1
|
Becht JM, Kohlleppel H, Schins RPF, Kämpfer AAM. Effect of Butyrate on Food-Grade Titanium Dioxide Toxicity in Different Intestinal In Vitro Models. Chem Res Toxicol 2024; 37:1501-1514. [PMID: 39213652 PMCID: PMC11409378 DOI: 10.1021/acs.chemrestox.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Short-chain fatty acids (SCFA) are an important energy source for colonocytes and crucial messenger molecules both locally in the intestine and systemically. Butyrate, one of the most prominent and best-studied SCFA, was demonstrated to exert anti-inflammatory effects, improve barrier integrity, enhance mucus synthesis in the intestine, and promote cell differentiation of intestinal epithelial cells in vitro. While the physiological relevance is undisputed, it remains unclear if and to what extent butyrate can influence the effects of xenobiotics, such as food-grade titanium dioxide (E171, fgTiO2), in the intestine. TiO2 has been controversially discussed for its DNA-damaging potential and banned as a food additive within the European Union (EU) since 2022. First, we used enterocyte Caco-2 monocultures to test if butyrate affects the cytotoxicity and inflammatory potential of fgTiO2 in a pristine state or following pretreatment under simulated gastric and intestinal pH conditions. We then investigated pretreated fgTiO2 in intestinal triple cultures of Caco-2, HT29-MTX-E12, and THP-1 cells in homeostatic and inflamed-like state for cytotoxicity, barrier integrity, cytokine release as well as gene expression of mucins, oxidative stress markers, and DNA repair. In Caco-2 monocultures, butyrate had an ambivalent role: pretreated but not pristine fgTiO2 induced cytotoxicity in Caco-2 cells, which was not observed in the presence of butyrate. Conversely, fgTiO2 induced the release of interleukin 8 in the presence but not in the absence of butyrate. In the advanced in vitro models, butyrate did not affect the characteristics of the healthy or inflamed states and caused negligible effects in the investigated end points following fgTiO2 exposure. Taken together, the effects of fgTiO2 strongly depend on the applied testing approach. Our findings underline the importance of the experimental setup, including the choice of in vitro model and the physiological relevance of the exposure scenario, for the hazard testing of food-grade pigments like TiO2.
Collapse
Affiliation(s)
- Janine M Becht
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Hendrik Kohlleppel
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Roel P F Schins
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Angela A M Kämpfer
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| |
Collapse
|
2
|
Whelan K, Bancil AS, Lindsay JO, Chassaing B. Ultra-processed foods and food additives in gut health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:406-427. [PMID: 38388570 DOI: 10.1038/s41575-024-00893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Ultra-processed foods (UPFs) and food additives have become ubiquitous components of the modern human diet. There is increasing evidence of an association between diets rich in UPFs and gut disease, including inflammatory bowel disease, colorectal cancer and irritable bowel syndrome. Food additives are added to many UPFs and have themselves been shown to affect gut health. For example, evidence shows that some emulsifiers, sweeteners, colours, and microparticles and nanoparticles have effects on a range of outcomes, including the gut microbiome, intestinal permeability and intestinal inflammation. Broadly speaking, evidence for the effect of UPFs on gut disease comes from observational epidemiological studies, whereas, by contrast, evidence for the effect of food additives comes largely from preclinical studies conducted in vitro or in animal models. Fewer studies have investigated the effect of UPFs or food additives on gut health and disease in human intervention studies. Hence, the aim of this article is to critically review the evidence for the effects of UPF and food additives on gut health and disease and to discuss the clinical application of these findings.
Collapse
Affiliation(s)
- Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, UK.
| | - Aaron S Bancil
- Department of Nutritional Sciences, King's College London, London, UK
| | - James O Lindsay
- Blizard Institute, Queen Mary University of London, Barts and the London School of Medicine, London, UK
| | | |
Collapse
|
3
|
Colnot E, O’Reilly J, Morin D. Effect of chronic prenatal exposure to the food additive titanium dioxide E171 on respiratory activity in newborn mice. Front Pediatr 2024; 12:1337865. [PMID: 38487474 PMCID: PMC10937531 DOI: 10.3389/fped.2024.1337865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Nanoparticles (NPs) possess unique properties that make their use valuable in all industries. Titanium dioxide (TiO2) NPs are extensively used as a white pigment in food (labeled under the European number E171) and personal care products, which creates a significant potential for chronic consumer exposure. Concerns about the potential toxic effects of TiO2 NPs have arisen, particularly in vulnerable populations, including pregnant women and infants. Recently, human materno-fetal transfer of E171 was demonstrated, and simultaneously, we reported that chronic prenatal exposure to reference P25 TiO2 NPs was found to alter the developing respiratory neural networks. In this study, using whole body plethysmography from postnatal day (P) 0 to P7, we assessed the respiratory function of newborn mice born to mothers fed with E171 during pregnancy. We also evaluated the potential alterations to respiratory centers by using brainstem-spinal cord electrophysiological recordings from P0 to P6. Our study reveals that E171-prenatally exposed animals displayed an abnormally elevated breathing rate from P3 onwards. From P5 to P6, the respiratory-related burst frequency generated by the isolated brainstem-spinal cord preparations was significantly higher in E171-exposed animals than in non-exposed animals. These findings demonstrate prenatal toxicity of E171 to the developing respiratory function and may contribute to policy-making regarding the use of TiO2 NPs.
Collapse
Affiliation(s)
- Eloïse Colnot
- CNRS, INCIA, Universityof Bordeaux, Bordeaux, France
| | | | - Didier Morin
- CNRS, INCIA, Universityof Bordeaux, Bordeaux, France
- Department of Health, Safety and Environment, Bordeaux Institute of Technology, University of Bordeaux, Gradignan, France
| |
Collapse
|
4
|
Mu X, Hu K, Wei A, Bai J, Feng L, Jiang J. TiO 2 nanoparticles promote tumor metastasis by eliciting pro-metastatic extracellular vesicles. J Nanobiotechnology 2023; 21:392. [PMID: 37891598 PMCID: PMC10604521 DOI: 10.1186/s12951-023-02142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The development of nanotechnology has provided numerous possibilities for the diagnosis and treatment of cancer. Paradoxically, some in vivo experimental studies have also shown that nanoparticles (NPs) could promote tumor progression, but the specific mechanism is not yet clear. Primary tumors can release extracellular vesicles (EVs) which can promote the inoculation and growth of tumor cells that have metastasized to distant organs. So, whether nanomaterials can promote tumor progression through tumor-derived EVs deserves further research. Here, we showed that TiO2 NPs, widely used in nanomedicine, could trigger tumor-derived EVs with enhanced pro-metastatic capacity in vitro and in vivo. Mechanically, miR-301a-3p derived from NPs-elicited EVs could be delivered into vascular endothelial cells, which inhibited the expression of VEGFR2 and VE-cadherin by targeting S1PR1, leading to disrupt the tight junctions of vascular endothelial cells, thus to promote vascular permeability and angiogenesis, and induce the formation of pre-metastasis niches in vivo. This study emphasizes that it is urgent to consider the effect of NPs on EVs under long-term use conditions when designing nanodrugs for cancer treatment.
Collapse
Affiliation(s)
- Xupeng Mu
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Kebang Hu
- Department of Urology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China
| | - Anhui Wei
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, 130021, China
| | - Jinping Bai
- Department of Chronic Disease, Jilin Province FAW General Hospital, Changchun, 130013, China
| | - Li Feng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Jinlan Jiang
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
5
|
Dubois N, Muñoz-Garcia J, Heymann D, Renodon-Cornière A. High glucose exposure drives intestinal barrier dysfunction by altering its morphological, structural and functional properties. Biochem Pharmacol 2023; 216:115765. [PMID: 37619641 DOI: 10.1016/j.bcp.2023.115765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
High dietary glucose consumption and hyperglycemia can result in chronic complications. Several studies suggest that high glucose (HG) induces dysfunction of the intestinal barrier. However, the precise changes remain unclear. In our study, we used in vitro models composed of Caco-2 and/or HT29-MTX cells in both monoculture and co-culture to assess the effects of long-term HG exposure on the morphological, structural, and functional properties of the intestinal barrier. Cells were grown in medium containing normal physiologic glucose (NG, 5.5 mM) or a clinically relevant HG (25 mM) concentration until 21 days. Results demonstrated that HG induced morphological changes, with the layers appearing denser and less organized than under physiological conditions, which is in accordance with the increased migration capacity of Caco-2 cells and proliferation properties of HT29-MTX cells. Although we mostly observed a small decrease in mRNA and protein expressions of three junction proteins (ZO-1, OCLN and E-cad) in both Caco-2 and HT29-MTX cells cultured in HG medium, confocal microscopy showed that HG induced a remarkable reduction in their immunofluorescence intensity, triggering disruption of their associated structural network. In addition, we highlighted that HG affected different functionalities (permeability, mucus production and alkaline phosphatase activity) of monolayers with Caco-2 and HT29-MTX cells. Interestingly, these alterations were stronger in co-culture than in monoculture, suggesting a cross-relationship between enterocytes and goblet cells. Controlling hyperglycemia remains a major therapeutical method for reducing damage to the intestinal barrier and improving therapies.
Collapse
Affiliation(s)
- Nolwenn Dubois
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France
| | - Javier Muñoz-Garcia
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France; The University of Sheffield, Dept of Oncology and Metabolism, S102RX Sheffield, UK
| | - Axelle Renodon-Cornière
- Nantes Université, CNRS, US2B, UMR 6286, F-44322 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805 Saint-Herblain, France.
| |
Collapse
|
6
|
Lamas B, Chevalier L, Gaultier E, Cartier C, Weingarten L, Blanc X, Fisicaro P, Oster C, Noireaux J, Evariste L, Breyner NM, Houdeau E. The food additive titanium dioxide hinders intestinal production of TGF-β and IL-10 in mice, and long-term exposure in adults or from perinatal life blocks oral tolerance to ovalbumin. Food Chem Toxicol 2023; 179:113974. [PMID: 37516336 DOI: 10.1016/j.fct.2023.113974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Food hypersensitivities are increasing in industrialized countries, and foodborne nanoparticles (NPs) are suspected as co-factors in their aetiology. Food-grade titanium dioxide (fg-TiO2), a food colouring agent, is composed of NPs with immunomodulatory properties. We investigated whether fg-TiO2 may compromise the establishment of oral tolerance (OT) to food proteins using a model of OT induction to ovalbumin (OVA) in mice, and whether a perinatal exposure could trigger this effect. In pregnant mice fed a TiO2-enriched diet, ICP-MS and TEM-EDX analyses showed passage of TiO2 NPs into the foetus. When their weaned offspring were fed the same diet, a breakdown in OT to OVA was observed at adulthood, characterized by a high anti-OVA IgG production compared to controls. However, adult mice directly exposed to fg-TiO2 did not induce OT to OVA either, ruling out a developmental origin for these effects. When these mice were orally challenged with OVA, intestinal inflammation demonstrated hypersensitivity to OVA. In OVA-naïve mice, fg-TiO2 exposure impaired intestinal TGF-β and IL-10 production, of key role in OT induction and maintenance. These findings showed that long-term exposure to TiO2 as food additive alters anti-inflammatory cytokine profile, and leads to OT failure regardless of the timing of TiO2 exposure throughout life.
