1
|
Li D, Geng D, Wang M. Advances in natural products modulating autophagy influenced by cellular stress conditions and their anticancer roles in the treatment of ovarian cancer. FASEB J 2024; 38:e70075. [PMID: 39382031 DOI: 10.1096/fj.202401409r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Autophagy is a conservative catabolic process that typically serves a cell-protective function. Under stress conditions, when the cellular environment becomes unstable, autophagy is activated as an adaptive response for self-protection. Autophagy delivers damaged cellular components to lysosomes for degradation and recycling, thereby providing essential nutrients for cell survival. However, this function of promoting cell survival under stress conditions often leads to malignant progression and chemotherapy resistance in cancer. Consequently, autophagy is considered a potential target for cancer therapy. Herein, we aim to review how natural products act as key modulators of autophagy by regulating cellular stress conditions. We revisit various stressors, including starvation, hypoxia, endoplasmic reticulum stress, and oxidative stress, and their regulatory relationship with autophagy, focusing on recent advances in ovarian cancer research. Additionally, we explore how polyphenolic compounds, flavonoids, alkaloids, terpenoids, and other natural products modulate autophagy mediated by stress responses, affecting the malignant biological behavior of cancer. Furthermore, we discuss their roles in ovarian cancer therapy. This review emphasizes the importance of natural products as valuable resources in cancer therapeutics, highlighting the need for further exploration of their potential in regulating autophagy. Moreover, it provides novel insights and potential therapeutic strategies in ovarian cancer by utilizing natural products to modulate autophagy.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danbo Geng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Mi L, Liu J, Zhang Y, Su A, Tang M, Xing Z, He T, Wei T, Li Z, Wu W. The EPRS-ATF4-COLI pathway axis is a potential target for anaplastic thyroid carcinoma therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155670. [PMID: 38704915 DOI: 10.1016/j.phymed.2024.155670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 03/29/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Anaplastic thyroid carcinoma (ATC) is recognized as the most aggressive and malignant form of thyroid cancer, underscoring the critical need for effective therapeutic strategies to curb its progression and improve patient prognosis. Halofuginone (HF), a derivative of febrifugine, has displayed antitumor properties across various cancer types. However, there is a paucity of published research focused on the potential of HF to enhance the clinical efficacy of treating ATC. OBJECTIVE In this study, we thoroughly investigated the antitumor effects and mechanisms of HF in ATC, aiming to discover lead compounds for treating ATC and reveal novel therapeutic targets for ATC tumors. METHODS A series of assays, including CCK8, colony formation, tumor xenograft models, and ATC tumor organoid experiments, were conducted to evaluate the anticancer properties of HF both in vitro and in vivo. Techniques such as drug affinity responsive target stability (DARTS), western blot, immunofluorescence, and immunohistochemistry were employed to pinpoint HF target proteins within ATC. Furthermore, we harnessed the GEPIA and GEO databases and performed immunohistochemistry to validate the therapeutic potential of the glutamyl-prolyl-tRNA-synthetase (EPRS)- activating transcription factor 4 (ATF4)- type I collagen (COLI) pathway axis in the context of ATC. The study also incorporated RNA sequencing analysis, confocal imaging, and flow cytometry to delve into the molecular mechanisms of HF in ATC. RESULTS HF exhibited a substantial inhibitory impact on cell proliferation in vitro and on tumor growth in vivo. The DARTS results highlighted HF's influence on EPRS within ATC cells, triggering an amino acid starvation response (AASR) by suppressing EPRS expression, consequently leading to a reduction in COLI expression in ATC cells. The introduction of proline mitigated the effect of HF on ATF4 and COLI expression, indicating that the EPRS-ATF4-COLI pathway axis was a focal target of HF in ATC. Analysis of the expression levels of the EPRS, ATF4, and COLI proteins in thyroid tumors, along with an examination of the relationship between COLI expression and thyroid tumor stage, revealed that HF significantly inhibited the growth of ATC tumor organoids, demonstrating the therapeutic potential of targeting the EPRS-ATF4-COLI pathway axis in ATC. RNA sequencing analysis revealed significant differences in the pathways associated with metastasis and apoptosis between control and HF-treated cells. Transwell assays and flow cytometry experiments provided evidence of the capacity of HF to impede cell migration and induce apoptosis in ATC cells. Furthermore, HF hindered cell metastasis by suppressing the epithelial-mesenchymal transition (EMT) pathway, acting through the inhibition of FAK-AKT-NF-κB/Wnt-β-catenin signaling and restraining angiogenesis via the VEGF pathway. HF also promoted apoptosis through the mitochondrial apoptotic pathway. CONCLUSION This study provided inaugural evidence suggesting that HF could emerge as a promising therapeutic agent for the treatment of ATC. The EPRS-ATF4-COLI pathway axis stood out as a prospective biomarker and therapeutic target for ATC.
Collapse
Affiliation(s)
- Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiaye Liu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
3
|
Ferraresi A, Girone C, Maheshwari C, Vallino L, Dhanasekaran DN, Isidoro C. Ovarian Cancer Cell-Conditioning Medium Induces Cancer-Associated Fibroblast Phenoconversion through Glucose-Dependent Inhibition of Autophagy. Int J Mol Sci 2024; 25:5691. [PMID: 38891879 PMCID: PMC11171902 DOI: 10.3390/ijms25115691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
One aspect of ovarian tumorigenesis which is still poorly understood is the tumor-stroma interaction, which plays a major role in chemoresistance and tumor progression. Cancer-associated fibroblasts (CAFs), the most abundant stromal cell type in the tumor microenvironment, influence tumor growth, metabolism, metastasis, and response to therapy, making them attractive targets for anti-cancer treatment. Unraveling the mechanisms involved in CAFs activation and maintenance is therefore crucial for the improvement of therapy efficacy. Here, we report that CAFs phenoconversion relies on the glucose-dependent inhibition of autophagy. We show that ovarian cancer cell-conditioning medium induces a metabolic reprogramming towards the CAF-phenotype that requires the autophagy-dependent glycolytic shift. In fact, 2-deoxy-D-glucose (2DG) strongly hampers such phenoconversion and, most importantly, induces the phenoreversion of CAFs into quiescent fibroblasts. Moreover, pharmacological inhibition (by proline) or autophagy gene knockdown (by siBECN1 or siATG7) promotes, while autophagy induction (by either 2DG or rapamycin) counteracts, the metabolic rewiring induced by the ovarian cancer cell secretome. Notably, the nutraceutical resveratrol (RV), known to inhibit glucose metabolism and to induce autophagy, promotes the phenoreversion of CAFs into normal fibroblasts even in the presence of ovarian cancer cell-conditioning medium. Overall, our data support the view of testing autophagy inducers for targeting the tumor-promoting stroma as an adjuvant strategy to improve therapy success rates, especially for tumors with a highly desmoplastic stroma, like ovarian cancer.
