1
|
Thi Hong Van N, Hyun Nam J. Intermediate conductance calcium-activated potassium channel (KCa3.1) in cancer: Emerging roles and therapeutic potentials. Biochem Pharmacol 2024; 230:116573. [PMID: 39396649 DOI: 10.1016/j.bcp.2024.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The KCa3.1 channel (also known as the KCNN4, IK1, or SK4 channel) is an intermediate-conductance calcium-activated potassium channel that regulates the membrane potential and maintains calcium homeostasis. Recently, KCa3.1 channels have attracted increasing attention because of their diverse roles in various types of cancers. In cancer cells, KCa3.1 channels regulate key processes, including cell proliferation, cell cycle, migration, invasion, tumor microenvironments, and therapy resistance. In addition, abnormal KCa3.1 expression in cancers is utilized to distinguish between tumor and normal tissues, classify cancer stages, and predict patient survival outcomes. This review comprehensively examines the current understanding of the contribution of KCa3.1 channels to tumor formation, metastasis, and its mechanisms. We evaluated the potential of KCa3.1 as a biomarker for cancer diagnosis and prognosis. Finally, we discuss the advances and challenges of applying KCa3.1 modulators in cancer treatment and propose approaches to overcome these obstacles. In summary, this review highlights the importance of this ion channel as a potent therapeutic target and prognostic biomarker of cancer.
Collapse
Affiliation(s)
- Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang 10326, Republic of Korea.
| |
Collapse
|
2
|
Liu X, Shen B, Zhou J, Hao J, Wang J. The L-type calcium channel CaV1.3: A potential target for cancer therapy. J Cell Mol Med 2024; 28:e70123. [PMID: 39365143 PMCID: PMC11451265 DOI: 10.1111/jcmm.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/11/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Cancer remains a prominent cause to life expectancy, and targeted cancer therapy stands as a pivotal approach in contemporary therapy. Calcium (Ca2+) signalling plays a multifaceted role in cancer progression, such as proliferation, invasion and distant metastasis. Otherwise, it also exerts an important influence on the efficacy of clinical treatment, including cancer therapy resistance. In this review we discuss the role of the L-type calcium channel CaV1.3 (calcium voltage-gated channel subunit alpha1 D) in different types of cancers, highlighting its potential as a therapeutic target for certain cancer types. The development of selective blockers of the CaV1.3 channel has been of great interest and is expected to be a new option for the treatment of cancers such as prostate cancer and endometrial cancer. We present the pharmacological properties of CaV1.3 and the current status of selective blocker development, and analyse the challenges and possible directions for breakthroughs in the development of tailored medicines.
Collapse
Affiliation(s)
- Xuerun Liu
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Boqiang Shen
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jingyi Zhou
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Juan Hao
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| | - Jianliu Wang
- Department of Gynecology and ObstetricsPeking University People's HospitalBeijingChina
| |
Collapse
|
3
|
Sheth M, Sharma M, Lehn M, Reza H, Takebe T, Takiar V, Wise-Draper T, Esfandiari L. Three-dimensional matrix stiffness modulates mechanosensitive and phenotypic alterations in oral squamous cell carcinoma spheroids. APL Bioeng 2024; 8:036106. [PMID: 39092008 PMCID: PMC11293878 DOI: 10.1063/5.0210134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Extracellular biophysical cues such as matrix stiffness are key stimuli tuning cell fate and affecting tumor progression in vivo. However, it remains unclear how cancer spheroids in a 3D microenvironment perceive matrix mechanical stiffness stimuli and translate them into intracellular signals driving progression. Mechanosensitive Piezo1 and TRPV4 ion channels, upregulated in many malignancies, are major transducers of such physical stimuli into biochemical responses. Most mechanotransduction studies probing the reception of changing stiffness cues by cells are, however, still limited to 2D culture systems or cell-extracellular matrix models, which lack the major cell-cell interactions prevalent in 3D cancer tumors. Here, we engineered a 3D spheroid culture environment with varying mechanobiological properties to study the effect of static matrix stiffness stimuli on mechanosensitive and malignant phenotypes in oral squamous cell carcinoma spheroids. We find that spheroid growth is enhanced when cultured in stiff extracellular matrix. We show that the protein expression of mechanoreceptor Piezo1 and stemness marker CD44 is upregulated in stiff matrix. We also report the upregulation of a selection of genes with associations to mechanoreception, ion channel transport, extracellular matrix organization, and tumorigenic phenotypes in stiff matrix spheroids. Together, our results indicate that cancer cells in 3D spheroids utilize mechanosensitive ion channels Piezo1 and TRPV4 as means to sense changes in static extracellular matrix stiffness, and that stiffness drives pro-tumorigenic phenotypes in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Manju Sharma
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Maria Lehn
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45219, USA
| | - HasanAl Reza
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology, and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
4
|
Yang J, Pu Z, Tao X, Liu J, Li K, Shi J, Qiao H, Fan X. Expression of KCNN4 in adult-type diffuse gliomas and its correlations with clinicopathological features and patient prognosis. Transl Oncol 2024; 44:101947. [PMID: 38555740 PMCID: PMC10998241 DOI: 10.1016/j.tranon.2024.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND The KCa3.1 channel (KCNN4) is extensively investigated as an oncogene in human cancers. The current study aimed to explore the clinicopathological significance of KCNN4 expression in patients with primary adult-type diffuse gliomas. METHODS Demographic, RNA-seq, and follow-up data of 477 patients were retrospectively reviewed. Patients were divided into the experimental and validation groups (278 and 199). KCNN4-related genes were determined by Pearson correlation analysis, and enrichment analyses and tumor-infiltrating immune cell assessments were applied to explore the potential mechanisms of KCNN4 involving glioma progression. The Kaplan-Meier method and the Cox regression analysis were used to evaluate the prognostic value of KCNN4 expression. RESULTS KCNN4 showed significantly higher expression level in glioblastoma, IDH-wildtype, followed by astrocytoma, IDH-mutant and oligodendroglioma, IDH-mutant and 1p/19q-codeleted (p < 0.001). Enrichment analyses and tumor-infiltrating immune cell assessments suggested that KCNN4 could involve glioma progression through extracellular regulation, affecting immune response, and modulating subcellular trafficking. At last, the Kaplan-Meier analysis showed that high KCNN4 expression was significantly correlated with poor progression-free and overall survival (p < 0.001 for both). While multivariate Cox regression analysis obtained an insignificant result. CONCLUSIONS KCNN4 was identified to be overexpressed in glioma cells and its expression level is positively related to tumor malignancy. It potentially participates in glioma biology by affecting extracellular regulation, subcellular trafficking, and immune escape. Additionally, high KCNN4 expression was correlated with poor survival outcomes of patients. The results can shed new light on the mechanisms of glioma progression, and provide a potential therapeutic target for treating gliomas.
Collapse
Affiliation(s)
- Jun Yang
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China
| | - Zhuonan Pu
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China
| | - Xiaorong Tao
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China
| | - Jiajia Liu
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China
| | - Ke Li
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China
| | - Jiawei Shi
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China
| | - Hui Qiao
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China.
| | - Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, 119 South 4th Ring Road West, Beijing 100070, China.
| |
Collapse
|
5
|
Antoniazzi CTDD, Ruviaro NA, Peres DS, Rodrigues P, Viero FT, Trevisan G. Targeting TRPV4 Channels for Cancer Pain Relief. Cancers (Basel) 2024; 16:1703. [PMID: 38730655 PMCID: PMC11083562 DOI: 10.3390/cancers16091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Despite the unique and complex nature of cancer pain, the activation of different ion channels can be related to the initiation and maintenance of pain. The transient receptor potential vanilloid 4 (TRPV4) is a cation channel broadly expressed in sensory afferent neurons. This channel is activated by multiple stimuli to mediate pain perception associated with inflammatory and neuropathic pain. Here, we focused on summarizing the role of TRPV4 in cancer etiology and cancer-induced pain mechanisms. Many studies revealed that the administration of a TRPV4 antagonist and TRPV4 knockdown diminishes nociception in chemotherapy-induced peripheral neuropathy (CIPN). Although the evidence on TRPV4 channels' involvement in cancer pain is scarce, the expression of these receptors was reportedly enhanced in cancer-induced bone pain (CIBP), perineural, and orofacial cancer models following the inoculation of tumor cells to the bone marrow cavity, sciatic nerve, and tongue, respectively. Effective pain management is a continuous problem for patients diagnosed with cancer, and current guidelines fail to address a mechanism-based treatment. Therefore, examining new molecules with potential antinociceptive properties targeting TRPV4 modulation would be interesting. Identifying such agents could lead to the development of treatment strategies with improved pain-relieving effects and fewer adverse effects than the currently available analgesics.
