1
|
Sharma A, Lee HJ. A Review on the Protecting Effects and Molecular Mechanisms of Berries Against a Silent Public Health Concern: Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2024; 13:1389. [PMID: 39594531 PMCID: PMC11590959 DOI: 10.3390/antiox13111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) poses a silent threat to human health, with prevalence rising at an alarming rate. The treatment and prevention of NAFLD depend on novel approaches as no effective treatment options are currently available. Berries are unique sources of phenolic compounds that have proven roles in disease prevention and health promotion. However, a comprehensive review of the effects of different berries on NAFLD and related pathologies is lacking. Thus, the present review aims to summarize the effects of berry extracts, plant parts, and bioactive compounds from twenty-one different berries on NAFLD. The molecular mechanisms involved include the regulation of lipid homeostasis, modulation of oxidative stress and inflammation markers, and activation of different signaling pathways in different in vitro and in vivo NAFLD models. Furthermore, their modulatory effects on the gut microbiota have also been highlighted. Clinical intervention research on the benefits of berries in NAFLD is limited; nonetheless, this paper discusses clinical studies demonstrating the effects of different berries in people with NAFLD. Future research should focus on long-term clinical studies to compare the therapeutic potentials of different berries against NAFLD.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of Bio Nano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bio Nano Technology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
2
|
Amorim R, Soares P, Chavarria D, Benfeito S, Cagide F, Teixeira J, Oliveira PJ, Borges F. Decreasing the burden of non-alcoholic fatty liver disease: From therapeutic targets to drug discovery opportunities. Eur J Med Chem 2024; 277:116723. [PMID: 39163775 DOI: 10.1016/j.ejmech.2024.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) presents a pervasive global pandemic, affecting approximately 25 % of the world's population. This grave health issue not only demands urgent attention but also stands as a significant economic concern on a global scale. The genesis of NAFLD can be primarily attributed to unhealthy dietary habits and a sedentary lifestyle, albeit certain genetic factors have also been recorded to contribute to its occurrence. NAFLD is characterized by fat accumulation in more than 5 % of hepatocytes according to histological analysis, or >5.6 % of lipid volume fraction in total liver weight in patients. The pathophysiology of NAFLD/non-alcoholic steatohepatitis (NASH) is multifactorial and the mechanisms underlying the progression to advanced forms remain unclear, thereby representing a challenge to disease therapy. Despite the substantial efforts from the scientific community and the large number of pre-clinical and clinical trials performed so far, only one drug was approved by the Food and Drug Administration (FDA) to treat NAFLD/NASH specifically. This review provides an overview of available information concerning emerging molecular targets and drug candidates tested in clinical studies for the treatment of NAFLD/NASH. Improving our understanding of NAFLD pathophysiology and pharmacotherapy is crucial not only to explore new molecular targets, but also to potentiate drug discovery programs to develop new therapeutic strategies. This knowledge endeavours scientific efforts to reduce the time for achieving a specific and effective drug for NAFLD or NASH management and improve patients' quality of life.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Teixeira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Ezhilarasan D, Langeswaran K. Hepatocellular Interactions of Potential Nutraceuticals in the Management of Inflammatory NAFLD. Cell Biochem Funct 2024; 42:e4112. [PMID: 39238138 DOI: 10.1002/cbf.4112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Numerous studies highlight the potential of natural antioxidants, such as those found in foods and plants, to prevent or treat nonalcoholic fatty liver disease (NAFLD). Inflammation is a key factor in the progression from high-fat diet-induced NAFLD to nonalcoholic steatohepatitis (NASH). Injured liver cells and immune cells release inflammatory cytokines, activating hepatic stellate cells. These cells acquire a profibrogenic phenotype, leading to extracellular matrix accumulation and fibrosis. Persistent fibrosis can progress to cirrhosis. Fatty infiltration, oxidative stress, and inflammation exacerbate fatty liver diseases. Thus, many plant-derived antioxidants, like silymarin, silibinin, curcumin, resveratrol, berberine, and quercetin, have been extensively studied in experimental models and clinical patients with NAFLD. Experimentally, these compounds have shown beneficial effects in reducing lipid accumulation, oxidative stress, and inflammatory markers by modulating the ERK, NF-κB, AMPKα, and PPARγ pathways. They also help decrease metabolic endotoxemia, intestinal permeability, and gut inflammation. Clinically, silymarin and silibinin have been found to reduce transaminase levels, while resveratrol and curcumin help alleviate inflammation in NAFLD patients. However, these phytocompounds exhibit poor water solubility, leading to low oral bioavailability and hindering their biological efficacy. Additionally, inconclusive clinical results highlight the need for further trials with larger populations, longer durations, and standardized protocols.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Hepatology and Molecular Medicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Kulanthaivel Langeswaran
- Department of Biomedical Science, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
4
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
5
|
Cervello M, Augello G, Cocco L, Ratti S, Follo MY, Martelli AM, Cusimano A, Montalto G, McCubrey JA. The potential of the nutraceutical berberine in the treatment of hepatocellular carcinoma and other liver diseases such as NAFLD and NASH. Adv Biol Regul 2024; 92:101032. [PMID: 38693042 DOI: 10.1016/j.jbior.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer which unfortunately has poor outcomes. Common anti-cancer treatments such as chemotherapy and targeted therapy have not increased patient survival significantly. A common treatment for HCC patients is transplantation, however, it has limitations and complications. Novel approaches are necessary to more effectively treat HCC patients. Berberine (BBR) is a nutraceutical derived from various fruits and trees, which has been used for centuries in traditional medicine to treat various diseases such as diabetes and inflammation. More recently, the anti-proliferation effects of BBR have been investigated in the treatment of patients with various cancers, especially colorectal cancer, and in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this review, we will focus on studies with BBR in liver diseases.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy; Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo School of Medicine, Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
6
|
Ionita-Radu F, Patoni C, Nancoff AS, Marin FS, Gaman L, Bucurica A, Socol C, Jinga M, Dutu M, Bucurica S. Berberine Effects in Pre-Fibrotic Stages of Non-Alcoholic Fatty Liver Disease-Clinical and Pre-Clinical Overview and Systematic Review of the Literature. Int J Mol Sci 2024; 25:4201. [PMID: 38673787 PMCID: PMC11050387 DOI: 10.3390/ijms25084201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the predominant cause of chronic liver conditions, and its progression is marked by evolution to non-alcoholic steatosis, steatohepatitis, cirrhosis related to non-alcoholic steatohepatitis, and the potential occurrence of hepatocellular carcinoma. In our systematic review, we searched two databases, Medline (via Pubmed Central) and Scopus, from inception to 5 February 2024, and included 73 types of research (nine clinical studies and 64 pre-clinical studies) from 2854 published papers. Our extensive research highlights the impact of Berberine on NAFLD pathophysiology mechanisms, such as Adenosine Monophosphate-Activated Protein Kinase (AMPK), gut dysbiosis, peroxisome proliferator-activated receptor (PPAR), Sirtuins, and inflammasome. Studies involving human subjects showed a measurable reduction of liver fat in addition to improved profiles of serum lipids and hepatic enzymes. While current drugs for NAFLD treatment are either scarce or still in development or launch phases, Berberine presents a promising profile. However, improvements in its formulation are necessary to enhance the bioavailability of this natural substance.
Collapse
Affiliation(s)
- Florentina Ionita-Radu
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Cristina Patoni
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
| | - Andreea Simona Nancoff
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Flavius-Stefan Marin
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
| | - Laura Gaman
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Ana Bucurica
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.B.); (C.S.)
| | - Calin Socol
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.B.); (C.S.)
| | - Mariana Jinga
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Madalina Dutu
- Department of Anesthesiology and Intensive Care, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Sandica Bucurica
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| |
Collapse
|
7
|
Wang J, Yang N, Xu Y. Natural Products in the Modulation of Farnesoid X Receptor Against Nonalcoholic Fatty Liver Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:291-314. [PMID: 38480498 DOI: 10.1142/s0192415x24500137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health concern with a high prevalence and increasing economic burden, but official medicine remains unavailable. Farnesoid X receptor (FXR), a nuclear receptor member, is one of the most promising drug targets for NAFLD therapy that plays a crucial role in modulating bile acid, glucose, and lipid homeostasis, as well as inhibits hepatic inflammation and fibrosis. However, the rejection of the FXR agonist, obecholic acid, by the Food and Drug Administration for treating hepatic fibrosis raises a question about the functions of FXR in NAFLD progression and the therapeutic strategy to be used. Natural products, such as FXR modulators, have become the focus of attention for NAFLD therapy with fewer adverse reactions. The anti-NAFLD mechanisms seem to act as FXR agonists and antagonists or are involved in the FXR signaling pathway activation, indicating a promising target of FXR therapeutic prospects using natural products. This review discusses the effective mechanisms of FXR in NAFLD alleviation, and summarizes currently available natural products such as silymarin, glycyrrhizin, cycloastragenol, berberine, and gypenosides, for targeting FXR, which can facilitate development of naturally targeted drug by medicinal specialists for effective treatment of NAFLD.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, P. R. China
| | - Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, P. R. China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, P. R. China
| |
Collapse
|
8
|
Nie Q, Li M, Huang C, Yuan Y, Liang Q, Ma X, Qiu T, Li J. The clinical efficacy and safety of berberine in the treatment of non-alcoholic fatty liver disease: a meta-analysis and systematic review. J Transl Med 2024; 22:225. [PMID: 38429794 PMCID: PMC10908013 DOI: 10.1186/s12967-024-05011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent worldwide, emerging as a significant health issue on a global scale. Berberine exhibits potential for treating NAFLD, but clinical evidence remains inconclusive. This meta-analysis was conducted to assess the efficacy and safety of berberine for treating NAFLD. METHODS This study was registered with PROSPERO (No. CRD42023462338). Identification of randomized controlled trials (RCTs) involved searching 6 databases covering the period from their initiation to 9 September 2023. The primary outcomes comprised liver function markers such as glutamyl transpeptidase (GGT), alanine transaminase (ALT), aspartate transaminase (AST), lipid indices including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), homeostasis model assessment for insulin resistance (HOMA-IR) and body mass index (BMI). Review Manager 5.4 and STATA 17.0 were applied for analysis. RESULTS Among 10 RCTs involving 811 patients, berberine demonstrated significant reductions in various parameters: ALT (standardized mean difference (SMD) = - 0.72), 95% confidence interval (Cl) [- 1.01, - 0.44], P < 0.00001), AST (SMD = - 0.79, 95% CI [- 1.17, - 0.40], P < 0.0001), GGT (SMD = - 0.62, 95% CI [- 0.95, - 0.29], P = 0.0002), TG (SMD = - 0.59, 95% CI [- 0.86, - 0.31], P < 0.0001), TC(SMD = - 0.74, 95% CI [- 1.00, - 0.49], P < 0.00001), LDL-C (SMD = - 0.53, 95% CI [- 0.88, - 0.18], P = 0.003), HDL-C (SMD = - 0.51, 95% CI [- 0.12, 1.15], P = 0.11), HOMA-IR (SMD = - 1.56, 95% CI [- 2.54, - 0.58], P = 0.002), and BMI (SMD = - 0.58, 95% CI [- 0.77, - 0.38], P < 0.00001). Importantly, Berberine exhibited a favorable safety profile, with only mild gastrointestinal adverse events reported. CONCLUSION This meta-analysis demonstrates berberine's efficacy in improving liver enzymes, lipid profile, and insulin sensitivity in NAFLD patients. These results indicate that berberine shows promise as an adjunct therapy for NAFLD. Trial registration The protocol was registered with PROSPERO (No. CRD42023462338). Registered on September 27, 2023.