Collapse
Affiliation(s)
- Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.G.); (C.M.); (L.V.)
| | - Carlo Girone
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.G.); (C.M.); (L.V.)
| | - Chinmay Maheshwari
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.G.); (C.M.); (L.V.)
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.G.); (C.M.); (L.V.)
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.G.); (C.M.); (L.V.)
| |
Collapse
|
4
|
Di Dalmazi G, Giuliani C, Bucci I, Mascitti M, Napolitano G. Promising Role of Alkaloids in the Prevention and Treatment of Thyroid Cancer and Autoimmune Thyroid Disease: A Comprehensive Review of the Current Evidence. Int J Mol Sci 2024; 25:5395. [PMID: 38791433 PMCID: PMC11121374 DOI: 10.3390/ijms25105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Thyroid cancer (TC) and thyroid autoimmune disorders (AITD) are among the most common diseases in the general population, with higher incidence in women. Chronic inflammation and autoimmunity play a pivotal role in carcinogenesis. Some studies, indeed, have pointed out the presence of AITD as a risk factor for TC, although this issue remains controversial. Prevention of autoimmune disease and cancer is the ultimate goal for clinicians and scientists, but it is not always feasible. Thus, new treatments, that overcome the current barriers to prevention and treatment of TC and AITD are needed. Alkaloids are secondary plant metabolites endowed with several biological activities including anticancer and immunomodulatory properties. In this perspective, alkaloids may represent a promising source of prophylactic and therapeutic agents for TC and AITD. This review encompasses the current published literature on alkaloids effects on TC and AITD, with a specific focus on the pathways involved in TC and AITD development and progression.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Cesidio Giuliani
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Ines Bucci
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Mascitti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Giorgio Napolitano
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
5
|
Wang M, Zhang J, Wu Y. Tumor metabolism rewiring in epithelial ovarian cancer. J Ovarian Res 2023; 16:108. [PMID: 37277821 DOI: 10.1186/s13048-023-01196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/29/2023] [Indexed: 06/07/2023] Open
Abstract
The mortality rate of epithelial ovarian cancer (EOC) remains the first in malignant tumors of the female reproductive system. The characteristics of rapid proliferation, extensive implanted metastasis, and treatment resistance of cancer cells require an extensive metabolism rewiring during the progression of cancer development. EOC cells satisfy their rapid proliferation through the rewiring of perception, uptake, utilization, and regulation of glucose, lipids, and amino acids. Further, complete implanted metastasis by acquiring a superior advantage in microenvironment nutrients competing. Lastly, success evolves under the treatment stress of chemotherapy and targets therapy. Understanding the above metabolic characteristics of EOCs helps to find new methods of its treatment.
Collapse
Affiliation(s)
- Ming Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China
| | - Jingjing Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China
| | - Yumei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China.
| |
Collapse
|
6
|
Endo K, Sawa T, Kitamura H, Umezawa K, Makabe H, Tanaka S. Procyanidin B2 3,3″-di-O-gallate suppresses IFN-γ production in murine CD4 + T cells through the regulation of glutamine influx via direct interaction with ASCT2. Int Immunopharmacol 2023; 115:109617. [PMID: 36566519 DOI: 10.1016/j.intimp.2022.109617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Excessive activation of CD4+ T cells increases cytokine production substantially and induces immune-mediated diseases. Procyanidins are polyphenols with anti-inflammatory properties. Procyanidin B2 (PCB2) gallate [specifically, PCB2 3,3''-di-O-gallate (PCB2DG)] inhibits cytokine production through the suppression of glycolysis via mammalian target of rapamycin (mTOR) in T cells. Several amino acids play critical roles in T cell activation, especially glutamine, which is important in mTOR signaling and interferon-γ (IFN-γ) production in CD4+ T cells. However, the mechanisms underlying the effects of PCB2DG, including its interaction partners, have yet to be clarified. In the present study, the mechanisms underlying the inhibitory effect of PCB2DG on IFN-γ through glutamine metabolism regulation were investigated. We found that PCB2DG treatment reduced intracellular glutamine levels in CD4+ T cells, whereas the addition of glutamine abrogated the inhibitory effects of PCB2DG on IFN-γ production. The PCB2DG-induced reduction in intracellular glutamine accumulation led to the upregulated expression of activating transcription factor 4, which was induced by the cytoprotective signaling pathway in the amino acid response. In addition, the mRNA and protein expression levels of alanine serine cysteine transporter 2 (ASCT2), a major glutamine transporter in CD4+ T cells, were not altered by PCB2DG treatment. Further analysis using a target identification strategy revealed that PCB2DG binds to ASCT2, suggesting that PCB2DG interacts directly with this major glutamine transporter to inhibit glutamine influx. Overall, this study indicates that ASCT2 is a novel target protein of a dietary polyphenol and provides new insights into the mechanism underlying the immunomodulatory effects of polyphenols.
Collapse
Affiliation(s)
- Katsunori Endo
- Graduate School of Medicine, Science and Technology, Department of Science and Technology Agriculture, Division of Food Science and Biotechnology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Toko Sawa
- Graduate School of Science and Technology, Department of Agriculture, Division of Food Science and Biotechnology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 090-0815, Japan
| | - Koji Umezawa
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge, Division of Innovative Biomolecular Science, Shinshu University, 8304 Minami-minowa Kami-ina, Nagano 399-4598, Japan
| | - Hidefumi Makabe
- Graduate School of Medicine, Science and Technology, Department of Science and Technology Agriculture, Division of Food Science and Biotechnology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan; Graduate School of Science and Technology, Department of Agriculture, Division of Food Science and Biotechnology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan; Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge, Division of Innovative Biomolecular Science, Shinshu University, 8304 Minami-minowa Kami-ina, Nagano 399-4598, Japan
| | - Sachi Tanaka
- Graduate School of Medicine, Science and Technology, Department of Science and Technology Agriculture, Division of Food Science and Biotechnology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan; Graduate School of Science and Technology, Department of Agriculture, Division of Food Science and Biotechnology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan.