Collapse
Affiliation(s)
- Bruno Lamas
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Laurence Chevalier
- Group Physic of Materials, GPM-UMR6634, CNRS, Rouen University, Rouen, France
| | - Eric Gaultier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Christel Cartier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Weingarten
- Centre de MicroCaractérisation Raimond Castaing, UAR 3623, Toulouse, France
| | - Xavier Blanc
- Sciences de l'Animal et de l'Aliment de Jouy, SAAJ UE1298, INRAE, Jouy-en-Josas, France
| | - Paola Fisicaro
- Department for Biomedical and Inorganic Chemistry, LNE, Paris, France
| | - Caroline Oster
- Department for Biomedical and Inorganic Chemistry, LNE, Paris, France
| | - Johanna Noireaux
- Department for Biomedical and Inorganic Chemistry, LNE, Paris, France
| | - Lauris Evariste
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Natalia Martins Breyner
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Eric Houdeau
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
7
|
Kumar A, Chinnathambi S, Kumar M, Pandian GN. Food Intake and Colorectal Cancer. Nutr Cancer 2023; 75:1710-1742. [PMID: 37572059 DOI: 10.1080/01635581.2023.2242103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023]
Abstract
Colorectal cancer (CRC) accounts for considerable mortalities worldwide. Several modifiable risk factors, including a high intake of certain foods and beverages can cause CRC. This review summarized the latest findings on the intake of various foods, nutrients, ingredients, and beverages on CRC development, with the objective of classifying them as a risk or protective factor. High-risk food items include red meat, processed meat, eggs, high alcohol consumption, sugar-sweetened beverages, and chocolate candy. Food items that are protective include milk, cheese and other dairy products, fruits, vegetables (particularly cruciferous), whole grains, legumes (particularly soy beans), fish, tea (particularly green tea), coffee (particularly among Asians), chocolate, and moderate alcohol consumption (particularly wine). High-risk nutrients/ingredients include dietary fat from animal sources and industrial trans-fatty acids (semisolid/solid hydrogenated oils), synthetic food coloring, monosodium glutamate, titanium dioxide, and high-fructose corn sirup. Nutrients/ingredients that are protective include dietary fiber (particularly from cereals), fatty acids (medium-chain and odd-chain saturated fatty acids and highly unsaturated fatty acids, including omega-3 polyunsaturated fatty acids), calcium, polyphenols, curcumin, selenium, zinc, magnesium, and vitamins A, C, D, E, and B (particularly B6, B9, and B2). A combination of micronutrients and multi-vitamins also appears to be beneficial in reducing recurrent adenoma incidence.
Collapse
Affiliation(s)
- Akshaya Kumar
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | | | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences (WPI-ICeMS), Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Ma Y, Yu N, Lu H, Shi J, Zhang Y, Chen Z, Jia G. Titanium dioxide nanoparticles: revealing the mechanisms underlying hepatotoxicity and effects in the gut microbiota. Arch Toxicol 2023; 97:2051-2067. [PMID: 37344693 DOI: 10.1007/s00204-023-03536-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Numerous studies in recent years have questioned the safety of oral exposure to titanium dioxide nanoparticles (TiO2 NPs). TiO2 NPs are not only likely to accumulate in the gastrointestinal tract, but they are also found to penetrate the body circulation and reach distant organs. The liver, which is considered to be a target organ for nanoparticles, is of particular concern. TiO2 NPs accumulate in the liver and cause oxidative stress and inflammatory reactions, resulting in pathological damage. The impact of TiO2 NPs on liver aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was studied using a meta-analysis. According to the findings, TiO2 NPs exposure can cause an elevation in AST and ALT levels in the blood. Furthermore, TiO2 NPs are eliminated mostly through feces, and their lengthy residence in the gut exposes them to microbiota. The gut microbiota is also dysbiotic due to titanium dioxide's antibacterial capabilities. This further leads to changes in the amount of microbiota metabolites, which can reach the liver with blood circulation and trigger hepatotoxicity through the gut-liver axis. This review examines the gut-liver axis to assess the effects of gut microbiota dysbiosis on the liver to provide suggestions for assessing the gut-hepatotoxicity of TiO2 NPs.
Collapse
Affiliation(s)
- Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Nairui Yu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Huaye Lu
- Jiangsu Prov Ctr Dis Control and Prevent, 172 Jiangsu Rd, Nanjing, 210009, People's Republic of China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China.
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|
9
|
Malik M, Tanzman JV, Dash SK, Marques CNH, Mahler GJ. An In Vitro Small Intestine Model Incorporating a Food Matrix and Bacterial Mock Community for Intestinal Function Testing. Microorganisms 2023; 11:1419. [PMID: 37374921 DOI: 10.3390/microorganisms11061419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Consumed food travels through the gastrointestinal tract to reach the small intestine, where it interacts with the microbiota, forming a complex relationship with the dietary components. Here we present a complex in vitro cell culture model of the small intestine that includes human cells, digestion, a simulated meal, and a microbiota represented by a bacterial community consisting of E. coli, L. rhamnosus, S. salivarius, B. bifidum, and E. faecalis. This model was used to determine the effects of food-grade titanium dioxide nanoparticles (TiO2 NPs), a common food additive, on epithelial permeability, intestinal alkaline phosphatase activity, and nutrient transport across the epithelium. Physiologically relevant concentrations of TiO2 had no effect on intestinal permeability but caused an increase in triglyceride transport as part of the food model, which was reversed in the presence of bacteria. Individual bacterial species had no effect on glucose transport, but the bacterial community increased glucose transport, suggesting a change in bacterial behavior when in a community. Bacterial entrapment within the mucus layer was reduced with TiO2 exposure, which may be due to decreased mucus layer thickness. The combination of human cells, a synthetic meal, and a bacterial mock community provides an opportunity to understand the implications of nutritional changes on small intestinal function, including the microbiota.
Collapse
Affiliation(s)
- Mridu Malik
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902, USA
| | - Jacob V Tanzman
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Sanat Kumar Dash
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902, USA
| | - Cláudia N H Marques
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY 13902, USA
| |
Collapse
|
10
|
O-Mucin-degrading carbohydrate-active enzymes and their possible implication in inflammatory bowel diseases. Essays Biochem 2023; 67:331-344. [PMID: 36912232 PMCID: PMC10154620 DOI: 10.1042/ebc20220153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/14/2023]
Abstract
Inflammatory bowel diseases (IBD) are modern diseases, with incidence rising around the world. They are associated with perturbation of the intestinal microbiota, and with alteration and crossing of the mucus barrier by the commensal bacteria that feed on it. In the process of mucus catabolism and invasion by gut bacteria, carbohydrate-active enzymes (CAZymes) play a critical role since mucus is mainly made up by O- and N-glycans. Moreover, the occurrence of IBD seems to be associated with low-fiber diets. Conversely, supplementation with oligosaccharides, such as human milk oligosaccharides (HMOs), which are structurally similar to intestinal mucins and could thus compete with them towards bacterial mucus-degrading CAZymes, has been suggested to prevent inflammation. In this mini-review, we will establish the current state of knowledge regarding the identification and characterization of mucus-degrading enzymes from both cultured and uncultured species of gut commensals and enteropathogens, with a particular focus on the present technological opportunities available to further the discovery of mucus-degrading CAZymes within the entire gut microbiome, by coupling microfluidics with metagenomics and culturomics. Finally, we will discuss the challenges to overcome to better assess how CAZymes targeting specific functional oligosaccharides could be involved in the modulation of the mucus-driven cross-talk between gut bacteria and their host in the context of IBD.
Collapse
|
11
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Sauvaitre T, Van Landuyt J, Durif C, Roussel C, Sivignon A, Chalancon S, Uriot O, Van Herreweghen F, Van de Wiele T, Etienne-Mesmin L, Blanquet-Diot S. Role of mucus-bacteria interactions in Enterotoxigenic Escherichia coli (ETEC) H10407 virulence and interplay with human microbiome. NPJ Biofilms Microbiomes 2022; 8:86. [PMID: 36266277 PMCID: PMC9584927 DOI: 10.1038/s41522-022-00344-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
The intestinal mucus layer has a dual role in human health constituting a well-known microbial niche that supports gut microbiota maintenance but also acting as a physical barrier against enteric pathogens. Enterotoxigenic Escherichia coli (ETEC), the major agent responsible for traveler's diarrhea, is able to bind and degrade intestinal mucins, representing an important but understudied virulent trait of the pathogen. Using a set of complementary in vitro approaches simulating the human digestive environment, this study aimed to describe how the mucus microenvironment could shape different aspects of the human ETEC strain H10407 pathophysiology, namely its survival, adhesion, virulence gene expression, interleukin-8 induction and interactions with human fecal microbiota. Using the TNO gastrointestinal model (TIM-1) simulating the physicochemical conditions of the human upper gastrointestinal (GI) tract, we reported that mucus secretion and physical surface sustained ETEC survival, probably by helping it to face GI stresses. When integrating the host part in Caco2/HT29-MTX co-culture model, we demonstrated that mucus secreting-cells favored ETEC adhesion and virulence gene expression, but did not impede ETEC Interleukin-8 (IL-8) induction. Furthermore, we proved that mucosal surface did not favor ETEC colonization in a complex gut microbial background simulated in batch fecal experiments. However, the mucus-specific microbiota was widely modified upon the ETEC challenge suggesting its role in the pathogen infectious cycle. Using multi-targeted in vitro approaches, this study supports the major role played by mucus in ETEC pathophysiology, opening avenues in the design of new treatment strategies.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France.,Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Josefien Van Landuyt
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Claude Durif
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Charlène Roussel
- Université Laval, Nutrition and Functional Foods Institute (INAF), 2440 Bd Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada
| | - Adeline Sivignon
- Université Clermont Auvergne, UMR 1071 Inserm, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), 63000, Clermont-Ferrand, France
| | - Sandrine Chalancon
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Ophélie Uriot
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Florence Van Herreweghen
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Tom Van de Wiele
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France.
