1
|
Fan X, Ong LJY, Sun AR, Prasadam I. From polarity to pathology: Decoding the role of cell orientation in osteoarthritis. J Orthop Translat 2024; 49:62-73. [PMID: 39430130 PMCID: PMC11488446 DOI: 10.1016/j.jot.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
Cell polarity refers to the orientation of tissue and organelles within a cell and the direction of its function. It is one of the most critical characteristics of metazoans. The development, growth, and functional tissue distribution are closely related to holistic tissue or organ homeostasis. However, the connection between cell polarity and osteoarthritis (OA) is less well-known. In OA, multiple chondrocyte clusters and tissue disorganisation can be observed in the degraded cartilage tissue. The excessive upregulation of the planar cell polarity (PCP) signalling pathway leads to the loss of cell polarity and organisation in OA progression and aetiology. Recent research has become increasingly aware of the importance of cell polarity and its correlation with OA. Several cell polarity-related treatments have shed light on OA. A thorough understanding of cell polarity and OA would provide more insights for future investigations to treat this worldwide disease. The translational potential of this article Understanding cell polarity, associated signalling pathways, organelle changes, and cell movement in the development of OA could lead to advances in precision medicine and enhanced treatment strategies for OA patients.
Collapse
Affiliation(s)
- Xiwei Fan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Louis Jun Ye Ong
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Antonia RuJia Sun
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Indira Prasadam
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
2
|
Qu Z, Zhao S, Zhang Y, Wang X, Yan L. Natural Compounds for Bone Remodeling: Targeting osteoblasts and relevant signaling pathways. Biomed Pharmacother 2024; 180:117490. [PMID: 39332184 DOI: 10.1016/j.biopha.2024.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
In the process of bone metabolism and bone remodeling, bone marrow mesenchymal stem cells (BM-MSCs) differentiate into osteoblasts (OBs) under certain conditions to enable the formation of new bone, and normal bone reconstruction and pathological bone alteration are closely related to the differentiation and proliferation functions of OBs. Osteogenic differentiation of BM-MSCs involves multiple signaling pathways, which function individually but interconnect intricately to form a complex signaling regulatory network. Natural compounds have fewer adverse effects than chemically synthesized drugs, optimize bone health, and are more suitable for long-term use. In this paper, we focus on OBs, summarize the current research progress of signaling pathways related to OBs differentiation, and review the molecular mechanisms by which chemically synthesized drugs with potential anti-osteoporosis properties regulate OBs-mediated bone formation.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Zhang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Durrani IA, John P, Bhatti A, Khan JS. Network medicine based approach for identifying the type 2 diabetes, osteoarthritis and triple negative breast cancer interactome: Finding the hub of hub genes. Heliyon 2024; 10:e36650. [PMID: 39281650 PMCID: PMC11401126 DOI: 10.1016/j.heliyon.2024.e36650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing prevalence of multi-morbidities, particularly the incidence of breast cancer in diabetic/osteoarthritic patients emphasize on the need for exploring the underlying molecular mechanisms resulting in carcinogenesis. To address this, present study employed a systems biology approach to identify switch genes pivotal to the crosstalk between diseased states resulting in multi-morbid conditions. Hub genes previously reported for type 2 diabetes mellitus (T2DM), osteoarthritis (OA), and triple negative breast cancer (TNBC), were extracted from published literature and fed into an integrated bioinformatics analyses pipeline. Thirty-one hub genes common to all three diseases were identified. Functional enrichment analyses showed these were mainly enriched for immune and metabolism associated terms including advanced glycation end products (AGE) pathways, cancer pathways, particularly breast neoplasm, immune system signalling and adipose tissue. The T2DM-OA-TNBC interactome was subjected to protein-protein interaction network analyses to identify meta hub/clustered genes. These were prioritized and wired into a three disease signalling map presenting the enriched molecular crosstalk on T2DM-OA-TNBC axes to gain insight into the molecular mechanisms underlying disease-disease interactions. Deciphering the molecular bases for the intertwined metabolic and immune states may potentiate the discovery of biomarkers critical for identifying and targeting the immuno-metabolic origin of disease.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Peter John
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Attya Bhatti
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | | |
Collapse
|
5
|
Inoue Y, Kumagai K, Ishikawa K, Kato I, Kusaba Y, Naka T, Nagashima K, Choe H, Ike H, Kobayashi N, Inaba Y. Increased Wnt5a/ROR2 signaling is associated with chondrogenesis in meniscal degeneration. J Orthop Res 2024; 42:1880-1889. [PMID: 38440852 DOI: 10.1002/jor.25825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
The aim of the present study was to investigate the association between chondrogenic differentiation and Wnt signal expression in the degenerative process of the human meniscus. Menisci were obtained from patients with and without knee osteoarthritis (OA), and degeneration was histologically assessed using a grading system. Immunohistochemistry, real-time polymerase chain reaction (PCR), and Western blot analysis were performed to examine the expressions of chondrogenic markers and of the components of Wnt signaling. Histological analyses showed that meniscal degeneration involved a transition from a fibroblastic to a chondrogenic phenotype with the upregulation of SOX9, collagen type II, collagen type XI, and aggrecan, which were associated with increased Wnt5a and ROR2 and decreased TCF7 expressions. OA menisci showed significantly higher expressions of Wnt5a and ROR2 and significantly lower expressions of AXIN2 and TCF7 than non-OA menisci on real-time PCR and Western blot analysis. These results potentially demonstrated that increased expression of Wnt5a/ROR2 signaling promoted chondrogenesis with decreased expression in downstream Wnt/β-catenin signaling. This study provides insights into the role of Wnt signaling in the process of meniscal degeneration, shifting to a chondrogenic phenotype. The findings suggested that the increased expression of Wnt5a/ROR2 and decreased expression of the downstream target of Wnt/β-catenin signaling are associated with chondrogenesis in meniscal degeneration.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ken Kumagai
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kimi Ishikawa
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Youhei Kusaba
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takuma Naka
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kiyotaka Nagashima
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hyonmin Choe
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Ike
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naomi Kobayashi
- Department of Orthopaedic Surgery, Yokohama City University Medical Center, Yokohama, Japan
| | - Yutaka Inaba
- Department of Orthopaedic Surgery and Muscloskeletal Science, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
6
|
Xu YH, Xie JY, Huang S, Wang T, Cui HP, Zhao J. Urantide alleviates atherosclerosis-related liver and kidney injury via the Wnt/β-catenin signaling pathway in ApoE(-/-) mice. Herz 2024; 49:282-295. [PMID: 37985514 DOI: 10.1007/s00059-023-05219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/26/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE To investigate the role of urantide in the prevention and treatment of atherosclerosis (AS)-related liver and kidney injury by antagonizing the urotensin II/urotensin receptor (UII/UT) system and regulating the Wnt/β-catenin signaling pathway. METHODS Atherosclerotic ApoE-/- mice were treated with 20 mg/kg, 30 mg/kg, and 40 mg/kg urantide for 14 days. RESULTS When ApoE-/- mice developed AS, significant pathological changes occurred in the liver and kidney, and the UII/UT system in tissue was highly activated; furthermore, the Wnt/β-catenin signalling pathway was activated, and proteins related to this signalling pathway, such as GSK-3β, AXIN2, CK‑1, and APC, were significantly downregulated. After urantide treatment, the pathological damage to the liver and kidney was effectively improved, the activity of the UII/UT system was effectively inhibited, and the expression of the Wnt/β-catenin signalling pathway and related proteins was restored. Wnt/β-catenin signals were mainly localized in the cytoplasm, renal tubules, and interstitium. CONCLUSION Urantide could improve AS-related liver and kidney injury by antagonizing the UII/UT system, and the improvements in liver and kidney function in atherosclerotic ApoE-/- mice may be related to inhibition of the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Yu-Hang Xu
- Department of Pathophysiology, Chengde Medical University, Anyuan Road, 067000, Chengde, Hebei, China
| | - Jia-Yi Xie
- Department of Pathophysiology, Chengde Medical University, Anyuan Road, 067000, Chengde, Hebei, China
| | - Shen Huang
- Department of Pathophysiology, Chengde Medical University, Anyuan Road, 067000, Chengde, Hebei, China
| | - Tu Wang
- Department of Pathophysiology, Chengde Medical University, Anyuan Road, 067000, Chengde, Hebei, China
| | - Hai-Peng Cui
- Department of Pathophysiology, Chengde Medical University, Anyuan Road, 067000, Chengde, Hebei, China
| | - Juan Zhao
- Department of Pathophysiology, Chengde Medical University, Anyuan Road, 067000, Chengde, Hebei, China.
| |
Collapse
|
7
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
8
|
Fazio A, Di Martino A, Brunello M, Traina F, Marvi MV, Mazzotti A, Faldini C, Manzoli L, Evangelisti C, Ratti S. The involvement of signaling pathways in the pathogenesis of osteoarthritis: An update. J Orthop Translat 2024; 47:116-124. [PMID: 39021400 PMCID: PMC11254498 DOI: 10.1016/j.jot.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/09/2024] [Accepted: 06/02/2024] [Indexed: 07/20/2024] Open
Abstract
Osteoarthritis (OA) is one of the most common disabling pathologies, characterized by joint pain and reduced function, significantly worsening the quality of life. Even if important progresses have been made in OA research, little is yet known about the precise cellular and molecular mechanisms underlying OA. Understanding dysregulated signaling networks and their crosstalk in OA may offer a strong opportunity for the development of combined targeted therapies. Hence, this review highlights the recent findings on the main pathways involved in OA development, including Wnt, Notch, Hedgehog, MAPK, AMPK, and JAK/STAT, providing insights on current targeted therapies in OA patients' management. The translational potential of this article The identification of key signaling pathways involved in OA development and the investigation of their signaling crosstalk could pave the way for more effective treatments and improved management of OA patients in the future.
Collapse
Affiliation(s)
- Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Alberto Di Martino
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
- Ist Orthopedic Department, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Matteo Brunello
- Ist Orthopedic Department, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Francesco Traina
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
- Ortopedia-Traumatologia e Chirurgia Protesica e dei Reimpianti d'anca e di Ginocchio, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Maria Vittoria Marvi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Antonio Mazzotti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
- Ist Orthopedic Department, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Cesare Faldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
- Ist Orthopedic Department, IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
9
|
Ma Z, Li DX, Lan X, Bubelenyi A, Vyhlidal M, Kunze M, Sommerfeldt M, Adesida AB. Short-term response of primary human meniscus cells to simulated microgravity. Cell Commun Signal 2024; 22:342. [PMID: 38907358 PMCID: PMC11191296 DOI: 10.1186/s12964-024-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/27/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Mechanical unloading of the knee articular cartilage results in cartilage matrix atrophy, signifying the osteoarthritic-inductive potential of mechanical unloading. In contrast, mechanical loading stimulates cartilage matrix production. However, little is known about the response of meniscal fibrocartilage, a major mechanical load-bearing tissue of the knee joint, and its functional matrix-forming fibrochondrocytes to mechanical unloading events. METHODS In this study, primary meniscus fibrochondrocytes isolated from the inner avascular region of human menisci from both male and female donors were seeded into porous collagen scaffolds to generate 3D meniscus models. These models were subjected to both normal gravity and mechanical unloading via simulated microgravity (SMG) for 7 days, with samples collected at various time points during the culture. RESULTS RNA sequencing unveiled significant transcriptome changes during the 7-day SMG culture, including the notable upregulation of key osteoarthritis markers such as COL10A1, MMP13, and SPP1, along with pathways related to inflammation and calcification. Crucially, sex-specific variations in transcriptional responses were observed. Meniscus models derived from female donors exhibited heightened cell proliferation activities, with the JUN protein involved in several potentially osteoarthritis-related signaling pathways. In contrast, meniscus models from male donors primarily regulated extracellular matrix components and matrix remodeling enzymes. CONCLUSION These findings advance our understanding of sex disparities in knee osteoarthritis by developing a novel in vitro model using cell-seeded meniscus constructs and simulated microgravity, revealing significant sex-specific molecular mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Zhiyao Ma
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - David Xinzheyang Li
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Civil and Environmental Engineering, Faculty of Engineering, AB, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Xiaoyi Lan
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Adam Bubelenyi
- Faculty of Science, AB, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Margaret Vyhlidal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Melanie Kunze
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Mark Sommerfeldt
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Adetola B Adesida
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
- Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
10
|
Gou Y, Li H, Sun X, Chen D, Tian F. Parathyroid hormone (1-34) retards the lumbar facet joint degeneration and activates Wnt/β-catenin signaling pathway in ovariectomized rats. J Orthop Surg Res 2024; 19:352. [PMID: 38877549 PMCID: PMC11177467 DOI: 10.1186/s13018-024-04817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
PURPOSE Facet joint degeneration (FJD) is a major cause of low back pain. Parathyroid hormone (PTH) (1-34) is commonly used to treat osteoporosis. However, little is known about its effects on FJD induced by estrogen deficiency. This study aims to investigate the effects of PTH (1-34) on FJD induced by estrogen deficiency and the underlying pathogenesis of the disease. METHODS Forty 3-month-old female Sprague-Dawley rats were randomly divided into four groups: 30 received bilateral ovariectomy (OVX) followed by 12 weeks of treatment with normal saline, PTH (1-34) or 17β-estradiol (E2), and 10 received sham surgery followed by administration of normal saline. Status and Wnt/β-catenin signaling activity in the cartilage and subchondral bone of the L4-L5 FJs and serum biomarkers were analyzed. RESULTS Administration of PTH (1-34) and E2 ameliorated cartilage lesions, and significantly decreased MMP-13 and caspase-3 levels and chondrocyte apoptosis. PTH (1-34) but not E2 significantly increased cartilage thickness, number of chondrocytes, and the expression of aggrecan. PTH (1-34) significantly improved microarchitecture parameters of subchondral bone, increased the expression of collagen I and osteocalcin, and decreased RANKL/OPG ratio. E2 treatment significantly increased the OPG level and decreased the RANKL/OPG ratio in the subchondral bone of ovariectomized rats, but it did not significantly improve the microarchitecture parameters of subchondral bone. Wnt3a and β-catenin expression was significantly reduced in the articular cartilage and subchondral bone in OVX rats, but PTH (1-34) could increase the expression of these proteins. E2 significantly increased the activity of Wnt/β-catenin pathway only in cartilage, but not in subchondral bone. The restoration of Wnt/β-catenin signaling had an obvious correlation with the improvement of some parameters associated with the FJs status. CONCLUSION Wnt/β-catenin signaling may be a potential therapeutic target for FJD induced by estrogen deficiency. PTH (1-34) is effective in treating this disease with better efficacy than 17β-estradiol, and the efficacy may be attributed to its restoration of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yu Gou
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Hetong Li
- Department of Orthopaedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xun Sun
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Desheng Chen
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China.