Collapse
Affiliation(s)
- Caren Tatiane de David Antoniazzi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Náthaly Andrighetto Ruviaro
- Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil;
| | - Diulle Spat Peres
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Patrícia Rodrigues
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Fernanda Tibolla Viero
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
- Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil;
| |
Collapse
|
6
|
Wang C, He Z. Integrating bulk and single-cell RNA sequencing data reveals epithelial-mesenchymal transition molecular subtype and signature to predict prognosis, immunotherapy efficacy, and drug candidates in low-grade gliomas. Front Pharmacol 2023; 14:1276466. [PMID: 38053842 PMCID: PMC10694300 DOI: 10.3389/fphar.2023.1276466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Objective: Epithelial-mesenchymal transition (EMT) is a tightly regulated and dynamic process occurring in both embryonic development and tumor progression. Our study aimed to comprehensively explore the molecular subtypes, immune landscape, and prognostic signature based on EMT-related genes in low-grade gliomas (LGG) in order to facilitate treatment decision-making and drug discovery. Methods: We curated EMT-related genes and performed molecular subtyping with consensus clustering algorithm to determine EMT expression patterns in LGG. The infiltration level of diverse immune cell subsets was evaluated by implementing the single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE algorithms. The distinctions in clinical characteristics, mutation landscape, and immune tumor microenvironment (TME) among the subtypes were subjected to further investigation. Gene Set Variation Analysis (GSVA) was performed to explore the biological pathways that were involved in subtypes. The chemo drug sensitivity and immunotherapy of subtypes were estimated through GDSC database and NTP algorithm. To detect EMT subtype-related prognostic gene modules, the analysis of weighted gene co-expression network (WGCNA) was performed. The LASSO algorithm was utilized to construct a prognostic risk model, and its efficacy was verified through an independent CGGA dataset. Finally, the expression of the hub genes from the prognostic model was evaluated through the single-cell dataset and in-vitro experiment. Results: The TCGA-LGG dataset revealed the creation of two molecular subtypes that presented different prognoses, clinical implications, TME, mutation landscapes, chemotherapy, and immunotherapy. A three-gene signature (SLC39A1, CTSA and CLIC1) based on EMT expression pattern were established through WGCNA analysis. Low-risk patients showed a positive outlook, increased immune cell presence, and higher expression of immune checkpoint proteins. In addition, several promising drugs, including birinapant, fluvastatin, clofarabine, dasatinib, tanespimycin, TAK-733, GDC-0152, AZD8330, trametinib and ingenol-mebutate had great potential to the treatment of high risk patients. Finally, CTSA and CLIC1 were highly expressed in monocyte cell through single-cell RNA sequencing analysis. Conclusion: Our research revealed non-negligible role of EMT in the TME diversity and complexity of LGG. A prognostic signature may contribute to the personalized treatment and prognostic determination.
Collapse
Affiliation(s)
- Chengcheng Wang
- Department of Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Zheng He
- Department of Neurosurgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Wang C, He Z. Multi-omics analysis reveals CLIC1 as a therapeutic vulnerability of gliomas. Front Pharmacol 2023; 14:1279370. [PMID: 38027011 PMCID: PMC10663228 DOI: 10.3389/fphar.2023.1279370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Despite advances in comprehending cancer biology, malignant gliomas remain incurable. The present work conducted a multi-omics analysis for investigating the significance of chloride intracellular channel 1 (CLIC1) in gliomas. Methods: Multi-omics data of glioma covering transcriptomics, genomics, DNA methylation and single-cell transcriptomics from multiple public cohorts were enrolled for analyzing CLIC1. In vitro experiments were conducted to measure apoptosis and cell mobility in U251 and U373 glioma cells following transfection of CLIC1 siRNAs. Results: Elevated CLIC1 expression was proven to stably and independently estimate worse survival outcomes. CLIC1 expression was higher in more advanced stage, wild-type IDH and unmethylated MGMT samples. Tumorigenic and anticancer immunity pathways were remarkably enriched in CLIC1-up-regulated tumors. Additionally, CLIC1 was positively linked with cancer-immunity cycle, stromal activation, DNA damage repair and cell cycle. Suppressing CLIC1 resulted in apoptosis and attenuated cell motility of glioma cells. More frequent genomic alterations were found in CLIC1-up-regulated tumors. CLIC1 expression presented a remarkably negative connection to DNA methylation. High CLIC1 expression samples were more sensitive to camptothecin, cisplatin, doxorubicin, erlotinib, paclitaxel, rapamycin, clofarabine, tanespimycin, methotrexate, everolimus, TAK-733, trametinib and AZD8330. Tumors with upregulated CLIC1 presented abundant immune cell infiltration, higher expression of immune-checkpoints and -modulators and similar transcriptome profiling, indicative of well response to immune-checkpoint blockade (ICB). Nevertheless, due to elevated TIDE score, tumors with CLIC1 upregulation appeared to be resistant to ICB. Single-cell analysis unveiled that CLIC1 was expressed ubiquitously in tumor cells and tumor microenvironment. Conclusions: Overall, CLIC1 was a promising treatment vulnerability in glioma.
Collapse
Affiliation(s)
- Chengcheng Wang
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Zheng He
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Xu Y, Wang D, Zhao G. Potassium voltage‑gated channel subfamily E member 4 facilitates the malignant progression of colon cancer by enhancing EGF containing fibulin extracellular matrix protein 2 expression. Exp Ther Med 2023; 26:392. [PMID: 37456174 PMCID: PMC10347171 DOI: 10.3892/etm.2023.12091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/28/2023] [Indexed: 07/18/2023] Open
Abstract
Colon cancer is a highly invasive and metastatic cancer with a poor prognosis. The University of Alabama at Birmingham Cancer data analysis portal (UALCAN) database indicates that potassium voltage-gated channel subfamily E member 4 (KCNE4) is highly expressed in colon cancer tissues. UALCAN data also show that KCNE4 expression is positively associated with individual cancer stages and negatively associated with patient survival. Therefore, the aim of the current study was to elucidate the functional role of KCNE4 in the biological behaviors of colon cancer cells and to investigate the underlying molecular mechanism. The gene EGF containing fibulin extracellular matrix protein 2 (EFEMP2) was found to be positively correlated with KCNE4 in colon cancer based on analysis performed using the LinkedOmics database; notably, upregulated EFEMP2 expression has been reported to be closely associated with the malignant phenotypes of colon cancer cells. The differences in the expression levels of KCNE4 and EFEMP2 between human colon cancer and normal colonic mucosa cell lines were assessed via reverse transcription-quantitative PCR and western blot assays. In addition, the proliferation, migration and invasion of colon cancer cells were determined using Cell Counting kit-8, colony formation, would healing and Transwell assays, and a co-immunoprecipitation assay was performed to confirm the interaction between KCNE4 and EFEMP2. The results of the study demonstrated that KCNE4 and EFEMP2 are markedly upregulated in colon cancer cells. In addition, KCNE4 interacted with and bound to EFEMP2. The suppressive effects of KCNE4 knockdown on the proliferation, colony formation, migration and invasion of colon cancer cells were attenuated by EFEMP2 overexpression. On the basis of these findings, it may be concluded that KCNE4 acts as an oncogene in colon cancer via the promotion of EFEMP2 expression.
Collapse
Affiliation(s)
- Yujie Xu
- Department of Gastrointestinal Surgery, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Dingmao Wang
- Department of Gastrointestinal Surgery, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Guodong Zhao
- Department of Gastrointestinal Surgery, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| |
Collapse
|
9
|
McKerr N, Mohd-Sarip A, Dorrian H, Breen C, A James J, McQuaid S, Mills IG, McCloskey KD. CACNA1D overexpression and voltage-gated calcium channels in prostate cancer during androgen deprivation. Sci Rep 2023; 13:4683. [PMID: 36949059 PMCID: PMC10033880 DOI: 10.1038/s41598-023-28693-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/23/2023] [Indexed: 03/24/2023] Open
Abstract
Prostate cancer is often treated by perturbing androgen receptor signalling. CACNA1D, encoding CaV1.3 ion channels is upregulated in prostate cancer. Here we show how hormone therapy affects CACNA1D expression and CaV1.3 function. Human prostate cells (LNCaP, VCaP, C4-2B, normal RWPE-1) and a tissue microarray were used. Cells were treated with anti-androgen drug, Enzalutamide (ENZ) or androgen-removal from media, mimicking androgen-deprivation therapy (ADT). Proliferation assays, qPCR, Western blot, immunofluorescence, Ca2+-imaging and patch-clamp electrophysiology were performed. Nifedipine, Bay K 8644 (CaV1.3 inhibitor, activator), mibefradil, Ni2+ (CaV3.2 inhibitors) and high K+ depolarising solution were employed. CACNA1D and CaV1.3 protein are overexpressed in prostate tumours and CACNA1D was overexpressed in androgen-sensitive prostate cancer cells. In LNCaP, ADT or ENZ increased CACNA1D time-dependently whereas total protein showed little change. Untreated LNCaP were unresponsive to depolarising high K+/Bay K (to activate CaV1.3); moreover, currents were rarely detected. ADT or ENZ-treated LNCaP exhibited nifedipine-sensitive Ca2+-transients; ADT-treated LNCaP exhibited mibefradil-sensitive or, occasionally, nifedipine-sensitive inward currents. CACNA1D knockdown reduced the subpopulation of treated-LNCaP with CaV1.3 activity. VCaP displayed nifedipine-sensitive high K+/Bay K transients (responding subpopulation was increased by ENZ), and Ni2+-sensitive currents. Hormone therapy enables depolarization/Bay K-evoked Ca2+-transients and detection of CaV1.3 and CaV3.2 currents. Physiological and genomic CACNA1D/CaV1.3 mechanisms are likely active during hormone therapy-their modulation may offer therapeutic advantage.