| |
Collapse
|
13
|
Rolo D, Assunção R, Ventura C, Alvito P, Gonçalves L, Martins C, Bettencourt A, Jordan P, Vital N, Pereira J, Pinto F, Matos P, Silva MJ, Louro H. Adverse Outcome Pathways Associated with the Ingestion of Titanium Dioxide Nanoparticles-A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193275. [PMID: 36234403 PMCID: PMC9565478 DOI: 10.3390/nano12193275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used, and humans are exposed through food (E171), cosmetics (e.g., toothpaste), and pharmaceuticals. The oral and gastrointestinal (GIT) tract are the first contact sites, but it may be systemically distributed. However, a robust adverse outcome pathway (AOP) has not been developed upon GIT exposure to TiO2-NPs. The aim of this review was to provide an integrative analysis of the published data on cellular and molecular mechanisms triggered after the ingestion of TiO2-NPs, proposing plausible AOPs that may drive policy decisions. A systematic review according to Prisma Methodology was performed in three databases of peer-reviewed literature: Pubmed, Scopus, and Web of Science. A total of 787 records were identified, screened in title/abstract, being 185 used for data extraction. The main endpoints identified were oxidative stress, cytotoxicity/apoptosis/cell death, inflammation, cellular and systemic uptake, genotoxicity, and carcinogenicity. From the results, AOPs were proposed where colorectal cancer, liver injury, reproductive toxicity, cardiac and kidney damage, as well as hematological effects stand out as possible adverse outcomes. The recent transgenerational studies also point to concerns with regard to population effects. Overall, the findings further support a limitation of the use of TiO2-NPs in food, announced by the European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Dora Rolo
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence:
| | - Ricardo Assunção
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829-511 Monte de Caparica, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Carla Martins
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Peter Jordan
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Pereira
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Fátima Pinto
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paulo Matos
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
14
|
Qiaorun Z, Honghong S, Yao L, Bing J, Xiao X, Julian McClements D, Chongjiang C, Biao Y. Investigation of the interactions between food plant carbohydrates and titanium dioxide nanoparticles. Food Res Int 2022; 159:111574. [DOI: 10.1016/j.foodres.2022.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
|
15
|
Baranowska-Wójcik E, Szwajgier D, Winiarska-Mieczan A. A review of research on the impact of E171/TiO 2 NPs on the digestive tract. J Trace Elem Med Biol 2022; 72:126988. [PMID: 35561571 DOI: 10.1016/j.jtemb.2022.126988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Nanotechnology utilises particles of between 1 and 100 nm in size. In recent years, it has enjoyed widespread application in a variety of areas. However, this has also raised increasing concerns regarding the effects that the use of nanoparticles may have on human health. The nanoparticles of titanium dioxide (TiO2 NPs) are among the most promising nanomaterials and have already found wide use in cosmetics, medicine and, the food industry. A nano-sized (diameter < 100 nm) fraction of TiO2 is present, at a certain percentage, in the E171 ( in the EU) pigment commonly used as an additive in food, whose presence raises particular concerns in terms of its potential negative health impact. The consumption of E171 food additive is increasingly associated with disorders of the intestinal barrier, including intestinal dysbiosis. It may disrupt the normal functions of the gastrointestinal tract (GIT) including: enzymatic digestion of primary nutrients (lipids, proteins, or carbohydrates). The aim of this review is to provide a comprehensive and reliable overview of studies conducted in recent years in terms of the substance's potentially negative impact on human and animal alimentary systems.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, Lublin 20-704, Poland.
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, Lublin 20-704, Poland
| | - Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, Akademicka 13, Lublin 20-950, Poland
| |
Collapse
|
16
|
Interactions between Nanoparticles and Intestine. Int J Mol Sci 2022; 23:ijms23084339. [PMID: 35457155 PMCID: PMC9024817 DOI: 10.3390/ijms23084339] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The use of nanoparticles (NPs) has surely grown in recent years due to their versatility, with a spectrum of applications that range from nanomedicine to the food industry. Recent research focuses on the development of NPs for the oral administration route rather than the intravenous one, placing the interactions between NPs and the intestine at the centre of the attention. This allows the NPs functionalization to exploit the different characteristics of the digestive tract, such as the different pH, the intestinal mucus layer, or the intestinal absorption capacity. On the other hand, these same characteristics can represent a problem for their complexity, also considering the potential interactions with the food matrix or the microbiota. This review intends to give a comprehensive look into three main branches of NPs delivery through the oral route: the functionalization of NPs drug carriers for systemic targets, with the case of insulin carriers as an example; NPs for the delivery of drugs locally active in the intestine, for the treatment of inflammatory bowel diseases and colon cancer; finally, the potential concerns and side effects of the accidental and uncontrolled exposure to NPs employed as food additives, with focus on E171 (titanium dioxide) and E174 (silver NPs).
Collapse
|
17
|
Utembe W, Tlotleng N, Kamng'ona AW. A systematic review on the effects of nanomaterials on gut microbiota. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100118. [PMID: 35909630 PMCID: PMC9325792 DOI: 10.1016/j.crmicr.2022.100118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Some nanomaterials (NMs) have been shown to possess antimicrobial activity and cause GM dysbiosis. Since NMs are being used widely, a systematic assessment of the effects of NMs on GM is warranted. In this systematic review, a total of 46 in vivo and 22 in vitro studies were retrieved from databases and search engines including Science-Direct, Pubmed and Google scholar. Criteria for assessment of studies included use of in vitro or in vivo studies, characterization of NMs, use of single or multiple doses as well as consistency of results. GM dysbiosis has been studied most widely on TiO2, Ag, Zn-based NMs. There was moderate evidence for GM dysbiosis caused by Zn- and Cu-based NMs, Cu-loaded chitosan NPs and Ag NMs, and anatase TiO2 NPs, as well as low evidence for SWCNTs, nanocellulose, SiO2, Se, nanoplastics, CeO2, MoO3 and graphene-based NMs. Most studies indicate adverse effects of NMs towards GM. However, more work is required to elucidate the differences on the reported effects of NM by type and sex of organisms, size, shape and surface properties of NMs as well as effects of exposure to mixtures of NMs. For consistency and better agreement among studies on GM dysbiosis, there is need for internationally agreed protocols on, inter alia, characterization of NMs, dosing (amounts, frequency and duration), use of sonication, test systems (both in vitro and in vivo), including oxygen levels for in vitro models.
Collapse
Affiliation(s)
- W Utembe
- Toxicology and Biochemistry Department, National Institute for Occupational Health (NIOH), National Health Laboratory Services (NHLS), Johannesburg, South Africa
- Department of Environmental Heath, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2000, South Africa
| | - N Tlotleng
- Epidemiology and Surveillance Department, NIOH, NHLS, Johannesburg, South Africa
| | - AW Kamng'ona
- Department of Biomedical Sciences, Kamuzu University of Health Sciences, Blantyre, Malawi
| |
Collapse
|
18
|
Rinninella E, Cintoni M, Raoul P, Ianiro G, Laterza L, Ponziani FR, Pulcini G, Gasbarrini A, Mele MC. Diet-Induced Alterations in Gut Microbiota Composition and Function. COMPREHENSIVE GUT MICROBIOTA 2022:354-373. [DOI: 10.1016/b978-0-12-819265-8.00035-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Hao W, Cha R, Wang M, Zhang P, Jiang X. Impact of nanomaterials on the intestinal mucosal barrier and its application in treating intestinal diseases. NANOSCALE HORIZONS 2021; 7:6-30. [PMID: 34889349 DOI: 10.1039/d1nh00315a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The intestinal mucosal barrier (IMB) is one of the important barriers to prevent harmful substances and pathogens from entering the body environment and to maintain intestinal homeostasis. The dysfunction of the IMB is associated with intestinal diseases and disorders. Nanomaterials have been widely used in medicine and as drug carriers due to their large specific surface area, strong adsorbability, and good biocompatibility. In this review, we comprehensively discuss the impact of typical nanomaterials on the IMB and summarize the treatment of intestinal diseases by using nanomaterials. The effects of nanomaterials on the IMB are mainly influenced by factors such as the dosage, size, morphology, and surface functional groups of nanomaterials. There is huge potential and a broad prospect for the application of nanomaterials in regulating the IMB for achieving an optimal therapeutic effect for antibiotics, oral vaccines, drug carriers, and so on.
Collapse
Affiliation(s)
- Wenshuai Hao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China.
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Ruitao Cha
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China.
| | - Mingzheng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China.
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Pai Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P. R. China.
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| |
Collapse
|
20
|
Bredeck G, Kämpfer AAM, Sofranko A, Wahle T, Büttner V, Albrecht C, Schins RPF. Ingested Engineered Nanomaterials Affect the Expression of Mucin Genes-An In Vitro-In Vivo Comparison. NANOMATERIALS 2021; 11:nano11102621. [PMID: 34685068 PMCID: PMC8537393 DOI: 10.3390/nano11102621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022]
Abstract
The increasing use of engineered nanomaterials (ENM) in food has fueled the development of intestinal in vitro models for toxicity testing. However, ENM effects on intestinal mucus have barely been addressed, although its crucial role for intestinal health is evident. We investigated the effects of ENM on mucin expression and aimed to evaluate the suitability of four in vitro models of increasing complexity compared to a mouse model exposed through feed pellets. We assessed the gene expression of the mucins MUC1, MUC2, MUC5AC, MUC13 and MUC20 and the chemokine interleukin-8 in pre-confluent and confluent HT29-MTX-E12 cells, in stable and inflamed triple cultures of Caco-2, HT29-MTX-E12 and THP-1 cells, and in the ileum of mice following exposure to TiO2, Ag, CeO2 or SiO2. All ENM had shared and specific effects. CeO2 downregulated MUC1 in confluent E12 cells and in mice. Ag induced downregulation of Muc2 in mice. Overall, the in vivo data were consistent with the findings in the stable triple cultures and the confluent HT29-MTX-E12 cells but not in pre-confluent cells, indicating the higher relevance of advanced models for hazard assessment. The effects on MUC1 and MUC2 suggest that specific ENM may lead to an elevated susceptibility towards intestinal infections and inflammations.
