human maladies due to the presence of bioactive components. Among these compounds, thymoquinone, a monoterpene and significant constituent in the essential oil of Nigella sativa L., has attained attention by the researchers due to their pharmacologies perspectives such as prevention from cancer, antidiabetic and antiobesity, prevention from oxidative stress and cardioprotective disorder. Thymoquinone has been found to work as anticancer agent against different human and animal cancer stages including propagation, migration, and invasion. Thymoquinone as phytochemical also downregulated the Rac1 expression, mediated the miR-34a upregulation, and increased the levels of miR-34a through p53, as well as also regulated the pro- and antiapoptotic genes and decreased the phosphorylation of NF-κB and IKKα/β. In addition, thymoquinone also lowered the metastasis and ERK1/2 and PI3K activities. The present review article has been piled by adapting narrative review method and highlights the diverse aspects of thymoquinone such as hepatoprotective, anti-inflammatory, and antiaging through various pathways, and further utilization of this compound in diet has been proven effective against different types of cancers.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- Faculty of Food, Nutrition & Home SciencesNational Institute of Food Science and TechnologyUAFFaisalabadPakistan
| | - Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ali Imran
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Sajid Arshad
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Tanweer Aslam Gondal
- School of Exercise and NutritionFaculty of HealthDeakin UniversityBurwoodVic.Australia
| | | | - Syed Amir Gilani
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Tabussam Tufail
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Ishtiaque Ahmad
- Department of Dairy TechnologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Nadir Ali Rind
- Department of molecular Biology and GeneticsShaheed Benazir Bhutto UniversityShaheed BenazirabadPakistan
| | - Mohamad Fawzi Mahomoodally
- Department of Health SciencesFaculty of Medicine and Health SciencesUniversity of MauritiusRéduitMauritius
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| | - Zaffar Mehmood
- School of life SciencesForman Christian College (A Chartered University)LahorePakistan
| |
Collapse
|
16
|
Elgohary S, Elkhodiry AA, Amin NS, Stein U, El Tayebi HM. Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? Cells 2021; 10:302. [PMID: 33540625 PMCID: PMC7912962 DOI: 10.3390/cells10020302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the SARS-CoV-2(severe acute respiratory syndrome-coronavirus-2) pandemic, arace to develop a vaccine has been initiated, considering the massive and rather significant economic and healthcare hits that this virus has caused. The pathophysiology occurring following COVID-19(coronavirus disease-2019) infection has givenhints regarding the supportive and symptomatic treatments to establish for patients, as no specific anti-SARS-CoV-2 is available yet. Patient symptoms vary greatly and range from mild symptoms to severe fatal complications. Supportive treatments include antipyretics, antiviral therapies, different combinations of broad-spectrum antibiotics, hydroxychloroquine and plasma transfusion. Unfortunately, cancer patients are at higher risk of viral infection and more likely to develop serious complications due to their immunocompromised state, the fact that they are already administering multiple medications, as well as combined comorbidity compared to the general population. It may seem impossible to find a drug that possesses both potent antiviral and anticancer effects specifically against COVID-19 infection and its complications and the existing malignancy, respectively. Thymoquinone (TQ) is the most pharmacologically active ingredient in Nigella sativa seeds (black seeds); it is reported to have anticancer, anti-inflammatory and antioxidant effects in various settings. In this review, we will discuss the multiple effects of TQ specifically against COVID-19, its beneficial effects against COVID-19 pathophysiology and multiple-organ complications, its use as an adjuvant for supportive COVID-19 therapy and cancer therapy, and finally, its anticancer effects.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Aya A. Elkhodiry
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Nada S. Amin
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Hend M. El Tayebi
- Molecular Pharmacology Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt; (S.E.); (A.A.E.); (N.S.A.)
| |
Collapse
|
17
|
Qian C, Yang Q, Guo L, Zhu H, You X, Liu H, Sun Y. Exercise reduces hyperlipidemia-induced kidney damage in apolipoprotein E-deficient mice. Exp Ther Med 2020; 21:153. [PMID: 33456520 PMCID: PMC7792504 DOI: 10.3892/etm.2020.9585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Hyperlipidemia is a risk factor of kidney damage that can lead to chronic kidney disease. Studies have shown that exercise reduces kidney damage; however, the specific mechanisms underlying the protective effects of exercise remain unclear. For 12 weeks, 8-week-old male apolipoprotein E-deficient (ApoE-/-) mice were randomly divided into four treatment groups (n=7/group) as follows: Mice fed a normal diet (ND group); mice fed a ND and exercised (ND + E group); mice fed a high-fat diet (HD group); and mice fed a HD and exercised (HD + E group). Exercise training consisted of swimming for 40 min, 5 days/week. Metabolic parameters, such as low-density lipoprotein-cholesterol, total cholesterol and creatinine levels were higher in the ApoE-/- HD mice compared with those in the ApoE-/- HD + E mice. Serum levels of glutathione peroxidase and superoxide dismutase were significantly decreased in the HD group compared with those in the HD + E group. Significant pathological changes were observed in the HD + E group compared with in the HD group. Immunohistochemistry and immunoblotting revealed increased levels of oxidative stress (nuclear factor erythroid-2-related factor 2) and fibrosis (Smad3 and TGF-β) markers in the ApoE-/- HD group; however, the expression levels of these markers were significantly decreased in the ApoE-/- HD + E group. Furthermore, NF-κB expression in the HD + E group was significantly lower compared with that in the HD group. These results suggested that exercise may exert protective effects against kidney damage caused by hyperlipidemia.