Collapse
Affiliation(s)
- Niamh McKerr
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
| | - Adone Mohd-Sarip
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
| | - Hannah Dorrian
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
| | - Conor Breen
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
| | - Jacqueline A James
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
| | - Stephen McQuaid
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
| | - Ian G Mills
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK
- Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Headley Way, OX3 9DU, UK
| | - Karen D McCloskey
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK.
| |
Collapse
|
10
|
Thale I, Maskri S, Grey L, Todesca LM, Budde T, Maisuls I, Strassert CA, Koch O, Schwab A, Wünsch B. Imaging of K Ca 3.1 Channels in Tumor Cells with PET and Small-Molecule Fluorescent Probes. ChemMedChem 2023; 18:e202200551. [PMID: 36315933 PMCID: PMC10098740 DOI: 10.1002/cmdc.202200551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/31/2022] [Indexed: 01/20/2023]
Abstract
The Ca2+ activated K+ channel KCa 3.1 is overexpressed in several human tumor cell lines, e. g. clear cell renal carcinoma, prostate cancer, non-small cell lung cancer. Highly aggressive cancer cells use this ion channel for key processes of the metastatic cascade such as migration, extravasation and invasion. Therefore, small molecules, which are able to image this KCa 3.1 channel in vitro and in vivo represent valuable diagnostic and prognostic tool compounds. The [18 F]fluoroethyltriazolyl substituted senicapoc was used as positron emission tomography (PET) tracer and showed promising properties for imaging of KCa 3.1 channels in lung adenocarcinoma cells in mice. The novel senicapoc BODIPY conjugates with two F-atoms (9 a) and with a F-atom and a methoxy moiety (9 b) at the B-atom led to the characteristic punctate staining pattern resulting from labeling of single KCa 3.1 channels in A549-3R cells. This punctate pattern was completely removed by preincubation with an excess of senicapoc confirming the high specificity of KCa 3.1 labeling. Due to the methoxy moiety at the B-atom and the additional oxyethylene unit in the spacer, 9 b exhibits higher polarity, which improves solubility and handling without reduction of fluorescence quantum yield. Docking studies using a cryo-electron microscopy (EM) structure of the KCa 3.1 channel confirmed the interaction of 9 a and 9 b with a binding pocket in the channel pore.
Collapse
Affiliation(s)
- Insa Thale
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, 48149, Münster, Germany
| | - Sarah Maskri
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, 48149, Münster, Germany
| | - Lucie Grey
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, 48149, Münster, Germany
| | - Luca Matteo Todesca
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Universitätsklinikum Münster, Institute of Physiology II, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Thomas Budde
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Universitätsklinikum Münster, Institute of Physiology I, Robert-Koch-Straße 27a, 48149, Münster, Germany
| | - Ivan Maisuls
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie CiMIC, SoN, Corrensstraße 28, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, CeNTech, Heisenbergstraße 11, 48149, Münster, Germany
| | - Cristian A Strassert
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie CiMIC, SoN, Corrensstraße 28, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, CeNTech, Heisenbergstraße 11, 48149, Münster, Germany
| | - Oliver Koch
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, 48149, Münster, Germany
| | - Albrecht Schwab
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Universitätsklinikum Münster, Institute of Physiology II, Robert-Koch-Straße 27b, 48149, Münster, Germany
| | - Bernhard Wünsch
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Corrensstraße 48, 48149, Münster, Germany.,Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, 48149, Münster, Germany
| |
Collapse
|
11
|
Li R, Tao T, Ren Q, Xie S, Gao X, Wu J, Chen D, Xu C. Key Genes Are Associated with the Prognosis of Glioma, and Melittin Can Regulate the Expression of These Genes in Glioma U87 Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1-18. [PMID: 39281062 PMCID: PMC11401668 DOI: 10.1155/2022/7033478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glioma is the most common primary tumor of the central nervous system. Currently, there is no effective treatment for glioma. Melittin (MT) is the main component of bee venom, which was found to have therapeutic effects on a variety of tumors. In this study, we explored the relationship between key genes regulated by MT and the prognosis of glioma. In cultured glioma U87 and U251 cells, MT inhibited cell proliferation and induces cell apoptosis in a time- and concentration-dependent manner. RNA-seq revealed that MT upregulated 11 genes and downregulated 37 genes. These genes are mainly enriched in cell membrane signaling pathways, such as surface membrane, membrane-enclosed organelles, integral component of membrane, PPAR signaling pathway, and voltage-gated potassium channel. PPI network analysis and literature analysis of 48 genes were performed, and 8 key genes were identified, and these key genes were closely associated with clinical prognosis. Overexpression of PCDH18, PPL, DEPP1, VASN, KCNE4, MYBPH, and C5AR2 genes or low expression of MARCH4 gene in glioma patients was associated with poor survival. qPCR confirmed that MT can regulate the expression of these genes in glioma U87 cells. This study indicated that MT significantly inhibited the growth and regulated the expression of PCDH18, C5AR2, VASN, DEPP1, MYBPH, KCNE4, PPL, and MARCH4 genes in glioma U87 cells in vitro. These genes are closely related to the prognosis of patients with glioma and can be used as independent prognostic factors in patients with glioma. MT is a potential drug for the treatment of glioma.
Collapse
Affiliation(s)
- Ran Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 288 Daxue Road, Shaoguan, 512005 Guangdong Province, China
- Medical College of Shaoguan University, 108 XinHua Nan Road, Shaoguan, 512005 Guangdong Province, China
- Hunan Yueyang Maternal & Child Health-Care Hospital, 693 Baling Middle Road, Yueyang, 414000 Hunan Province, China
| | - Ting Tao
- Hunan Yueyang Maternal & Child Health-Care Hospital, 693 Baling Middle Road, Yueyang, 414000 Hunan Province, China
| | - Qiuyun Ren
- Brain Function and Disease Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong Province, China
| | - Sujun Xie
- Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405 Guangdong Province, China
| | - Xiaofen Gao
- Medical College of Shaoguan University, 108 XinHua Nan Road, Shaoguan, 512005 Guangdong Province, China
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong Province, China
| | - Diling Chen
- Guangzhou Laboratory, 9 XingDao HuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005 Guangdong Province, China
| | - Changqiong Xu
- Medical College of Shaoguan University, 108 XinHua Nan Road, Shaoguan, 512005 Guangdong Province, China
- Hunan Yueyang Maternal & Child Health-Care Hospital, 693 Baling Middle Road, Yueyang, 414000 Hunan Province, China
| |
Collapse
|
12
|
Li Y, Rahman T, Ma T, Tang L, Tseng GC. A sparse negative binomial mixture model for clustering RNA-seq count data. Biostatistics 2022; 24:68-84. [PMID: 34363675 PMCID: PMC9766880 DOI: 10.1093/biostatistics/kxab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022] Open
Abstract
Clustering with variable selection is a challenging yet critical task for modern small-n-large-p data. Existing methods based on sparse Gaussian mixture models or sparse $K$-means provide solutions to continuous data. With the prevalence of RNA-seq technology and lack of count data modeling for clustering, the current practice is to normalize count expression data into continuous measures and apply existing models with a Gaussian assumption. In this article, we develop a negative binomial mixture model with lasso or fused lasso gene regularization to cluster samples (small $n$) with high-dimensional gene features (large $p$). A modified EM algorithm and Bayesian information criterion are used for inference and determining tuning parameters. The method is compared with existing methods using extensive simulations and two real transcriptomic applications in rat brain and breast cancer studies. The result shows the superior performance of the proposed count data model in clustering accuracy, feature selection, and biological interpretation in pathways.
Collapse
Affiliation(s)
- Yujia Li
- Department of Biostatistics, University of Pittsburgh,
Pittsburgh, PA 15261, USA
| | - Tanbin Rahman
- Department of Biostatistics, University of Pittsburgh,
Pittsburgh, PA 15261, USA
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, University of
Maryland, College Park, MD 20742, USA
| | | | - George C Tseng
- Department of Biostatistics, University of Pittsburgh,
Pittsburgh, PA 15261, USA
| |
Collapse
|
13
|
Weiss M, Nikisher B, Haran H, Tefft K, Adams J, Edwards JG. High throughput screen of small molecules as potential countermeasures to galactic cosmic radiation induced cellular dysfunction. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:76-87. [PMID: 36336373 DOI: 10.1016/j.lssr.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 06/16/2023]
Abstract
Space travel increases galactic cosmic ray exposure to flight crews and this is significantly elevated once travel moves beyond low Earth orbit. This includes combinations of high energy protons and heavy ions such as 56Fe or 16O. There are distinct differences in the biological response to low-energy transfer (x-rays) or high-energy transfer (High-LET). However, given the relatively low fluence rate of exposure during flight operations, it might be possible to manage these deleterious effects using small molecules currently available. Virtually all reports to date examining small molecule management of radiation exposure are based on low-LET challenges. To that end an FDA approved drug library (725 drugs) was used to perform a high throughput screen of cultured cells following exposure to galactic cosmic radiation. The H9c2 myoblasts, ES-D3 pluripotent cells, and Hy926 endothelial cell lines were exposed to a single exposure (75 cGy) using the 5-ion GCRsim protocol developed at the NASA Space Radiation Laboratory (NSRL). Following GCR exposure cells were maintained for up to two weeks. For each drug (@10µM), a hierarchical cumulative score was developed incorporating measures of mitochondrial and cellular function, oxidant stress and cell senescence. The top 160 scores were retested following a similar protocol using 1µM of each drug. Within the 160 drugs, 33 are considered to have an anti-inflammatory capacity, while others also indirectly suppressed pro-inflammatory pathways or had noted antioxidant capacity. Lead candidates came from different drug classes that included angiotensin converting enzyme inhibitors or AT1 antagonists, COX2 inhibitors, as well as drugs mediated by histamine receptors. Surprisingly, different classes of anti-diabetic medications were observed to be useful including sulfonylureas and metformin. Using a hierarchical decision structure, we have identified several lead candidates. That no one drug or even drug class was completely successful across all parameters tested suggests the complexity of managing the consequences of galactic cosmic radiation exposure.