Collapse
|
21
|
Barreau F, Tisseyre C, Ménard S, Ferrand A, Carriere M. Titanium dioxide particles from the diet: involvement in the genesis of inflammatory bowel diseases and colorectal cancer. Part Fibre Toxicol 2021; 18:26. [PMID: 34330311 PMCID: PMC8323234 DOI: 10.1186/s12989-021-00421-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract is a complex interface between the external environment and the immune system. Its ability to control uptake across the mucosa and to protect the body from damage of harmful substances from the lumen is defined as the intestinal barrier function (IBF). The IBF involves four elements: the intestinal microbiota, the mucus layer, the epithelium and the immune system. Its dysfunction is linked with human diseases including inflammatory, metabolic, infectious, autoimmune and neurologic disorders. Most of these diseases are complex and involve genetic, psychological and environmental factors. Over the past 10 years, many genetic polymorphisms predisposing to inflammatory bowel disease (IBD) have been identified. Yet, it is now clear that they are insufficient to explain the onset of these chronic diseases. Although it has been evidenced that some environmental factors such as cigarette smoking or carbohydrate intake are associated with IBD, other environmental factors also present potential health risks such as ingestion of food additives introduced in the human diet, including those composed of mineral particles, by altering the four elements of the intestinal barrier function. The aim of this review is to provide a critical opinion on the potential of TiO2 particles, especially when used as a food additive, to alter the four elements of the intestinal barrier function, and consequently to evaluate if this additive would likely play a role in the development and/or exacerbation of IBD.
Collapse
Affiliation(s)
- Frédérick Barreau
- INSERM, UMR 1220, Institut de Recherche en Santé Digestive, 31024, Toulouse, France. .,Université de Toulouse, Toulouse, France.
| | - Céline Tisseyre
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 17 rue des Martyrs, 38000, Grenoble, France
| | - Sandrine Ménard
- INSERM, UMR 1220, Institut de Recherche en Santé Digestive, 31024, Toulouse, France.,Université de Toulouse, Toulouse, France
| | - Audrey Ferrand
- INSERM, UMR 1220, Institut de Recherche en Santé Digestive, 31024, Toulouse, France.,Université de Toulouse, Toulouse, France
| | - Marie Carriere
- Univ. Grenoble Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, 17 rue des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
22
|
Guibourdenche M, Haug J, Chevalier N, Spatz M, Barbezier N, Gay-Quéheillard J, Anton PM. Food Contaminants Effects on an In Vitro Model of Human Intestinal Epithelium. TOXICS 2021; 9:toxics9060135. [PMID: 34207749 PMCID: PMC8227186 DOI: 10.3390/toxics9060135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Pesticide residues represent an important category of food contaminants. Furthermore, during food processing, some advanced glycation end-products resulting from the Maillard reaction can be formed. They may have adverse health effects, in particular on the digestive tract function, alone and combined. We sought to validate an in vitro model of the human intestinal barrier to mimic the effects of these food contaminants on the epithelium. A co-culture of Caco-2/TC7 cells and HT29-MTX was stimulated for 6 h with chlorpyrifos (300 μM), acrylamide (5 mM), Nε-Carboxymethyllysine (300 μM) alone or in cocktail with a mix of pro-inflammatory cytokines. The effects of those contaminants on the integrity of the gut barrier and the inflammatory response were analyzed. Since the co-culture responded to inflammatory stimulation, we investigated whether this model could be used to evaluate the effects of food contaminants on the human intestinal epithelium. CPF alone affected tight junctions’ gene expression, without inducing any inflammation or alteration of intestinal permeability. CML and acrylamide decreased mucins gene expression in the intestinal mucosa, but did not affect paracellular intestinal permeability. CML exposure activated the gene expression of MAPK pathways. The co-culture response was stable over time. This cocktail of food contaminants may thus alter the gut barrier function.
Collapse
Affiliation(s)
- Marion Guibourdenche
- PériTox—Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, 80025 Amiens, France; (M.G.); (J.G.-Q.)
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (J.H.); (N.C.); (M.S.); (N.B.)
| | - Johanna Haug
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (J.H.); (N.C.); (M.S.); (N.B.)
| | - Noëllie Chevalier
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (J.H.); (N.C.); (M.S.); (N.B.)
| | - Madeleine Spatz
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (J.H.); (N.C.); (M.S.); (N.B.)
| | - Nicolas Barbezier
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (J.H.); (N.C.); (M.S.); (N.B.)
| | - Jérôme Gay-Quéheillard
- PériTox—Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Université Picardie Jules Verne, 80025 Amiens, France; (M.G.); (J.G.-Q.)
| | - Pauline M. Anton
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (J.H.); (N.C.); (M.S.); (N.B.)
- Correspondence: ; Tel.: +33-3-4406-3868
| |
Collapse
|
23
|
Younes M, Aquilina G, Castle L, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wölfle D, Corsini E, Cubadda F, De Groot D, FitzGerald R, Gunnare S, Gutleb AC, Mast J, Mortensen A, Oomen A, Piersma A, Plichta V, Ulbrich B, Van Loveren H, Benford D, Bignami M, Bolognesi C, Crebelli R, Dusinska M, Marcon F, Nielsen E, Schlatter J, Vleminckx C, Barmaz S, Carfí M, Civitella C, Giarola A, Rincon AM, Serafimova R, Smeraldi C, Tarazona J, Tard A, Wright M. Safety assessment of titanium dioxide (E171) as a food additive. EFSA J 2021; 19:e06585. [PMID: 33976718 PMCID: PMC8101360 DOI: 10.2903/j.efsa.2021.6585] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present opinion deals with an updated safety assessment of the food additive titanium dioxide (E 171) based on new relevant scientific evidence considered by the Panel to be reliable, including data obtained with TiO2 nanoparticles (NPs) and data from an extended one-generation reproductive toxicity (EOGRT) study. Less than 50% of constituent particles by number in E 171 have a minimum external dimension < 100 nm. In addition, the Panel noted that constituent particles < 30 nm amounted to less than 1% of particles by number. The Panel therefore considered that studies with TiO2 NPs < 30 nm were of limited relevance to the safety assessment of E 171. The Panel concluded that although gastrointestinal absorption of TiO2 particles is low, they may accumulate in the body. Studies on general and organ toxicity did not indicate adverse effects with either E 171 up to a dose of 1,000 mg/kg body weight (bw) per day or with TiO2 NPs (> 30 nm) up to the highest dose tested of 100 mg/kg bw per day. No effects on reproductive and developmental toxicity were observed up to a dose of 1,000 mg E 171/kg bw per day, the highest dose tested in the EOGRT study. However, observations of potential immunotoxicity and inflammation with E 171 and potential neurotoxicity with TiO2 NPs, together with the potential induction of aberrant crypt foci with E 171, may indicate adverse effects. With respect to genotoxicity, the Panel concluded that TiO2 particles have the potential to induce DNA strand breaks and chromosomal damage, but not gene mutations. No clear correlation was observed between the physico-chemical properties of TiO2 particles and the outcome of either in vitro or in vivo genotoxicity assays. A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out. Several modes of action for the genotoxicity may operate in parallel and the relative contributions of different molecular mechanisms elicited by TiO2 particles are not known. There was uncertainty as to whether a threshold mode of action could be assumed. In addition, a cut-off value for TiO2 particle size with respect to genotoxicity could not be identified. No appropriately designed study was available to investigate the potential carcinogenic effects of TiO2 NPs. Based on all the evidence available, a concern for genotoxicity could not be ruled out, and given the many uncertainties, the Panel concluded that E 171 can no longer be considered as safe when used as a food additive.
Collapse
|
24
|
The effects of diet and gut microbiota on the regulation of intestinal mucin glycosylation. Carbohydr Polym 2021; 258:117651. [DOI: 10.1016/j.carbpol.2021.117651] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
|
25
|
Impact of Food Additive Titanium Dioxide on Gut Microbiota Composition, Microbiota-Associated Functions, and Gut Barrier: A Systematic Review of In Vivo Animal Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042008. [PMID: 33669592 PMCID: PMC7922260 DOI: 10.3390/ijerph18042008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022]
Abstract
Background: Titanium dioxide (TiO2) is used as a food additive in pastries, sweets, and sauces. It is recognized as safe by food safety authorities, but in recent years, governments and scientists have raised concerns about its genotoxicity. This systematic review aims to assess the potential associations between food TiO2 exposure and microbiota composition and functions. Methods: A systematic literature search was performed up to December 2020 in PubMed, Web of Science, and Scopus databases. The PRISMA guidelines followed. The risk of bias was assessed from ARRIVE and SYRCLE tools. Results: A total of 18 animal studies were included (n = 10 mice, n = 5 rats, n = 2 fruit flies, n = 1 silkworm). Studies varied significantly in protocols and outcomes assessment. TiO2 exposure might cause variations in abundance in specific bacterial species and lead to gut dysfunctions such as a reduction in SCFAs levels, goblet cells and crypts, mucus production, and increased biomarkers of intestinal inflammation. Conclusions: Although the extrapolation of these results from animals to humans remains difficult, this review highlights the key role of gut microbiota in gut nanotoxicology and stimulates discussions on the safe TiO2 use in food and dietary supplements. This systematic review was registered at PROSPERO as CRD42020223968.