Collapse
Affiliation(s)
- Qilong Nie
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
| | - Mingyang Li
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
| | - Caiyang Huang
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 6, Qinren Road, Chancheng District, Foshan, 528051, Guangdong, China
| | - Yongwei Yuan
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
| | - Qiuyan Liang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
| | - Xiaojun Ma
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 6, Qinren Road, Chancheng District, Foshan, 528051, Guangdong, China
| | - Tengyu Qiu
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 6, Qinren Road, Chancheng District, Foshan, 528051, Guangdong, China
| | - Jianhong Li
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 6, Qinren Road, Chancheng District, Foshan, 528051, Guangdong, China.
| |
Collapse
|
9
|
Lin X, Zhang J, Chu Y, Nie Q, Zhang J. Berberine prevents NAFLD and HCC by modulating metabolic disorders. Pharmacol Ther 2024; 254:108593. [PMID: 38301771 DOI: 10.1016/j.pharmthera.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Ma X, Yu X, Li R, Cui J, Yu H, Ren L, Jiang J, Zhang W, Wang L. Berberine-silybin salt achieves improved anti-nonalcoholic fatty liver disease effect through regulating lipid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117238. [PMID: 37774895 DOI: 10.1016/j.jep.2023.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine (BBR) and silybin (SIY) are natural compounds obtained from Berberidaceae members and Silybum marianum (L.) Gaertn., respectively. These compounds have been demonstrated to regulate lipid metabolism and indue hepatoprotective effects, establishing their importance for the treatment of liver injury. Combination therapy has shown promise in treating ailments with complex pathophysiology, such as liver diseases. However, the inconsistent dissolution and poor absorption of BBR and SIY limit their efficacy. AIM OF THE STUDY This study compared the salt formulation (BSS) and physical mixture (BSP) of BBR and SIY for their efficacy in treating nonalcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS The formation of the BSS was confirmed using various techniques, including nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and powder X-ray diffractometry. In addition, dissolution, trans-epithelial permeability, and bioavailability experiments were conducted to evaluate the absorption and distribution of drugs. Pharmacodynamics and mechanisms were investigated through in vivo experiments. RESULTS BSS form demonstrated synchronized dissolution of both components, unlike BSP. Additionally, the transepithelial permeability results revealed that BSS exhibited superior penetration and absorption of both BBR and SIY in comparison to BSP. Furthermore, BSS significantly increased the bioavailability of SIY in both plasma and the liver (2.2- and 4.5-fold, respectively) when compared with BSP. Moreover, BSS demonstrated a more potent inhibitory effect on lipid production in HepG2 cells than BSP. In mouse models (BALB/c) of NAFLD, BSS improved disease outcomes, as evidenced by decreased adipose levels, normalized blood lipid levels, and reduced liver parenchyma injury. Preliminary transcriptomics analysis suggested that BSS achieved its anti-NAFLD effect by regulating the expression of fatty acid transporter CD36, recombinant fatty acid binding protein 4, and stearyl coenzyme A dehydrogenase 1, which are associated with the synthesis and uptake of fatty acid-related proteins. CONCLUSIONS The study demonstrated that compared with physical mixing, salification improved the efficacy of BBR and SIY, as demonstrated in animal experiments. These findings provide valuable insights into the development of more effective treatments for NAFLD and provide new possibilities for combination therapies.
Collapse
Affiliation(s)
- Xiaolei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyou Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinjin Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoyang Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ling Ren
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Wang Y, Zhao D, Su L, Tai YL, Way GW, Zeng J, Yan Q, Xu Y, Wang X, Gurley EC, Zhou XQ, Liu J, Liu J, Chen W, Hylemon PB, Zhou H. Therapeutic potential of berberine in attenuating cholestatic liver injury: insights from a PSC mouse model. Cell Biosci 2024; 14:14. [PMID: 38273376 PMCID: PMC10809567 DOI: 10.1186/s13578-024-01195-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by progressive biliary inflammation and bile duct injury. Berberine (BBR) is a bioactive isoquinoline alkaloid found in various herbs and has multiple beneficial effects on metabolic and inflammatory diseases, including liver diseases. This study aimed to examine the therapeutic effect of BBR on cholestatic liver injury in a PSC mouse model (Mdr2-/- mice) and elucidate the underlying mechanisms. METHODS Mdr2-/-mice (12-14 weeks old, both sexes) received either BBR (50 mg/kg) or control solution daily for eight weeks via oral gavage. Histological and serum biochemical analyses were used to assess fibrotic liver injury severity. Total RNAseq and pathway analyses were used to identify the potential signaling pathways modulated by BBR in the liver. The expression levels of key genes involved in regulating hepatic fibrosis, bile duct proliferation, inflammation, and bile acid metabolism were validated by qRT-PCR or Western blot analysis. The bile acid composition and levels in the serum, liver, small intestine, and feces and tissue distribution of BBR were measured by LC-MS/MS. Intestinal inflammation and injury were assessed by gene expression profiling and histological analysis. The impact on the gut microbiome was assessed using 16S rRNA gene sequencing. RESULTS BBR treatment significantly ameliorated cholestatic liver injury, evidenced by decreased serum levels of AST, ALT, and ALP, and reduced bile duct proliferation and hepatic fibrosis, as shown by H&E, Picro-Sirius Red, and CK19 IHC staining. RNAseq and qRT-PCR analyses indicated a substantial inhibition of fibrotic and inflammatory gene expression. BBR also mitigated ER stress by downregulating Chop, Atf4 and Xbp-1 expression. In addition, BBR modulated bile acid metabolism by altering key gene expressions in the liver and small intestine, resulting in restored bile acid homeostasis characterized by reduced total bile acids in serum, liver, and small intestine and increased fecal excretion. Furthermore, BBR significantly improved intestinal barrier function and reduced bacterial translocation by modulating the gut microbiota. CONCLUSION BBR effectively attenuates cholestatic liver injury, suggesting its potential as a therapeutic agent for PSC and other cholestatic liver diseases.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Derrick Zhao
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
| | - Lianyong Su
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
| | - Yun-Ling Tai
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
| | - Grayson W Way
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
| | - Jing Zeng
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
| | - Qianhua Yan
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Xu
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
| | - Xuan Wang
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
| | - Emily C Gurley
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
| | - Xi-Qiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jinpeng Liu
- Department of Computer Science, University of Kentucky, Lexington, KY, USA
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA.
| |
Collapse
|
12
|
Wang L, Yan Y, Wu L, Peng J. Natural products in non-alcoholic fatty liver disease (NAFLD): Novel lead discovery for drug development. Pharmacol Res 2023; 196:106925. [PMID: 37714392 DOI: 10.1016/j.phrs.2023.106925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
With changing lifestyles, non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide. A substantial increase in the incidence, mortality, and associated burden of NAFLD-related advanced liver disease is expected. Currently, the initial diagnosis of NAFLD is still based on ultrasound and there is no approved treatment method. Lipid-lowering drugs, vitamin supplementation, and lifestyle improvement treatments are commonly used in clinical practice. However, most lipid-lowering drugs can produce poor patient compliance and specific adverse effects. Therefore, the exploration of bio-diagnostic markers and active lead compounds for the development of innovative drugs is urgently needed. More and more studies have reported the anti-NAFLD effects and mechanisms of natural products (NPs), which have become an important source for new drug development to treat NAFLD due to their high activity and low side effects. At present, berberine and silymarin have been approved by the US FDA to enter clinical phase IV studies, demonstrating the potential of NPs against NAFLD. Studies have found that the regulation of lipid metabolism, insulin resistance, oxidative stress, and inflammation-related pathways may play important roles in the process. With the continuous updating of technical means and scientific theories, in-depth research on the targets and mechanisms of NPs against NAFLD can provide new possibilities to find bio-diagnostic markers and innovative drugs. As we know, FXR agonists, PPARα agonists, and dual CCR2/5 inhibitors are gradually coming on stage for the treatment of NAFLD. Whether NPs can exert anti-NAFLD effects by regulating these targets or some unknown targets remains to be further studied. Therefore, the study reviewed the potential anti-NAFLD NPs and their targets. Some works on the discovery of new targets and the docking of active lead compounds were also discussed. It is hoped that this review can provide some reference values for the development of non-invasive diagnostic markers and new drugs against NAFLD in the clinic.