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
11
|
Luo Z, Han Q, Lu J, Ouyang X, Fan Y, Liu Y, Zhou X, Kong J, Liu H, Liu A, Chen D. IL16 Regulates Osteoarthritis Progression as a Target Gene of Novel-miR-81. Cartilage 2024; 15:175-183. [PMID: 37086007 PMCID: PMC11368893 DOI: 10.1177/19476035231168387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVE Functional polymorphisms of interleukin 16 (IL16) have been reported to be closely related to the risk of osteoarthritis (OA). However, how IL16 affects OA remains unclear. In this study, the role of IL16 in OA and the possible mechanisms were examined. METHODS We established a meniscal/ligament injury (MLI) post-traumatic OA model in Sprague Dawley rats and an IL1β-induced ADTC5 cells OA model. We detected the expression of IL16, novel-miR-81, MMP3, and MMP13 by quantitative real-time polymerase chain reaction. Western blot was performed to detect the expression of IL16, MMP3, and MMP13. The association between IL16 and novel-miR-81 was confirmed by luciferase reporter assay. Hematoxylin and eosin staining, Safranin O and Fast Green staining, and immunohistochemical staining were performed to clarify the effect of intra-articular injection of novel-miR-81 agomir in rats OA model. RESULTS IL16 was upregulated in OA model. Knockdown of IL16 and overexpression of novel-miR-81 downregulated the expression of MMP3 and MMP13. Importantly, IL16 was a key target of novel-miR-81. Intra-articular injection of novel-miR-81 agomir could attenuate OA progression in rats OA model. CONCLUSION Novel-miR-81 targeted IL16 to relieve OA, suggesting that novel-miR-81and IL16 may be new therapeutic targets for OA.
Collapse
Affiliation(s)
- Ziwei Luo
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, P.R. China
| | - Qianting Han
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jianghua Lu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Xiyan Ouyang
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yueying Fan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yangping Liu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, P.R. China
| | - Xianxi Zhou
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jiechen Kong
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Helu Liu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, P.R. China
| | - Aijun Liu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Dongfeng Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
12
|
Zhang G, Qin J, Xu W, Liu M, Wu R, Qin Y. Gene expression and immune infiltration analysis comparing lesioned and preserved subchondral bone in osteoarthritis. PeerJ 2024; 12:e17417. [PMID: 38827307 PMCID: PMC11141552 DOI: 10.7717/peerj.17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
Background Osteoarthritis (OA) is a degenerative disease requiring additional research. This study compared gene expression and immune infiltration between lesioned and preserved subchondral bone. The results were validated using multiple tissue datasets and experiments. Methods Differentially expressed genes (DEGs) between the lesioned and preserved tibial plateaus of OA patients were identified in the GSE51588 dataset. Moreover, functional annotation and protein-protein interaction (PPI) network analyses were performed on the lesioned and preserved sides to explore potential therapeutic targets in OA subchondral bones. In addition, multiple tissues were used to screen coexpressed genes, and the expression levels of identified candidate DEGs in OA were measured by quantitative real-time polymerase chain reaction. Finally, an immune infiltration analysis was conducted. Results A total of 1,010 DEGs were identified, 423 upregulated and 587 downregulated. The biological process (BP) terms enriched in the upregulated genes included "skeletal system development", "sister chromatid cohesion", and "ossification". Pathways were enriched in "Wnt signaling pathway" and "proteoglycans in cancer". The BP terms enriched in the downregulated genes included "inflammatory response", "xenobiotic metabolic process", and "positive regulation of inflammatory response". The enriched pathways included "neuroactive ligand-receptor interaction" and "AMP-activated protein kinase signaling". JUN, tumor necrosis factor α, and interleukin-1β were the hub genes in the PPI network. Collagen XI A1 and leucine-rich repeat-containing 15 were screened from multiple datasets and experimentally validated. Immune infiltration analyses showed fewer infiltrating adipocytes and endothelial cells in the lesioned versus preserved samples. Conclusion Our findings provide valuable information for future studies on the pathogenic mechanism of OA and potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Gang Zhang
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics Surgery, Harbin Medical University, Harbin, China
- Department of Orthopedics, Harbin First Hospital, Harbin, China
- Future Medicine Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinwei Qin
- Department of Emergency, Harbin First Hospital, Harbin, China
| | - Wenbo Xu
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics Surgery, Harbin Medical University, Harbin, China
| | - Meina Liu
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Rilige Wu
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital, Beijing, China
| | - Yong Qin
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics Surgery, Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Ali M, Kim YS. A comprehensive review and advanced biomolecule-based therapies for osteoporosis. J Adv Res 2024:S2090-1232(24)00215-7. [PMID: 38810908 DOI: 10.1016/j.jare.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The prevalence of osteoporosis (OP) on a global scale is significantly elevated that causes life threatening issues. The potential of groundbreaking biomolecular therapeutics in the field of OP is highly encouraging. The administration of biomolecular agents has the potential to mitigate the process of bone demineralization while concurrently augmenting the regenerative capacity of bone tissue, thereby facilitating a personalized therapeutic approach. Biomolecules-based therapies showed promising results in term of bone mass protection and restoration in OP. AIM OF REVIEW We summarized the recent biomolecular therapies with notable progress in clinical, demonstrating the potential to transform illness management. These treatments frequently utilize different biomolecule based strategies. Biomolecular therapeutics has a targeted character, which results in heightened specificity and less off-target effects, ultimately leading to increased patient outcomes. These aspects have the capacity to greatly enhance the management of OP, thus resulting in a major enhancement in the quality of life encountered by individuals affected by this condition.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea.
| |
Collapse
|
14
|
González-Guede I, López-Ramos M, Rodríguez-Rodríguez L, Abasolo L, Mucientes A, Fernández-Gutiérrez B. Dysregulation of Glypicans and Notum in Osteoarthritis: Plasma Levels, Bone Marrow Mesenchymal Stromal Cells and Osteoblasts. Cells 2024; 13:852. [PMID: 38786073 PMCID: PMC11119733 DOI: 10.3390/cells13100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
In this study of the alterations of Glypicans 1 to 6 (GPCs) and Notum in plasma, bone marrow mesenchymal stromal cells (BM-MSCs) and osteoblasts in Osteoarthritis (OA), the levels of GPCs and Notum in the plasma of 25 patients and 24 healthy subjects were measured. In addition, BM-MSCs from eight OA patients and eight healthy donors were cultured over a period of 21 days using both a culture medium and an osteogenic medium. Protein and gene expression levels of GPCs and Notum were determined using ELISA and qPCR at 0, 7, 14 and 21 days. GPC5 and Notum levels decreased in the plasma of OA patients, while the BM-MSCs of OA patients showed downexpression of GPC6 and upregulation of Notum. A decrease in GPC5 and Notum proteins and an increase in GPC3 were found. During osteogenic differentiation, elevated GPCs 2, 4, 5, 6 and Notum mRNA levels and decreased GPC3 were observed in patients with OA. Furthermore, the protein levels of GPC2, GPC5 and Notum decreased, while the levels of GPC3 increased. Glypicans and Notum were altered in BM-MSCs and during osteogenic differentiation from patients with OA. The alterations found point to GPC5 and Notum as new candidate biomarkers of OA pathology.
Collapse
Affiliation(s)
- Irene González-Guede
- UGC de Reumatología, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (I.G.-G.); (M.L.-R.); (L.R.-R.); (L.A.); (A.M.)
| | - María López-Ramos
- UGC de Reumatología, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (I.G.-G.); (M.L.-R.); (L.R.-R.); (L.A.); (A.M.)
| | - Luis Rodríguez-Rodríguez
- UGC de Reumatología, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (I.G.-G.); (M.L.-R.); (L.R.-R.); (L.A.); (A.M.)
| | - Lydia Abasolo
- UGC de Reumatología, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (I.G.-G.); (M.L.-R.); (L.R.-R.); (L.A.); (A.M.)
| | - Arkaitz Mucientes
- UGC de Reumatología, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (I.G.-G.); (M.L.-R.); (L.R.-R.); (L.A.); (A.M.)
| | - Benjamín Fernández-Gutiérrez
- UGC de Reumatología, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (I.G.-G.); (M.L.-R.); (L.R.-R.); (L.A.); (A.M.)
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
15
|
Juma SN, Liao J, Huang Y, Vlashi R, Wang Q, Wu B, Wang D, Wu M, Chen G. Osteoarthritis versus psoriasis arthritis: Physiopathology, cellular signaling, and therapeutic strategies. Genes Dis 2024; 11:100986. [PMID: 38292181 PMCID: PMC10825447 DOI: 10.1016/j.gendis.2023.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/15/2023] [Indexed: 02/01/2024] Open
Abstract
Osteoarthritis and psoriasis arthritis are two degenerative forms of arthritis that share similar yet also different manifestations at the histological, cellular, and clinical levels. Rheumatologists have marked them as two entirely distinct arthropathies. Given recent discoveries in disease initiation and progression, potential mechanisms, cellular signaling pathways, and ongoing clinical therapeutics, there are now more opportunities for discovering osteoarthritis drugs. This review summarized the osteoarthritis and psoriasis arthritis signaling pathways, crosstalk between BMP, WNT, TGF-β, VEGF, TLR, and FGF signaling pathways, biomarkers, and anatomical pathologies. Through bench research, we demonstrated that regenerative medicine is a promising alternative for treating osteoarthritis by highlighting significant scientific discoveries on entheses, multiple signaling blockers, and novel molecules such as immunoglobulin new antigen receptors targeted for potential drug evaluation. Furthermore, we offered valuable therapeutic approaches with a multidisciplinary strategy to treat patients with osteoarthritis or psoriasis arthritis in the coming future in the clinic.