Collapse
Affiliation(s)
- Chengsi Qian
- Department of Cardiology, Zhejiang Province Rongjun Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Qin Yang
- Department of Internal Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Lipeng Guo
- Department of Cardiology, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116200, P.R. China
| | - Hupei Zhu
- Department of Cardiology, Zhejiang Province Rongjun Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Xi You
- Department of Cardiology, Zhejiang Province Rongjun Hospital, Jiaxing, Zhejiang 314000, P.R. China
| | - Hongyang Liu
- Department of Heart Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yan Sun
- Department of Cardiology, Zhejiang Province Rongjun Hospital, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
18
|
Thymoquinone Protects against Hyperlipidemia-Induced Cardiac Damage in Low-Density Lipoprotein Receptor-Deficient (LDL-R -/-) Mice via Its Anti-inflammatory and Antipyroptotic Effects. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4878704. [PMID: 33178827 PMCID: PMC7644313 DOI: 10.1155/2020/4878704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/30/2023]
Abstract
Hyperlipidemia is a risk factor for cardiac damage and cardiovascular disease. Increasing evidence has shown that dyslipidemia-related cardiac damage is associated with lipid accumulation, oxidative stress, and inflammation. Thymoquinone (TQ) is the major constituent of Nigella sativa, commonly known as black seed or black cumin, and is globally used in folk (herbal) medicine for treating and preventing a number of diseases and conditions. Several studies have shown that TQ can protect against cardiac damage. This study is aimed at investigating the possible protective effects of TQ on hyperlipidemia-induced cardiac damage in low-density lipoprotein receptor-deficient (LDL-R−/−) mice. Eight-week-old male LDL-R−/− mice were randomly divided into normal diet (ND), high-fat diet (HFD), and HFD and TQ (HFD+TQ) groups and were fed the different diets for eight weeks. Blood samples were obtained from the inferior vena cava in serum tubes and stored at -80°C until use. Some cardiac tissues were fixed in 10% formalin and then embedded in paraffin for histological evaluation. The remainder of the cardiac tissues was snap-frozen in liquid nitrogen for mRNA preparation or immunoblotting. The levels of metabolism-related factors, such as total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-c), and high-sensitivity C-reactive protein (hs-CRP), were decreased in the HFD+TQ group compared with those in the HFD group. Periodic acid-Schiff staining demonstrated that lipid deposition was lower in the HFD+TQ group than in the HFD group. The expression of pyroptosis indicators (NOD-like receptor 3 (NLRP3), interleukin- (IL-) 1β, IL-18, and caspase-1), proinflammatory factors (IL-6 and tumor necrosis factor alpha (TNF-α)), and macrophage markers (cluster of differentiation (CD) 68) was significantly downregulated in the HFD+TQ group compared with that in the HFD group. Our results indicate that TQ may serve as a potential therapeutic agent for hyperlipidemia-induced cardiac damage.
Collapse
|
19
|
Liu H, Sun Y, Zhang Y, Yang G, Guo L, Zhao Y, Pei Z. Role of Thymoquinone in Cardiac Damage Caused by Sepsis from BALB/c Mice. Inflammation 2019; 42:516-525. [PMID: 30343389 DOI: 10.1007/s10753-018-0909-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sepsis is a major health complication causing patient mortality and increased healthcare costs. Cardiac dysfunction, an important consequence of sepsis, affects mortality. We previously reported that thymoquinone (TQ) protected against hyperlipidemia and doxorubicin-induced cardiac damage. This study investigated the possible protective effects of TQ against cardiac damage in septic BALB/c mice. Eight-week-old male BALB/c mice were divided into four groups: control, TQ, cecal ligation and puncture (CLP), and TQ + CLP. CLP was performed after 2-week TQ gavage. After 48 h, we measured the histopathological alterations of the cardiac tissue and the plasma levels of troponin-T (cTnT) and ATP. We evaluated autophagy (p62 and beclin 1), pyroptosis (NLRP3, caspase-1, interleukin [IL]-1β, and IL-18) at the gene and protein levels and IL-6 and tumor necrosis factor-α (TNF-α) at the gene level. Our results demonstrated that TQ administration significantly reduced intestinal histological alterations. TQ inhibited plasma cTnT levels; improved ATP; significantly inhibited p62, NLRP3, caspase-1, IL-1β, IL-18, IL-6, TNF-α, and MCP-1expressions; and increased beclin 1 and IL-10 level. The phosphatidylinositide 3-kinase level was significantly decreased in the TQ + CLP group versus the CLP group. These results suggest that TQ effectively modulates autophagy, pyroptosis, and pro-inflammatory, making it important in the treatment of sepsis-induced cardiac damage.