Collapse
Affiliation(s)
- Lu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yonghuan Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Linfang Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jinyong Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
13
|
Chen D, Xiong J, Chen G, Zhang Z, Liu Y, Xu J, Xu H. Comparing the Influences of Metformin and Berberine on the Intestinal Microbiota of Rats With Nonalcoholic Steatohepatitis. In Vivo 2023; 37:2105-2127. [PMID: 37652508 PMCID: PMC10500488 DOI: 10.21873/invivo.13308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM High-fat diets induce shifts in the gut microbial community structure in patients or animals with non-alcoholic steatohepatitis (NASH). The objective of this study was to investigate the influence of metformin (MET) and berberine (BER) on the intestinal microbiota of rats with NASH. MATERIALS AND METHODS Forty specific pathogen-free male Sprague-Dawley rats were randomized into 4 groups. Model rats were fed high-fat diets to create NASH models. MET or BER rats were administrated MET or BER, respectively, at the onset of induction of NASH. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol, and triglycerides were examined. Plasma endotoxin levels were measured using the turbidimetric endotoxin assay. The incidence of bacterial translocation describes the passage of bacteria of the gastrointestinal tract through the intestinal mucosa barrier to mesenteric lymph nodes and other organs. Hematoxylin and eosin and oil red O staining were used for histopathological analysis. High throughput 16S rRNA sequencing was carried out for analyzing the composition of intestinal microbiota. RESULTS High-fat diets caused NASH after 16-week induction. Administration of MET and BER ameliorated NASH by attenuating hepatic steatosis and inflammation and decreasing the plasma levels of endotoxin. MET and BER restored the composition of the intestinal microbiota disrupted by NASH. Both MET and BER altered the abundance of Atopobiaceae, Brevibacterium, Christensenellaceae, Coriobacteriales, Papillibacter, Pygmaiobacter, and Rikenellaceae RC9 in rats with NASH. The screened intestinal microbiota may be responsible for the improvement in fat accumulation and glucose metabolism. CONCLUSION MET and BER demonstrated beneficial effects on the intestinal microbiota, which was disturbed in NASH. This finding may explain the functional mechanism of MET and BER in NASH.
Collapse
Affiliation(s)
- Dongya Chen
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Jingfang Xiong
- Department of Geriatrics, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Gaofeng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zhaolin Zhang
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Yihui Liu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Jianjun Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China;
| |
Collapse
|
14
|
Zhou X, Huang G, Wang L, Zhao Y, Li J, Chen D, Wei L, Chen Z, Yang B. L-carnitine promotes liver regeneration after hepatectomy by enhancing lipid metabolism. J Transl Med 2023; 21:487. [PMID: 37474946 PMCID: PMC10360338 DOI: 10.1186/s12967-023-04317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Lipid metabolism plays an important role in liver regeneration, but its regulation still requires further research. In this study, lipid metabolites involved in mouse liver regeneration at different time points were sequenced and analyzed to study their influence on liver regeneration and its mechanism. METHODS Our experiment was divided into two parts. The first part examined lipid metabolites during liver regeneration in mice. In this part, lipid metabolites were sequentially analyzed in the livers of 70% mouse hepatectomy models at 0, 1, 3and 7 days after operation to find the changes of lipid metabolites in the process of liver regeneration. We screened L-carnitine as our research object through metabolite detection. Therefore, in the second part, we analyzed the effects of carnitine on mouse liver regeneration and lipid metabolism during liver regeneration. We divided the mouse into four groups: control group (70% hepatectomy group); L-carnitine group (before operation) (L-carnitine were given before operation); L-carnitine group (after operation)(L-carnitine were given after operation) and L-carnitine + perhexiline maleate (before operation) group. Weighing was performed at 24 h, 36 and 48 h in each group, and oil red staining, HE staining and MPO staining were performed. Tunnel fluorescence staining, Ki67 staining and serological examination. RESULTS Sequencing analysis of lipid metabolites in 70% of mouse livers at different time points after hepatectomy showed significant changes in carnitine metabolites. The results showed that, compared with the control group the mouse in L-carnitine group (before operation) at 3 time points, the number of fat drops in oil red staining was decreased, the number of Ki67 positive cells was increased, the number of MPO positive cells was decreased, the number of Tunnel fluorescence positive cells was decreased, and the liver weight was increased. Serum enzymes were decreased. Compared with control group, L-carnitine group (after operation) showed similar trends in all indexes at 36 and 48 h as L-carnitine group (before operation). L-carnitine + perhexiline maleate (before operation) group compared with control group, the number of fat drops increased, the number of Ki67 positive cells decreased, and the number of MPO positive cells increased at 3 time points. The number of Tunnel fluorescent positive cells increased and serum enzyme increased. However, both liver weights increased. CONCLUSION L-carnitine can promote liver cell regeneration by promoting lipid metabolism and reduce aseptic inflammation caused by excessive lipid accumulation.
Collapse
Affiliation(s)
- Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Guobin Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Junbo Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China.
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education, Chinese Academy of Medical Sciences, No.1095 Jiefang Avenue, Wuhan, 430030, P.R. China.
| |
Collapse
|
15
|
Zamani M, Zarei M, Nikbaf-Shandiz M, Hosseini S, Shiraseb F, Asbaghi O. The effects of berberine supplementation on cardiovascular risk factors in adults: A systematic review and dose-response meta-analysis. Front Nutr 2022; 9:1013055. [PMID: 36313096 PMCID: PMC9614282 DOI: 10.3389/fnut.2022.1013055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Cardiovascular disease (CVD) is a major concern today. Herbal medicine is one helping way to control CVD risks. One conclusive of herbal medicine is Berberine (BBR) and converse about it still exists, to clarify this issue, this meta-analysis was performed. PubMed/Medline, Scopus, and Web of Science were searched for RCTs in adults on the effect of BBR supplementation on CVD risk factors up to July 2022. The pooled results showed BBR significantly reduced triglyceride (WMD = -23.70 mg/dl; 95%CI -30.16, -17.25; P < 0.001), total cholesterol (WMD = -20.64 mg/dl; 95%CI -23.65, -17.63; P < 0.001), low-density lipoprotein WMD = -9.63 mg/dl; 95%CI, -13.87, -5.39; P < 0.001), fasting blood glucose (FBG) (WMD = -7.74 mg/dl; 95%CI -10.79, -4.70; P < 0.001), insulin (WMD = -3.27 mg/dl; 95%CI -4.46,-2.07; P < 0.001), HbA1c (WMD = -0.45%; 95%CI -0.68, -0.23; P < 0.001), HOMA-IR (WMD = -1.04; 95%CI -1.55, -0.52; P < 0.001), systolic blood pressure (WMD = -5.46 mmHg; 95%CI -8.17, -2.76; P < 0.001), weight (WMD = -0.84; 95%CI -1.34,-0.34; P < 0.001), body mass index (WMD = -0.25 kg/m2; 95%CI -0.46, -0.04; P = 0.020), while increased high-density lipoprotein (HDL) (WMD = 1.37 mg/dl; 95%CI 0.41,2.23; P = 0.005). The optimal dose of BBR was 1 g/day for TG, TC, and weight, 1.8 g/day for insulin and HOMA-IR, and 5 g/day for HDL. FBG's most efficient time frame was 40 weeks from the beginning of supplementation, whereas DBP and waist circumference was 50 weeks. In conclusion, the lipid profile, FBG balance, obesity parameters, and SBP were improved with BBR supplementation. Systematic review registration CRD42022347004.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Shabnam Hosseini
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Chen Y, Li K, Zhao H, Hao Z, Yang Y, Gao M, Zhao D. Integrated lipidomics and network pharmacology analysis to reveal the mechanisms of berberine in the treatment of hyperlipidemia. Lab Invest 2022; 20:412. [PMID: 36076294 PMCID: PMC9461205 DOI: 10.1186/s12967-022-03623-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Berberine (BBR), an isoquinoline alkaloid isolated from Rhizoma Coptis, is widely used in the treatment of hyperlipidemia (HLP) in China. At present, the efficacy of BBR against HLP is relatively clear, but there are few researches on its mechanism. The purpose of this study was to evaluate the potentially beneficial role of BBR in HLP hamster models, as well as investigate its possible mechanisms and potential lipid biomarkers in combination with network pharmacology. METHODS HLP hamster model was induced by high-fat diet. Hematoxylin-eosin (HE) staining was used to determine the degree of hepatic pathological injury. Liquid chromatography-mass spectrometry was used to analyze lipid metabolism profiles of liver samples, and multiple statistical analysis methods were used to screen and identify lipid biomarkers. The possible molecular mechanism was unraveled by network pharmacology. RESULTS The results showed that 13 metabolites, including CE (16:1), HexCer (D18:1/19:0) and LPC (O-22:0) were biomarkers of BBR regulation. CHPT1, PLA2G4A, LCAT and UGCG were predicted as the lipid-linked targets of BBR against HLP, whilst glycerophospholipid and sphingolipid metabolism were the key pathways of BBR against HLP. CONCLUSIONS In summary, this study provides new insights into the protective mechanism of BBR against HLP through network pharmacology and lipidomic approaches.
Collapse
Affiliation(s)
- Yuting Chen
- The Postdoctoral Research Station of Biology, Hebei Medical University, Shijiazhuang, 050017, China.,The Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Kaipeng Li
- The Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Han Zhao
- The Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhangsen Hao
- The Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxin Yang
- The Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mingming Gao
- The Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Ding Zhao
- The Department of Pharmacognosy, School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
17
|
Alattar A, Alvi AM, Rashid S, Hussain N, Gul M, Ikram M, Khalil AAK, Alshaman R, Shah FA, Li S, Li J. RETRACTED: Carveol ameliorates mercury-induced oxidative stress, neuroinflammation, and neurodegeneration in a mouse brain. Neurotoxicology 2022; 92:212-226. [PMID: 35963490 DOI: 10.1016/j.neuro.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editors-in-Chief. Sections of panels from Figure 7B appear similar to each other. Also, inconsistencies have been noticed between the text of the subsection 2.5.4. ‘Morris Water Maze (MWM) test’ and Figure 6E. The journal records indicated that the names of the authors Sajid Rashid, Nadia Hussain, Mehreen Gul, Muhammad Ikram and Jingbo Li were added to the revised version of the article without exceptional approval by the handling Editor, which is contrary to the journal policy on changes to authorship.