| |
Collapse
|
7
|
Ni J, Li X, Tu X, Zhu H, Wang S, Hou Y, Dou H. Halofuginone ameliorates systemic lupus erythematosus by targeting Blk in myeloid-derived suppressor cells. Int Immunopharmacol 2023; 114:109487. [PMID: 36493694 DOI: 10.1016/j.intimp.2022.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystemic, inflammatory autoimmune disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells participated in the pathogenesis of SLE. MDSCs has been considered a potential therapeutic target for lupus. As traditional Chinese medicine, Halofuginone (HF) has the extensive immunomodulatory effects on some autoimmune disorders. Our research was dedicated to discovering therapeutic efficacy of HF for lupus to explore novel mechanisms on MDSCs. We found that HF prominently alleviated the systemic symptoms especially nephritis in Imiquimod-induced lupus mice, and simultaneously repaired the immune system, reflected in the alteration of autoantibodies. HF diminished the quantity of MDSCs in lupus mice, and induced apoptosis of MDSCs. Through RNA sequencing performed on the sorted MDSC from lupus mice and HF-treated lupus mice, B lymphoid tyrosine kinase (Blk, a non-receptor cytoplasmic tyrosine kinase) was screened as the target molecule of HF. It's proven that HF had two independent effects on Blk. On the one hand, HF increased the mRNA expression of Blk in MDSCs by inhibiting the nuclear translocation of p65/p50 heterodimer. On the other hand, HF enhanced the kinase activity of Blk in MDSCs through direct molecular binding. We further investigated that Blk suppressed the phosphorylation of downstream ERK signaling pathway to increase the apoptosis of MDSCs. In conclusion, our study illustrated that HF alleviated the disease progression of lupus mice by targeting Blk to promote the apoptosis of MDSCs, which indicated the immunotherapeutic potential of HF to treat lupus.
Collapse
Affiliation(s)
- Jiali Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Xiaoying Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Xiaodi Tu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Haiyan Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Shiqi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| |
Collapse
|
8
|
Mi L, Zhang Y, Su A, Tang M, Xing Z, He T, Wu W, Li Z. Halofuginone for cancer treatment: A systematic review of efficacy and molecular mechanisms. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Lee EH, Kim HT, Chun SY, Chung JW, Choi SH, Lee JN, Kim BS, Yoo ES, Kwon TG, Kim TH, Ha YS. Role of the JNK Pathway in Bladder Cancer. Onco Targets Ther 2022; 15:963-971. [PMID: 36091874 PMCID: PMC9462548 DOI: 10.2147/ott.s374908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Bladder cancer, one of the most frequently diagnosed cancers worldwide, is associated with high morbidity and mortality and a poor prognosis. The bladder cancer types include 1) non-muscle invasive bladder cancer (NMIBC) and 2) muscle invasive bladder cancer (MIBC). Metastases and chemoresistance in MIBC patients are the leading causes of the high death rate. c-Jun N-terminal kinase (JNK) is an important factor for the undifferentiated state of cancer cells. JNK belongs to the mitogen-activated protein kinases (MAPKs) family; it is activated by various extracellular stimuli, such as stress, radiation, and growth factors and mediates diverse cellular functions, such as apoptosis, autophagy, proliferation, invasion, and migration by mediating AKT (Ak strain transforming), ATG (Autophagy related), mTOR (Mammalian target of rapamycin), and caspases 3, 8, and 9. This review describes the JNK-related functions, mechanisms, and signaling in bladder cancer.
Collapse
Affiliation(s)
- Eun Hye Lee
- Joint Institution of Regenerative Medicine, Kyungpook National University, Daegu, Korea
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - Jae-Wook Chung
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seock Hwan Choi
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Bum Soo Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Eun Sang Yoo
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Tae-Hwan Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
10
|
Kim SY, Lee JH, Kim SA. Zinc Deficiency Induces Autophagy in HT-22 Mouse Hippocampal Neuronal Cell Line. Int J Mol Sci 2022; 23:ijms23158811. [PMID: 35955944 PMCID: PMC9369147 DOI: 10.3390/ijms23158811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Zinc is a trace metal vital for various functions in nerve cells, although the effect of zinc deficiency on neuronal autophagy remains unclear. This study aimed to elucidate whether zinc deficiency induced by treatment with N, N, N′, N′-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a zinc chelator, affects and alters autophagy activity. In cell viability assays, TPEN showed cytotoxicity in HT-22 cells. TPEN treatment also increased LC3-II levels and the ratio of LC3-II to LC3-I. Western blot analysis showed that phospho-AMP-activated protein kinase levels and the ratio of phospho-AMP-activated protein kinase to total AMP-activated protein kinase increased. Protein levels of the mammalian target of rapamycin and sirtuin 1 decreased following TPEN treatment. When TPEN-treated HT-22 cells were cotreated with autophagy inhibitors, 3-methyladenine (1 mM), or bafilomycin A1 (3 nM), the TPEN-induced decrease in cell viability was exacerbated. Cotreatment with chloroquine (10 μM) partially restored cell viability. The study showed that zinc deficiency induces autophagy and may be cytoprotective in neurons. We expect our results to add a new perspective to our understanding of the neuronal pathology related to zinc deficiency.
Collapse
|
11
|
Khan K, Gogonea V, Fox PL. Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis. Transl Oncol 2022; 19:101392. [PMID: 35278792 PMCID: PMC8914993 DOI: 10.1016/j.tranon.2022.101392] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC. In some cases, environmental cues direct the release of constituents from the MSC which enables the execution of non-canonical, i.e., "moonlighting", functions distinct from their essential activities in protein translation. These activities are generally beneficial, but can also be deleterious to the cell. Elucidation of the non-canonical activities of several AARSs residing in the MSC suggest they are potential therapeutic targets for cancer, as well as metabolic and neurologic diseases. Here, we describe the role of MSC-resident AARSs in cancer progression, and the factors that regulate their release from the MSC. Also, we highlight recent developments in therapeutic modalities that target MSC AARSs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States of America
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
12
|
Krzyzosiak A, Pitera AP, Bertolotti A. An Overview of Methods for Detecting eIF2α Phosphorylation and the Integrated Stress Response. Methods Mol Biol 2022; 2428:3-18. [PMID: 35171470 DOI: 10.1007/978-1-0716-1975-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorylation of the translation initiation factor eIF2α is an adaptive signaling event that is essential for cell and organismal survival from yeast to humans. It is central to the integrated stress response (ISR) that maintains cellular homeostasis in the face of threats ranging from viral infection, amino acid, oxygen, and heme deprivation to the accumulation of misfolded proteins in the endoplasmic reticulum. Phosphorylation of eIF2α has broad physiological, pathological, and therapeutic relevance. However, despite more than two decades of research and growing pharmacological interest, phosphorylation of eIF2α remains difficult to detect and quantify, because of its transient nature and because substoichiometric amounts of this modification are sufficient to profoundly reshape cellular physiology. This review aims to provide a roadmap for facilitating a robust evaluation of eIF2α phosphorylation and its downstream consequences in cells and organisms.