Collapse
Affiliation(s)
- M Weiss
- Department of Physiology, New York Medical College, Valhalla, New York
| | - B Nikisher
- Department of Physiology, New York Medical College, Valhalla, New York
| | - H Haran
- Department of Physiology, New York Medical College, Valhalla, New York
| | - K Tefft
- Department of Physiology, New York Medical College, Valhalla, New York
| | - J Adams
- Department of Physiology, New York Medical College, Valhalla, New York
| | - J G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York.
| |
Collapse
|
14
|
Giampietri C, Scatozza F, Crecca E, Vigiano Benedetti V, Natali PG, Facchiano A. Analysis of gene expression levels and their impact on survival in 31 cancer-types patients identifies novel prognostic markers and suggests unexplored immunotherapy treatment options in a wide range of malignancies. J Transl Med 2022; 20:467. [PMID: 36224560 PMCID: PMC9559014 DOI: 10.1186/s12967-022-03670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunotherapy has dramatically improved cancer treatment by inhibiting or activating specific cell receptors, thus unleashing the host anti-tumor response. However, the engagement of the three main immune checkpoints so far identified, CTLA4, PD-1 and PD-L1, is effective in a fraction of patients, therefore novel targets must be identified and tested. METHODS We focused our attention on the following nine highly relevant immune checkpoint (ICR) receptors: CTLA4, PD1, PD-L1, LAG3, TIM3, OX40, GITR, 4-1BB and TIGIT. All of them are targets of existing drugs currently under clinical scrutiny in several malignancies. Their expression levels were evaluated in patient tissues of 31 different cancer types vs. proper controls, in a total of 15,038 individuals. This analysis was carried out by interrogating public databases available on GEPIA2 portal and UALCAN portal. By the Principal Component Analysis (PCA) their ability to effectively discriminate patients form controls was then investigated. Expression of the nine ICRs was also related to overall survival in 31 cancer types and expressed as Hazard Ratio, on the GEPIA2 portal and validated, for melanoma patients, in patients-datasets available on PROGgene V2 portal. RESULTS Significant differential expression was observed for each ICR molecule in many cancer types. A 7-molecules profile was found to specifically discriminate melanoma patients from controls, while two different 6-molecules profiles discriminate pancreatic cancer patients and Testicular Germ Cell Tumors from matched controls. Highly significant survival improvement was found to be related to the expression levels of all nine ICRs in a wide spectrum of malignancies. For melanoma analysis, the relation with survival observed in TCGA datasets was validated in independent GSE melanoma datasets. CONCLUSION Analysis the nine ICR molecules demonstrates that their expression patterns may be considered as markers of disease and strong survival predictors in a variety of malignancies frequently associated to poor prognosis. Thus, the present findings are strongly advocating that exploratory clinical trials are worth to be performed, using available drugs, targeting these molecules.
Collapse
Affiliation(s)
- Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Human Anatomy, Sapienza University of Rome, Rome, Italy
| | - Francesca Scatozza
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | - Elena Crecca
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | - Virginia Vigiano Benedetti
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | | | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy.
| |
Collapse
|
15
|
Feldmann D, Bope CD, Patricios J, Chimusa ER, Collins M, September AV. A whole genome sequencing approach to anterior cruciate ligament rupture-a twin study in two unrelated families. PLoS One 2022; 17:e0274354. [PMID: 36201451 PMCID: PMC9536556 DOI: 10.1371/journal.pone.0274354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/25/2022] [Indexed: 11/06/2022] Open
Abstract
Predisposition to anterior cruciate ligament (ACL) rupture is multi-factorial, with variation in the genome considered a key intrinsic risk factor. Most implicated loci have been identified from candidate gene-based approach using case-control association settings. Here, we leverage a hypothesis-free whole genome sequencing in two two unrelated families (Family A and B) each with twins with a history of recurrent ACL ruptures acquired playing rugby as their primary sport, aimed to elucidate biologically relevant function-altering variants and genetic modifiers in ACL rupture. Family A monozygotic twin males (Twin 1 and Twin 2) both sustained two unilateral non-contact ACL ruptures of the right limb while playing club level touch rugby. Their male sibling sustained a bilateral non-contact ACL rupture while playing rugby union was also recruited. The father had sustained a unilateral non-contact ACL rupture on the right limb while playing professional amateur level football and mother who had participated in dancing for over 10 years at a social level, with no previous ligament or tendon injuries were both recruited. Family B monozygotic twin males (Twin 3 and Twin 4) were recruited with Twin 3 who had sustained a unilateral non-contact ACL rupture of the right limb and Twin 4 sustained three non-contact ACL ruptures (two in right limb and one in left limb), both while playing provincial level rugby union. Their female sibling participated in karate and swimming activities; and mother in hockey (4 years) horse riding (15 years) and swimming, had both reported no previous history of ligament or tendon injury. Variants with potential deleterious, loss-of-function and pathogenic effects were prioritised. Identity by descent, molecular dynamic simulation and functional partner analyses were conducted. We identified, in all nine affected individuals, including twin sets, non-synonymous SNPs in three genes: COL12A1 and CATSPER2, and KCNJ12 that are commonly enriched for deleterious, loss-of-function mutations, and their dysfunctions are known to be involved in the development of chronic pain, and represent key therapeutic targets. Notably, using Identity By Decent (IBD) analyses a long shared identical sequence interval which included the LINC01250 gene, around the telomeric region of chromosome 2p25.3, was common between affected twins in both families, and an affected brother'. Overall gene sets were enriched in pathways relevant to ACL pathophysiology, including complement/coagulation cascades (p = 3.0e-7), purine metabolism (p = 6.0e-7) and mismatch repair (p = 6.9e-5) pathways. Highlighted, is that this study fills an important gap in knowledge by using a WGS approach, focusing on potential deleterious variants in two unrelated families with a historical record of ACL rupture; and providing new insights into the pathophysiology of ACL, by identifying gene sets that contribute to variability in ACL risk.
Collapse
Affiliation(s)
- Daneil Feldmann
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Christian D. Bope
- Department of Mathematics and Computer Science, Faculty of Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Jon Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Emile R. Chimusa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear, United Kingdom
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Malcolm Collins
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- UCT Research Centre for Health Through Physical Activity, Lifestyle and Sport (HPALS), Cape Town, South Africa
- International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, Cape Town, South Africa
| | - Alison V. September
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- UCT Research Centre for Health Through Physical Activity, Lifestyle and Sport (HPALS), Cape Town, South Africa
- International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
16
|
Pandey P, Khan F, Qari HA, Upadhyay TK, Alkhateeb AF, Oves M. Evidence of Metallic and Polyether Ionophores as Potent Therapeutic Drug Candidate in Cancer Management. Molecules 2022; 27:4708. [PMID: 35897885 PMCID: PMC9329979 DOI: 10.3390/molecules27154708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer remains one of the most crucial human malignancies with a higher mortality rate globally, and is predicted to escalate soon. Dysregulated ion homeostasis in cancerous cells prompted the researchers to investigate further ion homeostasis impeding agents as potent anticancerous agents. Reutilization of FDA-approved non-cancerous drugs has emerged as a practical approach to developing potent, cost-effective drugs for cancer treatment. Across the globe, most nations are incapable of fulfilling the medical demands of cancer patients due to costlier cancerous drugs. Therefore, we have inclined our review towards emphasizing recent advancements in cancer therapies involving ionophores utilization in exploring potent anticancer drugs. Numerous research reports have established the significant anticancerous potential of ionophores in several pre-clinical reports via modulating aberrant cell signaling pathways and enhancing antitumor immunity in immune cells. This review has mainly summarized the most significant ion homeostasis impeding agents, including copper, zinc, calcium, and polyether, that presented remarkable potential in cancer therapeutics via enhanced antitumor immunity and apoptosis induction. Altogether, this study could provide a robust future perspective for developing cost-effective anticancerous drugs rapidly and cost-effectively, thereby combating the limitations of currently available drugs used in cancer treatment.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India;
| | - Huda A. Qari
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India;
| | - Abdulhameed F. Alkhateeb
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
17
|
Saltarella I, Altamura C, Lamanuzzi A, Apollonio B, Vacca A, Frassanito MA, Desaphy JF. Ion Channels in Multiple Myeloma: Pathogenic Role and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23137302. [PMID: 35806308 PMCID: PMC9266328 DOI: 10.3390/ijms23137302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Ion channels are pore-forming proteins that allow ions to flow across plasma membranes and intracellular organelles in both excitable and non-excitable cells. They are involved in the regulation of several biological processes (i.e., proliferation, cell volume and shape, differentiation, migration, and apoptosis). Recently, the aberrant expression of ion channels has emerged as an important step of malignant transformation, tumor progression, and drug resistance, leading to the idea of “onco-channelopathy”. Here, we review the contribution of ion channels and transporters in multiple myeloma (MM), a hematological neoplasia characterized by the expansion of tumor plasma cells (MM cells) in the bone marrow (BM). Deregulation of ion channels sustains MM progression by modulating intracellular pathways that promote MM cells’ survival, proliferation, and drug resistance. Finally, we focus on the promising role of ion channels as therapeutic targets for the treatment of MM patients in a combination strategy with currently used anti-MM drugs to improve their cytotoxic activity and reduce adverse effects.
