1
|
Rajavel A, Essakipillai N, Anbazhagan R, Ramakrishnan J, Venkataraman V, Natesan Sella R. Molecular profiling of blood plasma-derived extracellular vesicles derived from Duchenne muscular dystrophy patients through integration of FTIR spectroscopy and machine learning reveals disease signatures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125236. [PMID: 39368178 DOI: 10.1016/j.saa.2024.125236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE To identify and monitor the FTIR spectral signatures of plasma extracellular vesicles (EVs) from Duchenne Muscular Dystrophy (DMD) patients at different stages with Healthy controls using machine learning models. MATERIALS AND METHODS Whole blood samples were collected from the DMD (n = 30) and Healthy controls (n = 12). EVs were extracted by the Total Exosome Isolation (TEI) Method and resuspended in 1XPBS. We characterize the morphology, size, particle count, and surface markers (CD9, Alix, and Flotillin) by HR-TEM, NTA, and Western Blot analysis. The mid-IR spectra were recorded from (4000-400 cm-1) by Bruker ALPHA II FTIR spectrometer model, which was equipped with an attenuated total reflection (ATR) module. Machine learning algorithms like Principal Component Analysis (PCA) and Random Forest (RF) for dimensionality reduction and classifying the two study groups based on the FTIR spectra. The model performance was evaluated by a confusion matrix and the sensitivity, specificity, and Receiver Operating Characteristic Curve (ROC) was calculated respectively. RESULTS Alterations in Amide I & II (1700-1470 cm-1) and lipid (3000-2800 cm-1) regions in FTIR spectra of DMD compared with healthy controls. The PCA-RF model classified correctly the two study groups in the range of 4000-400 cm-1 with a sensitivity of 20 %, specificity of 87.50 %, accuracy of 71.43 %, precision of 33.33 %, and 5-fold cross-validation accuracy of 82 %. We analyzed the ten different spectral regions which showed statistically significant at P < 0.01 except the Ester Acyl Chain region. CONCLUSION Our proof-of-concept study demonstrated distinct infrared (IR) spectral signatures in plasma EVs derived from DMD. Consistent alterations in protein and lipid configurations were identified using a PCA-RF model, even with a small clinical dataset. This minimally invasive liquid biopsy method, combined with automated analysis, warrants further investigation for its potential in early diagnosis and monitoring of disease progression in DMD patients within clinical settings.
Collapse
Affiliation(s)
- Archana Rajavel
- Membrane Protein Interaction Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Narayanan Essakipillai
- Department of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Ramajayam Anbazhagan
- Department of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Jayashree Ramakrishnan
- Department of Computer Applications, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India
| | - Viswanathan Venkataraman
- Department of Paediatrics Neurology, Apollo Children's Hospital, Thousands Lights, Chennai 600 006, Tamil Nadu, India
| | - Raja Natesan Sella
- Membrane Protein Interaction Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
D'Mello R, Hüttmann N, Minic Z, V Berezovski M. Untargeted metabolomic profiling of small extracellular vesicles reveals potential new biomarkers for triple negative breast cancer. Metabolomics 2024; 20:123. [PMID: 39487276 DOI: 10.1007/s11306-024-02191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Breast Cancer (BC) is one of the most diagnosed malignancies among women and the second leading cause of cancer related death in North America. Triple Negative BC (TNBC), one of the most severe subtypes of BC, is extremely aggressive and has a higher chance of occurrence in women under 50 years of age. Due to a lack of regular mammographic testing in women under 50, many individuals with TNBC are diagnosed late which can decrease their survival rate. Currently, liquid biopsy is being investigated as a potentially less-invasive alternative to traditional breast tissue biopsy, but this approach is not completely reliable. Blood contains extracellular vesicles (EVs), which carry biomolecular cargo and play a role in BC progression and metastasis. Examination of small EVs could potentially yield metabolite biomarkers for early BC diagnosis. OBJECTIVE We aim to study metabolites in small EVs to find biomarkers for BC diagnosis. METHODS In this work, an untargeted nano-LC MS/MS metabolomics approach was used to analyze metabolites from small EVs derived from metastatic MDA-MB-231 and compare it with a non-cancerous MCF10A cell line. RESULTS Two metabolites, LysoPC 22:6/0:0 and N-acetyl-L-Phenylalanine, unique to sEVs of MDA-MB-231, were identified, validated, and proposed as potential BC biomarkers. CONCLUSION Metabolites from sEVs may be used for BC diagnosis.
Collapse
Affiliation(s)
- Rochelle D'Mello
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Nico Hüttmann
- John L. Holmes Biological Mass Spectrometry Facility, University of Ottawa, Ottawa, Canada
| | - Zoran Minic
- John L. Holmes Biological Mass Spectrometry Facility, University of Ottawa, Ottawa, Canada.
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.
- John L. Holmes Biological Mass Spectrometry Facility, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
3
|
Wang Q, Pang B, Bucci J, Jiang J, Li Y. The emerging role of extracellular vesicles and particles in prostate cancer diagnosis, and risk stratification. Biochim Biophys Acta Rev Cancer 2024; 1879:189210. [PMID: 39510450 DOI: 10.1016/j.bbcan.2024.189210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Current approaches for prostate cancer (PCa) diagnosis and risk stratification require greater accuracy. Extracellular vesicles and particles (EVPs) containing diverse cargos from parent cells are released into the extracellular microenvironment and play a critical role in intercellular communication. Accumulating evidence demonstrates that EVPs are emerging as a promising focus for the exploration of cancer biomarkers and therapeutic targets. However, the precise categorisation and nomenclature of EVP subpopulations remains challenging due to their compositional complexity, inherent heterogeneity in molecular composition, and structure. The recent identification of two novel non-vesicular extracellular particle subtypes, exomeres and supermeres, has altered our understanding of the distinct subpopulations of EVPs and their roles in biological and physiological processes. Here, we discuss recent advances in the field of EVPs, describe characteristics of EVP subpopulations, focus on the application and potential of EVPs in PCa diagnosis and risk stratification by liquid biopsy, and highlight the major challenges and prospects of EVP research in PCa area.
Collapse
Affiliation(s)
- Qi Wang
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Bairen Pang
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Ningbo Clinical Research Centre for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Translational Research Laboratory for Urology, The Key Laboratory of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Zhejiang Engineering Research Centre of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang 315010, China
| | - Joseph Bucci
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Junhui Jiang
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Ningbo Clinical Research Centre for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Translational Research Laboratory for Urology, The Key Laboratory of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Zhejiang Engineering Research Centre of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang 315010, China.
| | - Yong Li
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia.
| |
Collapse
|
4
|
Jhaveri JR, Khare P, Paul Pinky P, Kamte YS, Chandwani MN, Milosevic J, Abraham N, Sun M, Stolz DB, Dave KM, Zheng SY, O'Donnell L, Manickam DS. Low pinocytic brain endothelial cells primarily utilize membrane fusion to internalize extracellular vesicles. Eur J Pharm Biopharm 2024; 204:114500. [PMID: 39303949 DOI: 10.1016/j.ejpb.2024.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Extracellular vesicles (EVs) are an emerging class of drug carriers and are primarily reported to be internalized into recipient cells via a combination of endocytic routes such as clathrin-mediated, caveolae-mediated and macropinocytosis pathways. In this work, (1) we investigated potential effects of homotypic vs. heterotypic interactions by studying the cellular uptake of homologous EVs (EV donor cells and recipient cells of the same type) vs. heterologous EVs (EV donor cells and recipient cells of different types) and (2) determined the route of EV internalization into low pinocytic/hard-to-deliver cell models such as brain endothelial cells (BECs). Homotypic interactions led to a greater extent of uptake into the recipient BECs compared to heterotypic interactions. However, we did not see a complete reduction in EV uptake into recipient BECs when endocytic pathways were blocked using pharmacological inhibitors and our findings from a R18-based fusion assay suggest that EVs primarily use membrane fusion to enter low-pinocytic recipient BECs instead of relying on endocytosis. Lipophilic PKH67 dye-labeled EVs but not intravesicular esterase-activated calcein ester-labeled EVs severely reduced particle uptake into BECs while phagocytic macrophages internalized EVs labeled with both dyes to comparable extents. Our results also highlight the importance of carefully choosing labeling dye chemistry to study EV uptake, especially in the case of low pinocytic cells such as BECs.
Collapse
Affiliation(s)
- Jhanvi R Jhaveri
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Purva Khare
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Paromita Paul Pinky
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yashika S Kamte
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Manisha N Chandwani
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jadranka Milosevic
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States; Captis Diagnostics Inc., Pittsburgh, PA, United States
| | - Nevil Abraham
- Unified Flow Core, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ming Sun
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Kandarp M Dave
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Lauren O'Donnell
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.
| |
Collapse
|
5
|
Espiau-Romera P, Gordo-Ortiz A, Ortiz-de-Solórzano I, Sancho P. Metabolic features of tumor-derived extracellular vesicles: challenges and opportunities. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:455-470. [PMID: 39697624 PMCID: PMC11648520 DOI: 10.20517/evcna.2024.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/30/2024] [Accepted: 08/16/2024] [Indexed: 12/20/2024]
Abstract
Tumor-derived extracellular vesicles (TDEVs) play crucial roles in intercellular communication both in the local tumor microenvironment and systemically, facilitating tumor progression and metastatic spread. They carry a variety of molecules with bioactive properties, such as nucleic acids, proteins and metabolites, that trigger different signaling processes in receptor cells and induce, among other downstream effects, metabolic reprogramming. Interestingly, the cargo of TDEVs also reflects the metabolic status of the producing cells in a time- and context-dependent manner, providing information on the functionality and state of those cells. For these reasons, together with their ability to be detected in diverse biofluids, there is increasing interest in the study of TDEVs, particularly their metabolic cargo, as diagnostic and prognostic tools in cancer management. This review presents a compilation of metabolism-related molecules (enzymes and metabolites) described in cancer extracellular vesicles (EVs) with potential use as cancer biomarkers, and discusses the challenges arising in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | | | - Patricia Sancho
- Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
| |
Collapse
|
6
|
Suska K, Piotrowski M, Fichna J. Lipid biomarkers in colorectal cancer, with particular emphasis on exosomes - current status and future inferences. Expert Rev Gastroenterol Hepatol 2024; 18:441-456. [PMID: 39192805 DOI: 10.1080/17474124.2024.2393180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is one of the most deadly cancers on a global scale. Diagnosis of CRC is challenging and it is often detected at a late stage. Identification of relevant biomarkers could lead to the development of effective diagnostic methods for CRC. AREAS COVERED We reviewed the literature on lipid (including exosomal) biomarkers that have the potential to become common, minimally invasive and effective diagnostic tools for CRC. We showed that differences in lipid levels (single compounds and entire panels) make it possible to classify patients into diseased or healthy groups, determine the stage of CRC, as well as accompanying inflammation and immune reactions associated with tumorigenesis. We also discussed exosomes which are important components of the tumor microenvironment that influence tumor progression and for which only a small number of studies were conducted so far in this area. EXPERT OPINION A rapid development in the field of lipid-based biomarkers, including exosomal lipid biomarkers, is expected as growing evidence shows their potential application and good accuracy. However, one of the major issues that needs to be addressed within this topic is to translate findings into a noninvasive and versatile diagnostic test robustly validated in clinical conditions.