Collapse
Affiliation(s)
- Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Arooj Mohsin Alvi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, UAE; AAU Health and Biomedical Research center, Al Ain University, Abu Dhabi, UAE
| | - Mehreen Gul
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ikram
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Atif Ali Khan Khalil
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan.
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Jingbo Li
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China.
| |
Collapse
|
18
|
Shao M, Lu Y, Xiang H, Wang J, Ji G, Wu T. Application of metabolomics in the diagnosis of non-alcoholic fatty liver disease and the treatment of traditional Chinese medicine. Front Pharmacol 2022; 13:971561. [PMID: 36091827 PMCID: PMC9453477 DOI: 10.3389/fphar.2022.971561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease around the world, and it often coexists with insulin resistance-related diseases including obesity, diabetes, hyperlipidemia, and hypertension, which seriously threatens human health. Better prevention and treatment strategies are required to improve the impact of NAFLD. Although needle biopsy is an effective tool for diagnosing NAFLD, this method is invasive and difficult to perform. Therefore, it is very important to develop more efficient approaches for the early diagnosis of NAFLD. Traditional Chinese medicine (TCM) can play a certain role in improving symptoms and protecting target organs, and its mechanism of action needs to be further studied. Metabolomics, the study of all metabolites that is thought to be most closely associated with the patients’ characters, can provide useful clinically biomarkers that can be applied to NAFLD and may open up new methods for diagnosis. Metabolomics technology is consistent with the overall concept of TCM, and it can also be used as a potential mechanism to explain the effects of TCM by measuring biomarkers by metabolomics. Based on PubMed/MEDLINE and other databases, this paper retrieved relevant literature NAFLD and TCM intervention in NAFLD using metabolomics technology in the past 5 years were searched, and the specific metabolites associated with the development of NAFLD and the potential mechanism of Chinese medicine on improving symptoms were summarized.
Collapse
Affiliation(s)
- Mingmei Shao
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guang Ji, , ; Tao Wu, ,
| |
Collapse
|
19
|
Berberine in Non-Alcoholic Fatty Liver Disease—A Review. Nutrients 2022; 14:nu14173459. [PMID: 36079717 PMCID: PMC9459907 DOI: 10.3390/nu14173459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
The incidence of Non-Alcoholic Fatty Liver Disease (NAFLD) has been rapidly increasing during the last decade. It is a relevant health problem that affects 25% of the general population. NAFLD involves an extensive array of clinical conditions. So far, no approved pharmacological therapy for NAFLD has been developed. Multiple bioactive compounds have been proposed to treat NAFLD. One of the most promising is Berberine (BBR). Its pleiotropic effect positively impacts various cardiometabolic aspects. In this review, we summarize NAFLD, its metabolic and cardiovascular complications, the hepatoprotective effects of BBR due to its broad spectrum of pharmacological effects, and the potential role of BBR in NAFLD therapy. BBR ameliorates NAFLD by affecting numerous abnormalities. It inhibits lipogenesis and gluconeogenesis, improves insulin resistance and lipid profile, and modulates gut microbiota. The exact mechanism underlying these effects is not yet entirely explained. A growing amount of evidence confirming the positive effects of BBR on multiple metabolic pathways, such as lipids and glucose metabolism, energy homeostasis, or gut microbiota modulation, allows us to speculate about the importance of this natural bioactive substance for NAFLD therapy.
Collapse
|
20
|
Yang S, Cao S, Li C, Zhang J, Liu C, Qiu F, Kang N. Berberrubine, a Main Metabolite of Berberine, Alleviates Non-Alcoholic Fatty Liver Disease via Modulating Glucose and Lipid Metabolism and Restoring Gut Microbiota. Front Pharmacol 2022; 13:913378. [PMID: 35873595 PMCID: PMC9304582 DOI: 10.3389/fphar.2022.913378] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major public health problem in many countries. Berberine (BBR) is an effective therapeutic agent in alleviating NAFLD. Berberrubine (BRB) is one of the main active metabolites of BBR, which shows significant anti-obesity and antihypoglycemic effects. However, whether BRB is responsible for the in vivo therapeutic effect and the underlying mechanism of BRB on NAFLD have not been elucidated. In this study, the ability of BRB to ameliorate NAFLD, together with its molecular mechanism, was investigated. The results showed that BRB treatments could significantly improve hepatic steatosis and insulin resistance in high-fat diet (HFD)–fed mice and oleic acid (OA)–treated HepG2 cells. Meanwhile, BBR and BRB treatment similarly prevented lipid accumulation by regulating the protein expression of ATGL, GK, PPARα, CPT-1, ACC1, FAS, and CD36. In addition, compared with BBR, BRB could maintain glucose homeostasis via GLUT2, GSK3β, and G6Pase in HFD-fed mice. Furthermore, the components of the gut microbiota in mice were analyzed by 16S rRNA gene sequencing. BBR and BRB treatment could greatly modify the structure and composition of gut microbiota. At the genus level, BBR and BRB treatment decreased Lactobacillus and Romboutsia, while BBR increased beneficial bacteria, such as Akkermansia and Bacteroides, and BRB increased beneficial bacteria, such as Ileibacterium and Mucispirillum. Altogether, both BRB and BBR were active in alleviating NAFLD in vivo and BRB might be used as a functional material to treat NAFLD clinically.
Collapse
Affiliation(s)
- Sa Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congyu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jichao Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Feng Qiu, ; Ning Kang,
| | - Ning Kang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Feng Qiu, ; Ning Kang,
| |
Collapse
|
21
|
Improvement of adjunctive berberine treatment on negative symptoms in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2022; 272:633-642. [PMID: 35037116 DOI: 10.1007/s00406-021-01359-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023]
Abstract
The upregulation of immune and inflammatory response may play a role in the negative symptoms of schizophrenia. Berberine is an effective drug with anti-inflammatory property, and may be beneficial for the treatment of negative symptoms. The aim of this study is to test this hypothesis through a randomized, double-blind, placebo-controlled, clinical trial. Eligible patients with schizophrenia were randomized to receive placebo or berberine (900 mg/day) for 8 weeks as adjunctive treatment to single atypical antipsychotic drug. The Positive and Negative Syndrome Scale (PANSS) was used to evaluate clinical symptoms at three time points (baseline, 4th and 8th week). Blood samples were collected at the above three time points to determine the concentrations of inflammatory markers including interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP). 59 patients with intention-to-treat were analyzed, 32 in the berberine group and 27 in the placebo group. From the baseline to the 8th week, berberine treatment significantly improved the negative symptom subscale of PANSS (F = 18.981; p < 0.001). From the baseline to the 8th week, the plasma CRP concentration decreased in the berberine group, while increased in the placebo group (F = 5.373; p = 0.024). Furthermore, in the berberine group, the change of CRP concentration was significantly positively correlated with the change of PANSS negative symptom subscale within 8 weeks (r = 0.56; p = 0.002). There was no significant difference in adverse events between the two groups (p's > 0.05). Our study suggests that berberine treatment is well tolerated in patients with schizophrenia. Berberine may improve negative symptoms through anti-inflammatory effect.Trial registration: Clinicaltrials.gov identifier: NCT03548155.
Collapse
|
22
|
Chen H, Nie T, Zhang P, Ma J, Shan A. Hesperidin attenuates hepatic lipid accumulation in mice fed high-fat diet and oleic acid induced HepG2 via AMPK activation. Life Sci 2022; 296:120428. [PMID: 35218767 DOI: 10.1016/j.lfs.2022.120428] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022]
Abstract
AIMS In recent years, more and more people are suffering from lifestyle-related disease such as nonalcoholic fatty liver disease (NAFLD) because of unhealthy diet and lack of physical exercise. Hesperidin (HDN) is a flavonoid found in high concentrations in citrus fruits. In this study, we investigated the effect of HDN on NAFLD, providing information to develop dietary supplements for NAFLD treatment and prevention. MATERIALS AND METHODS Testing kits, hematoxylin-eosin staining, oil red O staining, western blot, immunofluorescence, cck-8 assay, and blood biochemical analysis were carried out during the experiments in vivo and in vitro. KEY FINDINGS The current study revealed that HDN significantly reduced liver index and serum lipid levels, and protected against liver steatosis and injury induced by HFD. In addition, HDN suppressed oil acid induced intracellular lipid accumulation in HepG2 cells. Moreover, HDN increased the expression level of pAMPK and downregulated SREBP-1C, ACC and FAS expression in vivo and in vitro. SIGNIFICANCE In summary, HDN attenuates lipid accumulation in vivo and in vitro via AMPK activation, suggesting that HDN may serve as a potential therapeutic agent for treating NAFLD.
Collapse
Affiliation(s)
- Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Tong Nie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Penglu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, PR China.
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, PR China.
| |
Collapse
|
23
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
24
|
Effect of supplementation with Chlorella vulgaris on lipid profile in adults: A systematic review and dose-response meta-analysis of randomized controlled trials. Complement Ther Med 2022; 66:102822. [PMID: 35331862 DOI: 10.1016/j.ctim.2022.102822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To summarize available findings on the effect of Chlorella vulgaris supplementation on lipid profile in adults. DESIGN Systematic review and meta-analysis of randomized controlled trials (RCTs). SETTING This study followed 2020 PRISMA guideline. We performed a systematic search in the online databases to identify relevant articles and then, extracted required data from each paper for the meta-analysis. Random-effects models were used to obtain overall mean difference (MD) comparing Chlorella vulgaris supplementation with a control group. MAIN OUTCOME MEASURES Blood lipids including triglyceride (TG), total cholesterol (TC), LDL-C, and HDL-C. RESULTS In total, 10 RCTs with a total sample size of 539 adults (264 in the Chlorella vulgaris group and 275 in the control group) were included. Of the 10 RCTs, four had a low risk of bias for all aspects of the Cochrane risk of bias tool. Also, only two studies determined the chlorella content, purity, potency, and contamination of the supplements used in the intervention. Combining results from these studies showed a summary MD of -2.11 mg/dL (95% CI: -7.28 to 3.06) for TG, -7.47 mg/dL (95% CI: -12.98 to -1.96) for TC, -7.71 mg/dL (95% CI: -14.05 to -1.37) for LDL-C, and -0.45 mg/dL (95% CI: -0.67 to 1.57) for HDL-C, indicating a beneficial effect of Chlorella vulgaris supplementation on TC and LDL-C levels. Based on the dose-response analysis, the reducing effect of Chlorella vulgaris supplementation on LDL-C levels was seen at the dosages between zero and 1500 mg/d (P for non-linearity= 0.01), whereas in higher amounts, this effect was not significant. CONCLUSION We found that Chlorella vulgaris supplementation had a beneficial effect on TC and LDL-C levels with no significant effect on TG and HDL-C levels.