Collapse
Affiliation(s)
- Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Benedetta Apollonio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari Aldo Moro Medical School, I-70124 Bari, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, University of Bari Aldo Moro Medical School, Piazza Giulio Cesare 11, I-70124 Bari, Italy
| |
Collapse
|
18
|
Chen S, Su X, Mo Z. KCNN4 is a Potential Biomarker for Predicting Cancer Prognosis and an Essential Molecule that Remodels Various Components in the Tumor Microenvironment: A Pan-Cancer Study. Front Mol Biosci 2022; 9:812815. [PMID: 35720112 PMCID: PMC9205469 DOI: 10.3389/fmolb.2022.812815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives: Potassium Calcium-Activated Channel Subfamily N Member 4 (KCNN4) is a member of the KCNN family. Studies have revealed that KCNN4 is implicated in various physiological processes as well as promotes the malignant phenotypes of cancer cells. However, little is known about its associations with survival outcomes across varying cancer types. Methods: Herein, we systematically explored the prognostic value of KCNN4 in the pan-cancer dataset retrieved from multiple databases. Next, we performed correlation analysis of KCNN4 expression with tumor mutational burden (TMB) and microsatellite instability (MSI), and immune checkpoint genes (ICGs) to assess its potential as a predictor of immunotherapy efficacy. Afterwards, patients were divided into increased-risk group and decreased-risk group based on the contrasting survival outcomes in various cancer types. Furthermore, the underlying mechanisms of the distinctive effects were analyzed using ESTIMATE, CIBERSORT algorithms, and Gene Set Enrichment Analysis (GSEA) analysis. Results: KCNN4 expression levels were aberrant in transcriptomic and proteomic levels between cancer and normal control tissues in pan-cancer datasets, further survival analysis elucidated that KCNN4 expression was correlated to multiple survival data, and clinical annotations. Besides, KCNN4 expression was correlated to TMB and MSI levels in 14 types and 12 types of pan-cancers, respectively. Meanwhile, different types of cancer have specific tumor-infiltrating immune cell (TICs) profiles. Conclusions: Our results revealed that KCNN4 could be an essential biomarker for remodeling components in the tumor microenvironment (TME), and a robust indicator for predicting prognosis as well as immunotherapy response in pan-cancer patients.
Collapse
Affiliation(s)
- Shaohua Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Xiaotao Su
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
- *Correspondence: Zengnan Mo,
| |
Collapse
|
19
|
Expression of Autoimmunity-Related Genes in Melanoma. Cancers (Basel) 2022; 14:cancers14040991. [PMID: 35205739 PMCID: PMC8870167 DOI: 10.3390/cancers14040991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The present study selected four genes strongly related to autoimmunity. Their expression was found to be significantly altered in melanoma patients according to a multi-validation procedure carried out on 1948 patients. Such genes may represent suitable molecular targets to further investigate the role autoimmunity may play in melanoma setup and development. Our data suggest that autoimmunity may play a beneficial role in melanoma set up, at least to some extent. Abstract (1) Background. Immune response dysregulation plays a key role in melanoma, as suggested by the substantial prognosis improvement observed under immune-modulation therapy. Similarly, the role of autoimmunity is under large investigation in melanoma and other cancers. (2) Methods. Expression of 98 autoimmunity-related genes was investigated in 1948 individuals (1024 melanoma and 924 healthy controls). Data were derived from four independent databases, namely, GEO in the selection phase, and Ist Online, GEPIA2 and GENT2, in three sequential validation-steps. ROC analyses were performed to measure the ability to discriminate melanoma from controls. Principal Component Analysis (PCA) was used to combine expression data; survival analysis was carried out on the GEPIA2 platform. (3) Results. Expression levels of NOD2, BAX, IL-18 and ADRB2 were found to be significantly different in melanoma vs. controls and discriminate melanoma from controls in an extremely effective way, either as single molecules (AUC > 0.93 in all cases) or as a profile, according to the PCA analysis. Patients showing high-expression of NOD2 and of IL-18 also show a significant survival improvement as compared to low-expression patients. (4) Conclusions. Four genes strongly related to autoimmunity show a significant altered expression in melanoma samples, highlighting the role they may play in melanoma.
Collapse
|
20
|
Gaffke L, Szczudło Z, Podlacha M, Cyske Z, Rintz E, Mantej J, Krzelowska K, Węgrzyn G, Pierzynowska K. Impaired ion homeostasis as a possible associate factor in mucopolysaccharidosis pathogenesis: transcriptomic, cellular and animal studies. Metab Brain Dis 2022; 37:299-310. [PMID: 34928474 PMCID: PMC8784502 DOI: 10.1007/s11011-021-00892-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022]
Abstract
Mucopolysaccharidoses (MPS) are a group of diseases caused by mutations resulting in deficiencies of lysosomal enzymes which lead to the accumulation of partially undegraded glycosaminoglycans (GAG). This phenomenon causes severe and chronic disturbances in the functioning of the organism, and leads to premature death. The metabolic defects affect also functions of the brain in most MPS types (except types IV, VI, and IX). The variety of symptoms, as well as the ineffectiveness of GAG-lowering therapies, question the early theory that GAG storage is the only cause of these diseases. As disorders of ion homeostasis increasingly turn out to be co-causes of the pathogenesis of various human diseases, the aim of this work was to determine the perturbations related to the maintenance of the ion balance at both the transcriptome and cellular levels in MPS. Transcriptomic studies, performed with fibroblasts derived from patients with all types/subtypes of MPS, showed extensive changes in the expression of genes involved in processes related to ion binding, transport and homeostasis. Detailed analysis of these data indicated specific changes in the expression of genes coding for proteins participating in the metabolism of Ca2+, Fe2+ and Zn2+. The results of tests carried out with the mouse MPS I model (Idua-/-) showed reductions in concentrations of these 3 ions in the liver and spleen. The results of these studies indicate for the first time ionic concentration disorders as possible factors influencing the course of MPS and show them as hypothetical, additional therapeutic targets for this rare disease.
Collapse
Affiliation(s)
- Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Zuzanna Szczudło
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Estera Rintz
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Krzelowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
21
|
Feng Z, Liu Z, Peng K, Wu W. A Prognostic Model Based on Nine DNA Methylation-Driven Genes Predicts Overall Survival for Colorectal Cancer. Front Genet 2022; 12:779383. [PMID: 35126454 PMCID: PMC8814658 DOI: 10.3389/fgene.2021.779383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/12/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Colorectal cancer (CRC) is the third most frequently diagnosed malignancy and the fourth leading cause of cancer-related death among common tumors in the world. We aimed to establish and validate a risk assessment model to predict overall survival (OS) for the CRC patients. Methods: DNA methylation-driven genes were identified by integrating DNA methylation profile and transcriptome data from The Cancer Genome Atlas (TCGA) CRC cohort. Then, a risk score model was built based on LASSO, univariable Cox and multivariable Cox regression analysis. After analyzing the clinicopathological factors, a nomogram was constructed and assessed. Another cohort from GEO was used for external validation. Afterward, the molecular and immune characteristics in the two risk score groups were analyzed. Results: In total, 705 methylation-driven genes were identified. Based on the LASSO and Cox regression analyses, nine genes, i.e., LINC01555, GSTM1, HSPA1A, VWDE, MAGEA12, ARHGAP, PTPRD, ABHD12B and TMEM88, were selected for the development of a risk score model. The Kaplan–Meier curve indicated that patients in the low-risk group had considerably better OS (P = 2e-08). The verification performed in subgroups demonstrated the validity of the model. Then, we established an OS-associated nomogram that included the risk score and significant clinicopathological factors. The concordance index of the nomogram was 0.81. A comprehensive molecular and immune characteristics analysis showed that the high-risk group was associated with tumor invasion, infiltration of immune cells executing pro-tumor suppression (such as myeloid-derived suppressor cells, regulatory T cells, immature dendritic cells) and higher expression of common inhibitory checkpoint molecules (ICPs). Conclusion: Our nine-gene associated risk assessment model is a promising signature to distinguish the prognosis for CRC patients. It is expected to serve as a predictive tool with high sensitivity and specificity for individualized prediction of OS in the patients with CRC.