Collapse
|
13
|
Vidoni C, Ferraresi A, Esposito A, Maheshwari C, Dhanasekaran DN, Mollace V, Isidoro C. Calorie Restriction for Cancer Prevention and Therapy: Mechanisms, Expectations, and Efficacy. J Cancer Prev 2021; 26:224-236. [PMID: 35047448 PMCID: PMC8749320 DOI: 10.15430/jcp.2021.26.4.224] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the most frequently diagnosed diseases, and despite the continuous efforts in searching for new and more effective treatments, its morbidity and mortality remain a significant health problem worldwide. Calorie restriction, a dietary manipulation that consists in a reduction of the calorie intake, is gaining attention as a potential adjuvant intervention for preventing and/or fighting cancer. Several forms of energy reduction intake, which includes caloric restriction tout-court, dietary restrictions, and intermittent fasting, are being explored for their ability to prevent or slow down cancer progression. Additionally, another anti-cancer approach being under investigation relies on the use of nutraceuticals known as “Caloric Restriction Mimetics” that can provide caloric restriction-mediated benefits without subjecting the patients to a strict diet. Preclinical in vitro and in vivo studies consistently show that diet modifiers reducing the calorie have impact on tumor microenvironment and cancer metabolism, resulting in reduced growth and progression of cancer. Preliminary clinical studies show that patients subjected to a reduced nutrient/energy intake experience improved outcomes from chemo- and radiotherapy while better tolerating the side effects. Here, we review the state of the art on the therapeutic potential of calorie restriction and of caloric restriction mimetics in preventing or retarding tumor development by modulating a subset of cellular processes. The most recent clinical progresses with caloric restriction mimetics in the clinical practice are also discussed.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Chinmay Maheshwari
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vincenzo Mollace
- Department of Health Sciences, Università degli Studi di Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
14
|
An P, Zhang LJ, Peng W, Chen YY, Liu QP, Luan X, Zhang H. Natural products are an important source for proteasome regulating agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153799. [PMID: 34715511 DOI: 10.1016/j.phymed.2021.153799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural medicines have a long history in the prevention and treatment of various diseases in East Asian region, especially in China. Modern research has proved that the pharmacological effects of numerous natural medicines involve the participation of ubiquitin proteasome system (UPS). UPS can degrade the unwanted and damaged proteins widely distributed in the nucleus and cytoplasm of various eukaryotes. PURPOSE The objective of the present study was to review and discuss the regulatory effects of natural products and extracts on proteasome components, which may help to find new proteasome regulators for drug development and clinical applications. METHODS The related information was compiled using the major scientific databases, such as CNKI, Elsevier, ScienceDirect, PubMed, SpringerLink, Wiley Online, and GeenMedical. The keywords "natural product" and "proteasome" were applied to extract the literature. Nature derived extracts, compounds and their derivatives involved in proteasome regulation were included, and the publications related to synthetic proteasome agents were excluded. RESULTS The pharmacological effects of more than 80 natural products and extracts derived from phytomedicines related to the proteasome regulation were reviewed. These natural products were classified according to their chemical properties. We also summarized some laws of action of natural products as proteasome regulators in the treatment of diseases, and listed the action characteristics of the typical natural products. CONCLUSION Natural products derived from nature can induce the degradation of damaged proteins through UPS or act as regulators to directly regulate the activity of proteasome. But few proteasome modulators are applied clinically. Summary of known rules for proteasome modulators will contribute to discover, modify and synthesize more proteasome modulators for clinical applications.
Collapse
Affiliation(s)
- Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Wei Peng
- School of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
15
|
Targeting T-type channels in cancer: What is on and what is off? Drug Discov Today 2021; 27:743-758. [PMID: 34838727 DOI: 10.1016/j.drudis.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/10/2021] [Accepted: 11/18/2021] [Indexed: 12/27/2022]
Abstract
Over the past 20 years, various studies have demonstrated a pivotal role of T-type calcium channels (TTCCs) in tumor progression. Cytotoxic effects of TTCC pharmacological blockers have been reported in vitro and in preclinical models. However, their roles in cancer physiology are only beginning to be understood. In this review, we discuss evidence for the signaling pathways and cellular processes stemming from TTCC activity, mainly inferred by inverse reasoning from pharmacological blocks and, only in a few studies, by gene silencing or channel activation. A thorough analysis indicates that drug-induced cytotoxicity is partially an off-target effect. Dissection of on/off-target activity is paramount to elucidate the physiological roles of TTCCs, and to deliver efficacious therapies suited to different cancer types and stages.
Collapse
|
16
|
Su J, Chen X, Xiao Y, Li D, Li M, Li H, Huang J, Lai Z, Su Z, Xie Y, Zhu D, Chen Q, Lu H, He J, Xia C. Bruceae Fructus Oil Inhibits Triple-Negative Breast Cancer by Restraining Autophagy: Dependence on the Gut Microbiota-Mediated Amino Acid Regulation. Front Pharmacol 2021; 12:727082. [PMID: 34658867 PMCID: PMC8517338 DOI: 10.3389/fphar.2021.727082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has been acknowledged as an aggressive disease with worst prognosis, which requires endeavor to develop novel therapeutic agents. Bruceae fructus oil (BO), a vegetable oil derived from the fruit of Brucea javanica (L.) Merr., is an approved marketable drug for the treatment of cancer in China for several decades. Despite that the anti–breast cancer activity of several quassinoids derived from B. javanica has been found, it was the first time that the potential of BO against TNBC was revealed. Although BO had no cytotoxicity on TNBC cell lines in vitro, the oral administration of BO exhibited a gut microbiota–dependent tumor suppression without toxicity on the non-targeted organs in vivo. By metagenomics and untargeted metabolomics, it was found that BO not only altered the composition and amino acid metabolism function of gut microbiota but also regulated the host’s amino acid profile, which was in accordance with the metabolism alternation in gut microbiota. Moreover, the activity of mTOR in tumor was promoted by BO treatment as indicated by the phosphorylation of 4E-binding protein 1 (4E-BP1) and ribosomal protein S6, and hyper-autophagy was consequently restrained. By contrast, the failure of tumor suppression by BO under pseudo germ-free (PGF) condition came with indistinctive changes in autophagy and mTOR activity, implying the critical role of the gut microbiota in BO’s anticancer activity. The present study highlighted a promising application of BO against breast cancer with novel efficacy and safety.
Collapse
Affiliation(s)
- Jiyan Su
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xiaohong Chen
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
| | - Yuanjie Xiao
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Muxia Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongfu Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiangjian Huang
- Guangzhou Baiyunshan Ming Xing Pharmaceutical Co., Ltd., Guangzhou, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Ziren Su
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Science, Guangzhou, China
| | - Dajiang Zhu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Qianjun Chen
- Department of Breast Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hai Lu
- Department of Breast Disease, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jingjin He
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Shenzhen International Institute for Biomedical Research, Shenzhen, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Licari E, Sánchez-Del-Campo L, Falletta P. The two faces of the Integrated Stress Response in cancer progression and therapeutic strategies. Int J Biochem Cell Biol 2021; 139:106059. [PMID: 34400318 DOI: 10.1016/j.biocel.2021.106059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023]
Abstract
In recent years considerable progress has been made in identifying the impact of mRNA translation in tumour progression. Cancer cells hijack the pre-existing translation machinery to thrive under the adverse conditions originating from intrinsic oncogenic programs, that increase their energetic demand, and from the hostile microenvironment. A key translation program frequently dysregulated in cancer is the Integrated Stress Response, that reprograms translation by attenuating global protein synthesis to decrease metabolic demand while increasing translation of specific mRNAs that support survival, migration, immune escape. In this review we provide an overview of the Integrated Stress Response, emphasise its dual role during tumorigenesis and cancer progression, and highlight the therapeutic strategies available to target it.