Collapse
|
25
|
Zhao Y, Huang J, Li T, Zhang S, Wen C, Wang L. Berberine ameliorates aGVHD by gut microbiota remodelling, TLR4 signalling suppression and colonic barrier repairment for NLRP3 inflammasome inhibition. J Cell Mol Med 2022; 26:1060-1070. [PMID: 34984827 PMCID: PMC8831946 DOI: 10.1111/jcmm.17158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/22/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, is used to treat gastrointestinal disorders as an herbal medicine in China. The aim of this study was to investigate the anti‐inflammatory activities of BBR in a mouse model with acute graft‐versus‐host disease (aGVHD). Mice were intravenously injected with bone marrow cells from donors combined with splenocytes to develop aGVHD. The body weight, survival rate and clinical scores were monitored. Then the levels of inflammatory cytokines, histological changes (lung, liver and colon), colonic mucosal barrier and gut microbiota were analysed. Moreover, the toll‐like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (Myd88)/nuclear factor‐κB signalling pathway, NLRP3 inflammasome and its cytokines’ expressions were determined. The results showed that the gavage of BBR lessened GVHD‐induced weight loss, high mortality and clinical scores, inhibited inflammation and target organs damages and prevented GVHD‐indued colonic barrier damage. Additionally, BBR modulated gut microbiota, suppressed the activation of the TLR4 signaling pathway and inhibited NLRP3 inflammasome and its cytokine release. This study indicated that BBR might be a potential therapy for aGVHD through NLRP3 inflammasome inhibition.
Collapse
Affiliation(s)
- Yanna Zhao
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiefeng Huang
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianyi Li
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuijuan Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lipei Wang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
27
|
Shan MY, Dai Y, Ren XD, Zheng J, Zhang KB, Chen B, Yan J, Xu ZH. Berberine mitigates nonalcoholic hepatic steatosis by downregulating SIRT1-FoxO1-SREBP2 pathway for cholesterol synthesis. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:545-554. [PMID: 34686466 DOI: 10.1016/j.joim.2021.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To investigate effects of berberine (BBR) on cholesterol synthesis in HepG2 cells with free fatty acid (FFA)-induced steatosis and to explore the underlying mechanisms. METHODS A steatosis cell model was induced in HepG2 cell line fed with FFA (0.5 mmol/L, oleic acid:palmitic acid = 2:1), and then treated with three concentrations of BBR; cell viability was assessed with cell counting kit-8 assays. Lipid accumulation in cells was observed through oil red O staining and total cholesterol (TC) content was detected by TC assay. The effects of BBR on cholesterol synthesis mediators were assessed by Western blotting and quantitative polymerase chain reaction. In addition, both silent information regulator 1 (SIRT1) and forkhead box transcription factor O1 (FoxO1) inhibitors were employed for validation. RESULTS FFA-induced steatosis was successfully established in HepG2 cells. Lipid accumulation and TC content in BBR groups were significantly lower (P < 0.05, P < 0.01), associated with significantly higher mRNA and protein levels of SIRT1(P < 0.05, P < 0.01), significantly lower sterol regulatory element-binding protein 2 (SREBP2) and 3-hydroxy 3-methylglutaryl-CoA reductase levels (P < 0.05, P < 0.01), as well as higher Acetyl-FoxO1 protein level (P < 0.05, P < 0.01) compared to the FFA only group. Both SIRT1 inhibitor SIRT1-IN-1 and FoxO1 inhibitor AS1842856 blocked the BBR-mediated therapeutic effects. Immunofluorescence showed that the increased SIRT1 expression increased FoxO1 deacetylation, and promoted its nuclear translocation. CONCLUSION BBR can mitigate FFA-induced steatosis in HepG2 cells by activating SIRT1-FoxO1-SREBP2 signal pathway. BBR may emerge as a potential drug candidate for treating nonalcoholic hepatic steatosis.
Collapse
Affiliation(s)
- Meng-Ya Shan
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ying Dai
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xiao-Dan Ren
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jing Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ke-Bin Zhang
- National Drug Clinical Trail Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Bin Chen
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038, China
| | - Jun Yan
- Department 1, Research Institute of Surgery & Daping Hospital, Army Medical Center of Chinese People's Liberation Army, Army Medical University, Chongqing 400042, China
| | - Zi-Hui Xu
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| |
Collapse
|
28
|
Dai X, Feng J, Chen Y, Huang S, Shi X, Liu X, Sun Y. Traditional Chinese Medicine in nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Chin Med 2021; 16:68. [PMID: 34344394 PMCID: PMC8330116 DOI: 10.1186/s13020-021-00469-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the world's largest chronic liver disease, while there is still no specific drug to treat NAFLD. Traditional Chinese Medicine (TCM) have been widely used in hepatic diseases for centuries in Asia, and TCM's holistic concept and differentiation treatment of NAFLD show their advantages in the treatment of this complex metabolic disease. However, the multi-compounds and multi-targets are big obstacle for the study of TCM. Here, we summarize the pharmacological actions of active ingredients from frequently used single herbs in TCM compounds. The combined mechanism of herbs in TCM compounds are further discussed to explore their comprehensive effects on NAFLD. This article aims to summarize multiple functions and find the common ground for TCM treatment on NAFLD, thus providing enrichment to the scientific connotation of TCM theories and promotes the exploration of TCM therapies on NAFLD.
Collapse
Affiliation(s)
- Xianmin Dai
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Jiayi Feng
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Yi Chen
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Si Huang
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Xiaofei Shi
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China.
| | - Yang Sun
- Department of Clinical Pharmacy, Second Military Medical University/Naval Medical University, 200433, Shanghai, China.
| |
Collapse
|
29
|
Tan M, Ye J, Zhao M, Ke X, Huang K, Liu H. Recent developments in the regulation of cholesterol transport by natural molecules. Phytother Res 2021; 35:5623-5633. [PMID: 34327759 DOI: 10.1002/ptr.7198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022]
Abstract
The dysregulation of cholesterol metabolism is a high-risk factor for non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and atherosclerosis (AS). Cholesterol transport maintains whole-body cholesterol homeostasis. Low-density apolipoprotein receptor (LDLR) mediates cholesterol uptake in cells and plays an important role in the primary route of circulatory cholesterol clearance in liver cells. Caveolins 1 is an integral membrane protein and shuttle between the cytoplasm and cell membrane. Caveolins 1 not only plays a role in promoting cholesterol absorption in cells but also in the transport of cellular cholesterol efflux by interacting with the ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI). These proteins, which are associated with reverse cholesterol transport (RCT), are potential therapeutic targets for NAFLD and AS. Many studies have indicated that natural products have lipid-lowering effects. Moreover, natural molecules, derived from natural products, have the potential to be developed into novel drugs. However, the mechanisms underlying the regulation of cholesterol transport by natural molecules have not yet been adequately investigated. In this review, we briefly describe the process of cholesterol transport and summarize the mechanisms by which molecules regulate cholesterol transport. This article provides an overview of recent studies and focuses on the potential therapeutic effects of natural molecules; however, further high-quality studies are needed to firmly establish the clinical efficacies of natural molecules.
Collapse
Affiliation(s)
- Meiao Tan
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.,First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jintong Ye
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Zhao
- Guangzhou Liwan District Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xuehong Ke
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Keer Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huabao Liu
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
30
|
Therapeutic Effects of Berberine in Metabolic Diseases and Diabetes Mellitus. REVISTA BRASILEIRA DE FARMACOGNOSIA 2021. [DOI: 10.1007/s43450-021-00159-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Bansod S, Saifi MA, Godugu C. Molecular updates on berberine in liver diseases: Bench to bedside. Phytother Res 2021; 35:5459-5476. [PMID: 34056769 DOI: 10.1002/ptr.7181] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Liver diseases are life-threatening illnesses and are the major cause of mortality and morbidity worldwide. These may include liver fibrosis, liver cirrhosis, and drug-induced liver toxicity. Liver diseases have a wide prevalence globally and the fifth most common cause of death among all gastrointestinal disorders. Several novel therapeutic approaches have emerged for the therapy of liver diseases that may provide better clinical outcomes with improved safety. The use of phytochemicals for the amelioration of liver diseases has gained considerable popularity. Berberine (BBR), an isoquinoline alkaloid of the protoberberine type, has emerged as a promising molecule for the treatment of gastrointestinal disorders. Accumulating studies have proved the hepatoprotective effects of BBR. BBR has been shown to modulate multiple signaling pathways implicated in the pathogenesis of liver diseases including Akt/FoxO2, PPAR-γ, Nrf2, insulin, AMPK, mTOR, and epigenetic pathways. In the present review, we have emphasized the important pharmacological activities and mechanisms of BBR in liver diseases. Further, we have reviewed various pharmacokinetic and toxicological barriers of this promising phytoconstituent. Finally, formulation-based novel approaches are also summarized to overcome the clinical hurdles for BBR.