Collapse
Affiliation(s)
| | | | | | - Wei Wu
- *Correspondence: Kangsheng Peng, ; Wei Wu,
| |
Collapse
|
22
|
Cutliffe AL, McKenna SL, Chandrashekar DS, Ng A, Devonshire G, Fitzgerald RC, O’Donovan TR, Mackrill JJ. Alterations in the Ca2+ toolkit in oesophageal adenocarcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:543-575. [PMID: 36046118 PMCID: PMC9400700 DOI: 10.37349/etat.2021.00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
Aim: To investigate alterations in transcription of genes, encoding Ca2+ toolkit proteins, in oesophageal adenocarcinoma (OAC) and to assess associations between gene expression, tumor grade, nodal-metastatic stage, and patient survival. Methods: The expression of 275 transcripts, encoding components of the Ca2+ toolkit, was analyzed in two OAC datasets: the Cancer Genome Atlas [via the University of Alabama Cancer (UALCAN) portal] and the oesophageal-cancer, clinical, and molecular stratification [Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS)] dataset. Effects of differential expression of these genes on patient survival were determined using Kaplan-Meier log-rank tests. OAC grade- and metastatic-stage status was investigated for a subset of genes. Adjustment for the multiplicity of testing was made throughout. Results: Of the 275 Ca2+-toolkit genes analyzed, 75 displayed consistent changes in expression between OAC and normal tissue in both datasets. The channel-encoding genes, N-methyl-D-aspartate receptor 2D (GRIN2D), transient receptor potential (TRP) ion channel classical or canonical 4 (TRPC4), and TRP ion channel melastatin 2 (TRPM2) demonstrated the greatest increase in expression in OAC in both datasets. Nine genes were consistently upregulated in both datasets and were also associated with improved survival outcomes. The 6 top-ranking genes for the weighted significance of altered expression and survival outcomes were selected for further analysis: voltage-gated Ca2+ channel subunit α 1D (CACNA1D), voltage-gated Ca2+ channel auxiliary subunit α2 δ4 (CACNA2D4), junctophilin 1 (JPH1), acid-sensing ion channel 4 (ACCN4), TRPM5, and secretory pathway Ca2+ ATPase 2 (ATP2C2). CACNA1D, JPH1, and ATP2C2 were also upregulated in advanced OAC tumor grades and nodal-metastatic stages in both datasets. Conclusions: This study has unveiled alterations of the Ca2+ toolkit in OAC, compared to normal tissue. Such Ca2+ signalling findings are consistent with those from studies on other cancers. Genes that were consistently upregulated in both datasets might represent useful markers for patient diagnosis. Genes that were consistently upregulated, and which were associated with improved survival, might be useful markers for patient outcome. These survival-associated genes may also represent targets for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Alana L. Cutliffe
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| | - Sharon L. McKenna
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Darshan S. Chandrashekar
- Department of Pathology, Molecular & Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alvin Ng
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Rebecca C. Fitzgerald
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Tracey R. O’Donovan
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| |
Collapse
|
23
|
Fuchs E, Messerer DAC, Karpel-Massler G, Fauler M, Zimmer T, Jungwirth B, Föhr KJ. Block of Voltage-Gated Sodium Channels as a Potential Novel Anti-cancer Mechanism of TIC10. Front Pharmacol 2021; 12:737637. [PMID: 34744721 PMCID: PMC8567104 DOI: 10.3389/fphar.2021.737637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Tumor therapeutics are aimed to affect tumor cells selectively while sparing healthy ones. For this purpose, a huge variety of different drugs are in use. Recently, also blockers of voltage-gated sodium channels (VGSCs) have been recognized to possess potentially beneficial effects in tumor therapy. As these channels are a frequent target of numerous drugs, we hypothesized that currently used tumor therapeutics might have the potential to block VGSCs in addition to their classical anti-cancer activity. In the present work, we have analyzed the imipridone TIC10, which belongs to a novel class of anti-cancer compounds, for its potency to interact with VGSCs. Methods: Electrophysiological experiments were performed by means of the patch-clamp technique using heterologously expressed human heart muscle sodium channels (hNav1.5), which are among the most common subtypes of VGSCs occurring in tumor cells. Results: TIC10 angular inhibited the hNav1.5 channel in a state- but not use-dependent manner. The affinity for the resting state was weak with an extrapolated Kr of about 600 μM. TIC10 most probably did not interact with fast inactivation. In protocols for slow inactivation, a half-maximal inhibition occurred around 2 µM. This observation was confirmed by kinetic studies indicating that the interaction occurred with a slow time constant. Furthermore, TIC10 also interacted with the open channel with an affinity of approximately 4 µM. The binding site for local anesthetics or a closely related site is suggested as a possible target as the affinity for the well-characterized F1760K mutant was reduced more than 20-fold compared to wild type. Among the analyzed derivatives, ONC212 was similarly effective as TIC10 angular, while TIC10 linear more selectively interacted with the different states. Conclusion: The inhibition of VGSCs at low micromolar concentrations might add to the anti-tumor properties of TIC10.
Collapse
Affiliation(s)
- Eva Fuchs
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| | | | | | - Michael Fauler
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Thomas Zimmer
- Institute of Physiology, University Hospital of Jena, Jena, Germany
| | - Bettina Jungwirth
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| | - Karl Josef Föhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
24
|
Voltage-Gated Sodium Channels as Potential Biomarkers and Therapeutic Targets for Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13215437. [PMID: 34771603 PMCID: PMC8582439 DOI: 10.3390/cancers13215437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Voltage-gated sodium channels are membrane proteins that change conformation in response to depolarization of the membrane potential, allowing sodium ions to flow into cells. While voltage-gated sodium channels are normally studied in terms of neuron impulses and skeletal or cardiac muscle contraction, abnormal ion channel expression is a feature of many cancer cells. The aim of our study was to assess the expression of voltage-gated sodium channels in ovarian cancer cells. We found that ovarian cancer cells generally express lower levels of voltage-gated sodium channels than normal cells and that two voltage-gated sodium channels, SCN8A and SCN1B, were prognostic biomarkers for ovarian cancer overall survival. In vitro studies suggested that drugs that block voltage-gated sodium channels, such as certain anti-epileptic drugs and local anesthetics, might sensitize ovarian cancer cells to chemotherapy. These findings suggest that voltage-gated sodium channels may be interesting targets for ovarian cancer therapy. Abstract Abnormal ion channel expression distinguishes several types of carcinoma. Here, we explore the relationship between voltage-gated sodium channels (VGSC) and epithelial ovarian cancer (EOC). We find that EOC cell lines express most VGSC, but at lower levels than fallopian tube secretory epithelial cells (the cells of origin for most EOC) or control fibroblasts. Among patient tumor samples, lower SCN8A expression was associated with improved overall survival (OS) (median 111 vs. 52 months; HR 2.04 95% CI: 1.21–3.44; p = 0.007), while lower SCN1B expression was associated with poorer OS (median 45 vs. 56 months; HR 0.69 95% CI 0.54–0.87; p = 0.002). VGSC blockade using either anti-epileptic drugs or local anesthetics (LA) decreased the proliferation of cancer cells. LA increased cell line sensitivity to platinum and taxane chemotherapies. While lidocaine had similar additive effects with chemotherapy among EOC cells and fibroblasts, bupivacaine showed a more pronounced impact on EOC than fibroblasts when combined with either carboplatin (ΔAUC −37% vs. −16%, p = 0.003) or paclitaxel (ΔAUC −37% vs. −22%, p = 0.02). Together, these data suggest VGSC are prognostic biomarkers in EOC and may inform new targets for therapy.
Collapse
|
25
|
Miller DB, Robison R, Piccolo SR. Toward a methodology for evaluating DNA variants in nuclear families. PLoS One 2021; 16:e0258375. [PMID: 34624066 PMCID: PMC8500447 DOI: 10.1371/journal.pone.0258375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
The genetic underpinnings of most pediatric-cancer cases are unknown. Population-based studies use large sample sizes but have accounted for only a small proportion of the estimated heritability of pediatric cancers. Pedigree-based studies are infeasible for most human populations. One alternative is to collect genetic data from a single nuclear family and use inheritance patterns within the family to filter candidate variants. This approach can be applied to common and rare variants, including those that are private to a given family or to an affected individual. We evaluated this approach using genetic data from three nuclear families with 5, 4, and 7 children, respectively. Only one child in each nuclear family had been diagnosed with cancer, and neither parent had been affected. Diagnoses for the affected children were benign low-grade astrocytoma, Wilms tumor (stage 2), and Burkitt's lymphoma, respectively. We used whole-genome sequencing to profile normal cells from each family member and a linked-read technology for genomic phasing. For initial variant filtering, we used global minor allele frequencies, deleteriousness scores, and functional-impact annotations. Next, we used genetic variation in the unaffected siblings as a guide to filter the remaining variants. As a way to evaluate our ability to detect variant(s) that may be relevant to disease status, the corresponding author blinded the primary author to affected status; the primary author then assigned a risk score to each child. Based on this evidence, the primary author predicted which child had been affected in each family. The primary author's prediction was correct for the child who had been diagnosed with a Wilms tumor; the child with Burkitt's lymphoma had the second-highest risk score among the seven children in that family. This study demonstrates a methodology for filtering and evaluating candidate genomic variants and genes within nuclear families that may merit further exploration.
Collapse
Affiliation(s)
- Dustin B. Miller
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| | - Reid Robison
- Department of Biology, Brigham Young University, Provo, UT, United States of America
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States of America
| | - Stephen R. Piccolo
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| |
Collapse
|
26
|
Verigos J, Kordias D, Papadaki S, Magklara A. Transcriptional Profiling of Tumorspheres Reveals TRPM4 as a Novel Stemness Regulator in Breast Cancer. Biomedicines 2021; 9:biomedicines9101368. [PMID: 34680485 PMCID: PMC8533210 DOI: 10.3390/biomedicines9101368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been implicated in the development of chemoresistance, tumor recurrence and metastasis in breast cancer, thus emerging as a promising target for novel therapies. To identify novel stemness regulators that could potentially be targeted in luminal ER+ tumors, we performed RNA-sequencing (RNA-seq) in MCF-7 adherent monolayer cells and tumorspheres enriched in breast CSCs (bCSCs). We identified 1421 differentially expressed genes (DEGs), with 923 of them being upregulated and 498 downregulated in tumorspheres. Gene ontology and pathway enrichment analyses revealed that distinct gene networks underlie the biology of the two cell systems. We selected the transient receptor potential cation channel subfamily M member 4 (TRPM4) gene that had not been associated with cancer stemness before for further investigation. We confirmed that TRPM4 was overexpressed in tumorspheres and showed that its knock-down affected the stemness properties of bCSCs in vitro. TRPM4 inhibition revealed potential anti-tumor effects by directly targeting the bCSC subpopulation. We suggest that TRPM4 plays a key role in stemness mediation, and its inhibition may represent a novel therapeutic modality against bCSCs contributing in the improvement of breast cancer treatments.