Collapse
Affiliation(s)
- Kinga Suska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Piotrowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
7
|
Hamed MA, Wasinger V, Wang Q, Graham P, Malouf D, Bucci J, Li Y. Prostate cancer-derived extracellular vesicles metabolic biomarkers: Emerging roles for diagnosis and prognosis. J Control Release 2024; 371:126-145. [PMID: 38768661 DOI: 10.1016/j.jconrel.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Prostate cancer (PCa) is a global health concern, ranking as the most common cancer among men in Western countries. Traditional diagnostic methods are invasive with adverse effects on patients. Due to the heterogeneous nature of PCa and their multifocality, tissue biopsies often yield false-negative results. To address these challenges, researchers are exploring innovative approaches, particularly in the realms of proteomics and metabolomics, to identify more reliable biomarkers and improve PCa diagnosis. Liquid biopsy (LB) has emerged as a promising non-invasive strategy for PCa early detection, biopsy selection, active surveillance for low-risk cases, and post-treatment and progression monitoring. Extracellular vesicles (EVs) are lipid-bilayer nanovesicles released by all cell types and play an important role in intercellular communication. EVs have garnered attention as a valuable biomarker resource in LB for PCa-specific biomarkers, enhancing diagnosis, prognostication, and treatment guidance. Metabolomics provides insight into the body's metabolic response to both internal and external stimuli, offering quantitative measurements of biochemical alterations. It excels at detecting non-genetic influences, aiding in the discovery of more accurate cancer biomarkers for early detection and disease progression monitoring. This review delves into the potential of EVs as a resource for LB in PCa across various clinical applications. It also explores cancer-related metabolic biomarkers, both within and outside EVs in PCa, and summarises previous metabolomic findings in PCa diagnosis and risk assessment. Finally, the article addresses the challenges and future directions in the evolving field of EV-based metabolomic analysis, offering a comprehensive overview of its potential in advancing PCa management.
Collapse
Affiliation(s)
- Mahmoud Assem Hamed
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Valerie Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Qi Wang
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - David Malouf
- Department of Urology, St, George Hospital, Kogarah, NSW 2217, Australia
| | - Joseph Bucci
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia.
| |
Collapse
|
8
|
Liu M, Wen Z, Zhang T, Zhang L, Liu X, Wang M. The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis. Front Immunol 2024; 15:1417758. [PMID: 38983854 PMCID: PMC11231912 DOI: 10.3389/fimmu.2024.1417758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Exosomes represent a type of extracellular vesicles derived from the endosomal pathway that transport diverse molecular cargoes such as proteins, lipids, and nucleic acids. These cargoes have emerged as crucial elements impacting disease diagnosis, treatment, and prognosis, and are integral to the process of exosome formation. This review delves into the essential molecular cargoes implicated in the phases of exosome production and release. Emphasis is placed on their significance as cancer biomarkers and potential therapeutic targets, accompanied by an exploration of the obstacles and feasible applications linked to these developments.
Collapse
Affiliation(s)
- Meijin Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Zhenzhen Wen
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Tingting Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Linghan Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Xiaoyan Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Maoyuan Wang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, GanZhou, China
| |
Collapse
|
9
|
Varela L, van de Lest CH, van Weeren PR, Wauben MH. Synovial fluid extracellular vesicles as arthritis biomarkers: the added value of lipid-profiling and integrated omics. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:276-296. [PMID: 39698533 PMCID: PMC11648409 DOI: 10.20517/evcna.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 12/20/2024]
Abstract
Arthritis, a diverse group of inflammatory joint disorders, poses great challenges in early diagnosis and targeted treatment. Timely intervention is imperative, yet conventional diagnostic methods are not able to detect subtle early symptoms. Hence, there is an urgent need for specific biomarkers that discriminate between different arthritis forms and for early diagnosis. The pursuit of such precise diagnostic tools has prompted a growing interest in extracellular vesicles (EVs). EVs, released by cells in a regulated fashion, are detectable in body fluids, including synovial fluid (SF), which fills the joint space. They provide insights into the intricate molecular landscapes of arthritis, and this has stimulated the search for minimally invasive EV-based diagnostics. As such, the analysis of EVs in SF has become a focus for identifying EV-based biomarkers for joint disease endotyping, prognosis, and progression. EVs are composed of a lipid bilayer and a wide variety of different cargo types, of which proteins and RNAs are widely investigated. In contrast, membrane lipids of EVs, especially the abundance, presence, or absence of specific lipids and their contribution to the biological activity of EVs, are largely overlooked in EV research. Furthermore, the identification of specific combinations of different EV components acting in concert in EVs can fuel the definition of composite biomarkers. We here provide a state-of-the-art overview of the knowledge on SF-derived EVs with emphasis on lipid analysis and we give an example of the added value of integrated proteomics and lipidomics analysis in the search for composite EV-associated biomarkers.
Collapse
Affiliation(s)
- Laura Varela
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, the Netherlands
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, the Netherlands
| | - Chris H.A. van de Lest
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, the Netherlands
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, the Netherlands
| | - P. René van Weeren
- Division Equine Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, the Netherlands
| | - Marca H.M. Wauben
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, the Netherlands
| |
Collapse
|
10
|
Smack C, Johnson B, Nyalwidhe JO, Semmes OJ, Yang L. Small extracellular vesicles: Roles and clinical application in prostate cancer. Adv Cancer Res 2024; 161:119-190. [PMID: 39032949 DOI: 10.1016/bs.acr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is a significant health problem in the United States. It is remarkably heterogenous, ranging from slow growing disease amenable to active surveillance to highly aggressive forms requiring active treatments. Therefore, being able to precisely determine the nature of disease and appropriately match patients to available and/or novel therapeutics is crucial to improve patients' overall outcome and quality of life. Recently small extracellular vesicles (sEVs), a subset of nanoscale membranous vesicles secreted by various cells, have emerged as important analytes for liquid biopsy and promising vehicles for drug delivery. sEVs contain various biomolecules such as genetic material, proteins, and lipids that recapitulate the characteristics and state of their donor cells. The application of existing and newly developed technologies has resulted in an increased depth of knowledge about biophysical structures, biogenesis, and functions of sEVs. In prostate cancer patients, tumor-derived sEVs can be isolated from biofluids, commonly urine and blood. They mediate intercellular signaling within the tumor microenvironment and distal organ-specific sites, supporting cancer initiation, progression, and metastasis. A mounting body of evidence suggests that sEV components can be potent biomarkers for prostate cancer diagnosis, prognosis, and prediction of disease progression and treatment response. Due to enhanced circulation stability and bio-barrier permeability, sEVs can be also used as effective drug delivery carriers to improve the efficacy and specificity of anti-tumor therapies. This review discusses recent studies on sEVs in prostate cancer and is focused on their role as biomarkers and drug delivery vehicles in the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Caleb Smack
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Benjamin Johnson
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Julius O Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - O John Semmes
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lifang Yang
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
11
|
Slivka EV, Shilova NV, Obraztsova EA, Kapustkina DS, Khaidukov SV, Nokel AY, Ryzhov IM, Henry SM, Bovin NV, Rapoport EM. Surface Glycans of Microvesicles Derived from Endothelial Cells, as Probed Using Plant Lectins. Int J Mol Sci 2024; 25:5725. [PMID: 38891913 PMCID: PMC11171894 DOI: 10.3390/ijms25115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Glycans of MVs are proposed to be candidates for mediating targeting specificity or at least promoting it. In contrast to exosomes, glycomic studies of MVs are largely absent. We studied the glycoprofile of endothelial cell-derived MVs using 21 plant lectins, and the results show the dominance of oligolactosamines and their α2-6-sialylated forms as N-glycans and low levels of α2-3-sialylated glycans. The low levels of α2-3-sialosides could not be explained by the action of extracellular glycosidases. Additionally, the level of some Man-containing glycans was also decreased in MVs. Spatial masking as the causative relationship between these low level glycans (as glycosphingolipids) by integral proteins or proteoglycans (thus, their lack of interaction with lectins) seems unlikely. The results suggest that integral proteins do not pass randomly into MVs, but instead only some types, differing in terms of their specific glycosylation, are integrated into MVs.
Collapse
Affiliation(s)
- Ekaterina V. Slivka
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Nadezhda V. Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, 4 Oparina Str., Moscow 117997, Russia
| | - Ekaterina A. Obraztsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Daria S. Kapustkina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Sergey V. Khaidukov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, 4 Oparina Str., Moscow 117997, Russia
| | - Alexey Yu. Nokel
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Ivan M. Ryzhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Stephen M. Henry
- School of Engineering, Auckland University of Technology, Auckland 1010, New Zealand;
| | - Nicolai V. Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| | - Eugenia M. Rapoport
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.V.S.); (N.V.S.); (I.M.R.); (E.M.R.)
| |
Collapse
|
12
|
von Lersner A, Fernandes F, Ozawa PM, Jackson M, Masureel M, Ho H, Lima SM, Vagner T, Sung BH, Wehbe M, Franze K, Pua H, Wilson JT, Irish JM, Weaver AM, Di Vizio D, Zijlstra A. Multiparametric Single-Vesicle Flow Cytometry Resolves Extracellular Vesicle Heterogeneity and Reveals Selective Regulation of Biogenesis and Cargo Distribution. ACS NANO 2024; 18:10464-10484. [PMID: 38578701 PMCID: PMC11025123 DOI: 10.1021/acsnano.3c11561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024]
Abstract
Mammalian cells release a heterogeneous array of extracellular vesicles (EVs) that contribute to intercellular communication by means of the cargo that they carry. To resolve EV heterogeneity and determine if cargo is partitioned into select EV populations, we developed a method named "EV Fingerprinting" that discerns distinct vesicle populations using dimensional reduction of multiparametric data collected by quantitative single-EV flow cytometry. EV populations were found to be discernible by a combination of membrane order and EV size, both of which were obtained through multiparametric analysis of fluorescent features from the lipophilic dye Di-8-ANEPPS incorporated into the lipid bilayer. Molecular perturbation of EV secretion and biogenesis through respective ablation of the small GTPase Rab27a and overexpression of the EV-associated tetraspanin CD63 revealed distinct and selective alterations in EV populations, as well as cargo distribution. While Rab27a disproportionately affects all small EV populations with high membrane order, the overexpression of CD63 selectively increased the production of one small EV population of intermediate membrane order. Multiplexing experiments subsequently revealed that EV cargos have a distinct, nonrandom distribution with CD63 and CD81 selectively partitioning into smaller vs larger EVs, respectively. These studies not only present a method to probe EV biogenesis but also reveal how the selective partitioning of cargo contributes to EV heterogeneity.