Collapse
Affiliation(s)
| | - Luis Sánchez-Del-Campo
- Department of Biochemistry and Molecular Biology A, School of Biology, IMIB-University of Murcia, 30100, Spain
| | - Paola Falletta
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
18
|
Wilder CS, Chen Z, DiGiovanni J. Pharmacologic approaches to amino acid depletion for cancer therapy. Mol Carcinog 2021; 61:127-152. [PMID: 34534385 DOI: 10.1002/mc.23349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022]
Abstract
Cancer cells undergo metabolic reprogramming to support increased demands in bioenergetics and biosynthesis and to maintain reactive oxygen species at optimum levels. As metabolic alterations are broadly observed across many cancer types, metabolic reprogramming is considered a hallmark of cancer. A metabolic alteration commonly seen in cancer cells is an increased demand for certain amino acids. Amino acids are involved in a wide range of cellular functions, including proliferation, redox balance, bioenergetic and biosynthesis support, and homeostatic functions. Thus, targeting amino acid dependency in cancer is an attractive strategy for a number of cancers. In particular, pharmacologically mediated amino acid depletion has been evaluated as a cancer treatment option for several cancers. Amino acids that have been investigated for the feasibility of drug-induced depletion in preclinical and clinical studies for cancer treatment include arginine, asparagine, cysteine, glutamine, lysine, and methionine. In this review, we will summarize the status of current research on pharmacologically mediated amino acid depletion as a strategy for cancer treatment and potential chemotherapeutic combinations that synergize with amino acid depletion to further inhibit tumor growth and progression.
Collapse
Affiliation(s)
- Carly S Wilder
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhao Chen
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.,Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
19
|
Jain PP, Zhao T, Xiong M, Song S, Lai N, Zheng Q, Chen J, Carr SG, Babicheva A, Izadi A, Rodriguez M, Rahimi S, Balistrieri F, Rahimi S, Simonson T, Valdez-Jasso D, Thistlethwaite PA, Shyy JYJ, Wang J, Makino A, Yuan JXJ. Halofuginone, a promising drug for treatment of pulmonary hypertension. Br J Pharmacol 2021; 178:3373-3394. [PMID: 33694155 PMCID: PMC9792225 DOI: 10.1111/bph.15442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Halofuginone is a febrifugine derivative originally isolated from Chinese traditional herb Chang Shan that exhibits anti-hypertrophic, anti-fibrotic and anti-proliferative effects. We sought to investigate whether halofuginone induced pulmonary vasodilation and attenuates chronic hypoxia-induced pulmonary hypertension (HPH). EXPERIMENTAL APPROACH Patch-clamp experiments were conducted to examine the activity of voltage-dependent Ca2+ channels (VDCCs) in pulmonary artery smooth muscle cells (PASMCs). Digital fluorescence microscopy was used to measure intracellular Ca2+ concentration in PASMCs. Isolated perfused and ventilated mouse lungs were used to measure pulmonary artery pressure (PAP). Mice exposed to hypoxia (10% O2 ) for 4 weeks were used as model of HPH for in vivo experiments. KEY RESULTS Halofuginone increased voltage-gated K+ (Kv ) currents in PASMCs and K+ currents through KCNA5 channels in HEK cells transfected with KCNA5 gene. HF (0.03-1 μM) inhibited receptor-operated Ca2+ entry in HEK cells transfected with calcium-sensing receptor gene and attenuated store-operated Ca2+ entry in PASMCs. Acute (3-5 min) intrapulmonary application of halofuginone significantly and reversibly inhibited alveolar hypoxia-induced pulmonary vasoconstriction dose-dependently (0.1-10 μM). Intraperitoneal administration of halofuginone (0.3 mg·kg-1 , for 2 weeks) partly reversed established PH in mice. CONCLUSION AND IMPLICATIONS Halofuginone is a potent pulmonary vasodilator by activating Kv channels and blocking VDCC and receptor-operated and store-operated Ca2+ channels in PASMCs. The therapeutic effect of halofuginone on experimental PH is probably due to combination of its vasodilator effects, via inhibition of excitation-contraction coupling and anti-proliferative effects, via inhibition of the PI3K/Akt/mTOR signalling pathway.
Collapse
Affiliation(s)
- Pritesh P. Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mingmei Xiong
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Ning Lai
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Zheng
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Amin Izadi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shamin Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Francesca Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Shayan Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Tatum Simonson
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Patricia A. Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California, USA
| | - John Y.-J. Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA,State Key Laboratory of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ayako Makino
- Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Jason X.-J. Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
20
|
Limanaqi F, Busceti CL, Celli R, Biagioni F, Fornai F. Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Prog Neurobiol 2021; 204:102112. [PMID: 34171442 DOI: 10.1016/j.pneurobio.2021.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
As a major eukaryotic cell clearing machinery, autophagy grants cell proteostasis, which is key for neurotransmitter release, synaptic plasticity, and neuronal survival. In line with this, besides neuropathological events, autophagy dysfunctions are bound to synaptic alterations that occur in mental disorders, and early on, in neurodegenerative diseases. This is also the case of methamphetamine (METH) abuse, which leads to psychiatric disturbances and neurotoxicity. While consistently altering the autophagy machinery, METH produces behavioral and neurotoxic effects through molecular and biochemical events that can be recapitulated by autophagy blockade. These consist of altered physiological dopamine (DA) release, abnormal stimulation of DA and glutamate receptors, as well as oxidative, excitotoxic, and neuroinflammatory events. Recent molecular insights suggest that METH early impairs the autophagy machinery, though its functional significance remains to be investigated. Here we discuss evidence suggesting that alterations of DA transmission and autophagy are intermingled within a chain of events underlying behavioral alterations and neurodegenerative phenomena produced by METH. Understanding how METH alters the autophagy machinery is expected to provide novel insights into the neurobiology of METH addiction sharing some features with psychiatric disorders and parkinsonism.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy
| | | | - Roberta Celli
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
21
|
Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021; 34:1428-1483. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1) pathway is a crucial and highly conserved defensive system that is required to maintain or restore the intracellular homeostasis in response to oxidative, electrophilic, and other types of stress conditions. The tight control of NRF2 function is maintained by a complex network of biological interactions between positive and negative regulators that ultimately ensure context-specific activation, culminating in the NRF2-driven transcription of cytoprotective genes. Recent Advances: Recent studies indicate that deregulated NRF2 activation is a frequent event in malignant tumors, wherein it is associated with metabolic reprogramming, increased antioxidant capacity, chemoresistance, and poor clinical outcome. On the other hand, the growing interest in the modulation of the cancer cells' redox balance identified NRF2 as an ideal therapeutic target. Critical Issues: For this reason, many efforts have been made to identify potent and selective NRF2 inhibitors that might be used as single agents or adjuvants of anticancer drugs with redox disrupting properties. Despite the lack of specific NRF2 inhibitors still represents a major clinical hurdle, the researchers have exploited alternative strategies to disrupt NRF2 signaling at different levels of its biological activation. Future Directions: Given its dualistic role in tumor initiation and progression, the identification of the appropriate biological context of NRF2 activation and the specific clinicopathological features of patients cohorts wherein its inactivation is expected to have clinical benefits, will represent a major goal in the field of cancer research. In this review, we will briefly describe the structure and function of the NRF2/ KEAP1 system and some of the most promising NRF2 inhibitors, with a particular emphasis on natural compounds and drug repurposing. Antioxid. Redox Signal. 34, 1428-1483.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer," University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
22
|
Marty P, Chatelain B, Lihoreau T, Tissot M, Dirand Z, Humbert P, Senez C, Secomandi E, Isidoro C, Rolin G. Halofuginone regulates keloid fibroblast fibrotic response to TGF-β induction. Biomed Pharmacother 2021; 135:111182. [PMID: 33433355 DOI: 10.1016/j.biopha.2020.111182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 01/06/2023] Open
Abstract
Keloids are characterized by increased deposition of fibrous tissue in the skin and subcutaneous tissue following an abnormal wound healing process. Although keloid etiology is yet to be fully understood, fibroblasts are known to be key players in its development. Here we analyze the antifibrotic mechanisms of Halofuginone (HF), a drug reportedly able to inhibit the TGF-β1-Smad3 pathway and to attenuate collagen synthesis, in an in-vitro keloid model using patient-derived Keloid Fibroblasts (KFs) isolated from fibrotic tissue collected during the "Scar Wars" clinical study (NCT NCT03312166). TGF-β1 was used as a pro-fibrotic agent to stimulate fibroblasts response under HF treatment. The fibrotic related properties of KFs, including survival, migration, proliferation, myofibroblasts conversion, ECM synthesis and remodeling, were investigated in 2D and 3D cultures. HF at 50 nM concentration impaired KFs proliferation, and decreased TGF-β1-induced expression of α-SMA and type I procollagen production. HF treatment also reduced KFs migration, prevented matrix contraction and increased the metallo-proteases/inhibitors (MMP/TIMP) ratio. Overall, HF elicits an anti-fibrotic contrasting the TGF-β1 stimulation of KFs, thus supporting its therapeutic use for keloid prevention and management.
Collapse
Affiliation(s)
- Pierre Marty
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000, Besançon, France; Service de Chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, F-25000, Besançon, France
| | - Brice Chatelain
- Service de Chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, CHU Besançon, F-25000, Besançon, France
| | | | - Marion Tissot
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000, Besançon, France
| | - Zélie Dirand
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000, Besançon, France
| | - Philippe Humbert
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000, Besançon, France
| | - Clémence Senez
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000, Besançon, France
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.
| | - Gwenaël Rolin
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000, Besançon, France; INSERM CIC-1431, CHU Besançon, F-25000, Besançon, France.
| |
Collapse
|
23
|
Ferraresi A, Girone C, Esposito A, Vidoni C, Vallino L, Secomandi E, Dhanasekaran DN, Isidoro C. How Autophagy Shapes the Tumor Microenvironment in Ovarian Cancer. Front Oncol 2020; 10:599915. [PMID: 33364196 PMCID: PMC7753622 DOI: 10.3389/fonc.2020.599915] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is characterized by a high mortality rate due to the late diagnosis and the elevated metastatic potential. Autophagy, a lysosomal-driven catabolic process, contributes to the macromolecular turnover, cell homeostasis, and survival, and as such, it represents a pathway targetable for anti-cancer therapies. It is now recognized that the vascularization and the cellular composition of the tumor microenvironment influence the development and progression of OC by controlling the availability of nutrients, oxygen, growth factors, and inflammatory and immune-regulatory soluble factors that ultimately impinge on autophagy regulation in cancer cells. An increasing body of evidence indicates that OC carcinogenesis is associated, at least in the early stages, to insufficient autophagy. On the other hand, when the tumor is already established, autophagy activation provides a survival advantage to the cancer cells that face metabolic stress and protects from the macromolecules and organelles damages induced by chemo- and radiotherapy. Additionally, upregulation of autophagy may lead cancer cells to a non-proliferative dormant state that protects the cells from toxic injuries while preserving their stem-like properties. Further to complicate the picture, autophagy is deregulated also in stromal cells. Thus, changes in the tumor microenvironment reflect on the metabolic crosstalk between cancer and stromal cells impacting on their autophagy levels and, consequently, on cancer progression. Here, we present a brief overview of the role of autophagy in OC hallmarks, including tumor dormancy, chemoresistance, metastasis, and cell metabolism, with an emphasis on the bidirectional metabolic crosstalk between cancer cells and stromal cells in shaping the OC microenvironment.