Collapse
Affiliation(s)
- Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
32
|
Chen C, Lin Q, Zhu XY, Xia J, Mao T, Chi T, Wan J, Lu JJ, Li Y, Cui J, Liu J, Cui XY, Zhang J, Zhou K, Li D. Pre-clinical Evidence: Berberine as a Promising Cardioprotective Candidate for Myocardial Ischemia/Reperfusion Injury, a Systematic Review, and Meta-Analysis. Front Cardiovasc Med 2021; 8:646306. [PMID: 34124190 PMCID: PMC8187562 DOI: 10.3389/fcvm.2021.646306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/22/2021] [Indexed: 11/27/2022] Open
Abstract
Objective: Myocardial ischemia/reperfusion (I/R) injury is one of the causes of most cardiomyocyte injuries and deaths. Berberine (BBR) has been suggested a potential to exert protective effects against myocardial I/R injury. This systematic review aims to determine the intrinsic mechanisms of BBR's protective effects in myocardial I/R injury. Methods: Seven databases were searched for studies performed from inception to July 2020. Methodological quality was assessed by SYRCLE's-RoB tool. Results: Ten studies including a total of 270 animals were included in this study. The methodology quality scores of the included studies ranged from 5 to 7 points. The meta-analysis we conducted demonstrated that BBR significantly reduced myocardial infarct size and the incidence of ventricular arrhythmia, compared to control groups (P < 0.00001). Cardiac function of animals in the BBR treatment group was also markedly increased (P < 0.00001). The index of myocardial apoptosis and the levels of biomarkers of myocardial infarction (LDH and CK) were also decreased in the BBR treatment groups compared to the control groups (P < 0.00001). Conclusions: The pre-clinical evidence, according to our study, showed that BBR is a promising therapeutic agent for myocardial I/R injury. However, this conclusion should be further investigated in clinical studies.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xue-Ying Zhu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Junyan Xia
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tianshi Mao
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tiange Chi
- First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Jin Lu
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jie Cui
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jingqian Zhang
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
33
|
Ye Y, Liu X, Wu N, Han Y, Wang J, Yu Y, Chen Q. Efficacy and Safety of Berberine Alone for Several Metabolic Disorders: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Front Pharmacol 2021; 12:653887. [PMID: 33981233 PMCID: PMC8107691 DOI: 10.3389/fphar.2021.653887] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Metabolic activity is the basic life activity of organisms and the fundamental for maintaining body functions. With the improvement of living standards, the incidence of metabolic disorder is also increasing. At present, most of the clinical treatment strategies and meta-analysis for metabolic disorder uncover that combined medicines with berberine ameliorate several metabolic disorders. However, evidence to disclose the therapeutic effect of berberine treatment alone and the possible factors affecting the efficacy is limited. Therefore, we have formulated strict inclusion criteria and selected more reliable data for meta-analysis through more refined screening strategies to provide evidence and guidance for clinical decision-making and understand the effect of berberine treatment alone and the factors affecting its efficacy. Methods and results: Using meta-analysis of “Cochrane Handbook for Systematic Reviews of Interventions” as guidelines, we searched PubMed, GeenMedical, Cochrane library, and china national knowledge infrastructure (CNKI) for trials reporting clinical treatment data of berberine. Another 417 trials were included through other sources to increase confidence in results. Among the 1,660 related documents retrieved from the four databases, 18 eligible documents were selected for analysis. Given the differences in trial design and measurement units, we used the standardized mean difference (SMD) method to eliminate the differences and then summarize the data for analysis. The main factors are triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), homeostasis model assessment-insulin resistance (HOMA-IR), and fasting plasma glucose (FPG). Random-effect model analysis was performed: TG (SMD: 0.94; 95%CI: 0.49,1.38; p = 0.00), TC (SMD: 1.06; 95%CI: 0.64, 1.48; p = 0.00), LDL (SMD: 1.77; 95%CI: 1.11,2.44; p = 0.00), HDL (SMD: −1.59; 95%CI: −2.32, −0.85; p = 0.00), HOMA-IR (SMD: 1.25; 95%CI: 0.25,2.24; p = 0.01), and FPG (SMD: 0.65; 95%CI: 0.28,1.03; p = 0.00). This study aimed to conduct a systematic review and meta-analysis of the literature to evaluate the therapeutic effect of berberine singly on metabolic diseases. Conclusion: Berberine can improve obesity and hyperlipidemia by reducing TG, TC, and LDL and increasing HDL; reduce insulin resistance to improve type Ⅱ diabetes; and prevent diabetic encephalopathy.
Collapse
Affiliation(s)
- Yu Ye
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Ninghua Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China.,Basic Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanqi Han
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Jiawen Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Yuandong Yu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
34
|
Zhou H, Ma C, Wang C, Gong L, Zhang Y, Li Y. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease. Eur J Pharmacol 2021; 898:173976. [PMID: 33639194 DOI: 10.1016/j.ejphar.2021.173976] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
With the improvement of people's living standards and the change of eating habits, non-alcoholic fatty liver disease (NAFLD) has gradually become one of the most common chronic liver diseases in the world. However, there are no effective drugs for the treatment of NAFLD. Therefore, it is urgent to find safe, efficient, and economical anti-NAFLD drugs. Compared with western medicines that possess fast lipid-lowering effect, traditional Chinese medicines (TCM) have attracted increasing attention for the treatment of NAFLD due to their unique advantages such as multi-targets and multi-channel mechanisms of action. TCM monomers have been proved to treat NAFLD through regulating various pathways, including inflammation, lipid production, insulin sensitivity, mitochondrial dysfunction, autophagy, and intestinal microbiota. In particular, peroxisome proliferator-activated receptor α (PPAR-α), sterol regulatory element-binding protein 1c (SREBP-1c), nuclear transcription factor kappa (NF-κB), phosphoinositide 3-kinase (PI3K), sirtuin1 (SIRT1), AMP-activated protein kinase (AMPK), p53 and nuclear factor erythroid 2-related factor 2 (Nrf2) are considered as important molecular targets for ameliorating NAFLD by TCM monomers. Therefore, by searching PubMed, Web of Science and SciFinder databases, this paper updates and summarizes the experimental and clinical evidence of TCM monomers for the treatment of NAFLD in the past six years (2015-2020), thus providing thoughts and prospects for further exploring the pathogenesis of NAFLD and TCM monomer therapies.
Collapse
Affiliation(s)
- Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
35
|
Lu Z, Lu F, Wu L, He B, Chen Z, Yan M. Berberine attenuates non-alcoholic steatohepatitis by regulating chemerin/CMKLR1 signalling pathway and Treg/Th17 ratio. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:383-390. [PMID: 32524150 DOI: 10.1007/s00210-020-01914-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
To observe the therapeutic effect of berberine (BBR) on non-alcoholic steatohepatitis (NASH) in rats and the underlying mechanism. A rat model of NASH was established by a high-fat diet, and BBR was used as treatment. Haematoxylin-eosin staining and Oil Red O staining were used to observe the pathological changes in the liver tissue. Western blotting and real-time PCR were used to measure the mRNA and protein levels in the liver. Flow cytometry was performed to detect the number of intrahepatic lymphocyte subtypes. The expression of pro-inflammatory cytokines in the peripheral blood was measured by ELISA. An automatic biochemical method was used to examine the level of blood lipids in the blood. Compared with the rats in the model group, the rats in the BBR group showed significantly improved liver histopathology and serum pro-inflammatory cytokines and free fatty acid (FFA) levels. Moreover, the protein and mRNA expression of chemerin, CMKLR1 and CCR2 in the liver were obviously reduced by BBR treatment. In addition, the high-fat diet remarkably reduced the intrahepatic Treg/Th17 ratio, which could be recovered by BBR treatment. Berberine can ameliorate non-alcoholic steatohepatitis, and its mechanism may be related to restoring the Treg/Th17 ratio, regulating the chemerin/CMKLR1 signalling pathway to reduce liver inflammation and reducing lipid deposition.
Collapse
Affiliation(s)
- Zengsheng Lu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Fengbin Lu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Liyan Wu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China.
| | - Beihui He
- Key Laboratory of Diagnosis and Treatment of Circulatory Diseases in Combination with Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou, 310006, Zhejiang, China
| | - Zhiyun Chen
- Key Laboratory of Diagnosis and Treatment of Circulatory Diseases in Combination with Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou, 310006, Zhejiang, China
| | - Maoxiang Yan
- Key Laboratory of Diagnosis and Treatment of Circulatory Diseases in Combination with Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Hospital of Traditional Chinese Medicine, Hangzhou, 310006, Zhejiang, China
| |
Collapse
|
36
|
Lucius K. Nutritional and Botanical Approaches for Nonalcoholic Fatty Liver Disease. ALTERNATIVE AND COMPLEMENTARY THERAPIES 2020; 26:246-254. [DOI: 10.1089/act.2020.29303.klu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Khara Lucius
- Khara Lucius, ND, FABNO, is a naturopathic doctor at the Center for Integrative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
37
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
38
|
Shabalala SC, Dludla PV, Mabasa L, Kappo AP, Basson AK, Pheiffer C, Johnson R. The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed Pharmacother 2020; 131:110785. [PMID: 33152943 DOI: 10.1016/j.biopha.2020.110785] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide, as it affects up to 30 % of adults in Western countries. Moreover, NAFLD is also considered an independent risk factor for cardiovascular diseases. Insulin resistance and inflammation have been identified as key factors in the pathophysiology of NAFLD. Although the mechanisms associated with the development of NAFLD remain to be fully elucidated, a complex interaction between adipokines and cytokines appear to play a crucial role in the development of this condition. Adiponectin is the most common adipokine known to be inversely linked with insulin resistance, lipid accumulation, inflammation and NAFLD. Consequently, the focus has been on the use of new therapies that may enhance hepatic expression of adiponectin downstream targets or increase the serum levels of adiponectin in the treatment NAFLD. While currently used therapies show limited efficacy in this aspect, accumulating evidence suggest that various dietary polyphenols may stimulate adiponectin levels, offering potential protection against the development of insulin resistance, inflammation and NAFLD as well as associated conditions of metabolic syndrome. As such, this review provides a better understanding of the role polyphenols play in modulating adiponectin signaling to protect against NAFLD. A brief discussion on the regulation of adiponectin during disease pathophysiology is also covered to underscore the potential protective effects of polyphenols against NAFLD. Some of the prominent polyphenols described in the manuscript include aspalathin, berberine, catechins, chlorogenic acid, curcumin, genistein, piperine, quercetin, and resveratrol.