Collapse
Affiliation(s)
- Ariana
K. von Lersner
- Program in
Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232, United
States
| | - Fabiane Fernandes
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Institute
of Applied Biosciences and Chemistry, Hogeschool
Arnhem en Nijmegen University of Applied Sciences, Nijmegen 6525 EM, Gelderland, Netherlands
| | - Patricia Midori
Murobushi Ozawa
- The
Center
for EV Research, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Cell and Developmental Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Marques Jackson
- Department
of Research Pathology, Genentech, San Francisco, California 94080, United States
| | - Matthieu Masureel
- Department
of Structural Biology, Genentech, San Francisco, California 94080, United States
| | - Hoangdung Ho
- Department
of Structural Biology, Genentech, San Francisco, California 94080, United States
| | - Sierra M. Lima
- Department
of Cell and Developmental Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Tatyana Vagner
- Department
of Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Bong Hwan Sung
- The
Center
for EV Research, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Cell and Developmental Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Mohamed Wehbe
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kai Franze
- Department
of Research Pathology, Genentech, San Francisco, California 94080, United States
- KNIME
GmbH, Konstanz 78467, Germany
| | - Heather Pua
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- The
Center
for EV Research, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - John T. Wilson
- Program in
Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232, United
States
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- The
Center
for EV Research, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jonathan M. Irish
- Program in
Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232, United
States
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Cell and Developmental Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Alissa M. Weaver
- Program in
Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232, United
States
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- The
Center
for EV Research, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Cell and Developmental Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| | - Dolores Di Vizio
- Department
of Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Andries Zijlstra
- Program in
Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232, United
States
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- The
Center
for EV Research, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Research Pathology, Genentech, San Francisco, California 94080, United States
| |
Collapse
|
13
|
Dorado E, Doria ML, Nagelkerke A, McKenzie JS, Maneta‐Stavrakaki S, Whittaker TE, Nicholson JK, Coombes RC, Stevens MM, Takats Z. Extracellular vesicles as a promising source of lipid biomarkers for breast cancer detection in blood plasma. J Extracell Vesicles 2024; 13:e12419. [PMID: 38443328 PMCID: PMC10914699 DOI: 10.1002/jev2.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, mediate intercellular communication in cancer, from development to metastasis. EV-based liquid biopsy is a promising strategy for cancer diagnosis as EVs can be found in cancer patients' body fluids. In this study, the lipid composition of breast cancer-derived EVs was studied as well as the potential of blood plasma EVs for the identification of lipid biomarkers for breast cancer detection. Initially, an untargeted lipidomic analysis was carried out for a panel of cancerous and non-cancerous mammary epithelial cells and their secreted EVs. We found that breast cancer-derived EVs are enriched in sphingolipids and glycerophospholipids compared to their parental cells. The initial in vitro study showed that EVs and their parental cells can be correctly classified (100% accuracy) between cancerous and non-cancerous, as well as into their respective breast cancer subtypes, based on their lipid composition. Subsequently, an untargeted lipidomic analysis was carried out for blood plasma EVs from women diagnosed with breast cancer (primary or progressive metastatic breast cancer) as well as healthy women. Correspondingly, when blood plasma EVs were analysed, breast cancer patients and healthy women were correctly classified with an overall accuracy of 93.1%, based on the EVs' lipid composition. Similarly, the analysis of patients with primary breast cancer and healthy women showed an overall accuracy of 95% for their correct classification. Furthermore, primary and metastatic breast cancers were correctly classified with an overall accuracy of 89.5%. This reveals that the blood plasma EVs' lipids may be a promising source of biomarkers for detection of breast cancer. Additionally, this study demonstrates the usefulness of untargeted lipidomics in the study of EV lipid composition and EV-associated biomarker discovery studies. This is a proof-of-concept study and a starting point for further analysis on the identification of EV-based biomarkers for breast cancer.
Collapse
Affiliation(s)
- Erika Dorado
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Maria Luisa Doria
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Anika Nagelkerke
- Faculty of Engineering, Department of Bioengineering, Department of Materials, Institute of Biomedical EngineeringImperial College LondonLondonUnited Kingdom
| | - James S. McKenzie
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Stefania Maneta‐Stavrakaki
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Thomas E. Whittaker
- Faculty of Engineering, Department of Bioengineering, Department of Materials, Institute of Biomedical EngineeringImperial College LondonLondonUnited Kingdom
| | - Jeremy K. Nicholson
- Institute of Global Health InnovationImperial College LondonLondonUnited Kingdom
| | - Raoul Charles Coombes
- Faculty of Medicine, Department of Surgery and CancerImperial College LondonLondonUnited Kingdom
| | - Molly M. Stevens
- Faculty of Engineering, Department of Bioengineering, Department of Materials, Institute of Biomedical EngineeringImperial College LondonLondonUnited Kingdom
| | - Zoltan Takats
- Faculty of Medicine, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
- PRISM Inserm U1192University of LilleLilleFrance
- Deparment of ImmunomedicineUniversity of RegensburgRegensburgGermany
| |
Collapse
|
14
|
Yu L, Zeng X, Hu X, Wen Q, Chen P. Advances and challenges in clinical applications of tumor cell-derived extracellular vesicles. Colloids Surf B Biointerfaces 2024; 234:113704. [PMID: 38113751 DOI: 10.1016/j.colsurfb.2023.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Extracellular vesicles (EVs) are a class of substances that feature vesicle-like structures. Initially deemed to be "biological waste", recent studies have highlighted the crucial role of EVs in mediating information communication between cells by transporting bioactive components. Specifically, tumor cell-derived extracellular vesicles (TEVs) contain components that can be utilized for disease diagnosis and as vaccines to activate the immune system. Moreover, since TEVs have a phospholipid bilayer shell and can transport exogenous substances, they are being increasingly explored as drug delivery vehicles in anti-tumor therapy. TEVs have proven highly compatible with their corresponding tumor cells, allowing for efficient drug delivery and exerting killing effects on tumor cells through various mechanisms such as domino effects, lysosomal pathways, and inhibition of drug efflux from tumor tissues. Despite these promising developments, challenges remain in the clinical applications of EVs derived from tumor cells. This paper outlines the current advances and limitations in this field, highlighting the potential of TEVs as a powerful tool for combating cancer.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
15
|
Hüttmann N, Li Y, Poolsup S, Zaripov E, D’Mello R, Susevski V, Minic Z, Berezovski MV. Surface Proteome of Extracellular Vesicles and Correlation Analysis Reveal Breast Cancer Biomarkers. Cancers (Basel) 2024; 16:520. [PMID: 38339272 PMCID: PMC10854524 DOI: 10.3390/cancers16030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Breast cancer (BC) is the second most frequently diagnosed cancer and accounts for approximately 25% of new cancer cases in Canadian women. Using biomarkers as a less-invasive BC diagnostic method is currently under investigation but is not ready for practical application in clinical settings. During the last decade, extracellular vesicles (EVs) have emerged as a promising source of biomarkers because they contain cancer-derived proteins, RNAs, and metabolites. In this study, EV proteins from small EVs (sEVs) and medium EVs (mEVs) were isolated from BC MDA-MB-231 and MCF7 and non-cancerous breast epithelial MCF10A cell lines and then analyzed by two approaches: global proteomic analysis and enrichment of EV surface proteins by Sulfo-NHS-SS-Biotin labeling. From the first approach, proteomic profiling identified 2459 proteins, which were subjected to comparative analysis and correlation network analysis. Twelve potential biomarker proteins were identified based on cell line-specific expression and filtered by their predicted co-localization with known EV marker proteins, CD63, CD9, and CD81. This approach resulted in the identification of 11 proteins, four of which were further investigated by Western blot analysis. The presence of transmembrane serine protease matriptase (ST14), claudin-3 (CLDN3), and integrin alpha-7 (ITGA7) in each cell line was validated by Western blot, revealing that ST14 and CLDN3 may be further explored as potential EV biomarkers for BC. The surface labeling approach enriched proteins that were not identified using the first approach. Ten potential BC biomarkers (Glutathione S-transferase P1 (GSTP1), Elongation factor 2 (EEF2), DEAD/H box RNA helicase (DDX10), progesterone receptor (PGR), Ras-related C3 botulinum toxin substrate 2 (RAC2), Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), Aconitase 2 (ACO2), UTP20 small subunit processome component (UTP20), NEDD4 binding protein 2 (N4BP2), Programmed cell death 6 (PDCD6)) were selected from surface proteins commonly identified from MDA-MB-231 and MCF7, but not identified in MCF10A EVs. In total, 846 surface proteins were identified from the second approach, of which 11 were already known as BC markers. This study supports the proposition that Evs are a rich source of known and novel biomarkers that may be used for non-invasive detection of BC. Furthermore, the presented datasets could be further explored for the identification of potential biomarkers in BC.
Collapse
Affiliation(s)
- Nico Hüttmann
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Yingxi Li
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Suttinee Poolsup
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Emil Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Rochelle D’Mello
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Vanessa Susevski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.H.); (Y.L.); (S.P.); (E.Z.); (R.D.); (V.S.)
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
16
|
Lee KY, Beatson EL, Knechel MA, Sommer ER, Napoli GC, Risdon EN, Leon AF, Depaz RD, Strope JD, Price DK, Chau CH, Figg WD. Detection of Extracellular Vesicle-Derived RNA as Potential Prostate Cancer Biomarkers: Role of Cancer-type SLCO1B3 and ABCC3. J Cancer 2024; 15:615-622. [PMID: 38213719 PMCID: PMC10777027 DOI: 10.7150/jca.90836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024] Open
Abstract
Extracellular vesicles (EVs) provide a minimally invasive liquid biopsy source of tumor-specific markers for patients who have already undergone prostatectomies. Our laboratory has previously demonstrated enrichment of the cancer-type solute carrier organic anion transporter family 1B3 (ct-SLCO1B3) and the ATP Binding Cassette Subfamily Member C (ABCC3) in castration-resistant cell lines (CRPC). However, their expression in EVs has yet to be explored. Our study demonstrated that ct-SLCO1B3 and ABCC3 are highly detectable in CRPC cell line-derived EVs. We also showed that ct-SLCO1B3 and ABCC3 were detectable in a CRPC xenograft mouse model, both intratumorally and in plasma-derived EVs. Our results provide evidence for EV-contained ct-SLCO1B3 and ABCC3 as novel, EV-based tumor markers for prostate cancer progression.
Collapse
Affiliation(s)
- Kristi Y. Lee
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erica L. Beatson
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martina A. Knechel
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elijah R. Sommer
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Giulia C. Napoli
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily N. Risdon
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andres F. Leon
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roger D. Depaz
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan D. Strope
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas K. Price
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William D. Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Edwards M, Freitas DP, Hirtzel EA, White N, Wang H, Davidson LA, Chapkin RS, Sun Y, Yan X. Interfacial Electromigration for Analysis of Biofluid Lipids in Small Volumes. Anal Chem 2023; 95:18557-18563. [PMID: 38050376 PMCID: PMC10862378 DOI: 10.1021/acs.analchem.3c04309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Lipids are important biomarkers within the field of disease diagnostics and can serve as indicators of disease progression and predictors of treatment effectiveness. Although lipids can provide important insight into how diseases initiate and progress, mass spectrometric methods for lipid characterization and profiling are limited due to lipid structural diversity, particularly the presence of various lipid isomers. Moreover, the difficulty of handling small-volume samples exacerbates the intricacies of biological analyses. In this work, we have developed a strategy that electromigrates a thin film of a small-volume biological sample directly to the air-liquid interface formed at the tip of a theta capillary. Importantly, we seamlessly integrated in situ biological lipid extraction with accelerated chemical derivatization, enabled by the air-liquid interface, and conducted isomeric structural characterization within a unified platform utilizing theta capillary nanoelectrospray ionization mass spectrometry, all tailored for small-volume sample analysis. We applied this unified platform to the analysis of lipids from small-volume human plasma and Alzheimer's disease mouse serum samples. Accelerated electro-epoxidation of unsaturated lipids at the interface allowed us to characterize lipid double-bond positional isomers. The unique application of electromigration of a thin film to the air-liquid interface in combination with accelerated interfacial reactions holds great potential in small-volume sample analysis for disease diagnosis and prevention.