Collapse
|
26
|
Zhang Y, Duan S, Liu Y, Wang Y. The combined effect of food additive titanium dioxide and lipopolysaccharide on mouse intestinal barrier function after chronic exposure of titanium dioxide-contained feedstuffs. Part Fibre Toxicol 2021; 18:8. [PMID: 33596948 PMCID: PMC7887831 DOI: 10.1186/s12989-021-00399-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/17/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Up to 44% of particulates of food-grade titanium dioxide (TiO2) are in nanoscale, while the effect and combined effect of which with other substances on intestinal barrier haven't been fully understood yet. This study is aimed to study the effect of two kinds of TiO2 nanoparticles (TiO2 NPs and TiO2 MPs) on intestinal barrier functions, to reveal the combined effect of TiO2 NPs and Lipopolysaccharide (LPS) on intestinal barrier. METHODS Male ICR mice were randomly divided into 18 groups (3 feed types * 3 exposure length * 2 LPS dosage) and were fed with normal or TiO2-mixed feed (containing 1% (mass fraction, w/w) TiO2 NPs or TiO2 MPs) for 1, 3, 6 months, followed by a single oral administration of 0 or 10 mg/(kg body weight) LPS. Four hours later, the transportation of TiO2, the intestinal barrier functions and the inflammatory response were evaluated. RESULTS Both TiO2 notably increased the intestinal villi height / crypt depth ratios after 1 and 3 months of exposure, and increased the expression of ileal tight junction proteins (ZO-1 and occludin) after 1 month of exposure. After 6 months of exposure, TiO2 NPs led to reduced feed consumption, TiO2 MPs caused spare microvilli in small intestine and elevated Ti content in the blood cells. The intestinal permeability didn't change in both TiO2 exposed groups. After LPS administration, we observed altered intestinal villi height / crypt depth ratios, lowered intestinal permeability (DAO) and upregulated expression of ileal ZO-1 in both (TiO2 +LPS) exposed groups. There are no significant changes of ileal or serum cytokines except for a higher serum TNF-α level in LPS treated group. The antagonistic effect was found between TiO2 NPs and LPS, but there are complicated interactions between TiO2 MPs and LPS. CONCLUSION Long-term intake of food additive TiO2 could alter the intestinal epithelial structure without influencing intestinal barrier function. Co-exposure of TiO2 and LPS would enhance intestinal barrier function without causing notable inflammatory responses, and there is antagonistic effect between TiO2 NPs and LPS. All the minor effects observed might associate with the gentle exposure method where TiO2 being ingested with feed.
Collapse
Affiliation(s)
- Yongliang Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Shumin Duan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China
| | - Yun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
27
|
das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2021; 49:5058-5100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues constitute the largest interface between the body and the surrounding environment and they regulate the access of molecules, supramolecular structures, particulate matter, and pathogens into it. All mucosae are characterized by an outer mucus layer that protects the underlying cells from physicochemical, biological and mechanical insults, a mono-layered or stratified epithelium that forms tight junctions and controls the selective transport of solutes across it and associated lymphoid tissues that play a sentinel role. Mucus is a gel-like material comprised mainly of the glycoprotein mucin and water and it displays both hydrophilic and hydrophobic domains, a net negative charge, and high porosity and pore interconnectivity, providing an efficient barrier for the absorption of therapeutic agents. To prolong the residence time, absorption and bioavailability of a broad spectrum of active compounds upon mucosal administration, mucus-penetrating and mucoadhesive particles have been designed by tuning the chemical composition, the size, the density, and the surface properties. The benefits of utilizing nanomaterials that interact intimately with mucosae by different mechanisms in the nanomedicine field have been extensively reported. To ensure the safety of these nanosystems, their compatibility is evaluated in vitro and in vivo in preclinical and clinical trials. Conversely, there is a growing concern about the toxicity of nanomaterials dispersed in air and water effluents that unintentionally come into contact with the airways and the gastrointestinal tract. Thus, deep understanding of the key nanomaterial properties that govern the interplay with mucus and tissues is crucial for the rational design of more efficient drug delivery nanosystems (nanomedicine) and to anticipate the fate and side-effects of nanoparticulate matter upon acute or chronic exposure (nanotoxicology). This review initially overviews the complex structural features of mucosal tissues, including the structure of mucus, the epithelial barrier, the mucosal-associated lymphatic tissues and microbiota. Then, the most relevant investigations attempting to identify and validate the key particle features that govern nanomaterial-mucosa interactions and that are relevant in both nanomedicine and nanotoxicology are discussed in a holistic manner. Finally, the most popular experimental techniques and the incipient use of mathematical and computational models to characterize these interactions are described.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde & INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| |
Collapse
|
28
|
Gillois K, Stoffels C, Leveque M, Fourquaux I, Blesson J, Mils V, Cambier S, Vignard J, Terrisse H, Mirey G, Audinot JN, Theodorou V, Ropers MH, Robert H, Mercier-Bonin M. Repeated exposure of Caco-2 versus Caco-2/HT29-MTX intestinal cell models to (nano)silver in vitro: Comparison of two commercially available colloidal silver products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142324. [PMID: 33254900 DOI: 10.1016/j.scitotenv.2020.142324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Colloidal silver products are sold for a wide range of disinfectant and health applications. This has increased the potential for human exposure to silver nanoparticles (AgNPs) and ions (Ag+), for which oral ingestion is considered to be a major route of exposure. Our objective was to evaluate and compare the toxicity of two commercially available colloidal silver products on two human intestinal epithelial models under realistic exposure conditions. Mesosilver™ and AgC were characterized and a concentration range between 0.1 and 12 μg/mL chosen. Caco-2 cells vs. co-culture of Caco-2 and mucus-secreting HT29-MTX cells (90/10) were used. Repeated exposure was carried out to determine cell viability over 18 days of cell differentiation in 24-well plates. Selected concentrations (0.1, 1, and 3 μg/mL) were tested on cells cultured in E-plates and Transwells with the same repeated exposure regimen, to determine cell impedance, and cell viability and trans-epithelial electrical resistance (TEER), respectively. Silver uptake, intracellular localisation, and translocation were determined by CytoViva™, HIM-SIMS, and ICP-MS. Genotoxicity was determined on acutely-exposed proliferating Caco-2 cells by γH2AX immunofluorescence staining. Repeated exposure of a given concentration of AgC, which is composed solely of ionic silver, generally exerted more toxic effects on Caco-2 cells than Mesosilver™, which contains a mix of AgNPs and ionic silver. Due to its patchy structure, the presence of mucus in the Caco-2/HT29-MTX co-culture only slightly mitigated the deleterious effects on cell viability. Increased genotoxicity was observed for AgC on proliferating Caco-2 cells. Silver uptake, intracellular localisation, and translocation were similar. In conclusion, Mesosilver™ and AgC colloidal silver products show different levels of gut toxicity due to the forms of distinct silver (AgNPs and/or Ag+) contained within. This study highlights the applicability of high-resolution (chemical) imaging to detect and localize silver and provides insights into its uptake mechanisms, intracellular fate and cellular effects.
Collapse
Affiliation(s)
- Kévin Gillois
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Charlotte Stoffels
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Mathilde Leveque
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Isabelle Fourquaux
- Centre de Microscopie Électronique Appliquée à la Biologie, CMEAB, 133 route de Narbonne, 31062 Toulouse, France
| | - Justine Blesson
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Valérie Mils
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Julien Vignard
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Hélène Terrisse
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Gladys Mirey
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Nicolas Audinot
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Vassilia Theodorou
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | | | - Hervé Robert
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Muriel Mercier-Bonin
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France.
| |
Collapse
|
29
|
Dudefoi W, Rabesona H, Rivard C, Mercier-Bonin M, Humbert B, Terrisse H, Ropers MH. In vitro digestion of food grade TiO 2 (E171) and TiO 2 nanoparticles: physicochemical characterization and impact on the activity of digestive enzymes. Food Funct 2021; 12:5975-5988. [PMID: 34032251 DOI: 10.1039/d1fo00499a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Titanium dioxide is a food additive that has raised some concerns for humans due to the presence of nanoparticles. We were interested in knowing the fate of TiO2 particles in the gastro-intestinal tract and their potential effect on digestive enzymes. For this purpose, we analysed the behaviour of two different food grade TiO2 samples (E171) and one nano-sized TiO2 sample (P25) through a standardized static in vitro digestion protocol simulating the oral, gastric and intestinal phases with appropriate juices including enzymes. Both E171 and P25 TiO2 particles remained intact in the digestive fluids but formed large agglomerates, and especially in the intestinal fluid where up to 500 μm sized particles have been identified. The formation of these agglomerates is mediated by the adsorption of mainly α-amylase and divalent cations. Pepsin was also identified to adsorb onto TiO2 particles but only in the case of silica-covered E171. In the salivary conditions, TiO2 exerted an inhibitory action on the enzymatic activity of α-amylase. The activity was reduced by a factor dependent on enzyme concentrations (up to 34% at 1 mg mL-1) but this inhibitory effect was reduced to hardly 10% in the intestinal fluid. In the gastric phase, pepsin was not affected by any form of TiO2. Our results hint that food grade TiO2 has a limited impact on the global digestion of carbohydrates and proteins. However, the reduced activity specifically observed in the oral phase deserves deeper investigation to prevent any adverse health effects related to the slowdown of carbohydrate metabolism.
Collapse
Affiliation(s)
- William Dudefoi
- INRAE, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France.
| | - Hanitra Rabesona
- INRAE, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France.
| | - Camille Rivard
- INRAE, UAR 1008 TRANSFORM, 44300 Nantes, France and Synchrotron SOLEIL, LUCIA Beamline, 91192 Gif-sur-Yvette, France
| | - Muriel Mercier-Bonin
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Bernard Humbert
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Hélène Terrisse
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | | |
Collapse
|
30
|
Rinninella E, Cintoni M, Raoul P, Gasbarrini A, Mele MC. Food Additives, Gut Microbiota, and Irritable Bowel Syndrome: A Hidden Track. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8816. [PMID: 33260947 PMCID: PMC7730902 DOI: 10.3390/ijerph17238816] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
The interactions between diet, gut microbiota, and irritable bowel syndrome (IBS) have many complex mechanisms that are not fully understood. Food additives are one component of the modern human diet that deserves attention from science and government policies. This review aims at identifying the current knowledge about the impact of food additives on gut microbiota and their potential role in the development of IBS. To date, few data on the effect of food additives on gut microbiota in IBS patients are available. However, exposure to food additives could induce the dysbiosis and dysregulation of gut homeostasis with an alteration of the gut barrier and activation of the immune response. These microbial changes could exacerbate the gut symptoms associated with IBS, such as visceral pain, low-grade inflammation, and changes in bowel habits. Some additives (polyols) are excluded in the low fermentable oligo-, di- and monosaccharide, and polyol (FODMAP), diets for IBS patients. Even if most studies have been performed in animals, and human studies are required, many artificial sweeteners, emulsifiers, and food colorants could represent a potential hidden driver of IBS, through gut microbiota alterations. Consequently, food additives should be preventively avoided in the diet as well as dietary supplements for patients with IBS.