Collapse
Affiliation(s)
- Salma Nassor Juma
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qingwan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bocong Wu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Dan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
16
|
Chen W, Wang Q, Tao H, Lu L, Zhou J, Wang Q, Huang W, Yang X. Subchondral osteoclasts and osteoarthritis: new insights and potential therapeutic avenues. Acta Biochim Biophys Sin (Shanghai) 2024; 56:499-512. [PMID: 38439665 DOI: 10.3724/abbs.2024017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, and good therapeutic results are often difficult to obtain due to its complex pathogenesis and diverse causative factors. After decades of research and exploration of OA, it has been progressively found that subchondral bone is essential for its pathogenesis, and pathological changes in subchondral bone can be observed even before cartilage lesions develop. Osteoclasts, the main cells regulating bone resorption, play a crucial role in the pathogenesis of subchondral bone. Subchondral osteoclasts regulate the homeostasis of subchondral bone through the secretion of degradative enzymes, immunomodulation, and cell signaling pathways. In OA, osteoclasts are overactivated by autophagy, ncRNAs, and Rankl/Rank/OPG signaling pathways. Excessive bone resorption disrupts the balance of bone remodeling, leading to increased subchondral bone loss, decreased bone mineral density and consequent structural damage to articular cartilage and joint pain. With increased understanding of bone biology and targeted therapies, researchers have found that the activity and function of subchondral osteoclasts are affected by multiple pathways. In this review, we summarize the roles and mechanisms of subchondral osteoclasts in OA, enumerate the latest advances in subchondral osteoclast-targeted therapy for OA, and look forward to the future trends of subchondral osteoclast-targeted therapies in clinical applications to fill the gaps in the current knowledge of OA treatment and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Wenlong Chen
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiufei Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Huaqiang Tao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Lingfeng Lu
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiang Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Wei Huang
- Department of Orthopaedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| |
Collapse
|
17
|
Gao W, Liu R, Huang K, Fu W, Wang A, Du G, Tang H, Yin L, Yin ZS. CHMP5 attenuates osteoarthritis via inhibiting chondrocyte apoptosis and extracellular matrix degradation: involvement of NF-κB pathway. Mol Med 2024; 30:55. [PMID: 38664616 PMCID: PMC11046779 DOI: 10.1186/s10020-024-00819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), the most common joint disease, is linked with chondrocyte apoptosis and extracellular matrix (ECM) degradation. Charged multivesicular body protein 5 (CHMP5), a member of the multivesicular body, has been reported to serve as an anti-apoptotic protein to participate in leukemia development. However, the effects of CHMP5 on apoptosis and ECM degradation in OA remain unclear. METHODS In this study, quantitative proteomics was performed to analyze differential proteins between normal and OA patient articular cartilages. The OA mouse model was constructed by the destabilization of the medial meniscus (DMM). In vitro, interleukin-1 beta (IL-1β) was used to induce OA in human chondrocytes. CHMP5 overexpression and silencing vectors were created using an adenovirus system. The effects of CHMP5 on IL-1β-induced chondrocyte apoptosis were investigated by CCK-8, flow cytometry, and western blot. The effects on ECM degradation were examined by western blot and immunofluorescence. The potential mechanism was explored by western blot and Co-IP assays. RESULTS Downregulated CHMP5 was identified by proteomics in OA patient cartilages, which was verified in human and mouse articular cartilages. CHMP5 overexpression repressed cell apoptosis and ECM degradation in OA chondrocytes. However, silencing CHMP5 exacerbated OA chondrocyte apoptosis and ECM degradation. Furthermore, we found that the protective effect of CHMP5 against OA was involved in nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS This study demonstrated that CHMP5 repressed IL-1β-induced chondrocyte apoptosis and ECM degradation and blocked NF-κB activation. It was shown that CHMP5 might be a novel potential therapeutic target for OA in the future.
Collapse
Affiliation(s)
- Weilu Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Rui Liu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
- Department of Orthopedics, Wan Bei General Hospital of Wanbei Coal power Group, Suzhou, Anhui, China
| | - Keke Huang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Wenhan Fu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Anquan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Gongwen Du
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Hao Tang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Li Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Zongsheng S Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China.
| |
Collapse
|
18
|
Xia L, Kano F, Hashimoto N, Liu Y, Khurel-Ochir T, Ogasawara N, Ding C, Xu Y, Hibi H, Iwasaki T, Tanaka E, Yamamoto A. Conditioned Medium From Stem Cells of Human Exfoliated Deciduous Teeth Alleviates Mouse Osteoarthritis by Inducing sFRP1-Expressing M2 Macrophages. Stem Cells Transl Med 2024; 13:399-413. [PMID: 38366885 PMCID: PMC11016837 DOI: 10.1093/stcltm/szae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
Intravenous administration of conditioned medium from stem cells of human exfoliated deciduous teeth (SHED-CM) regenerates mechanically injured osteochondral tissues in mouse temporomandibular joint osteoarthritis (TMJOA). However, the underlying therapeutic mechanisms remain unclear. Here, we showed that SHED-CM alleviated injured TMJ by inducing anti-inflammatory M2 macrophages in the synovium. Depletion of M2 by Mannosylated Clodrosome abolished the osteochondral repair activities of SHED-CM. Administration of CM from M2-induced by SHED-CM (M2-CM) effectively ameliorated mouse TMJOA by inhibiting chondrocyte inflammation and matrix degradation while enhancing chondrocyte proliferation and matrix formation. Notably, in vitro, M2-CM directly suppressed the catabolic activities while enhancing the anabolic activities of interleukin-1β-stimulated mouse primary chondrocytes. M2-CM also inhibited receptor activator of nuclear factor NF-κB ligand-induced osteoclastogenesis in RAW264.7 cells. Secretome analysis of M2-CM and M0-CM revealed that 5 proteins related to anti-inflammation and/or osteochondrogenesis were enriched in M2-CM. Of these proteins, the Wnt signal antagonist, secreted frizzled-related protein 1 (sFRP1), was the most abundant and played an essential role in the shift to anabolic chondrocytes, suggesting that M2 ameliorated TMJOA partly through sFRP1. This study suggests that secretome from SHED exerted remarkable osteochondral regeneration activities in TMJOA through the induction of sFRP1-expressing tissue-repair M2 macrophages.
Collapse
Affiliation(s)
- Linze Xia
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Fumiya Kano
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Noboru Hashimoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yao Liu
- Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People’s Republic of China
| | - Tsendsuren Khurel-Ochir
- Department of Orthodontics, School of Dentistry, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Naoko Ogasawara
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Cheng Ding
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yang Xu
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonori Iwasaki
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
19
|
Cao G, Hu S, Ning Y, Dou X, Ding C, Wang L, Wang Z, Sang X, Yang Q, Shi J, Hao M, Han X. Traditional Chinese medicine in osteoporosis: from pathogenesis to potential activity. Front Pharmacol 2024; 15:1370900. [PMID: 38628648 PMCID: PMC11019011 DOI: 10.3389/fphar.2024.1370900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Osteoporosis characterized by decreased bone density and mass, is a systemic bone disease with the destruction of microstructure and increase in fragility. Osteoporosis is attributed to multiple causes, including aging, inflammation, diabetes mellitus, and other factors induced by the adverse effects of medications. Without treatment, osteoporosis will further progress and bring great trouble to human life. Due to the various causes, the treatment of osteoporosis is mainly aimed at improving bone metabolism, inhibiting bone resorption, and promoting bone formation. Although the currently approved drugs can reduce the risk of fragility fractures in individuals, a single drug has limitations in terms of safety and effectiveness. By contrast, traditional Chinese medicine (TCM), a characteristic discipline in China, including syndrome differentiation, Chinese medicine prescription, and active ingredients, shows unique advantages in the treatment of osteoporosis and has received attention all over the world. Therefore, this review summarized the pathogenic factors, pathogenesis, therapy limitations, and advantages of TCM, aiming at providing new ideas for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Gang Cao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - ShaoQi Hu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiangnan Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
20
|
Kong X, Ning C, Liang Z, Yang C, Wu Y, Li Y, Wu A, Wang Y, Wang S, Fan H, Xiao W, Wu J, Sun Z, Yuan Z. Koumine inhibits IL-1β-induced chondrocyte inflammation and ameliorates extracellular matrix degradation in osteoarthritic cartilage through activation of PINK1/Parkin-mediated mitochondrial autophagy. Biomed Pharmacother 2024; 173:116273. [PMID: 38412715 DOI: 10.1016/j.biopha.2024.116273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, Increasingly, mitochondrial autophagy has been found to play an important regulatory role in the prevention and treatment of osteoarthritis. Koumine is a bioactive alkaloid extracted from the plant Gelsemium elegans. In previous research, Koumine was found to have potential in improving the progression of OA in rats. However, the specific mechanism of its action has not been fully explained. Therefore, the aim of this study was to investigate whether Koumine can alleviate OA in rats by influencing mitochondrial autophagy. In the in vitro study, rat chondrocytes (RCCS-1) were induced with IL-1β (10 ng/mL) to induce inflammation, and Koumine (50 μg/mL) was co-treated. In the in vivo study, a rat OA model was established by intra-articular injection of 2% papain, and Koumine was administered orally (1 mg/kg, once daily for two weeks). It was found that Koumine effectively reduced cartilage erosion in rats with osteoarthritis. Additionally, it decreased the levels of inflammatory factors such as IL-1β, IL-6, and extracellular matrix (ECM) components MMP13 and ADAMTS5 in chondrocytes and articular cartilage tissue, while increasing the level of Collagen II.Koumine inhibited the production of reactive oxygen species (ROS) in cartilage tissue and increased the number of autophagosomes in chondrocytes and articular cartilage tissue. Additionally, it upregulated the expression of mitochondrial autophagy proteins LC3Ⅱ/Ⅰ, PINK1, Parkin, and Drp1. The administration of Mdivi-1 (50 μM) reversed the enhanced effect of Koumine on mitochondrial autophagy, as well as its anti-inflammatory and anti-ECM degradation effects in rats with OA. These findings suggest that Koumine can alleviate chondrocyte inflammation and improve the progression of OA in rats by activating PINK1/Parkin-mediated mitochondrial autophagy.
Collapse
Affiliation(s)
- Xiangyi Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Can Ning
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, PR China
| | - Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuanyuan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yongkang Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Siqi Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Hui Fan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Wenguang Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhiliang Sun
- Hunan Engineering Research Center of Veterinary Drugs, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
21
|
Chen KT, Yeh CT, Yadav VK, Pikatan NW, Fong IH, Lee WH, Chiu YS. Notopterol mitigates IL-1β-triggered pyroptosis by blocking NLRP3 inflammasome via the JAK2/NF-kB/hsa-miR-4282 route in osteoarthritis. Heliyon 2024; 10:e28094. [PMID: 38532994 PMCID: PMC10963379 DOI: 10.1016/j.heliyon.2024.e28094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Osteoarthritis (OA), the most prevalent form of arthritis, impacts approximately 10% of men and 18% of women aged above 60 years. Currently, a complete cure for OA remains elusive, making clinical management challenging. The traditional Chinese herb Notopterygium incisum, integral to the Juanbi pill for rheumatism, shows promise in safeguarding chondrocytes through its strong anti-inflammatory effects. Methods To explore the protective effect of notopterol and miRNA (has-miR-4248) against inflammation, we simulated an inflammatory environment in chondrocytes cell lines C20A4 and C28/12, focusing on inflammasome formation and pyroptosis. Results Our finding indicates notopterol significantly reduced interleukin (IL)-18 and tumor necrosis factor (TNF)-alpha levels in inflamed cells, curtailed reactive oxygen species (ROS) production post-inflammation, and inhibited the JAK2/STAT3 signaling pathway, thus offering chondrocytes protection from inflammation. Importantly, notopterol also hindered inflammasome assembly and pyroptosis by blocking the NF-κB/NLRP3 pathway through hsa-miR-4282 modulation. In vivo experiments showed that notopterol treatment markedly decreased Osteoarthritis Research Society International (OARSI) scores in OA mice and boosted hsa-miR-4282 expression compared to control groups. Conclusions This study underscores notopterol's potential as a therapeutic agent in OA treatment, highlighting its capacity to shield cartilage from inflammation-induced damage, particularly by preventing pyroptosis.