Collapse
Affiliation(s)
- Madison
E. Edwards
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Dallas P. Freitas
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Erin A. Hirtzel
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Nicholas White
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Hongying Wang
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Laurie A. Davidson
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Robert S. Chapkin
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Yuxiang Sun
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
18
|
Pitchaimani A, Ferreira M, Palange A, Pannuzzo M, De Mei C, Spano R, Marotta R, Pelacho B, Prosper F, Decuzzi P. Compartmentalized drug localization studies in extracellular vesicles for anticancer therapy. NANOSCALE ADVANCES 2023; 5:6830-6836. [PMID: 38059035 PMCID: PMC10696952 DOI: 10.1039/d3na00207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/14/2023] [Indexed: 12/08/2023]
Abstract
In the development of therapeutic extracellular vesicles (EVs), drug encapsulation efficiencies are significantly lower when compared with synthetic nanomedicines. This is due to the hierarchical structure of the EV membrane and the physicochemical properties of the candidate drug (molecular weight, hydrophilicity, lipophilicity, and so on). As a proof of concept, here we demonstrated the importance of drug compartmentalization in EVs as an additional parameter affecting the therapeutic potential of drug-loaded EVs. In human adipose mesenchymal stem cell (hADSC) derived EVs, we performed a comparative drug loading analysis using two formulations of the same chemotherapeutic molecule - free doxorubicin (DOX) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) lipid-conjugated doxorubicin (L-DOX) - to enhance the intracellular uptake and therapeutic efficacy. By nano surface energy transfer (NSET) and molecular simulation techniques, along with cryo-TEM analysis, we confirmed the differential compartmentalization of these two molecules in hADSC EVs. L-DOX was preferentially adsorbed onto the surface of the EV, due to its higher lipophilicity, whereas free DOX was mostly encapsulated within the EV core. Also, the L-DOX loaded EV (LDOX@EV) returned an almost three-fold higher DOX content as compared to the free DOX loaded EV (DOX@EV), for a given input mass of drug. Based on the cellular investigations, L-DOX@EV showed higher cell internalization than DOX@EV. Also, in comparison with free L-DOX, the magnitude of therapeutic potential enhancement displayed by the surface compartmentalized L-DOX@EV is highly promising and can be exploited to overcome the sensitivity of many potential drugs, which are impermeable in nature. Overall, this study illustrates the significance of drug compartmentalization in EVs and how this could affect intracellular delivery, loading efficiency, and therapeutic effect. This will further lay the foundation for the future systematic investigation of EV-based biotherapeutic delivery platforms for personalized medicine.
Collapse
Affiliation(s)
- Arunkumar Pitchaimani
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Miguel Ferreira
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Annalisa Palange
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Martina Pannuzzo
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Claudia De Mei
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Raffaele Spano
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| | - Beatriz Pelacho
- Centre for Applied Medical Research (CIMA), University of Navarra Navarra Spain
| | - Felipe Prosper
- Centre for Applied Medical Research (CIMA), University of Navarra Navarra Spain
- Clinica Universidad de Navarra, CCUN, IDISNA and CIBERONC Navarra Spain
| | - Paolo Decuzzi
- Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia (IIT) Genova GE Italy
| |
Collapse
|
19
|
Du B, Zhang F, Zhou Q, Cheng W, Yu Z, Li L, Yang J, Zhang X, Zhou C, Zhang W. Joint analysis of the metabolomics and transcriptomics uncovers the dysregulated network and develops the diagnostic model of high-risk neuroblastoma. Sci Rep 2023; 13:16991. [PMID: 37813883 PMCID: PMC10562375 DOI: 10.1038/s41598-023-43988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023] Open
Abstract
High-risk neuroblastoma (HR-NB) has a significantly lower survival rate compared to low- and intermediate-risk NB (LIR-NB) due to the lack of risk classification diagnostic models and effective therapeutic targets. The present study aims to characterize the differences between neuroblastomas with different risks through transcriptomic and metabolomic, and establish an early diagnostic model for risk classification of neuroblastoma.Plasma samples from 58 HR-NB and 38 LIR-NB patients were used for metabolomics analysis. Meanwhile, NB tissue samples from 32 HR-NB and 23 LIR-NB patients were used for transcriptomics analysis. In particular, integrative metabolomics and transcriptomic analysis was performed between HR-NB and LIR-NB. A total of 44 metabolites (P < 0.05 and fold change > 1.5) were altered, including 12 that increased and 32 that decreased in HR-NB. A total of 1,408 mRNAs (P < 0.05 and |log2(fold change)|> 1) showed significantly altered in HR-NB, of which 1,116 were upregulated and 292 were downregulated. Joint analysis of both omic data identified 4 aberrant pathways (P < 0.05 and impact ≥ 0.5) consisting of glycerolipid metabolism, retinol metabolism, arginine biosynthesis and linoleic acid metabolism. Importantly, a HR-NB risk classification diagnostic model was developed using plasma circulating-free S100A9, CDK2, and UNC5D, with an area under receiver operating characteristic curve of 0.837 where the sensitivity and specificity in the validation set were both 80.0%. This study presents a novel pioneering study demonstrating the metabolomics and transcriptomics profiles of HR-NB. The glycerolipid metabolism, retinol metabolism, arginine biosynthesis and linoleic acid metabolism were altered in HR-NB. The risk classification diagnostic model based on S100A9, CDK2, and UNC5D can be clinically used for HR-NB risk classification.
Collapse
Affiliation(s)
- Bang Du
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
| | - Fei Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
| | - Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230000, China
| | - Weyland Cheng
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
| | - Zhidan Yu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
| | - Lifeng Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
| | - Jianwei Yang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China
| | - Xianwei Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
| | - Chongchen Zhou
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
| | - Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, 450018, China.
| |
Collapse
|
20
|
Rani S, Lai A, Nair S, Sharma S, Handberg A, Carrion F, Möller A, Salomon C. Extracellular vesicles as mediators of cell-cell communication in ovarian cancer and beyond - A lipids focus. Cytokine Growth Factor Rev 2023; 73:52-68. [PMID: 37423866 DOI: 10.1016/j.cytogfr.2023.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Extracellular vesicles (EVs) are messengers that carry information in the form of proteins, lipids, and nucleic acids and are not only essential for intercellular communication but also play a critical role in the progression of various pathologies, including ovarian cancer. There has been recent substantial research characterising EV cargo, specifically, the lipid profile of EVs. Lipids are involved in formation and cargo sorting of EVs, their release and cellular uptake. Numerous lipidomic studies demonstrated the enrichment of specific classes of lipids in EVs derived from cancer cells suggesting that the EV associated lipids can potentially be employed as minimally invasive biomarkers for early diagnosis of various malignancies, including ovarian cancer. In this review, we aim to provide a general overview of the heterogeneity of EV, biogenesis, their lipid content, and function in cancer progression focussing on ovarian cancer.
Collapse
Affiliation(s)
- Shikha Rani
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Soumya Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Shayna Sharma
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Andreas Möller
- Department of Otorhinolaryngology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia; Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
21
|
Polónia B, Xavier CPR, Kopecka J, Riganti C, Vasconcelos MH. The role of Extracellular Vesicles in glycolytic and lipid metabolic reprogramming of cancer cells: Consequences for drug resistance. Cytokine Growth Factor Rev 2023; 73:150-162. [PMID: 37225643 DOI: 10.1016/j.cytogfr.2023.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
In order to adapt to a higher proliferative rate and an increased demand for energy sources, cancer cells rewire their metabolic pathways, a process currently recognized as a hallmark of cancer. Even though the metabolism of glucose is perhaps the most discussed metabolic shift in cancer, lipid metabolic alterations have been recently recognized as relevant players in the growth and proliferation of cancer cells. Importantly, some of these metabolic alterations are reported to induce a drug resistant phenotype in cancer cells. The acquisition of drug resistance traits severely hinders cancer treatment, being currently considered one of the major challenges of the oncological field. Evidence suggests that Extracellular Vesicles (EVs), which play a crucial role in intercellular communication, may act as facilitators of tumour progression, survival and drug resistance by modulating several aspects involved in the metabolism of cancer cells. This review aims to gather and discuss relevant data regarding metabolic reprograming in cancer, particularly involving the glycolytic and lipid alterations, focusing on its influence on drug resistance and highlighting the relevance of EVs as intercellular mediators of this process.
Collapse
Affiliation(s)
- Bárbara Polónia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal, 4200-135 Porto, Portugal
| | - Joanna Kopecka
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy; Interdepartmental Research Center for Molecular Biotechnology "G. Tarone", University of Torino, 10126 Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal.
| |
Collapse
|
22
|
Park SH, Lee EK, Yim J, Lee MH, Lee E, Lee YS, Seo W. Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases. Biomol Ther (Seoul) 2023; 31:253-263. [PMID: 37095734 PMCID: PMC10129856 DOI: 10.4062/biomolther.2022.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
The biogenesis and biological roles of extracellular vesicles (EVs) in the progression of liver diseases have attracted considerable attention in recent years. EVs are membrane-bound nanosized vesicles found in different types of body fluids and contain various bioactive materials, including proteins, lipids, nucleic acids, and mitochondrial DNA. Based on their origin and biogenesis, EVs can be classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are the smallest EVs (30-150 nm in diameter), which play a significant role in cell-to-cell communication and epigenetic regulation. Moreover, exosomal content analysis can reveal the functional state of the parental cell. Therefore, exosomes can be applied to various purposes, including disease diagnosis and treatment, drug delivery, cell-free vaccines, and regenerative medicine. However, exosome-related research faces two major limitations: isolation of exosomes with high yield and purity and distinction of exosomes from other EVs (especially microvesicles). No standardized exosome isolation method has been established to date; however, various exosome isolation strategies have been proposed to investigate their biological roles. Exosome-mediated intercellular communications are known to be involved in alcoholic liver disease and nonalcoholic fatty liver disease development. Damaged hepatocytes or nonparenchymal cells release large numbers of exosomes that promote the progression of inflammation and fibrogenesis through interactions with neighboring cells. Exosomes are expected to provide insight on the progression of liver disease. Here, we review the biogenesis of exosomes, exosome isolation techniques, and biological roles of exosomes in alcoholic liver disease and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Seol Hee Park
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Eun Kyeong Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Joowon Yim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Min Hoo Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Eojin Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Medical Center, Seoul 08308, Republic of Korea
| | - Wonhyo Seo
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
23
|
Palacio PL, Pleet ML, Reátegui E, Magaña SM. Emerging role of extracellular vesicles in multiple sclerosis: From cellular surrogates to pathogenic mediators and beyond. J Neuroimmunol 2023; 377:578064. [PMID: 36934525 PMCID: PMC10124134 DOI: 10.1016/j.jneuroim.2023.578064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
Multiple Sclerosis (MS) is a chronic, inflammatory demyelinating disease of the central nervous system (CNS) driven by a complex interplay of genetic and environmental factors. While the therapeutic arsenal has expanded significantly for management of relapsing forms of MS, treatment of individuals with progressive MS is suboptimal. This treatment inequality is in part due to an incomplete understanding of pathomechanisms at different stages of the disease-underscoring the critical need for new biomarkers. Extracellular vesicles (EVs) and their bioactive cargo have emerged as endogenous nanoparticles with great theranostic potential-as diagnostic and prognostic biomarkers and ultimately as therapeutic candidates for precision nanotherapeutics. The goals of this review are to: 1) summarize the current data investigating the role of EVs and their bioactive cargo in MS pathogenesis, 2) provide a high level overview of advances and challenges in EV isolation and characterization for translational studies, and 3) conclude with future perspectives on this evolving field.