Collapse
Affiliation(s)
- Hongyang Liu
- Department of Heart Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, No.193 Lianhe Road, Dalian, China
| | - Yan Sun
- Department of Cardiology, Zhejiang Rongjun Hospital, No.309 Shuangyuan Road, Jiaxing, Zhejiang, China
| | - Ying Zhang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, 193# Lianhe Road, Dalian, China
| | - Guang Yang
- Department of Heart Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, No.193 Lianhe Road, Dalian, China
| | - Lipeng Guo
- Department of Cardiology, Dalian Third People's Hospital Affiliated to Dalian Medical University, No.40 Qianshan Road, Dalian, China
| | - Yue Zhao
- Graduate school of Dalian Medical University, No.9 Lvshun South Road, Dalian, China
| | - Zuowei Pei
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, China.
| |
Collapse
|
20
|
Harphoush S, Wu G, Qiuli G, Zaitoun M, Ghanem M, Shi Y, Le G. Thymoquinone ameliorates obesity-induced metabolic dysfunction, improves reproductive efficiency exhibiting a dose-organ relationship. Syst Biol Reprod Med 2019; 65:367-382. [PMID: 31262199 DOI: 10.1080/19396368.2019.1626933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Women with obesity are more likely to have a complicated reproductive life. Insulin resistance and metabolic dysfunction are associated with obesity. Thymoquinone (TQ) is a well-known antioxidant, considered to be an AMPK-activator. The goal of this work was to investigate the ability of TQ to improve fertility and lactation and clarify the possible mechanism. Female C57BL/6 mice were subjected to High Fat Diet (HFD) supplemented with TQ (10% pmm) and TQ (20% pmm). Histopathological examination was conducted on mammary and ovarian samples. Metabolic and oxidant status was evaluated, and qRT-PCR analysis was performed to verify AMPK/PGC1α/SIRT1 metabolic pathway activity. The present study reports positive effects of TQ on ovarian metabolic function in a dose-dependent manner. TQ showed its positive effects on mammary gland metabolic function at lower dose. This is the first study that indicates these dose related impacts of TQ. Abbreviations: AKT1: serine-threonine protein kinase 1; AMPK: 5' AMP-activated protein kinase; CAT: catalase; CON: control; FBS: fasting blood sugar; GLUT1: glucose transporter 1; GSH: reduced glutathione; GSSG: Glutathione disulfide; HE: hematoxylin and eosin stains; HDL: high-density lipoprotein; HFD: high fat diet; IL-6: interleukin-6; K18: keratin 18; LD: lactation day; LDL: low-density lipoprotein; LKB1: serine-threonine liver kinase B1; MDA: malondialdehyde; mTOR: the mammalian target of rapamycin; NAD: nicotinamide adenine dinucleotide; NADH: nicotinamide adenine dinucleotide phosphate; NS: nigella sativa; PBS: phosphate-buffered saline; PGC1α: peroxisome proliferator-activated receptor gamma coactivator 1-alpha; SIRT1: sirtuin 1; SOD: superoxide dismutase; T-AOC: total antioxidants; TFAM: transcription factor A mitochondrial; TG: triglycerides; TNF-α: tumor necrosis factor-α; TQ: thymoquinone; TQ10: high fat diet + thymoquinone 10% ppm; TQ20: high fat diet + thymoquinone 20% ppm; UCP2: uncoupling Protein 2.
Collapse
Affiliation(s)
- Seba Harphoush
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,Faculty of Health Science, Al-baath University , Homs , Syria.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Guoqing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Gao Qiuli
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Margaret Zaitoun
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,Faculty of Health Science, Al-baath University , Homs , Syria.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Maissam Ghanem
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,Faculty of Health Science, Al-baath University , Homs , Syria.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , PR China.,School of Food Science and Technology, Jiangnan University , Wuxi , PR China
| |
Collapse
|