Collapse
Affiliation(s)
- John Verigos
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology, 45110 Ioannina, Greece; (J.V.); (D.K.)
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Dimitris Kordias
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology, 45110 Ioannina, Greece; (J.V.); (D.K.)
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Styliani Papadaki
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Angeliki Magklara
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology, 45110 Ioannina, Greece; (J.V.); (D.K.)
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Biosciences, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
- Correspondence:
| |
Collapse
|
27
|
Bordean L, Chis M, Raica M, Cotoi OS, Ceausu AR, Avram C, Cimpean AM. CLIC1 Expression in Skin Biopsies from Patients With Rheumatoid and Psoriatic Arthritis as a Potential Tool to Predict Therapy Response. In Vivo 2021; 35:2559-2567. [PMID: 34410943 DOI: 10.21873/invivo.12538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Chloride intracellular channel protein 1 (CLIC1) activates inflammasomes in rheumatoid (RA) and psoriatic (PsA) arthritis. We studied CLIC1 expression in RA and PsA patients' skin with vasculitis and its variability depending on the therapy used. MATERIALS AND METHODS CLIC1 immunoexpression was evaluated in the vascular (CLIC1-V) and stromal (CLIC1-S) compartments of the RA and PsA skin biopsies of patients treated with methotrexate (MTX), leflunomid (LFN), corticotherapy (CT), or biological therapies. RESULTS MTX significantly reduced CLIC1-S expression (p=0.016), whereas LFN decreased CLIC1-V (p<0.001). LFN therapy duration also correlated with CLIC1-V (p<0.001). CT decreased CLIC1-S expression (p=0.006). CLIC1-S expression persisted in skin biopsies despite of erythrocyte sedimentation rate (ESR, p=0.018) and C reactive protein (CRP, p=0.0026) normalisation. For PsA, CLIC1-S expression significantly related to MTX (p<0.022). Both CLIC1-S (p<0.001) and CLIC1-V (p=0.007) decreased by biological therapies in RA. CONCLUSION CLIC1 expression is strongly influenced by the therapy used. Our data strongly support the extensive evaluation of CLIC1 in RA as a potential marker of inflammation and tool to predict therapy response.
Collapse
Affiliation(s)
- Liliana Bordean
- Department ME2/Rheumatology, Rehabilitation, Physical Medicine and Balneology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş (UMPhST), Târgu Mureș, Romania.,Clinic of Rheumatology, Emergency County Hospital of Târgu Mureş, Târgu Mureș, Romania.,Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Monica Chis
- Department ME2/Rheumatology, Rehabilitation, Physical Medicine and Balneology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş (UMPhST), Târgu Mureș, Romania; .,Clinic of Rheumatology, Emergency County Hospital of Târgu Mureş, Târgu Mureș, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Ovidiu Simion Cotoi
- Department M2/Physiopathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş (UMPhST), Târgu Mureș, Romania
| | - Amalia Raluca Ceausu
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Claudiu Avram
- Physical Therapy and Special Motricity Department, West University of Timisoara, Timisoara, Romania
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
28
|
Chen S, Wang C, Su X, Dai X, Li S, Mo Z. KCNN4 is a potential prognostic marker and critical factor affecting the immune status of the tumor microenvironment in kidney renal clear cell carcinoma. Transl Androl Urol 2021; 10:2454-2470. [PMID: 34295732 PMCID: PMC8261455 DOI: 10.21037/tau-21-332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background The tumor microenvironment (TME) has emerged as a crucial factor in cancer development and progression. Recent findings have indicated that tumor-infiltrating immune cells (TICs) in the TME may predict cancer prognosis and response to treatment. Herein, we sought to identify critical modulators of the kidney renal clear cell carcinoma (KIRC) TME. Methods KIRC datasets from The Cancer Genome Atlas (TCGA) were analyzed using the ESTIMATE algorithm to determine the ImmuneScore and StromalScore. By profiling the differentially expressed genes (DEGs) in the ImmuneScore and StromalScore, we finally identified the immune- and stromal-related DEGs of the cases, through which we then performed intersection analysis to determine the immune-related genes (IRGs). Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were used to identify critical IRGs and construct a prognostic model. The CIBERSORT algorithm was used to calculate the relative content of 22 immune cell types. Finally, the datasets from the Gene Expression Omnibus (GEO) database were analyzed to validate results from the above analyses. Experimental validation was used on KIRC tissues by quantitative polymerase chain reaction (qPCR) and western blot. Results We found that the ImmuneScore was negatively correlated with patients’ prognosis. Intersection analysis of the ImmuneScore and StromalScore identified 118 IRGs that were enriched in immune-related functions. Following IRGs screening by Cox and LASSO regression analyses, six genes were identified and used to construct a KIRC prognostic model. Intersection analysis of these six genes and protein-protein interaction (PPI) were performed and obtained the most critical gene: Potassium Calcium-Activated Channel Subfamily N Member 4 (KCNN4). Further analysis showed that KCNN4 expression was higher in tumor samples relative to normal controls, and was negatively correlated with prognosis. CIBERSORT analysis revealed significant correlation between KCNN4 expression and multiple types of TICs, demonstrating that KCNN4 may affect KIRC prognosis by influencing the TME immune status. Ultimately, the GEO datasets and validation experiments confirmed that KCNN4 was highly expressed in tumor tissues compared to the corresponding normal tissues. Conclusions Our study demonstrated that KCNN4 might be a potential prognostic marker in KIRC, offering a novel therapeutic avenue.
Collapse
Affiliation(s)
- Shaohua Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Chengbang Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Xiaotao Su
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodi Dai
- Guangxi Medical University, Nanning, China
| | - Songheng Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| |
Collapse
|
29
|
Vianney YM, Weisz K. First Tandem Repeat of a Potassium Channel KCNN4 Minisatellite Folds into a V-Loop G-Quadruplex Structure. Biochemistry 2021; 60:1337-1346. [PMID: 33844501 DOI: 10.1021/acs.biochem.1c00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The KCNN4 gene encoding a potassium channel protein whose expression has been correlated with tumor progression was found to comprise a guanine-rich minisatellite region with the ability to form a putative G-quadruplex (G4). Given the suggested regulatory role of G4s in gene expression, G-quadruplex formation for the polymorphic first repeat of the minisatellite was studied by nuclear magnetic resonance spectroscopy. A stable G-quadruplex of a truncated mutant sequence was shown to represent one of several coexisting species of the wild-type sequence. The high-resolution structure features a noncanonical G4 with a broken G-column and a V-shaped loop. The presence of a 3'-flanking thymidine interacting with the lateral loop preceding the V loop seems to be critical for the formation of this G4 topology. On the contrary, an additional 5'-flanking residue disfavored but still allowed folding into the V-loop structure. The latter may therefore serve as a putative therapeutic target in strategies for G4-based modulation of KCNN4 expression.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| |
Collapse
|
30
|
Analysis of the Differential Gene and Protein Expression Profiles of Corneal Epithelial Cells Stimulated with Alternating Current Electric Fields. Genes (Basel) 2021; 12:genes12020299. [PMID: 33672614 PMCID: PMC7924190 DOI: 10.3390/genes12020299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
In cells, intrinsic endogenous direct current (DC) electric fields (EFs) serve as morphogenetic cues and are necessary for several important cellular responses including activation of multiple signaling pathways, cell migration, tissue regeneration and wound healing. Endogenous DC EFs, generated spontaneously following injury in physiological conditions, directly correlate with wound healing rate, and different cell types respond to these EFs via directional orientation and migration. Application of external DC EFs results in electrode polarity and is known to activate intracellular signaling events in specific direction. In contrast, alternating current (AC) EFs are known to induce continuous bidirectional flow of charged particles without electrode polarity and also minimize electrode corrosion. In this context, the present study is designed to study effects of AC EFs on corneal epithelial cell gene and protein expression profiles in vitro. We performed gene and antibody arrays, analyzed the data to study specific influence of AC EFs, and report that AC EFs has no deleterious effect on epithelial cell function. Gene Ontology results, following gene and protein array data analysis, showed that AC EFs influence similar biological processes that are predominantly responsive to organic substance, chemical, or external stimuli. Both arrays activate cytokine–cytokine receptor interaction, MAPK and IL-17 signaling pathways. Further, in comparison to the gene array data, the protein array data show enrichment of diverse activated signaling pathways through several interconnecting networks.