Collapse
Affiliation(s)
- Paola Loreto Palacio
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michelle L Pleet
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Setty M Magaña
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
24
|
Minic Z, Li Y, Hüttmann N, Uppal GK, D’Mello R, Berezovski MV. Lysine Acetylome of Breast Cancer-Derived Small Extracellular Vesicles Reveals Specific Acetylation Patterns for Metabolic Enzymes. Biomedicines 2023; 11:biomedicines11041076. [PMID: 37189694 DOI: 10.3390/biomedicines11041076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer-derived small extracellular vesicles have been proposed as promising potential biomarkers for diagnosis and prognosis of breast cancer (BC). We performed a proteomic study of lysine acetylation of breast cancer-derived small extracellular vesicles (sEVs) to understand the potential role of the aberrant acetylated proteins in the biology of invasive ductal carcinoma and triple-negative BC. Three cell lines were used as models for this study: MCF10A (non-metastatic), MCF7 (estrogen and progesterone receptor-positive, metastatic) and MDA-MB-231 (triple-negative, highly metastatic). For a comprehensive protein acetylation analysis of the sEVs derived from each cell line, acetylated peptides were enriched using the anti-acetyl-lysine antibody, followed by LC-MS/MS analysis. In total, there were 118 lysine-acetylated peptides, of which 22, 58 and 82 have been identified in MCF10A, MCF7 and MDA-MB-231 cell lines, respectively. These acetylated peptides were mapped to 60 distinct proteins and mainly identified proteins involved in metabolic pathways. Among the acetylated proteins identified in cancer-derived sEVs from MCF7 and MDA-MB-231 cell lines are proteins associated with the glycolysis pathway, annexins and histones. Five acetylated enzymes from the glycolytic pathway, present only in cancer-derived sEVs, were validated. These include aldolase (ALDOA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK1), enolase (ENO) and pyruvate kinase M1/2 (PKM). For three of these enzymes (ALDOA, PGK1 and ENO) the specific enzymatic activity was significantly higher in MDA-MB-231 when compared with MCF10A-derived sEVs. This study reveals that sEVs contain acetylated glycolytic metabolic enzymes that could be interesting potential candidates for early BC diagnostics.
Collapse
Affiliation(s)
- Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Yingxi Li
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Gurcharan K. Uppal
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Rochelle D’Mello
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Maxim V. Berezovski
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
25
|
Jalaludin I, Nguyen HQ, Jang KS, Lee J, Lubman DM, Kim J. Matrix-assisted laser desorption/ionization-Fourier-transform ion cyclotron resonance-mass spectrometry analysis of exosomal lipids from human serum. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9427. [PMID: 36321680 PMCID: PMC9757854 DOI: 10.1002/rcm.9427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Exosomes contain biomarkers such as proteins and lipids that help in understanding normal physiology and diseases. Lipids, in particular, are infrequently studied using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for biomarker discovery. In this study, MALDI was equipped with a high-resolution MS to investigate exosomal lipids from human serum. METHODS Exosomal lipids were profiled using MALDI with Fourier-transform ion cyclotron resonance (FTICR)-MS. Four matrices (i.e., α-cyano-4-hydroxycinnamic acid [CHCA], 2,5-dihydroxybenzoic acid, sinapinic acid, and graphene oxide [GO]) and three sample preparation methods (i.e., dried droplet, thin layer, and two layer) were compared for the number of lipid species detected and the relative abundance of each lipid from human serum and human serum exosomes. RESULTS In sum, 172 and 89 lipid species were identified from human serum and human serum exosomes, respectively, using all the methods. The highest number of exosome lipid species, 69, was detected using the CHCA matrix, whereas only 8 exosome lipid species were identified using the GO matrix. Among the identified lipid species, phosphatidylcholine was identified most frequently, probably due to the use of a positive ion mode. CONCLUSIONS Exosomes and human serum showed comparable lipid profiles as determined using MALDI-FTICR-MS. These findings provide a new perspective on exosomal lipidomics analysis and may serve as a foundation for future lipidomics-based biomarker research using MALDI-FTICR-MS.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
26
|
Louie HH, Mugisho OO, Chamley LW, Rupenthal ID. Extracellular Vesicles as Biomarkers and Therapeutics for Inflammatory Eye Diseases. Mol Pharm 2023; 20:23-40. [PMID: 36332193 DOI: 10.1021/acs.molpharmaceut.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Extracellular vesicles (EVs) are a group of cell-derived membrane vesicles of varying sizes that can be secreted by most cells. Depending on the type of cell they are derived from, EVs may contain a variety of cargo including proteins, lipids, miRNA, and DNA. Functionally, EVs play important roles in physiological and pathological processes through intercellular communication. While there has already been significant literature on the involvement of EVs in neurological and cardiovascular disease as well as cancer, recent evidence suggests that EVs may also play a role in mediating inflammatory eye diseases. This paper summarizes current advancements in ocular EV research as well as new ways by which EVs may be utilized as novel biomarkers of or therapeutics for inflammatory eye diseases.
Collapse
Affiliation(s)
- Henry H Louie
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Lawrence W Chamley
- Hub for Extracellular Vesicle Investigations, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Department of Obstetrics & Gynaecology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
27
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|
28
|
Bettio V, Mazzucco E, Antona A, Cracas S, Varalda M, Venetucci J, Bruno S, Chiabotto G, Venegoni C, Vasile A, Chiocchetti A, Quaglia M, Camussi G, Cantaluppi V, Panella M, Rolla R, Manfredi M, Capello D. Extracellular vesicles from human plasma for biomarkers discovery: Impact of anticoagulants and isolation techniques. PLoS One 2023; 18:e0285440. [PMID: 37163560 PMCID: PMC10171685 DOI: 10.1371/journal.pone.0285440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Extracellular vesicles (EVs) isolated from plasma are increasingly recognized as promising circulating biomarkers for disease discovery and progression, as well as for therapeutic drug delivery. The scientific community underlined the necessity of standard operative procedures for the isolation and storage of the EVs to ensure robust results. The understanding of the impact of the pre-analytical variables is still limited and some considerations about plasma anticoagulants and isolation methods are necessary. Therefore, we performed a comparison study between EVs isolated by ultracentrifugation and by affinity substrate separation from plasma EDTA and sodium citrate. The EVs were characterized by Nano Tracking Analysis, Western Blot, cytofluorimetric analysis of surface markers, and lipidomic analysis. While anticoagulants did not significantly alter any of the analyzed parameters, the isolation methods influenced EVs size, purity, surface markers expression and lipidomic profile. Compared to ultracentrifugation, affinity substrate separation yielded bigger particles highly enriched in tetraspanins (CD9, CD63, CD81), fatty acids and glycerolipids, with a predominant LDL- and vLDL-like contamination. Herein, we highlighted that the isolation method should be carefully evaluated prior to study design and the need of standardized operative procedures for EVs isolation and application to biomarkers discovery.
Collapse
Affiliation(s)
- Valentina Bettio
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- UPO Biobank, University of Piemonte Orientale, Novara, Italy
| | - Eleonora Mazzucco
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- UPO Biobank, University of Piemonte Orientale, Novara, Italy
| | - Annamaria Antona
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Cracas
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Marco Varalda
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Chiara Venegoni
- Interdisciplinary Research Center of Autoimmune Diseases, Center on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
- Department of Health Science, "Maggiore della Carità" University Hospital, Novara, Italy
| | - Alessandra Vasile
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Annalisa Chiocchetti
- Interdisciplinary Research Center of Autoimmune Diseases, Center on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
- Department of Health Science, "Maggiore della Carità" University Hospital, Novara, Italy
| | - Marco Quaglia
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale, "Maggiore della Carità" University Hospital, Novara, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale, "Maggiore della Carità" University Hospital, Novara, Italy
| | - Massimiliano Panella
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Roberta Rolla
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- Clinical Chemistry, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Università del Piemonte Orientale, Novara, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- UPO Biobank, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
29
|
Qian F, Huang Z, Zhong H, Lei Q, Ai Y, Xie Z, Zhang T, Jiang B, Zhu W, Sheng Y, Hu J, Brinker CJ. Analysis and Biomedical Applications of Functional Cargo in Extracellular Vesicles. ACS NANO 2022; 16:19980-20001. [PMID: 36475625 DOI: 10.1021/acsnano.2c11298] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) can facilitate essential communication among cells in a range of pathophysiological conditions including cancer metastasis and progression, immune regulation, and neuronal communication. EVs are membrane-enclosed vesicles generated through endocytic origin and contain many cellular components, including proteins, lipids, nucleic acids, and metabolites. Over the past few years, the intravesicular content of EVs has proven to be a valuable biomarker for disease diagnostics, involving cancer, cardiovascular diseases, and central nervous system diseases. This review aims to provide insight into EV biogenesis, composition, function, and isolation, present a comprehensive overview of emerging techniques for EV cargo analysis, highlighting their major technical features and limitations, and summarize the potential role of EV cargos as biomarkers in disease diagnostics. Further, progress and remaining challenges will be discussed for clinical diagnostic outlooks.