Collapse
Affiliation(s)
- Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Carlo Girone
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
24
|
Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020; 19:146. [PMID: 33004065 PMCID: PMC7529510 DOI: 10.1186/s12943-020-01262-x] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
25
|
Nie X, Chen H, Niu P, Zhu Y, Zhou J, Jiang L, Li D, Lin M, Chen Z, Shi D. DAP1 negatively regulates autophagy induced by cardamonin in SKOV3 cells. Cell Biol Int 2020; 44:2192-2201. [PMID: 32706448 DOI: 10.1002/cbin.11425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/18/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023]
Abstract
Autophagy is closely related to the formation and development of multiple human tumors including ovarian cancer. As a major regulator of this process, the role of mTOR (mammalian target of rapamycin) has been well proven. Cardamonin, a kind of flavonoid from plants, has effects on induction of autophagy and thus antiproliferation of cancer cells. However, the detailed mechanism remains unclear. DAP1 (death-associated protein 1) is a proline-rich protein, which is involved in the regulation of cellular growth and programmed cell death including autophagy and apoptosis. The aim of this study was to investigate whether DAP1 is involved in proliferation inhibition and autophagy induced by cardamonin in tumor cells. Using online bioinformatics tools, we found that DAP1 expression is closely related to the survival of patients with ovarian cancer. Our study showed that autophagy induced by cardamonin was associated with mTOR inhibition, and DAP1 was involved in this process. Silence of DAP1 decreased cell proliferation but enhanced the antiproliferative effect of cardamonin in SKOV3 cells. The level of autophagy was elevated by DAP1 silencing in SKOV3 cells. Notably, cardamonin showed higher autophagy flux in the DAP1 small interfering RNA group. Taken together, our results implied that DAP1 negatively regulates autophagy induced by cardamonin, and it may be a potential target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Xuekun Nie
- Department of Pharmacy, Ningde Municipal Hospital, Affiliated Hospital of Fujian Medical University, Ningde, Fujian, China
| | - Huajiao Chen
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Peiguang Niu
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yanting Zhu
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jintuo Zhou
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Li Jiang
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Danyun Li
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Minhua Lin
- Department of Pharmacy, Ningde Municipal Hospital, Affiliated Hospital of Fujian Medical University, Ningde, Fujian, China
| | - Zichun Chen
- Department of Pharmacy, Ningde Municipal Hospital, Affiliated Hospital of Fujian Medical University, Ningde, Fujian, China
| | - Daohua Shi
- Department of Pharmacy, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Fujian Maternal and Pediatric Major Diseases Research, Fujian Provincial Maternity and Children Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
26
|
Peng Y, Guo L, Gu A, Shi B, Ren Y, Cong J, Yang X. Electroacupuncture alleviates polycystic ovary syndrome-like symptoms through improving insulin resistance, mitochondrial dysfunction, and endoplasmic reticulum stress via enhancing autophagy in rats. Mol Med 2020; 26:73. [PMID: 32698821 PMCID: PMC7374902 DOI: 10.1186/s10020-020-00198-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Electroacupuncture (EA), a treatment derived from traditional Chinese medicine, can effectively improve hyperandrogenism and insulin resistance in patients with polycystic ovary syndrome (PCOS), however, its underlying mechanisms remain obscure. This study aimed to investigate whether EA could mitigate PCOS-like symptoms in rats by regulating autophagy. METHODS A rat model of PCOS-like symptoms was established by subcutaneous injection with dehydroepiandrosterone (DHEA), and then EA treatment at acupoints (ST29 and SP6) was carried out for 5 weeks. To inhibit autophagy in rats, intraperitoneal injection with 0.5 mg/kg 3-MA (an autophagy inhibitor) was performed at 30 min before each EA treatment. RESULTS EA intervention alleviated PCOS-like symptoms in rats, which was partly counteracted by the combination with 3-MA. Moreover, DHEA-exposure-induced deficient autophagy in skeletal muscle was improved by EA treatment. EA-mediated improvements in insulin resistance, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in PCOS-like rats were counteracted by 3-MA pretreatment. Mechanically, EA attenuated autophagy deficiency-mediated insulin resistance in PCOS-like rats via inactivating mTOR/4E-BP1 signaling pathway. CONCLUSIONS Taken together, our findings indicate that EA treatment ameliorates insulin resistance, mitochondrial dysfunction, and ER stress through enhancing autophagy in a PCOS-like rat model. Our study provides novel insight into the mechanisms underlying the treatment of EA in PCOS, which offers more theoretic foundation for its clinical application.
Collapse
Affiliation(s)
- Yan Peng
- Disease Prevention Center, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Liyuan Guo
- Department of Gynecological Oncology, Cancer Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Anxin Gu
- Department of Radiation oncology, Cancer Hospital of Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Beibei Shi
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Yukun Ren
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Jing Cong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China
| | - Xinming Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, People's Republic of China.
| |
Collapse
|
27
|
Significance of halofuginone in esophageal squamous carcinoma cell apoptosis through HIF-1α-FOXO3a pathway. Life Sci 2020; 257:118104. [PMID: 32679143 DOI: 10.1016/j.lfs.2020.118104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 12/19/2022]
Abstract
Halofuginone (HF) from Dichroa febrifuga has shown therapeutic potential in hepatocellular, lung and colorectal cancer cell models. Evidence has also indicated that HF plays roles in caustic induced esophageal strictures and oxidative injury. However, the role of HF in esophageal squamous carcinoma (ESCC) remains unclear. In this study, we investigated HF actions and mechanisms during ESCC cell apoptosis. We observed different HF concentrations (5, 10 and 20 nM) inhibited ESCC cell survival in a time and dose-dependent manner. HF treatment markedly induced KYSE-30 and TE-1 cell apoptosis, and caspase-3 activity. Apoptosis related protein Bax expression was dramatically increased, whereas Bcl-2 levels were reduced in KYSE-30 and TE-1 cells, after HF exposure. Also, we showed that HF treatment induced DNA damage by promoting γH2AX, pATM and pATR expression. HF treatment also reduced hypoxia-inducible factor-1α (HIF-1α) and forkhead box class O 3a (FOXO3a) expression in KYSE-30 and TE-1 cells. We also showed that HF inhibited FOXO3a expression, but this was dependent on HIF-1α inhibition. Finally, FOXO3a overexpression reversed HF induced cell survival inhibition, cell apoptosis and DNA damage. FOXO3a knockdown enhanced the effects of HF on cell survival, cell apoptosis and DNA damage. In summary, HF plays inhibitory roles in ESCC cell apoptosis, via HIF-1α-FOXO3a-dependent signaling. These data support the notion that HF could act as an effective therapeutic reagent towards ESCC.
Collapse
|
28
|
Demiroglu-Zergeroglu A, Turhal G, Topal H, Ceylan H, Donbaloglu F, Karadeniz Cerit K, Odongo RR. Anticarcinogenic effects of halofuginone on lung-derived cancer cells. Cell Biol Int 2020; 44:1934-1944. [PMID: 32437065 DOI: 10.1002/cbin.11399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Malignant mesothelioma is a rare but aggressive form of malignancy, which is difficult to diagnose and is resistant to current chemotherapeutic treatment options. Molecular techniques have been used to investigate the mechanisms of action and the beneficial therapeutic effects of halofuginone (HF) in several cancers but not malignant mesotheliomas. In this study, the antiproliferative and apoptotic effects of HF were investigated through its ability to deregulate EGFR downstream signalling cascade proteins in the pathologically aggressive malignant mesothelioma and non-small-cell lung cancer cells. We showed that administration of HF at nanomolar concentrations induced a dose-dependent reduction in the viability of cancer cells, made cell cycle arrest, inhibited proliferation of cancer cells via STAT3 and ERK1/2 pathways and triggered the apoptotic cascade via p38MAPK. We demonstrated that the apoptotic cell death mechanism was mediated by enhanced activation of caspase-3 and concomitant PARP cleavage, downregulation of Bcl-2 and upregulation of Bax in both malignant mesothelioma and lung cancer cells. In particular, we demonstrated that cancer cells were more sensitive to HF treatment than normal mesothelial cells. Taken together, this study suggests that HF exerts its anticancer effects in lung-derived cancers by targeting signal transduction pathways mainly through deregulation of ERK1/2, STAT3 and p38MAPK to reduce cancer cell viability, induce cell cycle arrest and apoptotic cell death. Thus, HF might be considered as a potential agent against malignant mesothelioma and/or lung cancer cells.