Collapse
Affiliation(s)
- Ko-Ta Chen
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, 95092, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Narpati Wesa Pikatan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Iat-Hang Fong
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yen-Shuo Chiu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
22
|
Huang Y, Huang H, Chen Q, Luo Y, Feng J, Deng Y, Li G, Li M, Sun J. Efficacy and immune-inflammatory mechanism of acupuncture-related therapy in animal models of knee osteoarthritis: a preclinical systematic review and network meta-analysis. J Orthop Surg Res 2024; 19:177. [PMID: 38459553 PMCID: PMC10924386 DOI: 10.1186/s13018-024-04660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/02/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Many KOA patients have not reached indications for surgery, thus we need to find effective non-surgical treatments. Acupuncture is thought to have the potential to modulate inflammation and cytokines in KOA through the immune system. However, the mechanisms have not been elucidated, and there is no network Meta-analysis of acupuncture on KOA animals. So we evaluate the effect and mechanism of acupuncture-related therapy in KOA animals. METHODS A comprehensive search was conducted in multiple databases including PubMed, Web of Science, Embase, CBM, CNKI, WanFang, and VIP Database to identify relevant animal studies focusing on acupuncture therapy for KOA. The included studies were assessed for risk of bias using SYRCLE's Risk of Bias tool. Subsequently, pair-wise meta-analysis and network meta-analysis were performed using Stata 15.0 software, evaluating outcomes such as Lequesne index scale, Mankin score, IL-1β, TNF-α, MMP3, and MMP13. RESULTS 56 RCTs with 2394 animals were included. Meta-analysis showed that among the 6 outcomes, there were significant differences between acupuncture and model group; the overall results of network meta-analysis showed that the normal group or sham operation group performed the best, followed by the acupotomy, acupuncture, and medicine group, and the model group had the worst effect, and there were significant differences between 6 interventions. CONCLUSIONS Acupuncture-related therapy can be a possible treatment for KOA. The mechanism involves many immune-inflammatory pathways, which may be mediated by DAMPs/TLR/NF-κB/MAPK,PI3K/Akt/NF-κB pathway, or IFN-γ/JAK-STAT pathway. It needs to be further confirmed by more high-quality animal experiments or meta-analysis. SYSTEMATIC REVIEW REGISTRATION PROSPERO identifier: CRD42023377228.
Collapse
Affiliation(s)
- Yingjie Huang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hai Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqi Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yantong Luo
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieni Feng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuexia Deng
- Southern Theater General Hospital, Guangzhou, China
| | - Guangyao Li
- Department of traditional Chinese medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Min Li
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jian Sun
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
23
|
Kreitmaier P, Park YC, Swift D, Gilly A, Wilkinson JM, Zeggini E. Epigenomic profiling of the infrapatellar fat pad in osteoarthritis. Hum Mol Genet 2024; 33:501-509. [PMID: 37975894 PMCID: PMC10939427 DOI: 10.1093/hmg/ddad198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Osteoarthritis is a prevalent, complex disease of the joints, and affects multiple intra-articular tissues. Here, we have examined genome-wide DNA methylation profiles of primary infrapatellar fat pad and matched blood samples from 70 osteoarthritis patients undergoing total knee replacement surgery. Comparing the DNA methylation profiles between these tissues reveal widespread epigenetic differences. We produce the first genome-wide methylation quantitative trait locus (mQTL) map of fat pad, and make the resource available to the wider community. Using two-sample Mendelian randomization and colocalization analyses, we resolve osteoarthritis GWAS signals and provide insights into the molecular mechanisms underpinning disease aetiopathology. Our findings provide the first view of the epigenetic landscape of infrapatellar fat pad primary tissue in osteoarthritis.
Collapse
Affiliation(s)
- Peter Kreitmaier
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Ismaninger Str. 22, Munich 81675, Germany
- Graduate School of Experimental Medicine, TUM School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| | - Young-Chan Park
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| | - Diane Swift
- Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Rd, Sheffield S10 2RX, United Kingdom
| | - Arthur Gilly
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, The University of Sheffield, Beech Hill Rd, Sheffield S10 2RX, United Kingdom
| | - Eleftheria Zeggini
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine and Health, Ismaninger Str. 22, Munich 81675, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
24
|
Timmermans RGM, Blom AB, Nelissen RGHH, Broekhuis D, van der Kraan PM, Meulenbelt I, van den Bosch MHJ, Ramos YFM. Mechanical stress and inflammation have opposite effects on Wnt signaling in human chondrocytes. J Orthop Res 2024; 42:286-295. [PMID: 37525432 DOI: 10.1002/jor.25673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Dysregulation of Wingless and Int-1 (Wnt) signaling has been strongly associated with development and progression of osteoarthritis (OA). Here, we set out to investigate the independent effects of either mechanical stress (MS) or inflammation on Wnt signaling in human neocartilage pellets, and to relate this Wnt signaling to OA pathophysiology. OA synovium-conditioned media (OAS-CM) was collected after incubating synovium from human end-stage OA joints for 24 h in medium. Cytokine levels in the OAS-CM were determined with a multiplex immunoassay (Luminex). Human neocartilage pellets were exposed to 20% MS, 2% OAS-CM or 1 ng/mL Interleukin-1β (IL-1β). Effects on expression levels of Wnt signaling members were determined by reverse transcription-quantitative polymerase chain reaction. Additionally, the expression of these members in articular cartilage from human OA joints was analyzed in association with joint space narrowing (JSN) and osteophyte scores. Protein levels of IL-1β, IL-6, IL-8, IL-10, tumor necrosis factor α, and granulocyte-macrophage colony-stimulating factor positively correlated with each other. MS increased noncanonical WNT5A and FOS expression. In contrast, these genes were downregulated upon stimulation with OAS-CM or IL-1β. Furthermore, Wnt inhibitors DKK1 and FRZB decreased in response to OAS-CM or IL-1β exposure. Finally, expression of WNT5A in OA articular cartilage was associated with increased JSN scores, but not osteophyte scores. Our results demonstrate that MS and inflammatory stimuli have opposite effects on canonical and noncanonical Wnt signaling in human neocartilage. Considering the extent to which MS and inflammation contribute to OA in individual patients, we hypothesize that targeting specific Wnt pathways offers a more effective, individualized approach.
Collapse
Affiliation(s)
- Ritchie G M Timmermans
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Demiën Broekhuis
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Feng LJ, Fan XH, Shao LT, Zhang YP, Hu YP, Li Y, Hou XL, Zhang L, Tian FM. Wnt5a deficiency in osteocalcin-expressing cells could not alleviate the osteoarthritic phenotype in a mouse model of post-traumatic osteoarthritis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:671-677. [PMID: 38645498 PMCID: PMC11024411 DOI: 10.22038/ijbms.2024.71417.15527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/26/2023] [Indexed: 04/23/2024]
Abstract
Objectives Wnt5a, which regulates the activities of osteoblasts and osteoclasts, is reportedly overexpressed in osteoarthritis (OA) tissues. The purpose of this study was to elucidate its role in the development of OA by deleting Wnt5a in osteocalcin (OCN)-expressing cells. Materials and Methods Knee OA was induced by anterior cruciate ligament transection (ACLT) in OCN-Cre;Wnt5afl/fl knockout (Wnt5a-cKO) mice and control littermates. Eight weeks after surgery, histological changes, cell apoptosis, and matrix metabolism of cartilage were evaluated by toluidine blue, TUNEL staining, and im-immunohistochemistry analyses, respectively. In addition, the subchondral bone microarchitecture of mice was examined by micro-computed tomography (micro-CT). Results Histological scores show substantial cartilage degeneration occurred in ACLT knees, coupled with decreased collagen type II expression and enhanced matrix metalloproteinase 13 expression, as well as higher proportions of apoptotic cells. Micro-CT results show that ACLT resulted in decreased bone mineral density, bone volume/trabecular volume, trabecular number, and structure model index of subchondral bones in both Wnt5a-cKO and control littermates; although Wnt5a-cKO mice display lower BMD and BV/TV values, no significant difference was observed between Wnt5a-cKO and control mice for any of these values. Conclusion Our findings indicate that Wnt5a deficiency in OCN-expressing cells could not prevent an osteoarthritic phenotype in a mouse model of post-traumatic OA.
Collapse
Affiliation(s)
- Lin-Jie Feng
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
- Trauma Department of the 982 Hospital of The Joint Service Support Force of the Chinese people’s Liberation Army, Tangshan, Hebei, P.R. China
| | - Xin-Hao Fan
- Department of Stomatology, Kailuan General Hospital, Tangshan, China
| | - Li-Tao Shao
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Yun-Peng Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Yun-Peng Hu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Yue Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Xiao-Li Hou
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Department of Orthopedic Surgery, Emergency General Hospital, Beijing, 100028, China
| | - Fa-Ming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| |
Collapse
|
26
|
Zheng D, Yang K, Chen T, Lv S, Wang L, Gui J, Xu C. Inhibition of LncRNA SNHG14 protects chondrocyte from injury in osteoarthritis via sponging miR-137. Autoimmunity 2023; 56:2270185. [PMID: 37849308 DOI: 10.1080/08916934.2023.2270185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Long-chain noncoding small nucleolar RNA host gene 14 (LncRNA SNHG14) is highly expressed in various diseases and promotes diseases progression, but the role and mechanism of LncRNA SNHG14 on targeting miR-137 in promoting osteoarthritis (OA) chondrocyte injury remains unclear. To measure the expression of the LncRNAs SNHG14 and miR-137, cell survival, inflammatory response, chondrocyte apoptosis, and extracellular matrix (ECM) levels, we subjected human chondrocytes to a variety of lipopolysaccharide (LPS) concentrations. To measure the luciferase activity of SNHG14-WT and SNHG14-MUT transfected with miR-137 mimic or miR-NC mimic, luciferase reporter genes were utilized. The results showed that chondrocyte viability was significantly inhibited with LPS treatment and chondrocyte inflammatory response, apoptosis and extracellular matrix degradation were significantly increased. However, the above results were significantly reversed after LncRNA SNHG14 inhibition. The luciferase activity bound to miR-137 was decreased in SNHG14-WT group, but there was no change in SNHG14-mut group, which indicated that LncRNA SNHG14 inhibited miR-137 expression as a miRNA sponge. In conclusion, inhibition of LncRNA SNHG14 attenuates chondrocyte inflammatory response, apoptosis and extracellular matrix degradation by targeting miR-137 in LPS induced chondrocytes.
Collapse
Affiliation(s)
- Dong Zheng
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Kaiyuan Yang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Tong Chen
- Department of Orthopedics, The Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Jianchao Gui
- Department of Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Xu
- Department of Trauma Center, The Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| |
Collapse
|
27
|
Liu T, Zhao J, Zhang X, Wang Y, Wang W, Song J. Wnt pathway in bone: knowledge structure and hot spots from 1993 to 2022. Front Physiol 2023; 14:1279423. [PMID: 38033331 PMCID: PMC10687587 DOI: 10.3389/fphys.2023.1279423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Background: The role of the Wnt pathway in bone and its targets in skeletal disease has garnered interest, but the field lacks a systematic analysis of research. This paper presents a bibliometric study of publications related to the Wnt signaling pathway in bone to describe the current state of study and predict future outlooks. Methods: All relevant articles and reviews from 1993 to 2022 were collected from the Web of Science Core Collection (WoSCC). Bibliometric analysis and visualization were performed using CiteSpace 6.1 R3, VOSviewer 1.6.15, and the Online Analysis Platform of Literature Metrology (http://bibliometric.com/). Results: A total of 7,184 papers were retrieved, authored by 28,443 researchers from 89 countries/regions and published in 261 academic journals. The annual publication numbers peaked in 2021. China and United States are the leading countries, with the University of California and Harvard University as the most active institutions. Wang, Yang is the most prolific author. Bone has the most published research, while Proceedings of the National Academy of Sciences of the United States is the most cited journal on average. The main keywords include expression, Wnt, osteoporosis, bone, and osteogenic differentiation. Current and developing research hotspots focus on bone mass, sclerostin antibody, multiple myeloma, and cartilage development. Conclusion: This paper provides new insights for researchers to delve into the mechanisms of Wnt and bone related diseases and translate into clinical studies. It reveals the development and future research trends in Wnt and skeletal-related studies.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jidong Song
- The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
28
|
Collins JA, Kim CJ, Coleman A, Little A, Perez MM, Clarke EJ, Diekman B, Peffers MJ, Chubinskaya S, Tomlinson RE, Freeman TA, Loeser RF. Cartilage-specific Sirt6 deficiency represses IGF-1 and enhances osteoarthritis severity in mice. Ann Rheum Dis 2023; 82:1464-1473. [PMID: 37550003 PMCID: PMC10579179 DOI: 10.1136/ard-2023-224385] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVES Prior studies noted that chondrocyte SIRT6 activity is repressed in older chondrocytes rendering cells susceptible to catabolic signalling events implicated in osteoarthritis (OA). This study aimed to define the effect of Sirt6 deficiency on the development of post-traumatic and age-associated OA in mice. METHODS Male cartilage-specific Sirt6-deficient mice and Sirt6 intact controls underwent destabilisation of the medial meniscus (DMM) or sham surgery at 16 weeks of age and OA severity was analysed at 6 and 10 weeks postsurgery. Age-associated OA was assessed in mice aged 12 and 18 months of age. OA severity was analysed by micro-CT, histomorphometry and scoring of articular cartilage structure, toluidine blue staining and osteophyte formation. SIRT6-regulated pathways were analysed in human chondrocytes by RNA-sequencing, qRT-PCR and immunoblotting. RESULTS Sirt6-deficient mice displayed enhanced DMM-induced OA severity and accelerated age-associated OA when compared with controls, characterised by increased cartilage damage, osteophyte formation and subchondral bone sclerosis. In chondrocytes, RNA-sequencing revealed that SIRT6 depletion significantly repressed cartilage extracellular matrix (eg, COL2A1) and anabolic growth factor (eg, insulin-like growth factor-1 (IGF-1)) gene expression. Gain-of-function and loss-of-function studies in chondrocytes demonstrated that SIRT6 depletion attenuated, whereas adenoviral overexpression or MDL-800-induced SIRT6 activation promoted IGF-1 signalling by increasing Aktser473 phosphorylation. CONCLUSIONS SIRT6 deficiency increases post-traumatic and age-associated OA severity in vivo. SIRT6 profoundly regulated the pro-anabolic and pro-survival IGF-1/Akt signalling pathway and suggests that preserving the SIRT6/IGF-1/Akt axis may be necessary to protect cartilage from injury-associated or age-associated OA. Targeted therapies aimed at increasing SIRT6 function could represent a novel strategy to slow or stop OA.