Collapse
Affiliation(s)
- Feiyang Qian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zena Huang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou 510970, P.R. China
| | - Hankang Zhong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yiru Ai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Zihui Xie
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Tenghua Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Bowen Jiang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yan Sheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - Jiaming Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P.R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
30
|
Mecocci S, Trabalza-Marinucci M, Cappelli K. Extracellular Vesicles from Animal Milk: Great Potentialities and Critical Issues. Animals (Basel) 2022; 12:ani12233231. [PMID: 36496752 PMCID: PMC9740508 DOI: 10.3390/ani12233231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Other than representing the main source of nutrition for newborn mammals, milk delivers a sophisticated signaling system from mother to child that promotes postnatal health. The bioactive components transferred through the milk intake are important for the development of the newborn immune system and include oligosaccharides, lactoferrin, lysozyme, α-La, and immunoglobulins. In the last 15 years, a pivotal role in this mother-to-child exchange has been attributed to extracellular vesicles (EVs). EVs are micro- and nanosized structures enclosed in a phospholipidic double-layer membrane that are produced by all cell types and released in the extracellular environment, reaching both close and distant cells. EVs mediate the intercellular cross-talk from the producing to the receiving cell through the transfer of molecules contained within them such as proteins, antigens, lipids, metabolites, RNAs, and DNA fragments. The complex cargo can induce a wide range of functional modulations in the recipient cell (i.e., anti-inflammatory, immunomodulating, angiogenetic, and pro-regenerative modulations) depending on the type of producing cells and the stimuli that these cells receive. EVs can be recovered from every biological fluid, including blood, urine, bronchoalveolar lavage fluid, saliva, bile, and milk, which is one of the most promising scalable vesicle sources. This review aimed to present the state-of-the-art of animal-milk-derived EV (mEV) studies due to the exponential growth of this field. A focus on the beneficial potentialities for human health and the issues of studying vesicles from milk, particularly for the analytical methodologies applied, is reported.
Collapse
|
31
|
Medium Extracellular Vesicles—A Qualitative and Quantitative Biomarker of Prostate Cancer. Biomedicines 2022; 10:biomedicines10112856. [DOI: 10.3390/biomedicines10112856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
For years, the diagnosis of prostate cancer has been understated. Despite the relatively low mortality rate, prostate cancer is still one of the most common neoplasms in men, which proves the need for continuous improvements in the diagnostics of this disease. New biomarkers may address these challenges in the form of extracellular vesicles (EV) secreted by prostate cancer cells. The available literature in the PubMed, SCOPUS, and ResearchGate databases from the last ten years was analyzed using search phrases such as extracellular vesicles, microparticles, microvesicles, cancer biomarkers, and prostate cancer. Then, the research was selected in terms of the size of the tested EVs (the EV medium of 100–1000 nm diameter, was taken into account), the latest versions of the literature were selected and compiled, and their results were compared. The group of extracellular vesicles contain a substantial amount of genetic information that can be used in research on the specificity of prostate cancer and other cancers. So far, it has been shown that EVs produced by PCa cells express proteins specific for these cells, which, thanks to their specificity, can make EV useful biomarkers of prostate cancer. Moreover, the importance of the quantitative release of EV from PCa cells has been demonstrated, which may be necessary to diagnose prostate cancer malignancy. Each method positively correlates with Gleason’s results and is even characterized by greater diagnostic sensitivity. Medium extracellular vesicles are a promising research material, and their specificity and sensitivity may allow them to be used in future prostate cancer diagnostics as biomarkers.
Collapse
|
32
|
Hallal S, Tűzesi Á, Grau GE, Buckland ME, Alexander KL. Understanding the extracellular vesicle surface for clinical molecular biology. J Extracell Vesicles 2022; 11:e12260. [PMID: 36239734 PMCID: PMC9563386 DOI: 10.1002/jev2.12260] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid-membrane enclosed nanoparticles that play significant roles in health and disease. EVs are abundant in body fluids and carry an array of molecules (proteins, lipids, nucleic acids and glycans) that reflect the identity and activity of their cell-of-origin. While the advent of high throughput omics technologies has allowed in-depth characterisation of EV compositions, how these molecular species are spatially distributed within EV structures is not well appreciated. This is particularly true of the EV surface where a plethora of molecules are reported to be both integral and peripherally associated to the EV membrane. This coronal layer or 'atmosphere' that surrounds the EV membrane contributes to a large, highly interactive and dynamic surface area that is responsible for facilitating EV interactions with the extracellular environment. The EV coronal layer harbours surface molecules that reflect the identity of parent cells, which is likely a highly valuable property in the context of diagnostic liquid biopsies. In this review, we describe the current understanding of the mechanical, electrostatic and molecular properties of the EV surface that offer significant biomarker potential and contribute to a highly dynamic interactome.
Collapse
Affiliation(s)
- Susannah Hallal
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia
| | - Ágota Tűzesi
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Georges E. Grau
- School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Michael E. Buckland
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Kimberley L. Alexander
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
33
|
Dhanapala L, Joseph S, Jones AL, Moghaddam S, Lee N, Kremer RB, Rusling JF. Immunoarray Measurements of Parathyroid Hormone-Related Peptides Combined with Other Biomarkers to Diagnose Aggressive Prostate Cancer. Anal Chem 2022; 94:12788-12797. [PMID: 36074029 DOI: 10.1021/acs.analchem.2c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) is related to bone metastasis and hypercalcemia in prostate and breast cancers and should be an excellent biomarker for aggressive forms of these cancers. Current clinical detection protocols for PTHrP are immunoradiometric assay and radioimmunoassay but are not sensitive enough to detect PTHrPs at early stages. We recently evaluated a prostate cancer biomarker panel, including serum monocyte differentiation antigen (CD-14), ETS-related gene protein, pigment epithelial-derived factor, and insulin-like growth factor-1, with promise for identifying aggressive prostate cancers. This panel predicted the need for patient biopsy better than PSA alone. In the present paper, we report an ultrasensitive microfluidic assay for PTHrPs and evaluate their diagnostic value and the value of including them with our prior biomarker panel to diagnose aggressive forms of prostate cancer. The immunoarray features screen-printed carbon sensor electrodes coated with 5 nm glutathione gold nanoparticles with capture antibodies attached. PTHrPs are bound to a secondary antibody attached to a polyhorseradish peroxidase label and delivered to the sensors to provide high sensitivity when activated by H2O2 and a mediator. We obtained an unprecedented 0.3 fg mL-1 limit of detection for PTHrP bioactive moieties PTHrP 1-173 and PTHrP 1-86. We also report the first study of PTHrPs in a large serum pool to identify aggressive malignancies. In assays of 130 human patient serum samples, PTHrP levels distinguished between aggressive and indolent prostate cancers with 83-91% clinical sensitivity and 78-96% specificity. Logistic regression identified the best predictive model as a combination of PTHrP 1-86 and vascular endothelial growth factor-D. PTHrP 1-173 alone also showed a high ability to differentiate aggressive and indolent cancers.
Collapse
Affiliation(s)
- Lasangi Dhanapala
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Sophie Joseph
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Abby L Jones
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shirin Moghaddam
- Department of Mathematics and Statistics (MACSI), University of Limerick, Limerick V94 T9PX, Ireland
| | - Norman Lee
- Department of Pharmacology and Physiology, George Washington University, 2300 I Street, NW, Washington, Washington, District of Columbia 20037, United States.,George Washington University Cancer Center, 800 22nd Street, NW, Washington, Washington, District of Columbia 20052, United States
| | - Richard B Kremer
- Department of Medicine, McGill University Health Centre, 1001 Decarie Blvd., Montreal QC H4A, Canada
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Surgery and Neag Cancer Center, UConn Health, Farmington, Connecticut 06232, United States.,School of Chemistry, National University of Ireland Galway, Galway H91 TK33, Ireland.,Institute of Materials Science, University of Connecticut, 97 N. Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
34
|
Huang W, Zhu XY, Lerman A, Lerman LO. Extracellular Vesicles as Theranostic Tools in Kidney Disease. Clin J Am Soc Nephrol 2022; 17:1418-1429. [PMID: 35260417 PMCID: PMC9625088 DOI: 10.2215/cjn.16751221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles are important vectors for cell-cell communication and show potential value for diagnosis and treatment of kidney diseases. The pathologic diagnosis of kidney diseases relies on kidney biopsy, whereas collection of extracellular vesicles from urine or circulating blood may constitute a less invasive diagnostic tool. In particular, urinary extracellular vesicles released mainly from resident kidney cells might provide an alternative tool for detection of kidney injury. Because extracellular vesicles mirror many features of their parent cells, cargoes of several populations of urinary extracellular vesicles are promising biomarkers for disease processes, like diabetic kidney disease, kidney transplant, and lupus nephritis. Contrarily, extracellular vesicles derived from reparative cells, such as mesenchymal stem cells, tubular epithelial progenitor cells, and human umbilical cord blood represent promising regenerative tools for treatment of kidney diseases. Furthermore, induced pluripotent stem cells-derived and engineered extracellular vesicles are being developed for specific applications for the kidney. Nevertheless, some assumptions regarding the specificity and immunogenicity of extracellular vesicles remain to be established. This review focuses on the utility of extracellular vesicles as therapeutic and diagnostic (theranostic) tools in kidney diseases and future directions for studies.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
35
|
Yi X, Chen J, Huang D, Feng S, Yang T, Li Z, Wang X, Zhao M, Wu J, Zhong T. Current perspectives on clinical use of exosomes as novel biomarkers for cancer diagnosis. Front Oncol 2022; 12:966981. [PMID: 36119470 PMCID: PMC9472136 DOI: 10.3389/fonc.2022.966981] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022] Open
Abstract
Exosomes are a heterogeneous subset of extracellular vesicles (EVs) that biogenesis from endosomes. Besides, exosomes contain a variety of molecular cargoes including proteins, lipids and nucleic acids, which play a key role in the mechanism of exosome formation. Meanwhile, exosomes are involved with physiological and pathological conditions. The molecular profile of exosomes reflects the type and pathophysiological status of the originating cells so could potentially be exploited for diagnostic of cancer. This review aims to describe important molecular cargoes involved in exosome biogenesis. In addition, we highlight exogenous factors, especially autophagy, hypoxia and pharmacology, that regulate the release of exosomes and their corresponding cargoes. Particularly, we also emphasize exosome molecular cargoes as potential biomarkers in liquid biopsy for diagnosis of cancer.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuo Feng
- English Teaching and Research Section, Gannan Healthcare Vocational College, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
36
|
Gongye X, Tian M, Xia P, Qu C, Chen Z, Wang J, Zhu Q, Li Z, Yuan Y. Multi-omics analysis revealed the role of extracellular vesicles in hepatobiliary & pancreatic tumor. J Control Release 2022; 350:11-25. [PMID: 35963466 DOI: 10.1016/j.jconrel.2022.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
Liquid biopsy is rapidly growing into a hot research field due to its unique advantages of minimal invasiveness, and extracellular vesicle (EVs) are also expected to become an important pillar in the diagnostic technology system as a newly discovered active substance carrier. More and more research has highlighted the important contribution of EVs in the progress of tumor. Molecular changes during disease progression could be detected in EVs. However, the diagnostic applications of EVs are not generally understood. Combined with the characteristics of hepatobiliary and pancreatic tumor, we summarized the recent developments in various omics analysis of EVs. Furtherly, we explored the role of EVs in the early diagnosis of hepatobiliary and pancreatic tumors by multi-omics analysis.