Collapse
Affiliation(s)
- Emanuele Rinninella
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Marco Cintoni
- Scuola di Specializzazione in Scienza dell’Alimentazione, Università di Roma Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Pauline Raoul
- UOSD di Nutrizione Avanzata in Oncologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (P.R.); (M.C.M.)
| | - Antonio Gasbarrini
- UOC di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica Del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| | - Maria Cristina Mele
- UOSD di Nutrizione Avanzata in Oncologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy; (P.R.); (M.C.M.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica Del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
31
|
Medina-Reyes EI, Rodríguez-Ibarra C, Déciga-Alcaraz A, Díaz-Urbina D, Chirino YI, Pedraza-Chaverri J. Food additives containing nanoparticles induce gastrotoxicity, hepatotoxicity and alterations in animal behavior: The unknown role of oxidative stress. Food Chem Toxicol 2020; 146:111814. [PMID: 33068655 DOI: 10.1016/j.fct.2020.111814] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Food additives such as titanium dioxide (E171), iron oxides and hydroxides (E172), silver (E174), and gold (E175) are highly used as colorants while silicon dioxide (E551) is generally used as anticaking in ultra-processed foodstuff highly used in the Western diets. These additives contain nanosized particles (1-100 nm) and there is a rising concern since these nanoparticles could exert major adverse effects due to they are not metabolized but are accumulated in several organs. Here, we analyze the evidence of gastrotoxicity, hepatotoxicity and the impact of microbiota on gut-brain and gut-liver axis induced by E171, E172, E174, E175 and E551 and their non-food grade nanosized counterparts after oral consumption. Although, no studies using these food additives have been performed to evaluate neurotoxicity or alterations in animal behavior, their non-food grade nanosized counterparts have been associated with stress, depression, cognitive and eating disorders as signs of animal behavior alterations. We identified that these food additives induce gastrotoxicity, hepatotoxicity and alterations in gut microbiota and most evidence points out oxidative stress as the main mechanism of toxicity, however, the role of oxidative stress as the main mechanism needs to be explored further.
Collapse
Affiliation(s)
- Estefany I Medina-Reyes
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, Mexico.
| | - Carolina Rodríguez-Ibarra
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Alejandro Déciga-Alcaraz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Daniel Díaz-Urbina
- Laboratorio de Neurobiología de La Alimentación. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios No. 1, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, Mexico
| |
Collapse
|
32
|
Guillard A, Gaultier E, Cartier C, Devoille L, Noireaux J, Chevalier L, Morin M, Grandin F, Lacroix MZ, Coméra C, Cazanave A, de Place A, Gayrard V, Bach V, Chardon K, Bekhti N, Adel-Patient K, Vayssière C, Fisicaro P, Feltin N, de la Farge F, Picard-Hagen N, Lamas B, Houdeau E. Basal Ti level in the human placenta and meconium and evidence of a materno-foetal transfer of food-grade TiO 2 nanoparticles in an ex vivo placental perfusion model. Part Fibre Toxicol 2020; 17:51. [PMID: 33023621 PMCID: PMC7541303 DOI: 10.1186/s12989-020-00381-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Titanium dioxide (TiO2) is broadly used in common consumer goods, including as a food additive (E171 in Europe) for colouring and opacifying properties. The E171 additive contains TiO2 nanoparticles (NPs), part of them being absorbed in the intestine and accumulated in several systemic organs. Exposure to TiO2-NPs in rodents during pregnancy resulted in alteration of placental functions and a materno-foetal transfer of NPs, both with toxic effects on the foetus. However, no human data are available for pregnant women exposed to food-grade TiO2-NPs and their potential transfer to the foetus. In this study, human placentae collected at term from normal pregnancies and meconium (the first stool of newborns) from unpaired mothers/children were analysed using inductively coupled plasma mass spectrometry (ICP-MS) and scanning transmission electron microscopy (STEM) coupled to energy-dispersive X-ray (EDX) spectroscopy for their titanium (Ti) contents and for analysis of TiO2 particle deposition, respectively. Using an ex vivo placenta perfusion model, we also assessed the transplacental passage of food-grade TiO2 particles. Results By ICP-MS analysis, we evidenced the presence of Ti in all placentae (basal level ranging from 0.01 to 0.48 mg/kg of tissue) and in 50% of the meconium samples (0.02–1.50 mg/kg), suggesting a materno-foetal passage of Ti. STEM-EDX observation of the placental tissues confirmed the presence of TiO2-NPs in addition to iron (Fe), tin (Sn), aluminium (Al) and silicon (Si) as mixed or isolated particle deposits. TiO2 particles, as well as Si, Al, Fe and zinc (Zn) particles were also recovered in the meconium. In placenta perfusion experiments, confocal imaging and SEM-EDX analysis of foetal exudate confirmed a low transfer of food-grade TiO2 particles to the foetal side, which was barely quantifiable by ICP-MS. Diameter measurements showed that 70 to 100% of the TiO2 particles recovered in the foetal exudate were nanosized. Conclusions Altogether, these results show a materno-foetal transfer of TiO2 particles during pregnancy, with food-grade TiO2 as a potential source for foetal exposure to NPs. These data emphasize the need for risk assessment of chronic exposure to TiO2-NPs during pregnancy.
Collapse
Affiliation(s)
- A Guillard
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - E Gaultier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - C Cartier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - L Devoille
- Department of materials, LNE, Trappes, France
| | - J Noireaux
- Department for biomedical and inorganic chemistry, LNE, Paris, France
| | - L Chevalier
- Group Physic of Materials, GPM-UMR6634, CNRS, Rouen University, Rouen, France
| | - M Morin
- Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU Toulouse, Toulouse, France
| | - F Grandin
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - M Z Lacroix
- INTHERES, UMR 1436 Toulouse University, INRAE, ENVT, Toulouse, France
| | - C Coméra
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - A Cazanave
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - A de Place
- Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU Toulouse, Toulouse, France
| | - V Gayrard
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - V Bach
- Péritox UMR-I 01 (Perinatality and Toxic Risk), Jules Verne University, Amiens, France
| | - K Chardon
- Péritox UMR-I 01 (Perinatality and Toxic Risk), Jules Verne University, Amiens, France
| | - N Bekhti
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - K Adel-Patient
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 91191, Gif-sur-Yvette, France
| | - C Vayssière
- Department of Obstetrics and Gynecology, Paule de Viguier Hospital, CHU Toulouse, Toulouse, France.,UMR 1027 INSERM, Team SPHERE, Toulouse III University, Toulouse, France
| | - P Fisicaro
- Department for biomedical and inorganic chemistry, LNE, Paris, France
| | - N Feltin
- Department of materials, LNE, Trappes, France
| | - F de la Farge
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - N Picard-Hagen
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - B Lamas
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - E Houdeau
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
33
|
Coméra C, Cartier C, Gaultier E, Catrice O, Panouille Q, El Hamdi S, Tirez K, Nelissen I, Théodorou V, Houdeau E. Jejunal villus absorption and paracellular tight junction permeability are major routes for early intestinal uptake of food-grade TiO 2 particles: an in vivo and ex vivo study in mice. Part Fibre Toxicol 2020; 17:26. [PMID: 32527323 PMCID: PMC7345522 DOI: 10.1186/s12989-020-00357-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/29/2020] [Indexed: 01/13/2023] Open
Abstract
Background Food-grade TiO2 (E171 in the EU) is widely used as a coloring agent in foodstuffs, including sweets. Chronic dietary exposure raises concerns for human health due to proinflammatory properties and the ability to induce and promote preneoplastic lesions in the rodent gut. Characterization of intestinal TiO2 uptake is essential for assessing the health risk in humans. We studied in vivo the gut absorption kinetics of TiO2 in fasted mice orally given a single dose (40 mg/kg) to assess the ability of intestinal apical surfaces to absorb particles when available without entrapment in the bolus. The epithelial translocation pathways were also identified ex vivo using intestinal loops in anesthetized mice. Results The absorption of TiO2 particles was analyzed in gut tissues by laser-reflective confocal microscopy and ICP-MS at 4 and 8 h following oral administration. A bimodal pattern was detected in the small intestine: TiO2 absorption peaked at 4 h in jejunal and ileal villi before returning to basal levels at 8 h, while being undetectable at 4 h but significantly present at 8 h in the jejunal Peyer’s patches (PP). Lower absorption occurred in the colon, while TiO2 particles were clearly detectable by confocal microscopy in the blood at 4 and 8 h after treatment. Ex vivo, jejunal loops were exposed to the food additive in the presence and absence of pharmacological inhibitors of paracellular tight junction (TJ) permeability or of transcellular (endocytic) passage. Thirty minutes after E171 addition, TiO2 absorption by the jejunal villi was decreased by 66% (p < 0.001 vs. control) in the presence of the paracellular permeability blocker triaminopyrimidine; the other inhibitors had no significant effect. Substantial absorption through a goblet cell (GC)-associated pathway, insensitive to TJ blockade, was also detected. Conclusions After a single E171 dose in mice, early intestinal uptake of TiO2 particles mainly occurred through the villi of the small intestine, which, in contrast to the PP, represent the main absorption surface in the small intestine. A GC-associated passage and passive diffusion through paracellular TJ spaces between enterocytes appeared to be major absorption routes for transepithelial uptake of dietary TiO2.