Collapse
Affiliation(s)
- Samukelisiwe C Shabalala
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| |
Collapse
|
39
|
Wang L, Deng L, Lin N, Shi Y, Chen J, Zhou Y, Chen D, Liu S, Li C. Berberine inhibits proliferation and apoptosis of vascular smooth muscle cells induced by mechanical stretch via the PDI/ERS and MAPK pathways. Life Sci 2020; 259:118253. [PMID: 32795536 DOI: 10.1016/j.lfs.2020.118253] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
AIMS We recently demonstrated that mechanical stretch increases the proliferation and apoptosis of vascular smooth muscle cells (VSMCs) by activating the protein disulfide isomerase (PDI) redox system, thus accelerating atherosclerotic lesion formation in the transplanted vein. At present, there are no efficient intervention measures to prevent this phenomenon. Berberine inhibits pathological vascular remodeling caused by hypertension, but the underlying mechanism is controversial. Herein, we investigate the role of berberine and the underlying mechanism of its effects on mechanical stretch-induced VSMC proliferation and apoptosis. MAIN METHODS Mouse VSMCs cultivated on flexible membranes were pretreated for 1 h with one of the following substances: berberine, PDI inhibitor bacitracin, MAPK inhibitors, or ERS inhibitor 4-PBA. VSMCs were then subjected to mechanical stretch. Immunofluorescence and western blot were used to detect proliferation and apoptosis, as well as to analyze signaling pathways in VSMCs. KEY FINDINGS Our results showed that berberine inhibits the PDI-endoplasmic reticulum stress system, thereby attenuating the simultaneous increase of VSMC proliferation and apoptosis in response to mechanical stretch. Interestingly, MAPK inhibitors PD98059, SP600125, and SB202190 significantly reduced the activation of ERS signaling cascades, and their combination with berberine had additive effects. The ERS inhibitor 4-PBA reduced PDI activation and ERS signaling, but not MAPK phosphorylation. Moreover, caspase-3 and caspase-12 were downregulated by berberine. SIGNIFICANCE These results illustrate a novel mechanism of action of berberine that has practical implications. Our data provide important insights for the prevention and treatment of vascular remodeling and diseases caused by mechanical stretching during hypertension.
Collapse
Affiliation(s)
- Linli Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Lie Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Ning Lin
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yi Shi
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Dadi Chen
- Experimental Center for Basic Medical Teaching, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
40
|
Zhang Z, Zhou L, Xie N, Nice EC, Zhang T, Cui Y, Huang C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Target Ther 2020; 5:113. [PMID: 32616710 PMCID: PMC7331117 DOI: 10.1038/s41392-020-00213-8] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ever present hurdles for the discovery of new drugs for cancer therapy have necessitated the development of the alternative strategy of drug repurposing, the development of old drugs for new therapeutic purposes. This strategy with a cost-effective way offers a rare opportunity for the treatment of human neoplastic disease, facilitating rapid clinical translation. With an increased understanding of the hallmarks of cancer and the development of various data-driven approaches, drug repurposing further promotes the holistic productivity of drug discovery and reasonably focuses on target-defined antineoplastic compounds. The "treasure trove" of non-oncology drugs should not be ignored since they could target not only known but also hitherto unknown vulnerabilities of cancer. Indeed, different from targeted drugs, these old generic drugs, usually used in a multi-target strategy may bring benefit to patients. In this review, aiming to demonstrate the full potential of drug repurposing, we present various promising repurposed non-oncology drugs for clinical cancer management and classify these candidates into their proposed administration for either mono- or drug combination therapy. We also summarize approaches used for drug repurposing and discuss the main barriers to its uptake.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Tao Zhang
- The School of Biological Science and Technology, Chengdu Medical College, 610083, Chengdu, China.
- Department of Oncology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, Sichuan, China.
| | - Yongping Cui
- Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, and Cancer Institute, Shenzhen Bay Laboratory Shenzhen, 518035, Shenzhen, China.
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
41
|
Xu C, Song D, Holck AL, Zhou Y, Liu R. Identifying Lipid Metabolites Influenced by Oleic Acid Administration Using High-Performance Liquid Chromatography-Mass Spectrometry-Based Lipidomics. ACS OMEGA 2020; 5:11314-11323. [PMID: 32478219 PMCID: PMC7254503 DOI: 10.1021/acsomega.9b04402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/14/2020] [Indexed: 05/09/2023]
Abstract
Oleic acid (OA), one of the most important monounsaturated fatty acids, possesses protective properties against chronic liver disease (CLD) development, but the underlying metabolic metabolism remains unknown. HPLC-MS-based lipidomics was utilized to identify and quantify the endogenously altered lipid metabolites when hepatocytes were exposed to OA administration. The identified lipids could be grouped into 22 lipid classes; of which, 10 classes were significantly influenced by the OA treatment: lysophosphatidylcholine (LPC), phosphatidylglycerol (PG), ceramides (Cer), hexosylceramides (Hex1Cer), dihexosylceramides (Hex2Cer), cholesterol ester (ChE), and coenzyme (Co) were decreased, while diglyceride (DG), triglyceride (TG), and acyl carnitine (AcCa) were increased. In addition, as the variable importance in projection (VIP) list (VIP > 1.0 and P < 0.05) showed, 478 lipid species showed significant difference with OA administration, and these molecules could be potential biomarkers in conjunction with OA administration. In summary, our results provided a novel perspective to understand the influences of OA administration by investigating endogenous altered levels of lipid metabolites via lipidomics.
Collapse
Affiliation(s)
- Chao Xu
- College
of Food Science and Technology, Nanjing
Agricultural University, Nanjing 210095, China
| | - Dan Song
- College
of Food Science and Technology, Nanjing
Agricultural University, Nanjing 210095, China
| | - Askild L. Holck
- NOFIMA
- Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, N-1431 Aas, Norway
| | - Youyou Zhou
- College
of Food Science and Technology, Nanjing
Agricultural University, Nanjing 210095, China
| | - Rong Liu
- College
of Food Science and Technology, Nanjing
Agricultural University, Nanjing 210095, China
- National
Center for International Research on Animal Gut Nutrition, Nanjing 210095, China
- Jiangsu
Collaborative Innovation Center of Meat Production and Processing, Nanjing 210095, China
| |
Collapse
|
42
|
Xia QS, Lu FE, Wu F, Huang ZY, Dong H, Xu LJ, Gong J. New role for ceramide in hypoxia and insulin resistance. World J Gastroenterol 2020; 26:2177-2186. [PMID: 32476784 PMCID: PMC7235208 DOI: 10.3748/wjg.v26.i18.2177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Ceramides are significant metabolic products of sphingolipids in lipid metabolism and are associated with insulin resistance and hepatic steatosis. In chronic inflammatory pathological conditions, hypoxia occurs, the metabolism of ceramide changes, and insulin resistance arises. Hypoxia-inducible factors (HIFs) are a family of transcription factors activated by hypoxia. In hypoxic adipocytes, HIF-1α upregulates pla2g16 (a novel HIF-1α target gene) gene expression to activate the NLRP3 inflammasome pathway and stimulate insulin resistance, and adipocyte-specific Hif1a knockout can ameliorate homocysteine-induced insulin resistance in mice. The study on the HIF-2α—NEU3—ceramide pathway also reveals the role of ceramide in hypoxia and insulin resistance in obese mice. Under obesity-induced intestinal hypoxia, HIF-2α increases the production of ceramide by promoting the expression of the gene Neu3 encoding sialidase 3, which is a key enzyme in ceramide synthesis, resulting in insulin resistance in high-fat diet-induced obese mice. Moreover, genetic and pathophysiologic inhibition of the HIF-2α—NEU3—ceramide pathway can alleviate insulin resistance, suggesting that these could be potential drug targets for the treatment of metabolic diseases. Herein, the effects of hypoxia and ceramide, especially in the intestine, on metabolic diseases are summarized.
Collapse
Affiliation(s)
- Qing-Song Xia
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fu-Er Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fan Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao-Yi Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Li-Jun Xu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
43
|
Berberine inhibits free fatty acid and LPS-induced inflammation via modulating ER stress response in macrophages and hepatocytes. PLoS One 2020; 15:e0232630. [PMID: 32357187 PMCID: PMC7194368 DOI: 10.1371/journal.pone.0232630] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammation plays an essential role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Berberine (BBR), an isoquinoline alkaloid isolated from Chinese medicinal herbs, has been widely used to treat various diseases, including liver diseases for hundreds of years. The previous studies have shown that BBR inhibits high fat-diet-induced steatosis and inflammation in rodent models of NAFLD. However, the underlying molecular mechanisms remain unclear. This study is aimed to identify the potential mechanisms by which BBR inhibits free fatty acid (FFA) and LPS-induced inflammatory response in mouse macrophages and hepatocytes. Mouse RAW264.7 macrophages and primary mouse hepatocytes were treated with palmitic acid (PA) or LPS or both with or without BBR (0–10 μM) for different periods (0–24 h). The mRNA and protein levels of proinflammatory cytokines (TNF-α, IL-6, IL-1β, MCP-1) and ER stress genes (CHOP, ATF4, XBP-1) were detected by real-time RT-PCR, Western blot and ELISA, respectively. The results indicated that BBR significantly inhibited PA and LPS-induced activation of ER stress and expression of proinflammatory cytokines in macrophages and hepatocytes. PA/LPS-mediated activation of ERK1/2 was inhibited by BBR in a dose-dependent manner. In summary, BBR inhibits PA/LPS-induced inflammatory responses through modulating ER stress-mediated ERK1/2 activation in macrophages and hepatocytes.