Collapse
Affiliation(s)
- Xiangdong Gongye
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Chengmin Qu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Zhang Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, PR China.
| | - Qian Zhu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Zhijie Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| |
Collapse
|
37
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
38
|
Wu HHL, Goldys EM, Pollock CA, Saad S. Exfoliated Kidney Cells from Urine for Early Diagnosis and Prognostication of CKD: The Way of the Future? Int J Mol Sci 2022; 23:7610. [PMID: 35886957 PMCID: PMC9324667 DOI: 10.3390/ijms23147610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic kidney disease (CKD) is a global health issue, affecting more than 10% of the worldwide population. The current approach for formal diagnosis and prognostication of CKD typically relies on non-invasive serum and urine biomarkers such as serum creatinine and albuminuria. However, histological evidence of tubulointerstitial fibrosis is the 'gold standard' marker of the likelihood of disease progression. The development of novel biomedical technologies to evaluate exfoliated kidney cells from urine for non-invasive diagnosis and prognostication of CKD presents opportunities to avoid kidney biopsy for the purpose of prognostication. Efforts to apply these technologies more widely in clinical practice are encouraged, given their potential as a cost-effective approach, and no risk of post-biopsy complications such as bleeding, pain and hospitalization. The identification of biomarkers in exfoliated kidney cells from urine via western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence techniques, measurement of cell and protein-specific messenger ribonucleic acid (mRNA)/micro-RNA and other techniques have been reported. Recent innovations such as multispectral autofluorescence imaging and single-cell RNA sequencing (scRNA-seq) have brought additional dimensions to the clinical application of exfoliated kidney cells from urine. In this review, we discuss the current evidence regarding the utility of exfoliated proximal tubule cells (PTC), podocytes, mesangial cells, extracellular vesicles and stem/progenitor cells as surrogate markers for the early diagnosis and prognostication of CKD. Future directions for development within this research area are also identified.
Collapse
Affiliation(s)
- Henry H. L. Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Ewa M. Goldys
- School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia; (H.H.L.W.); (C.A.P.)
| |
Collapse
|
39
|
Aguirre RS, Kulkarni A, Becker MW, Lei X, Sarkar S, Ramanadham S, Phelps EA, Nakayasu ES, Sims EK, Mirmira RG. Extracellular vesicles in β cell biology: Role of lipids in vesicle biogenesis, cargo, and intercellular signaling. Mol Metab 2022; 63:101545. [PMID: 35817393 PMCID: PMC9294332 DOI: 10.1016/j.molmet.2022.101545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex autoimmune disorder whose pathogenesis involves an intricate interplay between β cells of the pancreatic islet, other islet cells, and cells of the immune system. Direct intercellular communication within the islet occurs via cell surface proteins and indirect intercellular communication has traditionally been seen as occurring via secreted proteins (e.g., endocrine hormones and cytokines). However, recent literature suggests that extracellular vesicles (EVs) secreted by β cells constitute an additional and biologically important mechanism for transmitting signals to within the islet. SCOPE OF REVIEW This review summarizes the general mechanisms of EV formation, with a particular focus on how lipids and lipid signaling pathways influence their formation and cargo. We review the implications of EV release from β cells for T1D pathogenesis, how EVs and their cargo might be leveraged as biomarkers of this process, and how EVs might be engineered as a therapeutic candidate to counter T1D outcomes. MAJOR CONCLUSIONS Islet β cells have been viewed as initiators and propagators of the cellular circuit giving rise to autoimmunity in T1D. In this context, emerging literature suggests that EVs may represent a conduit for communication that holds more comprehensive messaging about the β cells from which they arise. As the field of EV biology advances, it opens the possibility that intervening with EV formation and cargo loading could be a novel disease-modifying approach in T1D.
Collapse
Affiliation(s)
| | - Abhishek Kulkarni
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Matthew W. Becker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology & The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology & The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Emily K. Sims
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA,Corresponding author. 900 E. 57th St., KCBD 8130, Chicago, IL, 60637, USA.
| |
Collapse
|
40
|
Kim YB, Lee GB, Moon MH. Size Separation of Exosomes and Microvesicles Using Flow Field-Flow Fractionation/Multiangle Light Scattering and Lipidomic Comparison. Anal Chem 2022; 94:8958-8965. [PMID: 35694825 DOI: 10.1021/acs.analchem.2c00806] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-bound particles, including exosomes and microvesicles that differ in cellular origin, content, and lipid composition. This study reports that exosomes and microvesicles can be simultaneously separated by size using flow field-flow fractionation (FlFFF) employed with field programming and that the detection of low-concentration EV species can be significantly improved using multiangle light scattering (MALS). The efficiency of ultracentrifugation (UC) and ultrafiltration (UF) in isolating EVs from the culture media of DU145 cells was compared, and the results showed that UF retrieves more EVs than UC. Two size fractions (small and large) of both exosomes and microvesicles were collected during the FlFFF runs and examined using Western blotting to confirm each EV, and transmission electron microscopy was performed for size analysis. Sizes were compared using the root-mean-square radius obtained from the MALS calculation. The collected fractions were further examined using nanoflow ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry for the size-dependent lipidomic profiles of exosomes and microvesicles, showing that lipids were more enriched in the fraction containing large exosomes than in that containing small exosomes; however, an opposite trend was observed with microvesicles. The present study demonstrated that UF followed by FlFFF-MALS can be utilized for the size separation of exosomes and microvesicles without sequential centrifugation, which is useful for monitoring the changes in the size distribution of EVs depending on the biological status along with generating size-dependent lipidomic profiles.
Collapse
Affiliation(s)
- Young Beom Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea
| | - Gwang Bin Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, South Korea
| |
Collapse
|
41
|
Chen Y, Xu Y, Wang J, Prisinzano P, Yuan Y, Lu F, Zheng M, Mao W, Wan Y. Statins Lower Lipid Synthesis But Promote Secretion of Cholesterol-Enriched Extracellular Vesicles and Particles. Front Oncol 2022; 12:853063. [PMID: 35646709 PMCID: PMC9133486 DOI: 10.3389/fonc.2022.853063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Lipid droplets are lipid-rich cytosolic organelles that play roles in cell signaling, membrane trafficking, and many other cellular activities. Recent studies revealed that lipid droplets in cancer cells have various biological functions, such as energy production, membrane synthesis, and chemoresistance, thereby fostering cancer progression. Accordingly, the administration of antilipemic agents could improve anti-cancer treatment efficacy given hydrophobic chemotherapeutic drugs could be encapsulated into lipid droplets and then expelled to extracellular space. In this study, we investigated whether statins could promote treatment efficacy of lipid droplet-rich ovarian SKOV-3 cells and the potential influences on generation and composition of cell-derived extracellular vesicles and particles (EVP). Our studies indicate that statins can significantly lower lipid biosynthesis. Moreover, statins can inhibit proliferation, migration, and invasion of SKOV-3 cells and enhance chemosensitivity in vitro and in vivo. Furthermore, statins can lower EVP secretion but enforce the release of cholesterol-enriched EVPs, which can further lower lipid contents in parental cells. It is the first time that the influence of statins on EVP generation and EVP-lipid composition is observed. Overall, we demonstrated that statins could inhibit lipid production, expel cholesterol to extracellular space via EVPs, and improve chemosensitivity.
Collapse
Affiliation(s)
- Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Yongrui Xu
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jing Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
- Department of Hematology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Peter Prisinzano
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Yuhao Yuan
- Biophotonics and Translational Optical Imaging Lab, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Fake Lu
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Mingfeng Zheng
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Yuan Wan, ; Wenjun Mao,
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
- *Correspondence: Yuan Wan, ; Wenjun Mao,
| |
Collapse
|
42
|
Elmallah MIY, Ortega-Deballon P, Hermite L, Pais-De-Barros JP, Gobbo J, Garrido C. Lipidomic profiling of exosomes from colorectal cancer cells and patients reveals potential biomarkers. Mol Oncol 2022; 16:2710-2718. [PMID: 35524452 PMCID: PMC9298677 DOI: 10.1002/1878-0261.13223] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/29/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Strong evidence suggests that differences in the molecular composition of lipids in exosomes depend on the cell type and has an influence on cancer initiation and progression. Here, we analyzed by liquid chromatography–mass spectrometry (LC‐MS) the lipidomic signature of exosomes derived from the human cell lines normal colon mucosa (NCM460D), and colorectal cancer (CRC) nonmetastatic (HCT116) and metastatic (SW620), and exosomes isolated from the plasma of nonmetastatic and metastatic CRC patients and healthy donors. Analysis of this exhaustive lipid study highlighted changes in some molecular species that were found in the cell lines and confirmed in the patients. For example, exosomes from primary cancer patients and nonmetastatic cells compared with healthy donors and control cells displayed a common marked increase in phosphatidylcholine (PC) 34 : 1, phosphatidylethanolamine (PE) 36 : 2, sphingomyelin (SM) d18 : 1/16 : 0, hexosylceramide (HexCer) d18 : 1/24 : 0 and HexCer d18 : 1/24 : 1. Interestingly, these same lipids species were decreased in the metastatic cell line and patients. Further, levels of PE 34 : 2, PE 36 : 2, and phosphorylated PE p16 : 0/20 : 4 were also significantly decreased in metastatic conditions when compared to the nonmetastatic counterparts. The only molecule species found markedly increased in metastatic conditions (in both patients and cells) when compared to controls was ceramide (Cer) d18 : 1/24 : 1. These decreases in lipid species in the extracellular vesicles might reflect function‐associated changes in the metastatic cell membrane. Although these potential biomarkers need to be validated in a larger cohort, they provide new insight toward the use of clusters of lipid biomarkers rather than a single molecule for the diagnosis of different stages of CRC.
Collapse
Affiliation(s)
- Mohammed I Y Elmallah
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labéllisée par la Ligue Nationale contre le Cancer », Dijon, France.,Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France.,Chemistry Department, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo, Egypt
| | | | - Laure Hermite
- Anti-cancer Center Georges-François Leclerc, Dijon, France
| | - Jean-Paul Pais-De-Barros
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labéllisée par la Ligue Nationale contre le Cancer », Dijon, France.,Lipidomic Platform, F-21000, Dijon, France
| | - Jessica Gobbo
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labéllisée par la Ligue Nationale contre le Cancer », Dijon, France.,Anti-cancer Center Georges-François Leclerc, Dijon, France.,Clinical investigation center INSERM 1432, CHU Dijon-Bourgogne, Dijon, France
| | - Carmen Garrido
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labéllisée par la Ligue Nationale contre le Cancer », Dijon, France.,Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France.,Anti-cancer Center Georges-François Leclerc, Dijon, France
| |
Collapse
|
43
|
Reinicke M, Shamkeeva S, Hell M, Isermann B, Ceglarek U, Heinemann ML. Targeted Lipidomics for Characterization of PUFAs and Eicosanoids in Extracellular Vesicles. Nutrients 2022; 14:nu14071319. [PMID: 35405932 PMCID: PMC9000901 DOI: 10.3390/nu14071319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
Lipids are increasingly recognized as bioactive mediators of extracellular vesicle (EV) functions. However, while EV proteins and nucleic acids are well described, EV lipids are insufficiently understood due to lack of adequate quantitative methods. We adapted an established targeted and quantitative mass spectrometry (LC-MS/MS) method originally developed for analysis of 94 eicosanoids and seven polyunsaturated fatty acids (PUFA) in human plasma. Additionally, the influence of freeze–thaw (FT) cycles, injection volume, and extraction solvent were investigated. The modified protocol was applied to lipidomic analysis of differently polarized macrophage-derived EVs. We successfully quantified three PUFAs and eight eicosanoids within EVs. Lipid extraction showed reproducible PUFA and eicosanoid patterns. We found a particularly high impact of FT cycles on EV lipid profiles, with significant reductions of up to 70%. Thus, repeated FT will markedly influence analytical results and may alter EV functions, emphasizing the importance of a standardized sample pretreatment protocol for the analysis of bioactive lipids in EVs. EV lipid profiles differed largely depending on the polarization of the originating macrophages. Particularly, we observed major changes in the arachidonic acid pathway. We emphasize the importance of a standardized sample pretreatment protocol for the analysis of bioactive lipids in EVs.