Collapse
Affiliation(s)
- John A Collins
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - C James Kim
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ashley Coleman
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abreah Little
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Matheus M Perez
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Emily J Clarke
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Brian Diekman
- Department of Medicine, Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mandy J Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Susanna Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois, USA
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Theresa A Freeman
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Richard F Loeser
- Department of Medicine, Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
29
|
Zou Z, Li H, Yu K, Ma K, Wang Q, Tang J, Liu G, Lim K, Hooper G, Woodfield T, Cui X, Zhang W, Tian K. The potential role of synovial cells in the progression and treatment of osteoarthritis. EXPLORATION (BEIJING, CHINA) 2023; 3:20220132. [PMID: 37933282 PMCID: PMC10582617 DOI: 10.1002/exp.20220132] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/15/2023] [Indexed: 11/08/2023]
Abstract
Osteoarthritis (OA), the commonest arthritis, is characterized by the progressive destruction of cartilage, leading to disability. The Current early clinical treatment strategy for OA often centers on anti-inflammatory or analgesia medication, weight loss, improved muscular function and articular cartilage repair. Although these treatments can relieve symptoms, OA tends to be progressive, and most patients require arthroplasty at the terminal stages of OA. Recent studies have shown a close correlation between joint pain, inflammation, cartilage destruction and synovial cells. Consequently, understanding the potential mechanisms associated with the action of synovial cells in OA could be beneficial for the clinical management of OA. Therefore, this review comprehensively describes the biological functions of synovial cells, the synovium, together with the pathological changes of synovial cells in OA, and the interaction between the cartilage and synovium, which is lacking in the present literature. Additionally, therapeutic approaches based on synovial cells for OA treatment are further discussed from a clinical perspective, highlighting a new direction in the treatment of OA.
Collapse
Affiliation(s)
- Zaijun Zou
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Han Li
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Kai Yu
- Department of Bone and JointCentral Hospital of Zhuang He CityDalianLiaoningChina
| | - Ke Ma
- Department of Clinical MedicineChina Medical UniversityShenyangLiaoningChina
| | - Qiguang Wang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduSichuanChina
| | - Junnan Tang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Guozhen Liu
- School of MedicineThe Chinese University of Hong Kong (Shenzhen)ShenzhenGuangdongChina
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Xiaolin Cui
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- School of MedicineThe Chinese University of Hong Kong (Shenzhen)ShenzhenGuangdongChina
- Christchurch Regenerative Medicine and Tissue Engineering Group (CReaTE)Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of OtagoChristchurchNew Zealand
| | - Weiguo Zhang
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- Key Laboratory of Molecular Mechanisms for Repair and Remodeling of Orthopaedic DiseasesLiaoning ProvinceDalianLiaoningChina
| | - Kang Tian
- Department of Sports MedicineThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
- Key Laboratory of Molecular Mechanisms for Repair and Remodeling of Orthopaedic DiseasesLiaoning ProvinceDalianLiaoningChina
| |
Collapse
|
30
|
Pan X, Li X, Zhang L, Wu F, Zhang Q, Xu S, Shen C, Liang J, Pan R. Umbilical cord mesenchymal stem cells relieve osteoarthritis in rats through immunoregulation and inhibition of chondrocyte apoptosis. Sci Rep 2023; 13:14975. [PMID: 37697034 PMCID: PMC10495383 DOI: 10.1038/s41598-023-42349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
This study aims to investigate the effectiveness of umbilical cord mesenchymal stem cells (UCMSCs) in treating osteoarthritis (OA). Sprague-Dawley rats were used in in vivo experiments and divided into four groups: normal, OA model, saline, and UCMSC-treated groups (n = 6). An OA model was established by injecting iodoacetic acid into the joint cavity. The results indicate that UCMSC transplantation significantly reduced joint surface and articular cartilage damage, and the levels of IL-1β, TNF-α, and MMP13 in the joint fluid were significantly reduced after UCMSC treatment. In vitro experiments showed that co-culturing UCMSCs and chondrocytes promoted the expression of aggrecan, COL2, SOX9, and BCL-2; downregulated the expression of BAX and BAD in chondrocytes; and promoted the expression of IL-10 and TGF-β1 in UCMSCs. Additionally, the supernatant of UCMSCs inhibited the expression of IL-1β and TNF-α in the articular cavity and promoted the expression of COL2 and aggrecan in vivo. These effects were impaired when IL-10 and TGF-β1 were removed. Collectively, UCMSC transplantation appears to improve joint pathology, reduce inflammatory factors, and decrease chondrocyte apoptosis, likely through the involvement of IL-10 and TGF-β1, thus providing a potential therapeutic option for patients with OA.
Collapse
Affiliation(s)
- Xin Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, No. 181 Wuchang Road, Hangzhou, 311122, Zhejiang, China
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Xiongfeng Li
- Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Affiliated Huzhou Hospital, Huzhou, China
| | - Ling Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, No. 181 Wuchang Road, Hangzhou, 311122, Zhejiang, China
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Feifei Wu
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, No. 181 Wuchang Road, Hangzhou, 311122, Zhejiang, China
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Qiang Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, No. 181 Wuchang Road, Hangzhou, 311122, Zhejiang, China
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Shasha Xu
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, No. 181 Wuchang Road, Hangzhou, 311122, Zhejiang, China
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Chengchun Shen
- Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Affiliated Huzhou Hospital, Huzhou, China
| | - Jinfeng Liang
- Zhejiang Center for Drug & Cosmetic Evaluation, Hangzhou, 310012, China.
| | - Ruolang Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, No. 181 Wuchang Road, Hangzhou, 311122, Zhejiang, China.
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China.
| |
Collapse
|
31
|
Ruscitto A, Chen P, Tosa I, Wang Z, Zhou G, Safina I, Wei R, Morel MM, Koch A, Forman M, Reeve G, Lecholop MK, Wilson M, Bonthius D, Chen M, Ono M, Wang TC, Yao H, Embree MC. Lgr5-expressing secretory cells form a Wnt inhibitory niche in cartilage critical for chondrocyte identity. Cell Stem Cell 2023; 30:1179-1198.e7. [PMID: 37683603 PMCID: PMC10790417 DOI: 10.1016/j.stem.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
Osteoarthritis is a degenerative joint disease that causes pain, degradation, and dysfunction. Excessive canonical Wnt signaling in osteoarthritis contributes to chondrocyte phenotypic instability and loss of cartilage homeostasis; however, the regulatory niche is unknown. Using the temporomandibular joint as a model in multiple species, we identify Lgr5-expressing secretory cells as forming a Wnt inhibitory niche that instruct Wnt-inactive chondroprogenitors to form the nascent synovial joint and regulate chondrocyte lineage and identity. Lgr5 ablation or suppression during joint development, aging, or osteoarthritis results in depletion of Wnt-inactive chondroprogenitors and a surge of Wnt-activated, phenotypically unstable chondrocytes with osteoblast-like properties. We recapitulate the cartilage niche and create StemJEL, an injectable hydrogel therapy combining hyaluronic acid and sclerostin. Local delivery of StemJEL to post-traumatic osteoarthritic jaw and knee joints in rabbit, rat, and mini-pig models restores cartilage homeostasis, chondrocyte identity, and joint function. We provide proof of principal that StemJEL preserves the chondrocyte niche and alleviates osteoarthritis.
Collapse
Affiliation(s)
- Angela Ruscitto
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peng Chen
- Clemson University-Medical University of South Carolina Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ikue Tosa
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 7008525, Japan
| | - Gan Zhou
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ingrid Safina
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ran Wei
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mallory M Morel
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alia Koch
- Section of Hospital Dentistry, Division of Oral & Maxillofacial Surgery, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael Forman
- Section of Hospital Dentistry, Division of Oral & Maxillofacial Surgery, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gwendolyn Reeve
- Division of Oral and Maxillofacial Surgery, New York Presbyterian Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael K Lecholop
- Department of Oral and Maxillofacial Surgery, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Marshall Wilson
- Clemson University-Medical University of South Carolina Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel Bonthius
- Clemson University-Medical University of South Carolina Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mo Chen
- Wnt Scientific, LLC, Harlem Biospace, New York, NY 10027, USA
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate, School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 7008525, Japan; Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 7008525, Japan
| | - Timothy C Wang
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hai Yao
- Clemson University-Medical University of South Carolina Joint Bioengineering Program, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mildred C Embree
- Cartilage Biology and Regenerative Medicine Laboratory, Section of Growth and Development, Division of Orthodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
32
|
Zheng W, Cai MX, Peng H, Liu M, Liu X. Effect of glycosaminoglycans with different degrees of sulfation on chondrogenesis. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2023; 41:395-404. [PMID: 37474471 PMCID: PMC10372526 DOI: 10.7518/hxkq.2023.2023055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/15/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES This study aims to investigate the effects and mechanisms of chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (HEP) on chondrogenesis of murine chondrogenic cell line (ATDC5) cells and the maintenance of murine articular cartilage in vitro. METHODS ATDC5 and articular cartilage tissue explant were cultured in the medium containing different sulfated glycosaminoglycans. Cell proliferation, differentiation, cartilage formation, and mechanism were observed using cell proliferation assay, Alcian blue staining, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot, respectively. RESULTS Results showed that HEP and DS primarily activated the bone morphogenetic protein (BMP) signal pathway, while CS primarily activated the protein kinase B (AKT) signal pathway, further promoted ATDC5 cell proliferation and matrix production, and increased Sox9, Col2a1, and Aggrecan expression. CONCLUSIONS This study investigated the differences and mechanisms of different sulfated glycosaminoglycans in chondrogenesis and cartilage homeostasis maintenance. HEP promotes cartilage formation and maintains the normal state of cartilage tissue in vitro, while CS plays a more effective role in the regeneration of damaged cartilage tissue.
Collapse
Affiliation(s)
- Wen Zheng
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Ming-Xiang Cai
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Huizhen Peng
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Minyi Liu
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou 510632, China
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China
| |
Collapse
|
33
|
Papathanasiou I, Balis C, Destounis D, Mourmoura E, Tsezou A. NEAT1-mediated miR-150-5p downregulation regulates b-catenin expression in OA chondrocytes. Funct Integr Genomics 2023; 23:246. [PMID: 37468759 DOI: 10.1007/s10142-023-01139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
We investigated the role of miR-150-5p in osteoarthritic (OA) chondrocytes, as well as the possible regulatory role of long non-coding RNAs (lncRNAs) in miR-150-5p expression. TargetScan, StarBase, DIANA-LncBase, and Open Targets databases were used to predict miR-150-5p target genes, lncRNAs/miR-150-5p interactions, and OA-related genes. Protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Gene ontology (GO) and pathway analysis were performed using Enrichr database. A publicly available RNA-seq dataset was retrieved to identify differentially expressed lncRNAs in damaged vs intact cartilage. We re-analyzed the retrieved RNA-seq data and revealed 177 differentially expressed lncRNAs in damage vs intact cartilage, including Nuclear Paraspeckle Assembly Transcript 1(NEAT1). MiR-150-5p, NEAT1, b-catenin, matrix metallopeptidase 13 (MMP-13), and ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS-5) expressions were assessed by reverse transcription-quantitative PCR (RT-qPCR) and western blot assay. Knockout and transfection experiments were conducted to investigate the role of NEAT1/miR-150-5p/b-catenin in cartilage degradation. Bioinformatics analysis revealed that b-catenin was an OA-related miR-150-5p target. MiR-150-5p overexpression in OA chondrocytes resulted in decreased expression of b-catenin, as well as MMP-13 and ADAMTS-5, both being Wnt/b-catenin downstream target genes. NEAT1/miR-150-5p interaction was predicted by bioinformatics analysis, while NEAT1 knockout led to increased expression of miR-150-5p in OA chondrocytes. Moreover, inhibition of miR-150-5p reversed the repressive effects of NEAT1 silencing in b-catenin expression in OA chondrocytes. Our results support a possible catabolic role of NEAT1/miR-150-5p interaction in OA progression by regulating b-catenin expression.