Collapse
Affiliation(s)
- Asuman Demiroglu-Zergeroglu
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Gulseren Turhal
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Halime Topal
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hurmuz Ceylan
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Fadime Donbaloglu
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Kivilcim Karadeniz Cerit
- Department of Pediatric Surgery, School of Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Ronald R Odongo
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
29
|
Limanaqi F, Biagioni F, Gambardella S, Familiari P, Frati A, Fornai F. Promiscuous Roles of Autophagy and Proteasome in Neurodegenerative Proteinopathies. Int J Mol Sci 2020; 21:E3028. [PMID: 32344772 PMCID: PMC7215558 DOI: 10.3390/ijms21083028] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in autophagy and the ubiquitin proteasome system (UPS) are commonly implicated in protein aggregation and toxicity which manifest in a number of neurological disorders. In fact, both UPS and autophagy alterations are bound to the aggregation, spreading and toxicity of the so-called prionoid proteins, including alpha synuclein (α-syn), amyloid-beta (Aβ), tau, huntingtin, superoxide dismutase-1 (SOD-1), TAR-DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS). Recent biochemical and morphological studies add to this scenario, focusing on the coordinated, either synergistic or compensatory, interplay that occurs between autophagy and the UPS. In fact, a number of biochemical pathways such as mammalian target of rapamycin (mTOR), transcription factor EB (TFEB), Bcl2-associated athanogene 1/3 (BAG3/1) and glycogen synthase kinase beta (GSk3β), which are widely explored as potential targets in neurodegenerative proteinopathies, operate at the crossroad between autophagy and UPS. These biochemical steps are key in orchestrating the specificity and magnitude of the two degradation systems for effective protein homeostasis, while intermingling with intracellular secretory/trafficking and inflammatory pathways. The findings discussed in the present manuscript are supposed to add novel viewpoints which may further enrich our insight on the complex interactions occurring between cell-clearing systems, protein misfolding and propagation. Discovering novel mechanisms enabling a cross-talk between the UPS and autophagy is expected to provide novel potential molecular targets in proteinopathies.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Stefano Gambardella
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Sapienza University of Rome, 00185 Roma, Italy;
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| |
Collapse
|
30
|
Effects of hypoxia and reoxygenation on intermediary metabolite homeostasis of marine bivalves Mytilus edulis and Crassostrea gigas. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110657. [DOI: 10.1016/j.cbpa.2020.110657] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
|
31
|
Yu X, Zhang Y. Identification of a long non-coding RNA signature for predicting prognosis and biomarkers in lung adenocarcinoma. Oncol Lett 2020; 19:2793-2800. [PMID: 32218832 PMCID: PMC7068299 DOI: 10.3892/ol.2020.11400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have a number of functions in various cellular processes and are potential prognostic factors for lung adenocarcinoma (LUAD). A gene risk model could provide novel evidence to improve the prediction of overall outcomes and provide more potential biomarkers. The present study aimed improve a previously published method of gene signature construction to make it more robust and accurate. The lncRNA expression profiles from 594 patients with LUAD were obtained from The Cancer Genome Atlas (TCGA) database and samples were divided into high- and low-risk groups based on median risk scores calculated using a prognosis-related risk score formula. Univariate Cox regression, least absolute shrinkage and selection operator algorithm and multivariate Cox regression were performed to construct a gene signature based on the differentially expressed lncRNAs in patients with LUAD. The robustness and accuracy of the present model was assessed using area under the calculated curves (AUC) and Kaplan-Meier (K-M) survival analysis of the high- and low-risk cohorts. Potential biomarkers associated with survival status were then identified using K-M survival analysis and potential biomarker functions were predicted using enrichment analysis of co-expressed mRNAs. The gene signature constructed contained 44 lncRNAs. The AUCs for 3- and 5-year survival with the model were 0.836 and 0.818, respectively, of a time-dependent receiver operator characteristic curve. Moreover, lncRNAs AC124804.1 and MIR34AHG were identified using K-M survival analysis and the potential function of these two lncRNAs was predicted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment. The present lncRNA model provides novel insight which may improve prediction of prognosis for patients with LUAD and identify potentially novel biomarkers for the diagnosis.
Collapse
Affiliation(s)
- Xiaolin Yu
- Department of Internal Medicine of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Yanxia Zhang
- Department of Respiratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| |
Collapse
|
32
|
Vidoni C, Ferraresi A, Secomandi E, Vallino L, Gardin C, Zavan B, Mortellaro C, Isidoro C. Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells. Cell Commun Signal 2019; 17:98. [PMID: 31426798 PMCID: PMC6701103 DOI: 10.1186/s12964-019-0414-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIM Autophagy is a macromolecular degradation process playing a pivotal role in the maintenance of stem-like features and in the morpho-functional remodeling of the tissues undergoing differentiation. In this work we investigated the involvement of autophagy in the osteogenic differentiation of mesenchymal stem cells originated from human gingiva (HGMSC). METHODS To promote the osteogenic differentiation of HGMSCs we employed resveratrol, a nutraceutical known to modulate autophagy and cell differentiation, together with osteoblastic inductive factors. Osteoblastic differentiation and autophagy were monitored through western blotting and immunofluorescence staining of specific markers. RESULTS We show that HGMSCs can differentiate into osteoblasts when cultured in the presence of appropriate factors and that resveratrol accelerates this process by up-regulating autophagy. The prolonged incubation with dexamethasone, β-glycerophosphate and ascorbic acid induced the osteogenic differentiation of HGMSCc with increased expression of autophagy markers. Resveratrol (1 μM) alone elicited a less marked osteogenic differentiation yet it greatly induced autophagy and, when added to the osteogenic differentiation factors, it provoked a synergistic effect. Resveratrol and osteogenic inductive factors synergistically induced the AMPK-BECLIN-1 pro-autophagic pathway in differentiating HGMSCs, that was thereafter downregulated in osteoblastic differentiated cells. Pharmacologic inhibition of BECLIN-1-dependent autophagy precluded the osteogenic differentiation of HGMSCs. CONCLUSIONS Autophagy modulation is instrumental for osteoblastic differentiation of HGMSCs. The present findings can be translated into the regenerative cell therapy of maxillary / mandibular bone defects.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy
| | - Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, via Corriera 1, 48033, Cotignola, Ravenna, Italy
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, via Corriera 1, 48033, Cotignola, Ravenna, Italy.,Medical Sciences Department, University of Ferrara, Via Fossato di Mortara, 70, Ferrara, Italy
| | - Carmen Mortellaro
- Oral Surgery Unit, Department of Medical Science, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via P. Solaroli 17, 28100, Novara, Italy.
| |
Collapse
|