Collapse
Affiliation(s)
- Christine Coméra
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France.
| | - Christel Cartier
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Eric Gaultier
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Olivier Catrice
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Quentin Panouille
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Sarah El Hamdi
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Kristof Tirez
- VITO (Flemish Institute for Technological Research), Mol, Belgium
| | - Inge Nelissen
- VITO (Flemish Institute for Technological Research), Mol, Belgium
| | - Vassilia Théodorou
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| | - Eric Houdeau
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP, Toulouse, France
| |
Collapse
|
34
|
Hofseth LJ, Hebert JR, Chanda A, Chen H, Love BL, Pena MM, Murphy EA, Sajish M, Sheth A, Buckhaults PJ, Berger FG. Early-onset colorectal cancer: initial clues and current views. Nat Rev Gastroenterol Hepatol 2020; 17:352-364. [PMID: 32086499 PMCID: PMC10711686 DOI: 10.1038/s41575-019-0253-4] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Over the past several decades, the incidence of early-onset colorectal cancer (EOCRC; in patients <50 years old) has increased at an alarming rate. Although robust and scientifically rigorous epidemiological studies have sifted out environmental elements linked to EOCRC, our knowledge of the causes and mechanisms of this disease is far from complete. Here, we highlight potential risk factors and putative mechanisms that drive EOCRC and suggest likely areas for fruitful research. In addition, we identify inconsistencies in the evidence implicating a strong effect of increased adiposity and suggest that certain behaviours (such as diet and stress) might place nonobese and otherwise healthy people at risk of this disease. Key risk factors are reviewed, including the global westernization of diets (usually involving a high intake of red and processed meats, high-fructose corn syrup and unhealthy cooking methods), stress, antibiotics, synthetic food dyes, monosodium glutamate, titanium dioxide, and physical inactivity and/or sedentary behaviour. The gut microbiota is probably at the crossroads of these risk factors and EOCRC. The time course of the disease and the fact that relevant exposures probably occur in childhood raise important methodological issues that are also discussed.
Collapse
Affiliation(s)
- Lorne J Hofseth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA.
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| | - James R Hebert
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Anindya Chanda
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Hexin Chen
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Bryan L Love
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Maria M Pena
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - E Angela Murphy
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Mathew Sajish
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Amit Sheth
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Computer Science and Engineering, College of Engineering, University of South Carolina, Columbia, SC, USA
| | - Phillip J Buckhaults
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Franklin G Berger
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA
- Department of Biology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
35
|
Lamas B, Martins Breyner N, Houdeau E. Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: potential consequences for host health. Part Fibre Toxicol 2020; 17:19. [PMID: 32487227 PMCID: PMC7268708 DOI: 10.1186/s12989-020-00349-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In food toxicology, there is growing interest in studying the impacts of foodborne nanoparticles (NPs, originating from food additives, food supplements or food packaging) on the intestinal microbiome due to the important and complex physiological roles of these microbial communities in host health. Biocidal activities, as described over recent years for most inorganic and metal NPs, could favour chronic changes in the composition and/or metabolic activities of commensal bacteria (namely, intestinal dysbiosis) with consequences on immune functions. Reciprocally, direct interactions of NPs with the immune system (e.g., inflammatory responses, adjuvant or immunosuppressive properties) may in turn have effects on the gut microbiota. Many chronic diseases in humans are associated with alterations along the microbiota-immune system axis, such as inflammatory bowel diseases (IBD) (Crohn's disease and ulcerative colitis), metabolic disorders (e.g., obesity) or colorectal cancer (CRC). This raises the question of whether chronic dietary exposure to inorganic NPs may be viewed as a risk factor facilitating disease onset and/or progression. Deciphering the variety of effects along the microbiota-immune axis may aid the understanding of how daily exposure to inorganic NPs through various foodstuffs may potentially disturb the intricate dialogue between gut commensals and immunity, hence increasing the vulnerability of the host. In animal studies, dose levels and durations of oral treatment are key factors for mimicking exposure conditions to which humans are or may be exposed through the diet on a daily basis, and are needed for hazard identification and risk assessment of foodborne NPs. This review summarizes relevant studies to support the development of predictive toxicological models that account for the gut microbiota-immune axis. CONCLUSIONS The literature indicates that, in addition to evoking immune dysfunctions in the gut, inorganic NPs exhibit a moderate to extensive impact on intestinal microbiota composition and activity, highlighting a recurrent signature that favours colonization of the intestine by pathobionts at the expense of beneficial bacterial strains, as observed in IBD, CRC and obesity. Considering the long-term exposure via food, the effects of NPs on the gut microbiome should be considered in human health risk assessment, especially when a nanomaterial exhibits antimicrobial properties.
Collapse
Affiliation(s)
- Bruno Lamas
- INRAE Toxalim UMR 1331 (Research Center in Food Toxicology), Team Endocrinology and Toxicology of the Intestinal Barrier, INRAE, Toulouse University, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, 31027, Toulouse cedex 3, France.
| | - Natalia Martins Breyner
- INRAE Toxalim UMR 1331 (Research Center in Food Toxicology), Team Endocrinology and Toxicology of the Intestinal Barrier, INRAE, Toulouse University, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, 31027, Toulouse cedex 3, France
| | - Eric Houdeau
- INRAE Toxalim UMR 1331 (Research Center in Food Toxicology), Team Endocrinology and Toxicology of the Intestinal Barrier, INRAE, Toulouse University, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, 31027, Toulouse cedex 3, France.
| |
Collapse
|
36
|
Levine A, Rhodes JM, Lindsay JO, Abreu MT, Kamm MA, Gibson PR, Gasche C, Silverberg MS, Mahadevan U, Boneh RS, Wine E, Damas OM, Syme G, Trakman GL, Yao CK, Stockhamer S, Hammami MB, Garces LC, Rogler G, Koutroubakis IE, Ananthakrishnan AN, McKeever L, Lewis JD. Dietary Guidance From the International Organization for the Study of Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol 2020; 18:1381-1392. [PMID: 32068150 DOI: 10.1016/j.cgh.2020.01.046] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/21/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
Recent evidence points to a plausible role of diet and the microbiome in the pathogenesis of both Crohn's disease (CD) and Ulcerative Colitis (UC). Dietary therapies based on exclusion of table foods and replacement with nutritional formulas and/or a combination of nutritional formulas and specific table foods may induce remission in CD. In UC, specific dietary components have also been associated with flare of disease. While evidence of varying quality has identified potential harmful or beneficial dietary components, physicians and patients at the present time do not have guidance as to which foods are safe, may be protective or deleterious for these diseases. The current document has been compiled by the nutrition cluster of the International Organization for the Study of Inflammatory Bowel Diseases (IOIBD) based on the best current evidence to provide expert opinion regarding specific dietary components, food groups and food additives that may be prudent to increase or decrease in the diet of patients with inflammatory bowel diseases to control and prevent relapse of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Arie Levine
- Pediatric IBD Center, Wolfson Medical Center Holon, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan M Rhodes
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - James O Lindsay
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Maria T Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Michael A Kamm
- St Vincent's Hospital and University of Melbourne, Melbourne, Australia
| | - Peter R Gibson
- Monash University and Alfred Health, Melbourne, Australia
| | | | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Uma Mahadevan
- University of California, San Francisco, San Francisco, California
| | - Rotem Sigall Boneh
- Pediatric IBD Center, Wolfson Medical Center Holon, Tel Aviv University, Tel Aviv, Israel
| | - Eyton Wine
- Department of Pediatrics, University of Alberta, Alberta, Canada; Department of Physiology, University of Alberta, Alberta, Canada
| | - Oriana M Damas
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Graeme Syme
- The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Gina L Trakman
- St Vincent's Hospital and University of Melbourne, Melbourne, Australia
| | - Chu Kion Yao
- Monash University and Alfred Health, Melbourne, Australia
| | - Stefanie Stockhamer
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | | | - Luis C Garces
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | - Liam McKeever
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - James D Lewis
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
37
|
Cui X, Bao L, Wang X, Chen C. The Nano-Intestine Interaction: Understanding the Location-Oriented Effects of Engineered Nanomaterials in the Intestine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907665. [PMID: 32347646 DOI: 10.1002/smll.201907665] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Engineered nanomaterials (ENMs) are used in food additives, food packages, and therapeutic purposes owing to their useful properties, Therefore, human beings are orally exposed to exogenous nanomaterials frequently, which means the intestine is one of the primary targets of nanomaterials. Consequently, it is of great importance to understand the interaction between nanomaterials and the intestine. When nanomaterials enter into gut lumen, they inevitably interact with various components and thereby display different effects on the intestine based on their locations; these are known as location-oriented effects (LOE). The intestinal LOE confer a new biological-effect profile for nanomaterials, which is dependent on the involvement of the following biological processes: nano-mucus interaction, nano-intestinal epithelial cells (IECs) interaction, nano-immune interaction, and nano-microbiota interaction. A deep understanding of NM-induced LOE will facilitate the design of safer NMs and the development of more efficient nanomedicine for intestine-related diseases. Herein, recent progress in this field is reviewed in order to better understand the LOE of nanomaterials. The distant effects of nanomaterials coupling with microbiota are also highlighted. Investigation of the interaction of nanomaterials with the intestine will stimulate other new research areas beyond intestinal nanotoxicity.
Collapse
Affiliation(s)
- Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510700, China
| |
Collapse
|
38
|
da Silva AB, Miniter M, Thom W, Hewitt RE, Wills J, Jugdaohsingh R, Powell JJ. Gastrointestinal Absorption and Toxicity of Nanoparticles and Microparticles: Myth, Reality and Pitfalls explored through Titanium Dioxide. CURRENT OPINION IN TOXICOLOGY 2020; 19:112-120. [PMID: 32566805 PMCID: PMC7305030 DOI: 10.1016/j.cotox.2020.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Daily oral exposure to vast numbers (>1013/adult/day) of micron or nano-sized persistent particles has become the norm for many populations. Significant airborne particle exposure is deleterious, so what about ingestion? Titanium dioxide in food grade form (fgTiO2) , which is an additive to some foods, capsules, tablets and toothpaste, may provide clues. Certainly, exposed human populations accumulate these particles in specialised intestinal cells at the base of large lymphoid follicles (Peyer's patches) and it's likely that a degree of absorption goes beyond this- i.e. lymphatics to blood circulation to tissues. We critically review the evidence and pathways. Regarding potential adverse effects, our primary message, for today's state-of-art, is that in vivo models have not been good enough and at times woeful. We provide a 'caveats list' to improve approaches and experimentation and illustrate why studies on biomarkers of particle uptake, and lower gut/mesenteric lymph nodes as targets, should be prioritized.