Collapse
Affiliation(s)
- Ioanna Papathanasiou
- Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Biopolis, 41500, Larissa, Greece
- Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Charalampos Balis
- Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Dimitrios Destounis
- Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Evanthia Mourmoura
- Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Aspasia Tsezou
- Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, University of Thessaly, Biopolis, 41500, Larissa, Greece.
- Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece.
| |
Collapse
|
34
|
Zhang X, Li Q, Chen L. Study on the protective effect of chondroitin sulfate from sturgeons on rat chondrocytes and its potential mechanisms. Am J Transl Res 2023; 15:4727-4734. [PMID: 37560250 PMCID: PMC10408535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE To investigate the protective effect of Chondroitin Sulfate from Sturgeons on rat chondrocytes and its possible mechanism. METHODS The model of chondrocyte injury induced by hydrogen peroxide was established and chondrocytes were cultured and divided into the following groups: control group, sham group, model group, Sofast group, Low dose of Chondroitin Sulfate from Sturgeon B (CSSB-L) group, Moderate dose of Chondroitin Sulfate from Sturgeon B (CSSB-M) group and High dose of Chondroitin Sulfate from Sturgeon B (CSSB-H) group. The cell proliferation was analyzed by Cell Counting Kit-8 (CCK-8) assay. The cell apoptosis was detected by flow cytometer. The expression levels of Interleukin-6 (IL-6), Interleukin-8 (IL-8) and Interferon gamma (IFN-γ) in cell supernatants were examined by Enzyme-linked immunosorbent assay (ELISA). Western blot analysis was used to detect the levels of proteins associated with Wnt signal pathway in chondrocytes. RESULTS Compared with the control group and sham group, the cell proliferation was decreased significantly, cell apoptosis was increased obviously, and the levels of IL-6, IL-8 and IFN-γ were remarkably increased in the model group. For Wnt signal pathway related proteins, the levels of Wnt3a, Frizzled5, Dsh, β-Catenin and C-myc proteins in the model group were significantly reduced, and p-GSK3β expression level was obviously increased (all P<0.05). Compared with the model group, CSSB could promote cell viability, and inhibit cell apoptosis and the levels of IL-6, IL-8 and IFN-γ (all P<0.05). The levels of Wnt signaling pathways related proteins in the CSSB-M group and CSSB-H group were obviously expressed. CONCLUSIONS Chondroitin sulfate from sturgeons protected rat chondrocytes from injuries induced by hydrogen peroxide, which may be associated with the Wnt signaling pathway.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, China
| | - Qingsong Li
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, China
| | - Lei Chen
- Shandong Academy of Pharmaceutical SciencesJinan, Shandong, China
| |
Collapse
|
35
|
Veronesi F, Costa V, Bellavia D, Basoli V, Giavaresi G. Epigenetic Modifications of MiRNAs in Osteoarthritis: A Systematic Review on Their Methylation Levels and Effects on Chondrocytes, Extracellular Matrix and Joint Inflammation. Cells 2023; 12:1821. [PMID: 37508486 PMCID: PMC10377913 DOI: 10.3390/cells12141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a joint disorder characterized by progressive degeneration of cartilage extracellular matrix (ECM), chondrocyte hypertrophy and apoptosis and inflammation. The current treatments mainly concern pain control and reduction of inflammation, but no therapeutic strategy has been identified as a disease-modifying treatment. Therefore, identifying specific biomarkers useful to prevent, treat or distinguish the stages of OA disease has become an immediate need of clinical practice. The role of microRNAs (miRNAs) in OA has been investigated in the last decade, and increasing evidence has emerged that the influence of the environment on gene expression through epigenetic processes contributes to the development, progression and aggressiveness of OA, in particular acting on the microenvironment modulations. The effects of epigenetic regulation, particularly different miRNA methylation during OA disease, were highlighted in the present systematic review. The evidence arising from this study of the literature conducted in three databases (PubMed, Scopus, Web of Science) suggested that miRNA methylation state already strongly impacts OA progression, driving chondrocytes and synoviocyte proliferation, apoptosis, inflammation and ECM deposition. However, the possibility of understanding the mechanism by which different epigenetic modifications of miRNA or pre-miRNA sequences drive the aggressiveness of OA could be the new focus of future investigations.
Collapse
Affiliation(s)
- Francesca Veronesi
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
| | - Viviana Costa
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
| | - Daniele Bellavia
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
| | - Valentina Basoli
- Department of Biomedical Engineering, Medical Additive Manufacturing Research Group (SwissMAM), University of Basel, 4123 Allschwil, Switzerland
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Gianluca Giavaresi
- Surgical Science and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
36
|
Xiao SQ, Cheng M, Wang L, Cao J, Fang L, Zhou XP, He XJ, Hu YF. The role of apoptosis in the pathogenesis of osteoarthritis. INTERNATIONAL ORTHOPAEDICS 2023:10.1007/s00264-023-05847-1. [PMID: 37294429 DOI: 10.1007/s00264-023-05847-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Apoptosis is an important physiological process, making a great difference to development and tissue homeostasis. Osteoarthritis (OA) is a chronic joint disease characterized by degeneration and destruction of articular cartilage and bone hyperplasia. This purpose of this study is to provide an updated review of the role of apoptosis in the pathogenesis of osteoarthritis. METHODS A comprehensive review of the literature on osteoarthritis and apoptosis was performed, which mainly focused on the regulatory factors and signaling pathways associated with chondrocyte apoptosis in osteoarthritis and other pathogenic mechanisms involved in chondrocyte apoptosis. RESULTS Inflammatory mediators such as reactive oxygen species (ROS), nitric oxide (NO), IL-1β, tumor necrosis factor-α (TNF-α), and Fas are closely related to chondrocyte apoptosis. NF-κB signaling pathway, Wnt signaling pathway, and Notch signaling pathway activate proteins and gene targets that promote or inhibit the progression of osteoarthritis disease, including chondrocyte apoptosis and ECM degradation. Long non-coding RNAs (LncRNAs) and microRNAs (microRNAs) have gradually replaced single and localized research methods and become the main research approaches. In addition, the relationship between cellular senescence, autophagy, and apoptosis was also briefly explained. CONCLUSION This review offers a better molecular delineation of apoptotic processes that may help in designing new therapeutic options for OA treatment.
Collapse
Affiliation(s)
- Si-Qi Xiao
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Miao Cheng
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Lei Wang
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Jing Cao
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Liang Fang
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Xue-Ping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Jin He
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China.
| | - Yu-Feng Hu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
37
|
Tonutti A, Granata V, Marrella V, Sobacchi C, Ragusa R, Sconza C, Rani N, Di Matteo B, Ceribelli A. The role of WNT and IL-1 signaling in osteoarthritis: therapeutic implications for platelet-rich plasma therapy. FRONTIERS IN AGING 2023; 4:1201019. [PMID: 37362206 PMCID: PMC10285667 DOI: 10.3389/fragi.2023.1201019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Different from inflammatory arthritis, where biologicals and targeted synthetic molecules have revolutionized the disease course, no drug has demonstrated a disease modifying activity in osteoarthritis, which remains one of the most common causes of disability and chronic pain worldwide. The pharmacological therapy of osteoarthritis is mainly directed towards symptom and pain relief, and joint replacement is still the only curative strategy. Elucidating the disease pathophysiology is essential to understand which mechanisms can be targeted by innovative therapies. It has extensively been demonstrated that aberrant WNT and IL-1 signaling pathways are responsible for cartilage degeneration, impaired chondrocyte metabolism and differentiation, increased extracellular matrix degradation, and altered subchondral bone homeostasis. Platelet-rich plasma is an autologous blood derivative containing a concentration of platelets that is much higher than the whole blood counterpart and has shown promising results in the treatment of early knee osteoarthritis. Among the proposed mechanisms, the modulation of WNT and IL-1 pathways is of paramount importance and is herein reviewed in light of the proposed regenerative approaches.
Collapse
Affiliation(s)
- Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Valentina Granata
- Human Genome and Biomedical Technologies Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Milan Unit, National Research Council—Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Veronica Marrella
- Human Genome and Biomedical Technologies Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Milan Unit, National Research Council—Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Cristina Sobacchi
- Human Genome and Biomedical Technologies Unit, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
- Milan Unit, National Research Council—Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Rita Ragusa
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Cristiano Sconza
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Department of Rehabilitation and Functional Recovery, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Nicola Rani
- Conservative Orthopaedic Surgery and Innovative Techniques, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Berardo Di Matteo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Division of Orthopedics, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Angela Ceribelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
38
|
Won A, Choi S, Kim A, Hong J. Effect of DNA aptamer through blocking of negative regulation of Wnt/β-catenin signaling in human hair follicle dermal papilla cells. Skin Res Technol 2023; 29:e13326. [PMID: 37231925 PMCID: PMC10182398 DOI: 10.1111/srt.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND When Wnt binds to the N-terminal of Frizzled, a conformational change occurs in the C-terminal of Frizzled, which binds to Dishevelled1 (Dvl1), a Wnt signaling component protein. When Dvl1 binds to the C-terminal of Frizzled, the concentration of β-catenin increases and it enters the nucleus to transmit cell proliferation signals. CXXC-type zinc finger protein 5 (CXXC5) binds to the Frizzled binding site of Dvl1 and interferes with Dvl1-Frizzled binding. Therefore, blocking CXXC5-Dvl1 binding may induce Wnt signal transduction. MATERIALS AND METHODS We used WD-aptamer, a DNA aptamer that specifically binds to Dvl1 and interferes with CXXC5-Dvl1 interaction. We confirmed the penetration of WD-aptamer into human hair follicle dermal papilla cells (HFDPCs) and measured β-catenin expression following treatment with WD-aptamer in HFDPCs, wherein Wnt signaling was activated by Wnt3a. In addition, MTT assay was performed to investigate the effect of WD-aptamer on cell proliferation. RESULTS WD-aptamer penetrated the cell, affected Wnt signaling, and increased β-catenin expression, which plays an important role in signaling. Additionally, WD-aptamer induced HFDPC proliferation. CONCLUSION CXXC5-associated negative feedback of Wnt/β-catenin signaling can be regulated by interfering with CXXC5-Dvl1 interaction.
Collapse
Affiliation(s)
- Areum Won
- Nexmos, Inc.Sinsu‐ro, Suji‐guYongin‐siGyeonggi‐doRepublic of Korea
| | - Sooho Choi
- Nexmos, Inc.Sinsu‐ro, Suji‐guYongin‐siGyeonggi‐doRepublic of Korea
| | - A‐Ru Kim
- Nexmos, Inc.Sinsu‐ro, Suji‐guYongin‐siGyeonggi‐doRepublic of Korea
| | - Junkee Hong
- Nexmos, Inc.Sinsu‐ro, Suji‐guYongin‐siGyeonggi‐doRepublic of Korea
| |
Collapse
|
39
|
Donnenfield JI, Proffen BL, Fleming BC, Murray MM. Responding to ACL Injury and its Treatments: Comparative Gene Expression between Articular Cartilage and Synovium. Bioengineering (Basel) 2023; 10:527. [PMID: 37237597 PMCID: PMC10215325 DOI: 10.3390/bioengineering10050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The relationship between cartilage and synovium is a rapidly growing area of osteoarthritis research. However, to the best of our knowledge, the relationships in gene expression between these two tissues have not been explored in mid-stage disease development. The current study compared the transcriptomes of these two tissues in a large animal model one year following posttraumatic osteoarthritis induction and multiple surgical treatment modalities. Thirty-six Yucatan minipigs underwent transection of the anterior cruciate ligament. Subjects were randomized to no further intervention, ligament reconstruction, or ligament repair augmented with an extracellular matrix (ECM) scaffold, followed by RNA sequencing of the articular cartilage and synovium at 52 weeks after harvest. Twelve intact contralateral knees served as controls. Across all treatment modalities, the primary difference in the transcriptomes was that the articular cartilage had greater upregulation of genes related to immune activation compared to the synovium-once baseline differences between cartilage and synovium were adjusted for. Oppositely, synovium featured greater upregulation of genes related to Wnt signaling compared to articular cartilage. After adjusting for expression differences between cartilage and synovium seen following ligament reconstruction, ligament repair with an ECM scaffold upregulated pathways related to ion homeostasis, tissue remodeling, and collagen catabolism in cartilage relative to synovium. These findings implicate inflammatory pathways within cartilage in the mid-stage development of posttraumatic osteoarthritis, independent of surgical treatment. Moreover, use of an ECM scaffold may exert a chondroprotective effect over gold-standard reconstruction through preferentially activating ion homeostatic and tissue remodeling pathways within cartilage.