Collapse
|
44
|
Berberine combined with cyclosporine A alleviates acute graft-versus-host disease in murine models. Int Immunopharmacol 2020; 81:106205. [DOI: 10.1016/j.intimp.2020.106205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/25/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
|
45
|
Amini MR, Sheikhhossein F, Naghshi S, Djafari F, Askari M, Shahinfar H, Safabakhsh M, Jafari A, Shab-Bidar S. Effects of berberine and barberry on anthropometric measures: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2020; 49:102337. [PMID: 32147051 DOI: 10.1016/j.ctim.2020.102337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE Despite controversies, no study has systematically summarized findings from earlier studies on the effect of berberine and barberry on anthropometric measures. Therefore, the current systematic review and meta-analysis was conducted on the effect of berberine and barberry on body mass index (BMI), body weight (BW), waist circumference (WC) and waist-hip ratio (WHR) in adults. METHODS Relevant studies, published up to August 2019, were searched through PubMed/Medline, Scopus, ISI Web of Science, Embase and Google Scholar. All randomized clinical trials investigating the effect of berberine and barberry on the anthropometric measures including BMI, BW, WC or/and WHR were included. RESULTS Out of 252 citations, 12 trials that enrolled 849 subjects were included. Berberine and barberry resulted in no significant change in BMI (Weighted mean differences (WMD): -0.16 kg/m2; 95 % CI: -0.43 to 0.11, P = 0.247), BW (WMD: -0.11 kg; 95 % CI: -0.13 to 0.91, P = 0.830), and berberine resulted in not significant in WC (WMD: -0.58 cm; 95 % CI: -1.89 to 0.72, P = 0.379) and significant reduction in WHR (WMD: -0.03; 95 % CI: -0.04 to -0.01, P < 0.0001). CONCLUSION We found a significant reduction in WHR following berberine consumption in adults. Further clinical trials with high quality according to challenges mentioned seem to be helpful to use berberine and barberry as a supplement for certain health conditions, efficiently.
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sina Naghshi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farhang Djafari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammadreza Askari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Shahinfar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Safabakhsh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Alireza Jafari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
46
|
Mai W, Xu Y, Xu J, Zhao D, Ye L, Yu G, Wang Z, Lu Q, Lin J, Yang T, Gu C, Liu S, Zhong Y, Yang H. Berberine Inhibits Nod-Like Receptor Family Pyrin Domain Containing 3 Inflammasome Activation and Pyroptosis in Nonalcoholic Steatohepatitis via the ROS/TXNIP Axis. Front Pharmacol 2020; 11:185. [PMID: 32194416 PMCID: PMC7063468 DOI: 10.3389/fphar.2020.00185] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid originating from herbal plants, has been deemed beneficial for non-alcoholic fatty liver disease. Increasing evidence has demonstrated that Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and the subsequent pyroptosis contribute to the progression of non-alcoholic steatohepatitis (NASH). However, whether BBR impacts NLRP3 inflammasome activation and pyroptosis in NASH and the potential mechanism remains unclear. In the current study, we found that BBR significantly decreased lipid accumulation, ameliorated reactive oxygen species (ROS) and lipid peroxides, Tumor necrosis factor alpha (TNF-α) expression, and phosphorylation of Nuclear factor kappa B (NF-κB) p65 both in vivo and in vitro. In particular, BBR significantly inhibited NLRP3 expression, caspase-1 activity, and the pyroptosis executor, GSDMD-N, expression. In addition, BBR displayed similar inhibitory effects on NLRP3 inflammasome and pyroptosis with a decrease in ROS levels and TXNIP expression as N-acetyl-cysteine, a ROS scavenger, did. Whereas, the inhibitory effect of BBR on ROS, TXNIP expression, NLRP3 inflammasome activation and pyroptosis could be reversed by H2O2 in AML12 cells. This study demonstrates that BBR's inhibitory effect on NLRP3 inflammasome activation and pyroptosis may be mediated by ROS/TXNIP axis in vitro for the first time. Our findings suggest BBR is a potential candidate for the treatment of NASH.
Collapse
Affiliation(s)
- Weijian Mai
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yangzhi Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiahui Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dan Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liangying Ye
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ganxiang Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhilei Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianting Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaen Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengxin Gu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yun Zhong
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
47
|
Cheng C, Li Z, Zhao X, Liao C, Quan J, Bode AM, Cao Y, Luo X. Natural alkaloid and polyphenol compounds targeting lipid metabolism: Treatment implications in metabolic diseases. Eur J Pharmacol 2020; 870:172922. [DOI: 10.1016/j.ejphar.2020.172922] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 01/06/2023]
|
48
|
The effect of berberine supplementation on obesity indices: A dose- response meta-analysis and systematic review of randomized controlled trials. Complement Ther Clin Pract 2020; 39:101113. [PMID: 32379652 DOI: 10.1016/j.ctcp.2020.101113] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND and purpose: Clinical studies investigating the effects of berberine supplementation on anthropometric indices in humans have generated inconsistent results. Thus, the objective of this systematic review and meta-analysis was to clarify the effects of berberine supplementation on obesity indices in human subjects. METHODS Several online medical databases were systematically searched up to February 2019. All clinical trials exploring the effects of berberine supplementation on indices of obesity were included. The combined weighted mean difference (WMD) of eligible studies was assessed using a random-effects model. We evaluated publication bias by using the Egger's test. RESULTS Overall, 10 studies were included. The combined outcomes suggested a significant influence of berberine administration on body mass index (BMI) (WMD: -0.29 kg/m2, 95% CI: -0.51 to -0.08, p = 0.006) and waist circumference (WC) (WMD: -2.75 cm, 95% CI: -4.88 to -0.62, p = 0.01). However, berberine supplementation yielded no significant decline in body weight (BW) (WMD: -0.11 kg, 95% CI: -0.99 to 0.76, p = 0.79). Following the dose-response evaluation, berberine intake was found to significantly reduce BMI (r = -0.02) and WC (r = -0.72) based on treatment duration. CONCLUSION The results of the current study support the use of berberine supplementation for the improvement of obesity indices.
Collapse
|
49
|
Zheng H, Yang R, Wang Z, Wang J, Zhang J, Sun H. Characterization of pharmaceutic structured triacylglycerols by high-performance liquid chromatography/tandem high-resolution mass spectrometry and its application to structured fat emulsion injection. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8557. [PMID: 31429125 DOI: 10.1002/rcm.8557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Structured triacylglycerols (STAGs) are a complex mixture of triacylglycerols which are esterified by long-chain fatty acids and medium-chain fatty acids with the same glycerol molecular backbone. As a kind of lipid pharmaceutic excipients, STAGs are used in the pharmaceutical industry as major components of structured fat emulsion injections and play an important role in pharmaceutic energy material because they improve nutritional status with faster elimination in a safe way. The composition and proportion of triacylglycerols in STAGs are closely related to the stability of pharmaceutical preparations and curative effects in the clinic. Therefore, it is necessary to characterize pharmaceutic STAGs using a rapid and accurate method. METHODS An analytical method for rapid and accurate determination of triacylglycerols in pharmaceutic STAGs was developed using high-performance liquid chromatography/tandem high-resolution mass spectrometry (HPLC/HRMS). Triacylglycerol components could be well separated on a Waters Xterra MS C8 (2.1 × 100 mm, 3.5 μm) column. Four-dimensional HPLC/HRMS data (high-resolution m/z, MS2 data, retention time and isotopic intensity distribution) were used to identify triacylglycerols using Lipid Data Analyzer (LDA) software and the LIPID MAPS database. Then, these identified triacylglycerol components were relatively quantified by their corresponding normalized peak areas using representative standard curves of structurally similar standard substances. RESULTS Forty-seven kinds of triacylglycerol components in pharmaceutic STAGs and structured fat emulsion injection were identified and relatively quantified by this method. It has been shown that their retention times are in good correlation with the number of carbon atoms and carbon-carbon double bonds. The main components in pharmaceutic STAGs and structured fat emulsion injection were triacylglycerols containing both medium-chain fatty acids and long-chain fatty acids, while the other components, including triacylglycerols containing three medium-chain fatty acids and triacylglycerols containing three long-chain fatty acids, were relatively low. CONCLUSIONS This study has provided a rapid and accurate approach for the identification and quality control of pharmaceutic STAGs and structured fat emulsion injection and this approach can be extended to other lipid pharmaceutic excipients and used as an effective and reasonable control to guarantee the quality of pharmaceutical preparations.
Collapse
Affiliation(s)
- Hao Zheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Rui Yang
- National Institute For Food and Drug Control, Beijing, 100050, P.R. China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Jue Wang
- National Institute For Food and Drug Control, Beijing, 100050, P.R. China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Huimin Sun
- National Institute For Food and Drug Control, Beijing, 100050, P.R. China
| |
Collapse
|
50
|
Yan T, Yan N, Wang P, Xia Y, Hao H, Wang G, Gonzalez FJ. Herbal drug discovery for the treatment of nonalcoholic fatty liver disease. Acta Pharm Sin B 2020; 10:3-18. [PMID: 31993304 PMCID: PMC6977016 DOI: 10.1016/j.apsb.2019.11.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Few medications are available for meeting the increasing disease burden of nonalcoholic fatty liver disease (NAFLD) and its progressive stage, nonalcoholic steatohepatitis (NASH). Traditional herbal medicines (THM) have been used for centuries to treat indigenous people with various symptoms but without clarified modern-defined disease types and mechanisms. In modern times, NAFLD was defined as a common chronic disease leading to more studies to understand NAFLD/NASH pathology and progression. THM have garnered increased attention for providing therapeutic candidates for treating NAFLD. In this review, a new model called “multiple organs-multiple hits” is proposed to explain mechanisms of NASH progression. Against this proposed model, the effects and mechanisms of the frequently-studied THM-yielded single anti-NAFLD drug candidates and multiple herb medicines are reviewed, among which silymarin and berberine are already under U.S. FDA-sanctioned phase 4 clinical studies. Furthermore, experimental designs for anti-NAFLD drug discovery from THM in treating NAFLD are discussed. The opportunities and challenges of reverse pharmacology and reverse pharmacokinetic concepts-guided strategies for THM modernization and its global recognition to treat NAFLD are highlighted. Increasing mechanistic evidence is being generated to support the beneficial role of THM in treating NAFLD and anti-NAFLD drug discovery.
Collapse
Affiliation(s)
- Tingting Yan
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding authors.
| | - Nana Yan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yangliu Xia
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Corresponding authors.
| |
Collapse
|