Collapse
|
44
|
Tertel T, Schoppet M, Stambouli O, Al-Jipouri A, James PF, Giebel B. Imaging flow cytometry challenges the usefulness of classically used extracellular vesicle labeling dyes and qualifies the novel dye Exoria for the labeling of mesenchymal stromal cell–extracellular vesicle preparations. Cytotherapy 2022; 24:619-628. [DOI: 10.1016/j.jcyt.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
|
45
|
FT-IR Spectral Signature of Sensitive and Multidrug-Resistant Osteosarcoma Cell-Derived Extracellular Nanovesicles. Cells 2022; 11:cells11050778. [PMID: 35269400 PMCID: PMC8909163 DOI: 10.3390/cells11050778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents. Despite aggressive treatment regimens, the outcome is unsatisfactory, and multidrug resistance (MDR) is a pivotal process in OS treatment failure. OS-derived extracellular vesicles (EVs) promote drug resistance to chemotherapy and target therapy through different mechanisms. The aim of this study was to identify subpopulations of osteosarcoma-EVs by Fourier transform infrared spectroscopy (FT-IR) to define a specific spectral signature for sensitive and multidrug-resistant OS-derived EVs. EVs were isolated from sensitive and MDR OS cells as well as from mesenchymal stem cells by differential centrifugation and ultracentrifugation. EVs size, morphology and protein expression were characterized. FT-IR/ATR of EVs spectra were acquired in the region of 400–4000 cm−1 (resolution 4 cm−1, 128 scans). The FT-IR spectra obtained were consistently different in the EVs compared to cells from which they originate. A specific spectral signature, characterized by a shift and a new band (1601 cm−1), permitted to clearly distinguish EVs isolated by sensitive and multidrug-resistant OS cells. Our data suggest that FT-IR spectroscopy allows to characterize and define a specific spectral signature for sensitive and MDR OS-derived EVs.
Collapse
|
46
|
Gonzalez-Covarrubias V, Martínez-Martínez E, del Bosque-Plata L. The Potential of Metabolomics in Biomedical Applications. Metabolites 2022; 12:metabo12020194. [PMID: 35208267 PMCID: PMC8880031 DOI: 10.3390/metabo12020194] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
The metabolome offers a dynamic, comprehensive, and precise picture of the phenotype. Current high-throughput technologies have allowed the discovery of relevant metabolites that characterize a wide variety of human phenotypes with respect to health, disease, drug monitoring, and even aging. Metabolomics, parallel to genomics, has led to the discovery of biomarkers and has aided in the understanding of a diversity of molecular mechanisms, highlighting its application in precision medicine. This review focuses on the metabolomics that can be applied to improve human health, as well as its trends and impacts in metabolic and neurodegenerative diseases, cancer, longevity, the exposome, liquid biopsy development, and pharmacometabolomics. The identification of distinct metabolomic profiles will help in the discovery and improvement of clinical strategies to treat human disease. In the years to come, metabolomics will become a tool routinely applied to diagnose and monitor health and disease, aging, or drug development. Biomedical applications of metabolomics can already be foreseen to monitor the progression of metabolic diseases, such as obesity and diabetes, using branched-chain amino acids, acylcarnitines, certain phospholipids, and genomics; these can assess disease severity and predict a potential treatment. Future endeavors should focus on determining the applicability and clinical utility of metabolomic-derived markers and their appropriate implementation in large-scale clinical settings.
Collapse
Affiliation(s)
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Laura del Bosque-Plata
- Laboratory of Nutrigenetics and Nutrigenomics, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
- Correspondence: ; Tel.: +52-55-53-50-1974
| |
Collapse
|
47
|
Phosphoproteomic Analysis of Breast Cancer-Derived Small Extracellular Vesicles Reveals Disease-Specific Phosphorylated Enzymes. Biomedicines 2022; 10:biomedicines10020408. [PMID: 35203617 PMCID: PMC8962341 DOI: 10.3390/biomedicines10020408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 12/16/2022] Open
Abstract
Small membrane-derived extracellular vesicles have been proposed as participating in several cancer diseases, including breast cancer (BC). We performed a phosphoproteomic analysis of breast cancer-derived small extracellular vesicles (sEVs) to provide insight into the molecular and cellular regulatory mechanisms important for breast cancer tumor progression and metastasis. We examined three cell line models for breast cancer: MCF10A (non-malignant), MCF7 (estrogen and progesterone receptor-positive, metastatic), and MDA-MB-231 (triple-negative, highly metastatic). To obtain a comprehensive overview of the sEV phosphoproteome derived from each cell line, effective phosphopeptide enrichment techniques IMAC and TiO2, followed by LC-MS/MS, were performed. The phosphoproteome was profiled to a depth of 2003 phosphopeptides, of which 207, 854, and 1335 were identified in MCF10A, MCF7, and MDA-MB-231 cell lines, respectively. Furthermore, 2450 phosphorylation sites were mapped to 855 distinct proteins, covering a wide range of functions. The identified proteins are associated with several diseases, mostly related to cancer. Among the phosphoproteins, we validated four enzymes associated with cancer and present only in sEVs isolated from MCF7 and MDA-MB-231 cell lines: ATP citrate lyase (ACLY), phosphofructokinase-M (PFKM), sirtuin-1 (SIRT1), and sirtuin-6 (SIRT6). With the exception of PFKM, the specific activity of these enzymes was significantly higher in MDA-MB-231 when compared with MCF10A-derived sEVs. This study demonstrates that sEVs contain functional metabolic enzymes that could be further explored for their potential use in early BC diagnostic and therapeutic applications.
Collapse
|
48
|
Jahan S, Mukherjee S, Ali S, Bhardwaj U, Choudhary RK, Balakrishnan S, Naseem A, Mir SA, Banawas S, Alaidarous M, Alyenbaawi H, Iqbal D, Siddiqui AJ. Pioneer Role of Extracellular Vesicles as Modulators of Cancer Initiation in Progression, Drug Therapy, and Vaccine Prospects. Cells 2022; 11:490. [PMID: 35159299 PMCID: PMC8833976 DOI: 10.3390/cells11030490] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading diseases, causing deaths worldwide. Nearly 10 million deaths were reported in 2020 due to cancer alone. Several factors are involved in cancer progressions, such as lifestyle and genetic characteristics. According to a recent report, extracellular vesicles (EVs) are involved in cancer initiation, progression, and therapy failure. EVs can play a major role in intracellular communication, the maintenance of tissue homeostasis, and pathogenesis in several types of diseases. In a healthy person, EVs carry different cargoes, such as miRNA, lncRNA etc., to help other body functions. On the other hand, the same EV in a tumor microenvironment carries cargoes such as miRNA, lncRNA, etc., to initiate or help cancer progression at various stages. These stages may include the proliferation of cells and escape from apoptosis, angiogenesis, cell invasion, and metastasis, reprogramming energy metabolism, evasion of the immune response, and transfer of mutations. Tumor-derived EVs manipulate by altering normal functions of the body and affect the epigenetics of normal cells by limiting the genetic makeup through transferring mutations, histone modifications, etc. Tumor-derived EVs also pose therapy resistance through transferring drug efflux pumps and posing multiple drug resistances. Such EVs can also help as biomarkers for different cancer types and stages, which ultimately help with cancer diagnosis at early stages. In this review, we will shed light on EVs' role in performing normal functions of the body and their position in different hallmarks of cancer, in altering the genetics of a normal cell in a tumor microenvironment, and their role in therapy resistance, as well as the importance of EVs as diagnostic tools.
Collapse
Affiliation(s)
- Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shouvik Mukherjee
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Shaheen Ali
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Urvashi Bhardwaj
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Ranjay Kumar Choudhary
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Santhanaraj Balakrishnan
- Medical Equipment Technology, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Asma Naseem
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail 81451, Saudi Arabia
| |
Collapse
|
49
|
High-Performance Thin-Layer Chromatography-Densitometry-Tandem ESI-MS to Evaluate Phospholipid Content in Exosomes of Cancer Cells. Int J Mol Sci 2022; 23:ijms23031150. [PMID: 35163074 PMCID: PMC8835402 DOI: 10.3390/ijms23031150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/03/2023] Open
Abstract
The question of whether exosome lipids can be considered as potential cancer biomarkers faces our current limited knowledge of their composition. This is due to the difficulty in isolating pure exosomes, the variability of the biological sources from which they are extracted, and the uncertainty of the methods for lipid characterization. Here, we present a procedure to isolate exosomes and obtain a deep, repeatable, and rapid phospholipid (PL) composition of their lipid extracts, from embryonic murine fibroblasts (NIH-3T3 cell line) and none (B16-F1) and high (B16-F10) metastatic murine skin melanoma cells. The analytical method is based on High Performance Thin-Layer Chromatography with Ultraviolet and fluorescence densitometry and coupled to Electrospray (ESI)-tandem Mass Spectrometry (MS). Under the conditions described in this work, separation and determination of PL classes, (sphingomyelins, SM; phosphatidylcholines, PC; phosphatidylserines, PS; and phosphatidylethanolamines, PE) were achieved, expressed as µg PL/100 µg exosome protein, obtained by bicinchoninic acid assay (BCA). A detailed structural characterization of molecular species of each PL class was performed by simultaneous positive and negative ESI-MS and MS/MS directly from the chromatographic plate, thanks to an elution-based interface.
Collapse
|
50
|
Improving Isolation of Extracellular Vesicles by Utilizing Nanomaterials. MEMBRANES 2021; 12:membranes12010055. [PMID: 35054584 PMCID: PMC8780510 DOI: 10.3390/membranes12010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023]
Abstract
Extracellular vesicles (EVs) as the new form of cellular communication have been demonstrated their potential use for disease diagnosis, prognosis and treatment. EVs are vesicles with a lipid bilayer and are present in various biofluids, such as blood, saliva and urine. Therefore, EVs have emerged as one of the most appealing sources for the discovery of clinical biomarkers. However, isolation of the target EVs from different biofluids is required for the use of EVs as diagnostic and therapeutic entities in clinical settings. Owing to their unique properties and versatile functionalities, nanomaterials have been widely investigated for EV isolation with the aim to provide rapid, simple, and efficient EV enrichment. Herein, this review presents the progress of nanomaterial-based isolations for EVs over the past five years (from 2017 to 2021) and discusses the use of nanomaterials for EV isolations based on the underlying mechanism in order to offer insights into the design of nanomaterials for EV isolations.
Collapse
|