Collapse
Affiliation(s)
- Alessandra Barreto da Silva
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Michelle Miniter
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - William Thom
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Rachel E Hewitt
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - John Wills
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Ravin Jugdaohsingh
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Jonathan J Powell
- Biomineral Research Group, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
39
|
Blevins LK, Crawford RB, Bach A, Rizzo MD, Zhou J, Henriquez JE, Khan DMIO, Sermet S, Arnold LL, Pennington KL, Souza NP, Cohen SM, Kaminski NE. Evaluation of immunologic and intestinal effects in rats administered an E 171-containing diet, a food grade titanium dioxide (TiO 2). Food Chem Toxicol 2019; 133:110793. [PMID: 31473338 PMCID: PMC6775638 DOI: 10.1016/j.fct.2019.110793] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/13/2022]
Abstract
The toxicity of dietary E 171, a food grade titanium dioxide was evaluated. A recent study reported rats receiving E 171 in water developed inflammation and aberrant crypt foci (ACF) in the gastrointestinal tract. Here, rats received food containing E 171 (7 or 100 days). The 100-day study included feeding E 171 after dimethylhydrazine (DMH) or vehicle only pretreatment. Food consumption was similar between treatment groups with maximum total cumulative E 171 exposure being 2617 mg/kg in 7 days and 29,400 mg/kg in 100 days. No differences were observed due to E 171 in the percentage of dendritic, CD4+ T or Treg cells within Peyer's patches or the periphery, or in cytokine production in plasma, sections of jejunum, and colon in 7- or 100-day E 171 alone fed rats. Differences were observed for IL-17A in colon (400 ppm E 171 + DMH) and IL-12p70 in plasma (40 ppm E 171 + DMH). E 171 had no effect on histopathologic evaluations of small and large intestines, liver, spleen, lungs, or testes, and no effects on ACF, goblet cell numbers, or colonic gland length. Dietary E 171 administration (7- or 100-day), even at high doses, produced no effect on the immune parameters or tissue morphology.
Collapse
Affiliation(s)
- Lance K Blevins
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Robert B Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Anthony Bach
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, USA
| | - Michael D Rizzo
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Jiajun Zhou
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Joseph E Henriquez
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - D M Isha Olive Khan
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Sera Sermet
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Lora L Arnold
- University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | - Samuel M Cohen
- University of Nebraska Medical Center, Omaha, NE, USA; Havlik-Wall Professor of Oncology, USA
| | - Norbert E Kaminski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
40
|
Mu W, Wang Y, Huang C, Fu Y, Li J, Wang H, Jia X, Ba Q. Effect of Long-Term Intake of Dietary Titanium Dioxide Nanoparticles on Intestine Inflammation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9382-9389. [PMID: 31361959 DOI: 10.1021/acs.jafc.9b02391] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Early stage exposure of foodborne substances, such as brightening agent titanium dioxide nanoparticles (TiO2 NPs), can cause long-term effects in adulthood. We aimed to explore the potential adverse effect of long-term dietary intake of TiO2 NPs. After feeding for 2-3 months from weaning, TiO2 NPs-exposed mice showed lower body weight and induced intestinal inflammation. However, this phenomenon was not observed in gut microbiota-removed mice. TiO2 NPs exposure rarely affected the diversity of microbial communities, but significantly decreased the abundance of several probiotic taxa including Bifidobacterium and Lactobacillus. Additionally, TiO2 NPs aggravated DSS-induced chronic colitis and immune response in vivo, and reduced the population of CD4+T cells, regulatory T cells, and macrophages in mesenteric lymph nodes. Therefore, dietary TiO2 NPs could interfere with the balance of immune system and dynamic of gut microbiome, which may result in low-grade intestinal inflammation and aggravated immunological response to external stimulus, thus introducing potential health risk.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , P. R. China
| | - Yong Wang
- Henan Business Research Institute Company, Limited , Zhengzhou 450000 , P. R. China
| | - Chao Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences , University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai 200031 , P. R. China
| | - Yijing Fu
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences , University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai 200031 , P. R. China
| | - Jingquan Li
- School of Public Health , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , P. R. China
| | - Hui Wang
- School of Public Health , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , P. R. China
| | - Xudong Jia
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health , Beijing 100021 , P. R. China
| | - Qian Ba
- School of Public Health , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , P. R. China
| |
Collapse
|
41
|
Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele TV, Schüller S, Juge N, Blanquet-Diot S. Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiol Rev 2019; 43:457-489. [DOI: 10.1093/femsre/fuz013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
A close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research.
Collapse
Affiliation(s)
- Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303 , USA
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA 30303 , USA
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Raphaële Gresse
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Thomas Sauvaitre
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
42
|
EFSA statement on the review of the risks related to the exposure to the food additive titanium dioxide (E 171) performed by the French Agency for Food, Environmental and Occupational Health and Safety (ANSES). EFSA J 2019; 17:e05714. [PMID: 32626336 PMCID: PMC7009203 DOI: 10.2903/j.efsa.2019.5714] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
On 15 April 2019, the French Agency for Food, Environmental and Occupational Health and Safety (ANSES) published an opinion on the risks related to the exposure to the food additive titanium dioxide (E 171) taking into account the most recent scientific studies available. Further to this publication, EFSA was requested by the European Commission to provide urgent scientific and technical assistance regarding the opinion issued by ANSES. In the ANSES opinion, 25 new relevant publications published between 2017 and 2019 were reviewed together with previous opinions by EFSA and ANSES and a systematic review on in vitro genotoxicity of nano titanium dioxide. In this statement, EFSA concludes that the ANSES opinion published in April 2019 does not identify any major new findings that would overrule the conclusions made in the previous two scientific opinions on the safety of titanium dioxide (E 171) as a food additive issued by the EFSA ANS Panel in 2016 and 2018. The ANSES opinion reiterates the previously identified uncertainties and data gaps, which are currently being addressed in the context of the follow-up activities originating from the previous EFSA evaluations and their recommendations. In addition to the aspects for which the follow-up work is currently ongoing, ANSES recommends further investigation of in vivo genotoxicity. EFSA considers this recommendation should be revisited once the ongoing work on the physico-chemical characterisation of the food additive titanium dioxide (E 171) is completed.
Collapse
|
43
|
Zhou H, Pandya JK, Tan Y, Liu J, Peng S, Muriel Mundo JL, He L, Xiao H, McClements DJ. Role of Mucin in Behavior of Food-Grade TiO 2 Nanoparticles under Simulated Oral Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5882-5890. [PMID: 31045357 DOI: 10.1021/acs.jafc.9b01732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fine titanium dioxide (TiO2) particles have been used as additives (E171) to modify the optical properties of foods and beverages for many years. Commercial TiO2 additives, however, often contain a significant fraction of nanoparticles (diameter <100 nm), which has led to some concern about their potentially adverse health effects. At present, relatively little is known about how the characteristics of TiO2 particles are altered as they travel through the human gastrointestinal tract. Alterations in their electrical characteristics, surface composition, or aggregation state would be expected to alter their gastrointestinal fate. The main focus of this study was, therefore, to characterize the behavior of TiO2 particles under simulated oral conditions. Changes in the aggregation state and electrical characteristics were monitored using particle size, ζ-potential, turbidity, and electron microscopy measurements, whereas information about mucin-particle interactions were obtained using isothermal titration calorimetry and surface-enhanced Raman spectroscopy. Our results indicate that there was a strong interaction between TiO2 and mucin: mucin absorbed to the surfaces of the TiO2 particles and reduced their tendency to aggregate. The information obtained in this study is useful for better understanding the gastrointestinal fate and potential toxicity of ingested inorganic particles.
Collapse
Affiliation(s)
- Hualu Zhou
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Janam K Pandya
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Yunbing Tan
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Jinning Liu
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Shengfeng Peng
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Jorge L Muriel Mundo
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Lili He
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Hang Xiao
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
44
|
Pinget G, Tan J, Janac B, Kaakoush NO, Angelatos AS, O'Sullivan J, Koay YC, Sierro F, Davis J, Divakarla SK, Khanal D, Moore RJ, Stanley D, Chrzanowski W, Macia L. Impact of the Food Additive Titanium Dioxide (E171) on Gut Microbiota-Host Interaction. Front Nutr 2019; 6:57. [PMID: 31165072 PMCID: PMC6534185 DOI: 10.3389/fnut.2019.00057] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/12/2019] [Indexed: 12/27/2022] Open
Abstract
The interaction between gut microbiota and host plays a central role in health. Dysbiosis, detrimental changes in gut microbiota and inflammation have been reported in non-communicable diseases. While diet has a profound impact on gut microbiota composition and function, the role of food additives such as titanium dioxide (TiO2), prevalent in processed food, is less established. In this project, we investigated the impact of food grade TiO2 on gut microbiota of mice when orally administered via drinking water. While TiO2 had minimal impact on the composition of the microbiota in the small intestine and colon, we found that TiO2 treatment could alter the release of bacterial metabolites in vivo and affect the spatial distribution of commensal bacteria in vitro by promoting biofilm formation. We also found reduced expression of the colonic mucin 2 gene, a key component of the intestinal mucus layer, and increased expression of the beta defensin gene, indicating that TiO2 significantly impacts gut homeostasis. These changes were associated with colonic inflammation, as shown by decreased crypt length, infiltration of CD8+ T cells, increased macrophages as well as increased expression of inflammatory cytokines. These findings collectively show that TiO2 is not inert, but rather impairs gut homeostasis which may in turn prime the host for disease development.
Collapse
Affiliation(s)
- Gabriela Pinget
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Jian Tan
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia.,Human Health, Nuclear Science & Technology and Landmark Infrastructure (NSTLI), Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Bartlomiej Janac
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Alexandra Sophie Angelatos
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - John O'Sullivan
- Department of Cardiology, Charles Perkins Centre, Royal Prince Alfred Hospital, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Yen Chin Koay
- Department of Cardiology, Charles Perkins Centre, Royal Prince Alfred Hospital, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Frederic Sierro
- Human Health, Nuclear Science & Technology and Landmark Infrastructure (NSTLI), Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Joel Davis
- Human Health, Nuclear Science & Technology and Landmark Infrastructure (NSTLI), Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Shiva Kamini Divakarla
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia.,Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Dipesh Khanal
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia.,Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Dragana Stanley
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Wojciech Chrzanowski
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia.,Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|