Collapse
Affiliation(s)
- Jonah I. Donnenfield
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Benedikt L. Proffen
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Braden C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | - Martha M. Murray
- Division of Sports Medicine, Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
40
|
Wu Z, Wang Y, Yan G, Wu C. Eugenol protects chondrocytes and articular cartilage by downregulating the JAK3/STAT4 signaling pathway. J Orthop Res 2023; 41:747-758. [PMID: 35880357 DOI: 10.1002/jor.25420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative bone and joint disease common in middle-aged and elderly people. Currently, there is no satisfactory pharmacological treatment. Eugenol is a phenolic compound that has been shown to exert biological anti-inflammatory, antioxidant, and antiapoptotic effects in multiple systems and organs of the human body. However, its therapeutic effect on OA is unclear. This study examined the effect of eugenol on OA using an anterior cruciate ligament transection (ACLT) model in mice and its related signaling pathways in interleukin-1β (IL-1β)-stimulated human chondrocytes. A certain concentration of eugenol inhibited the decrease in cell viability induced by IL-1β or carbonyl cyanide 3-chlorophenylhydrazone (CCCP). In vitro, eugenol effectively inhibited CCCP-induced chondrocyte apoptosis and mitochondrial membrane potential changes and inhibited the expressions of ADAMTS4 and MMP13 upregulated by IL-1β. In vivo, ACLT induced destruction of the articular cartilage and subchondral bone of the mouse tibial plateau, while eugenol effectively protected the cartilage and subchondral bone from such damage. At the same time, eugenol reduced the ACLT-induced upregulation of ADAMTS4 and MMP13 and the downregulation of type II collagen (COLII) and aggrecan in the mouse knee cartilage. Eugenol also inhibited the increased expression of cartilage metabolism signaling molecules such as C-telopeptides of COLII (CTX-II) in ACLT-induced mouse serum. Consistent with the specific changes in the messenger RNA chip, eugenol inhibited the phosphorylation of JAK3 and STAT4 induced by IL-1β. Together, these results suggest eugenol as an effective new drug for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Zhimin Wu
- Beijing Laboratory of Biomedical Materials, Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Ying Wang
- Beijing Laboratory of Biomedical Materials, Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Guoqiang Yan
- Beijing Laboratory of Biomedical Materials, Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | - Chengai Wu
- Beijing Laboratory of Biomedical Materials, Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
41
|
Segarra-Queralt M, Piella G, Noailly J. Network-based modelling of mechano-inflammatory chondrocyte regulation in early osteoarthritis. Front Bioeng Biotechnol 2023; 11:1006066. [PMID: 36815875 PMCID: PMC9936426 DOI: 10.3389/fbioe.2023.1006066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by articular cartilage degradation, inflammation and pain. An extensive range of in vivo and in vitro studies evidences that mechanical loads induce changes in chondrocyte gene expression, through a process known as mechanotransduction. It involves cascades of complex molecular interactions that convert physical signals into cellular response(s) that favor either chondroprotection or cartilage destruction. Systematic representations of those interactions can positively inform early strategies for OA management, and dynamic modelling allows semi-quantitative representations of the steady states of complex biological system according to imposed initial conditions. Yet, mechanotransduction is rarely integrated. Hence, a novel mechano-sensitive network-based model is proposed, in the form of a continuous dynamical system: an interactome of a set of 118 nodes, i.e., mechano-sensitive cellular receptors, second messengers, transcription factors and proteins, related among each other through a specific topology of 358 directed edges is developed. Results show that under physio-osmotic initial conditions, an anabolic state is reached, whereas initial perturbations caused by pro-inflammatory and injurious mechanical loads leads to a catabolic profile of node expression. More specifically, healthy chondrocyte markers (Sox9 and CITED2) are fully expressed under physio-osmotic conditions, and reduced under inflammation, or injurious loadings. In contrast, NF-κB and Runx2, characteristic of an osteoarthritic chondrocyte, become activated under inflammation or excessive loading regimes. A literature-based evaluation shows that the model can replicate 94% of the experiments tested. Sensitivity analysis based on a factorial design of a treatment shows that inflammation has the strongest influence on chondrocyte metabolism, along with a significant deleterious effect of static compressive loads. At the same time, anti-inflammatory therapies appear as the most promising ones, though the restoration of structural protein production seems to remain a major challenge even in beneficial mechanical environments. The newly developed mechano-sensitive network model for chondrocyte activity reveals a unique potential to reflect load-induced chondroprotection or articular cartilage degradation in different mechano-chemical-environments.
Collapse
|
42
|
Knights AJ, Farrell EC, Ellis OM, Lammlin L, Junginger LM, Rzeczycki PM, Bergman RF, Pervez R, Cruz M, Knight E, Farmer D, Samani AA, Wu CL, Hankenson KD, Maerz T. Synovial fibroblasts assume distinct functional identities and secrete R-spondin 2 in osteoarthritis. Ann Rheum Dis 2023; 82:272-282. [PMID: 36175067 PMCID: PMC9972892 DOI: 10.1136/ard-2022-222773] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Synovium is acutely affected following joint trauma and contributes to post-traumatic osteoarthritis (PTOA) progression. Little is known about discrete cell types and molecular mechanisms in PTOA synovium. We aimed to describe synovial cell populations and their dynamics in PTOA, with a focus on fibroblasts. We also sought to define mechanisms of synovial Wnt/β-catenin signalling, given its emerging importance in arthritis. METHODS We subjected mice to non-invasive anterior cruciate ligament rupture as a model of human joint injury. We performed single-cell RNA-sequencing to assess synovial cell populations, subjected Wnt-GFP reporter mice to joint injury to study Wnt-active cells, and performed intra-articular injections of the Wnt agonist R-spondin 2 (Rspo2) to assess whether gain of function induced pathologies characteristic of PTOA. Lastly, we used cultured fibroblasts, macrophages and chondrocytes to study how Rspo2 orchestrates crosstalk between joint cell types. RESULTS We uncovered seven distinct functional subsets of synovial fibroblasts in healthy and injured synovium, and defined their temporal dynamics in early and established PTOA. Wnt/β-catenin signalling was overactive in PTOA synovium, and Rspo2 was strongly induced after injury and secreted exclusively by Prg4hi lining fibroblasts. Trajectory analyses predicted that Prg4hi lining fibroblasts arise from a pool of Dpp4+ mesenchymal progenitors in synovium, with SOX5 identified as a potential regulator of this emergence. We also showed that Rspo2 orchestrated pathological crosstalk between synovial fibroblasts, macrophages and chondrocytes. CONCLUSIONS Synovial fibroblasts assume distinct functional identities during PTOA in mice, and Prg4hi lining fibroblasts secrete Rspo2 that may drive pathological joint crosstalk after injury.
Collapse
Affiliation(s)
- Alexander J. Knights
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Easton C. Farrell
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Olivia M. Ellis
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lindsey Lammlin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lucas M. Junginger
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Phillip M. Rzeczycki
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Rachel F. Bergman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Rida Pervez
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Monique Cruz
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Eleanor Knight
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dennis Farmer
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Alexa A. Samani
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | - Kurt D. Hankenson
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, USA .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Peng H, Lin H. Integrative analysis of microRNA-320a-related genes in osteoarthritis cartilage. Front Surg 2023; 9:1005243. [PMID: 36700022 PMCID: PMC9869261 DOI: 10.3389/fsurg.2022.1005243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Objectives To investigate microRNA-320a-related differentially expressed genes (DEGs) and pathways in osteoarthritis (OA) by bioinformatic analysis. Methods The target genes of microRNA-320a were searched and collected from MiRTarBase microRNA Targets dataset, the TargetScan Predicted Nonconserved microRNA Targets dataset and the TargetScan Predicted Conserved microRNA Targets dataset. OA-related microRNAs and OA-related target genes were collected from GeneCards databases. The pathway enrichment analysis of miRNAs ware performed by Funrich analysis tool. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was obtained from Database for Annotation, Visualization and Integrated Discovery (DAVID). GeneMANIA and STRING are used for protein-protein interaction (PPI) network analysis. Module analysis was performed by Cytoscape. Results A total of 176 OA related miRNAs were searched and collected for enrichment analysis, and microRNA-320a was one of OA related miRNAs. Enrichment pathway and analysis of 1721 miRNA-320a-related target genes from MiRTarBase and TargetScan were performed using the online tools Metascape. And results shown that the biological processes were remarkably enriched in chromatin organization, cellular response to DNA damage stimuli, mRNA metabolic process, protein ubiquitination, and regulation of cell adhesion. And then we analysed miRNA-320a-targeted OA genes via KEGG, GO enrichment and PPI Network. Our results showed that miRNA-320a played a role in OA through FoxO signaling pathway, PI3K-Akt signaling pathway, focal adhesion, MAPK signaling pathway, HIF-1 signaling pathway and cellular senescence. And we speculate that MAPK signaling pathway plays a key role in the effect of miRNA-320a on OA. Conclusion This study implied microRNA-320a-related DEGs and dysregulated pathways in OA. The aim is to screen miRNA-320a-related genes and pathways in OA and, eventually, to improve the understanding of underlying mechanisms of miRNA-320a in OA.
Collapse
Affiliation(s)
- Hao Peng
- The Third Clinical College of Southern Medical University, Guangzhou, China
| | - Haibin Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China,Correspondence: Haibin Lin
| |
Collapse
|
44
|
Li F, Tan Q, Li F, Zhang K, Liu Z, Tian Y, Zhu T. Hypoxia-induced Wnt/β-catenin signaling activation in subchondral bone osteoblasts leads to an osteoarthritis-like phenotype of chondrocytes in articular cartilage. Front Mol Biosci 2023; 10:1057154. [PMID: 37152900 PMCID: PMC10160672 DOI: 10.3389/fmolb.2023.1057154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Background: Osteoarthritis (OA) is a whole-joint disease and characterized by alterations in the articular cartilage, subchondral bone, ligaments, and synovial membrane. The crosstalk between cartilage and subchondral bone plays a crucial role in the pathogenesis and progression of OA. Hypoxia has been reported to play an important role in cartilage degradation and subchondral bone remodeling in OA. In this study, we aimed to identify the involvement of hypoxia in modifying the osteoblast phenotypes and determine whether these alterations could influence the metabolism of chondrocytes. Methods: First, the levels of Hif-1α in subchondral bone of different compartments in patients with OA were assessed using immunohistochemistry (IHC). In in vitro, human primary osteoblasts were cultured under hypoxic and normoxic conditions, and the hypoxic or normoxic conditioned media (HCM and NCM) were used to culture human primary chondrocytes. Then, phenotypic changes in osteoblasts were assessed using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Furthermore, the expression of type II collagen (COL2A1), aggrecan (ACAN), SRY-related high-mobility group-box gene 9 (SOX9), matrix metalloproteinase 13 (MMP13), and matrix metalloproteinase 3 (MMP3) in chondrocytes was measured using RT-PCR. Finally, the serum levels of Wnt-related proteins were determined using ELISA. Results: Hif-1α was significantly increased in severely sclerotic subchondral bone compared to less damaged subchondral bone. β-Catenin and SOST were identified as upregulated and downregulated in hypoxic osteoblasts, respectively. The hypoxia-induced results were confirmed by ELISA. Stimulating human primary chondrocytes with HCM significantly induced MMP13 and MMP3 and inhibited COL2A1, ACAN, and SOX9 mRNA expression. The serum levels of DKK-1 were significantly increased in human OA. Conclusion: Together, these findings revealed that hypoxia in subchondral bone is a key factor in the crosstalk between chondrocytes and osteoblasts and facilitates the shift of chondrocytes toward an OA-like phenotype probably by activating the Wnt/β-catenin signaling pathway in osteoblasts.
Collapse
Affiliation(s)
- Fang Li
- Department of Hematology, Peking University Third Hospital, Beijing, China
| | - Qizhao Tan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Department of Orthopaedics, Zibo Central Hospital, Zibo, Shandong, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Feng Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Ke Zhang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Department of Orthopaedics, Peking University International Hospital, Beijing, China
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yun Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Tian, ; Tengjiao Zhu,
| | - Tengjiao Zhu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Department of Orthopaedics, Peking University International Hospital, Beijing, China
- *Correspondence: Yun Tian, ; Tengjiao Zhu,
| |
Collapse
|
45
|
Rodriguez-Merchan EC. The Current Role of Disease-modifying Osteoarthritis Drugs. THE ARCHIVES OF BONE AND JOINT SURGERY 2023; 11:11-22. [PMID: 36793668 PMCID: PMC9903308 DOI: 10.22038/abjs.2021.56530.2807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/27/2021] [Indexed: 02/17/2023]
Abstract
Contemporary treatments for osteoarthritis (OA) pursue only to alleviate the pain caused by the illness. Discovering disease-modifying osteoarthritis drugs (DMOADs) that can induce the repair and regeneration of articular tissues would be of substantial usefulness. The purpose of this manuscript is to review the contemporary role of DMOADs in managing OA. A narrative literature review on the subject, exploring the Cochrane Library and PubMed (MEDLINE) was performed. It was encountered that many publications have analyzed the impact of several DMOAD methods, including anti-cytokine therapy (tanezumab, AMG 108, adalimumab, etanercept, anakinra), enzyme inhibitors (M6495, doxycycline, cindunistat, PG-116800), growth factors (bone morphogenetic protein-7, sprifermin), gene therapy (micro ribonucleic acids, antisense oligonucleotides), peptides (calcitonin) and others (SM04690, senolitic, transient receptor potential vanilloid 4, neural EGFL-like 1, TPCA-1, tofacitinib, lorecivivint and quercitrin). Tanezumab has been demonstrated to alleviate hip and knee pain in individuals with OA but can cause major adverse events (osteonecrosis of the knee, rapid illness progression, augmented prevalence of total joint arthroplasty of involved joints, particularly when tanezumab is combined with nonsteroidal anti-inflammatory drugs. SM04690 (a Wnt inhibitor) has been demonstrated to be safe and efficacious in alleviating pain and ameliorating function as measured by the Western Ontario and McMaster Universities Arthritis Index. The intraarticular injection of lorecivivint is deemed safe and well tolerated, with no important reported systemic complications. In conclusion, even though DMOADs seem promising, their clinical effectiveness has not yet been demonstrated for managing OA. Until forthcoming studies can proved the medications' capacity to repair and regenerate tissues affected by OA, physicians should keep using treatments that only intend to alleviate pain.
Collapse
|
46
|
Ashruf OS, Ansari MY. Natural Compounds: Potential Therapeutics for the Inhibition of Cartilage Matrix Degradation in Osteoarthritis. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010102. [PMID: 36676051 PMCID: PMC9866583 DOI: 10.3390/life13010102] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease characterized by enzymatic degradation of the cartilage extracellular matrix (ECM) causing joint pain and disability. There is no disease-modifying drug available for the treatment of OA. An ideal drug is expected to stop cartilage ECM degradation and restore the degenerated ECM. The ECM primarily contains type II collagen and aggrecan but also has minor quantities of other collagen fibers and proteoglycans. In OA joints, the components of the cartilage ECM are degraded by matrix-degrading proteases and hydrolases which are produced by chondrocytes and synoviocytes. Matrix metalloproteinase-13 (MMP-13) and a disintegrin and metalloproteinase with thrombospondin motifs 4 and 5 (ADAMTS5) are the major collagenase and aggrecanase, respectively, which are highly expressed in OA cartilage and promote cartilage ECM degradation. Current studies using various in vitro and in vivo approaches show that natural compounds inhibit the expression and activity of MMP-13, ADAMTS4, and ADAMTS5 and increase the expression of ECM components. In this review, we have summarized recent advancements in OA research with a focus on natural compounds as potential therapeutics for the treatment of OA with emphasis on the prevention of cartilage ECM degradation and improvement of joint health.
Collapse
Affiliation(s)
- Omer S. Ashruf
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, State Route 44, Rootstown, OH 44272, USA
- College of Medicine, Northeast Ohio Medical University, 4209, State Route 44, Rootstown, OH 44272, USA
| | - Mohammad Yunus Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, State Route 44, Rootstown, OH 44272, USA
- Musculoskeletal Research Focus Area, Northeast Ohio Medical University, 4209, State Route 44, Rootstown, OH 44272, USA
- Correspondence:
| |
Collapse
|
47
|
Chondrocyte Hypertrophy in Osteoarthritis: Mechanistic Studies and Models for the Identification of New Therapeutic Strategies. Cells 2022; 11:cells11244034. [PMID: 36552796 PMCID: PMC9777397 DOI: 10.3390/cells11244034] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Articular cartilage shows limited self-healing ability owing to its low cellularity and avascularity. Untreated cartilage defects display an increased propensity to degenerate, leading to osteoarthritis (OA). During OA progression, articular chondrocytes are subjected to significant alterations in gene expression and phenotype, including a shift towards a hypertrophic-like state (with the expression of collagen type X, matrix metalloproteinases-13, and alkaline phosphatase) analogous to what eventuates during endochondral ossification. Present OA management strategies focus, however, exclusively on cartilage inflammation and degradation. A better understanding of the hypertrophic chondrocyte phenotype in OA might give new insights into its pathogenesis, suggesting potential disease-modifying therapeutic approaches. Recent developments in the field of cellular/molecular biology and tissue engineering proceeded in the direction of contrasting the onset of this hypertrophic phenotype, but knowledge gaps in the cause-effect of these processes are still present. In this review we will highlight the possible advantages and drawbacks of using this approach as a therapeutic strategy while focusing on the experimental models necessary for a better understanding of the phenomenon. Specifically, we will discuss in brief the cellular signaling pathways associated with the onset of a hypertrophic phenotype in chondrocytes during the progression of OA and will analyze in depth the advantages and disadvantages of various models that have been used to mimic it. Afterwards, we will present the strategies developed and proposed to impede chondrocyte hypertrophy and cartilage matrix mineralization/calcification. Finally, we will examine the future perspectives of OA therapeutic strategies.
Collapse
|
48
|
Li B, Zheng J. A Bibliometric and Knowledge Map Analysis of Osteoarthritis Signaling Pathways from 2012 to 2022. J Pain Res 2022; 15:3833-3846. [PMID: 36510617 PMCID: PMC9738985 DOI: 10.2147/jpr.s385482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background Osteoarthritis(OA) is one of the most common joint diseases, and signaling pathways play an essential role in the occurrence and development of OA, so it is significant to study OA with signaling pathways as an entry point. Purpose This study aims to visualize and map the knowledge of OA-related signaling pathway research between 2012 and 2022, summarise and analyze the current research status and potential development trends in the domain, and provide a reference for future OA-related research. Methods Retrieve relevant literature from the Web of Science database and use VOSviwer and CiteSpace software to visualize authors, institutions, country distribution, references, and keywords. The results are interpreted and analyzed in conjunction with the results obtained. Results According to the search strategy, a total of 4894 articles were published between January 2012 and January 2022; during these ten years, the number of reports increased annually, and the research became further intensive; through this analysis, it was found that China is the most prolific country in this field; The institution with the most articles was Xi'an Jiaotong University from China, and the most prolific author was Tang Chih Hsin; Among the cited references, the reports of Glyn-Jones S and Hunter DJ were ranked first and second respectively. In the keyword analysis, cartilage and expression were the popular keywords; Animal model, akt, and platelet-rich plasma had the highest centrality; Burst analysis revealed pi3k, senescence, Ampk, and exosomes had received more attention in recent years of research. Conclusion This study analyzes and summarizes the current research status and development trend of relevant signaling pathways in OA from the perspective of bibliometric and visual analysis, which can help researchers to keep track of hot topics and conduct more in-depth exploration of research hotspots and frontier knowledge areas.
Collapse
Affiliation(s)
- Baijun Li
- Institution of Acupuncture-moxibustion and Massage, Shaanxi University of Chinese Medicine, Shaanxi, People’s Republic of China
| | - Jie Zheng
- Shaanxi Key Laboratory of Acupuncture and Herbal Medicine, Shaanxi, People’s Republic of China,Correspondence: Jie Zheng, Institution of Acupuncture-moxibustion and Massage, Shaanxi University of Chinese Medicine, Shaanxi, 712046, People’s Republic of China, Tel +86 138 9298 0566, Email
| |
Collapse
|
49
|
Kuhns BD, Reuter JM, Hansen VL, Soles GL, Jonason JH, Ackert-Bicknell CL, Wu CL, Giordano BD. Whole-genome RNA sequencing identifies distinct transcriptomic profiles in impingement cartilage between patients with femoroacetabular impingement and hip osteoarthritis. J Orthop Res 2022. [PMID: 36463522 DOI: 10.1002/jor.25485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Femoroacetabular impingement (FAI) has a strong clinical association with the development of hip osteoarthritis (OA); however, the pathobiological mechanisms underlying the transition from focal impingement to global joint degeneration remain poorly understood. The purpose of this study is to use whole-genome RNA sequencing to identify and subsequently validate differentially expressed genes (DEGs) in femoral head articular cartilage samples from patients with FAI and hip OA secondary to FAI. Thirty-seven patients were included in the study with whole-genome RNA sequencing performed on 10 gender-matched patients in the FAI and OA cohorts and the remaining specimens were used for validation analyses. We identified a total of 3531 DEGs between the FAI and OA cohorts with multiple targets for genes implicated in canonical OA pathways. Quantitative reverse transcription-polymerase chain reaction validation confirmed increased expression of FGF18 and WNT16 in the FAI samples, while there was increased expression of MMP13 and ADAMTS4 in the OA samples. Expression levels of FGF18 and WNT16 were also higher in FAI samples with mild cartilage damage compared to FAI samples with severe cartilage damage or OA cartilage. Our study further expands the knowledge regarding distinct genetic reprogramming in the cartilage between FAI and hip OA patients. We independently validated the results of the sequencing analysis and found increased expression of anabolic markers in patients with FAI and minimal histologic cartilage damage, suggesting that anabolic signaling may be increased in early FAI with a transition to catabolic and inflammatory gene expression as FAI progresses towards more severe hip OA. Clinical significance:Cam-type FAI has a strong clinical association with hip OA; however, the cellular pathophysiology of disease progression remains poorly understood. Several previous studies have demonstrated increased expression of inflammatory markers in FAI cartilage samples, suggesting the involvement of these inflammatory pathways in the disease progression. Our study further expands the knowledge regarding distinct genetic reprogramming in the cartilage between FAI and hip OA patients. In addition to differences in inflammatory gene expression, we also identified differential expression in multiple pathways involved in hip OA progression.
Collapse
Affiliation(s)
- Benjamin D Kuhns
- Center for Regenerative and Personalized Medicine, Steadman-Philippon Research Institute, Vail, Colorado, USA
| | - John M Reuter
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Victoria L Hansen
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Gillian L Soles
- Department of Orthopedic Surgery, University of California Davis Health System, Sacramento, California, USA
| | - Jennifer H Jonason
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Brian D Giordano
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
50
|
Induced inactivation of Wnt16 in young adult mice has no impact on osteoarthritis development. PLoS One 2022; 17:e0277495. [DOI: 10.1371/journal.pone.0277495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common disorder and a major cause of disability in the elderly population. WNT16 has been suggested to play important roles in joint formation, bone homeostasis and OA development, but the mechanism of action is not clear. Transgenic mice lacking Wnt16 expression (Wnt16-/-) have a more severe experimental OA than control mice. In addition, Wnt16-/- mice have a reduced cortical thickness and develop spontaneous fractures. Herein, we have used Cre-Wnt16flox/flox mice in which Wnt16 can be conditionally ablated at any age through tamoxifen-inducible Cre-mediated recombination. Wnt16 deletion was induced in 7-week-old mice to study if the Cre-Wnt16flox/flox mice have a more severe OA phenotype after destabilizing the medial meniscus (DMM surgery) than littermate controls with normal Wnt16 expression (Wnt16flox/flox). WNT16 deletion was confirmed in articular cartilage and cortical bone in Cre-Wnt16flox/flox mice, shown by immunohistochemistry and reduced cortical bone area compared to Wnt16flox/flox mice. After DMM surgery, there was no difference in OA severity in the articular cartilage in the knee joint between the Cre-Wnt16flox/flox and Wnt16flox/flox mice in neither female nor male mice. In addition, there was no difference in osteophyte size in the DMM-operated tibia between the genotypes. In conclusion, inactivation of Wnt16 in adult mice do not result in a more severe OA phenotype after DMM surgery. Thus, presence of WNT16 in adult mice does not have an impact on experimental OA development. Taken together, our results from Cre-Wnt16flox/flox mice and previous results from Wnt16-/- mice suggest that WNT16 is crucial during synovial joint establishment leading to limited joint degradation also later in life, after onset of OA. This may be important when developing new therapeutics for OA treatment.
Collapse
|