Collapse
|
31
|
Reduced Graphene Oxides Modulate the Expression of Cell Receptors and Voltage-Dependent Ion Channel Genes of Glioblastoma Multiforme. Int J Mol Sci 2021; 22:ijms22020515. [PMID: 33419226 PMCID: PMC7825604 DOI: 10.3390/ijms22020515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
The development of nanotechnology based on graphene and its derivatives has aroused great scientific interest because of their unusual properties. Graphene (GN) and its derivatives, such as reduced graphene oxide (rGO), exhibit antitumor effects on glioblastoma multiforme (GBM) cells in vitro. The antitumor activity of rGO with different contents of oxygen-containing functional groups and GN was compared. Using FTIR (fourier transform infrared) analysis, the content of individual functional groups (GN/exfoliation (ExF), rGO/thermal (Term), rGO/ammonium thiosulphate (ATS), and rGO/ thiourea dioxide (TUD)) was determined. Cell membrane damage, as well as changes in the cell membrane potential, was analyzed. Additionally, the gene expression of voltage-dependent ion channels (clcn3, clcn6, cacna1b, cacna1d, nalcn, kcne4, kcnj10, and kcnb1) and extracellular receptors was determined. A reduction in the potential of the U87 glioma cell membrane was observed after treatment with rGO/ATS and rGO/TUD flakes. Moreover, it was also demonstrated that major changes in the expression of voltage-dependent ion channel genes were observed in clcn3, nalcn, and kcne4 after treatment with rGO/ATS and rGO/TUD flakes. Furthermore, the GN/ExF, rGO/ATS, and rGO/TUD flakes significantly reduced the expression of extracellular receptors (uPar, CD105) in U87 glioblastoma cells. In conclusion, the cytotoxic mechanism of rGO flakes may depend on the presence and types of oxygen-containing functional groups, which are more abundant in rGO compared to GN.
Collapse
|
32
|
Cesati M, Scatozza F, D’Arcangelo D, Antonini-Cappellini GC, Rossi S, Tabolacci C, Nudo M, Palese E, Lembo L, Di Lella G, Facchiano F, Facchiano A. Investigating Serum and Tissue Expression Identified a Cytokine/Chemokine Signature as a Highly Effective Melanoma Marker. Cancers (Basel) 2020; 12:cancers12123680. [PMID: 33302400 PMCID: PMC7762568 DOI: 10.3390/cancers12123680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary In this study, we investigated the expression of 27 cytokines/chemokines in the serum of 232 individuals (136 melanoma patients vs. 96 controls). It identified several cytokines/chemokines differently expressed in melanoma patients as compared to the healthy controls, as a function of the presence of the melanoma, age, tumor thickness, and gender, indicating different systemic responses to the melanoma presence. We also analyzed the gene expression of the same 27 molecules at the tissue level in 511 individuals (melanoma patients vs. controls). From the gene expression analysis, we identified several cytokines/chemokines showing strongly different expression in melanoma as compared to the controls, and the 4-gene signature “IL-1Ra, IL-7, MIP-1a, and MIP-1b” as the best combination to discriminate melanoma samples from the controls, with an extremely high accuracy (AUC = 0.98). These data indicate the molecular mechanisms underlying melanoma setup and the relevant markers potentially useful to help the diagnosis of biopsy samples. Abstract The identification of reliable and quantitative melanoma biomarkers may help an early diagnosis and may directly affect melanoma mortality and morbidity. The aim of the present study was to identify effective biomarkers by investigating the expression of 27 cytokines/chemokines in melanoma compared to healthy controls, both in serum and in tissue samples. Serum samples were from 232 patients recruited at the IDI-IRCCS hospital. Expression was quantified by xMAP technology, on 27 cytokines/chemokines, compared to the control sera. RNA expression data of the same 27 molecules were obtained from 511 melanoma- and healthy-tissue samples, from the GENT2 database. Statistical analysis involved a 3-step approach: analysis of the single-molecules by Mann–Whitney analysis; analysis of paired-molecules by Pearson correlation; and profile analysis by the machine learning algorithm Support Vector Machine (SVM). Single-molecule analysis of serum expression identified IL-1b, IL-6, IP-10, PDGF-BB, and RANTES differently expressed in melanoma (p < 0.05). Expression of IL-8, GM-CSF, MCP-1, and TNF-α was found to be significantly correlated with Breslow thickness. Eotaxin and MCP-1 were found differentially expressed in male vs. female patients. Tissue expression analysis identified very effective marker/predictor genes, namely, IL-1Ra, IL-7, MIP-1a, and MIP-1b, with individual AUC values of 0.88, 0.86, 0.93, 0.87, respectively. SVM analysis of the tissue expression data identified the combination of these four molecules as the most effective signature to discriminate melanoma patients (AUC = 0.98). Validation, using the GEPIA2 database on an additional 1019 independent samples, fully confirmed these observations. The present study demonstrates, for the first time, that the IL-1Ra, IL-7, MIP-1a, and MIP-1b gene signature discriminates melanoma from control tissues with extremely high efficacy. We therefore propose this 4-molecule combination as an effective melanoma marker.
Collapse
Affiliation(s)
- Marco Cesati
- Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Francesca Scatozza
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Daniela D’Arcangelo
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Gian Carlo Antonini-Cappellini
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.R.); (C.T.)
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.R.); (C.T.)
| | - Maurizio Nudo
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Enzo Palese
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Luigi Lembo
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Giovanni Di Lella
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.R.); (C.T.)
- Correspondence: (F.F.); (A.F.)
| | - Antonio Facchiano
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, via Monti di Creta 104, 00167 Rome, Italy; (F.S.); (D.D.); (G.C.A.-C.); (M.N.); (E.P.); (L.L.); (G.D.L.)
- Correspondence: (F.F.); (A.F.)
| |
Collapse
|
33
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
34
|
Giampietri C, Tomaipitinca L, Scatozza F, Facchiano A. Expression of Genes Related to Lipid Handling and the Obesity Paradox in Melanoma: Database Analysis. JMIR Cancer 2020; 6:e16974. [PMID: 32209538 PMCID: PMC7267996 DOI: 10.2196/16974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Publicly available genomic and transcriptomic data in searchable databases allow researchers to investigate specific medical issues in thousands of patients. Many studies have highlighted the role lipids play in cancer initiation and progression and reported nutritional interventions aimed at improving prognosis and survival. Therefore, there is an increasing interest in the role that fat intake may play in cancer. It is known that there is a relationship between BMI and survival in patients with cancer, and that there is an association between a high-fat diet and increased cancer risk. In some cancers, such as colorectal cancer, obesity and high fat intake are known to increase the risk of cancer initiation and progression. On the contrary, in patients undergoing treatment for melanoma, a higher BMI unexpectedly acts as a protective factor rather than a risk factor; this phenomenon is known as the obesity paradox. Objective We aimed to identify the molecular mechanism underlying the obesity paradox, with the expectation that this could indicate new effective strategies to reduce risk factors and improve protective approaches. Methods In order to determine the genes potentially involved in this process, we investigated the expression values of lipid-related genes in patients with melanoma or colorectal cancer. We used available data from 2990 patients from 3 public databases (IST [In Silico Transcriptomics] Online, GEO [Gene Expression Omnibus], and Oncomine) in an analysis that involved 3 consecutive validation steps. Of this group, data from 1410 individuals were analyzed in the IST Online database (208 patients with melanoma and 147 healthy controls, as well as 991 patients with colorectal cancer and 64 healthy controls). In addition, 45 melanoma, 18 nevi, and 7 healthy skin biopsies were analyzed in another database, GEO, to validate the IST Online data. Finally, using the Oncomine database, 318 patients with melanoma (312 controls) and 435 patients with colorectal cancer (445 controls) were analyzed. Results In the first and second database investigated (IST Online and GEO, respectively), patients with melanoma consistently showed significantly (P<.001) lower expression levels of 4 genes compared to healthy controls: CD36, MARCO, FABP4, and FABP7. This strong reduction was not observed in patients with colorectal cancer. An additional analysis was carried out on a DNA-TCGA data set from the Oncomine database, further validating CD36 and FABP4. Conclusions The observed lower expression of genes such as CD36 and FABP4 in melanoma may reduce the cellular internalization of fat and therefore make patients with melanoma less sensitive to a high dietary fat intake, explaining in part the obesity paradox observed in patients with melanoma.
Collapse
Affiliation(s)
- Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Luana Tomaipitinca
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Francesca Scatozza
- Istituto Dermopatico dell'Immacolata - Istituto di Ricovero e Cura a Carattere Scientifico, IDI-IRCCS, Rome, Italy
| | - Antonio Facchiano
- Istituto Dermopatico dell'Immacolata - Istituto di Ricovero e Cura a Carattere Scientifico, IDI-IRCCS, Rome, Italy
| |
Collapse
|
35
|
Gururaja Rao S, Patel NJ, Singh H. Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front Physiol 2020; 11:96. [PMID: 32116799 PMCID: PMC7034325 DOI: 10.3389/fphys.2020.00096] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Ion channels are integral membrane proteins present on the plasma membrane as well as intracellular membranes. In the human genome, there are more than 400 known genes encoding ion channel proteins. Ion channels are known to regulate several cellular, organellar, and physiological processes. Any mutation or disruption in their function can result in pathological disorders, both common or rare. Ion channels present on the plasma membrane are widely acknowledged for their role in various biological processes, but in recent years, several studies have pointed out the importance of ion channels located in intracellular organelles. However, ion channels located in intracellular organelles are not well-understood in the context of physiological conditions, such as the generation of cellular excitability and ionic homeostasis. Due to the lack of information regarding their molecular identity and technical limitations of studying them, intracellular organelle ion channels have thus far been overlooked as potential therapeutic targets. In this review, we focus on a novel class of intracellular organelle ion channels, Chloride Intracellular Ion Channels (CLICs), mainly documented for their role in cardiovascular, neurophysiology, and tumor biology. CLICs have a single transmembrane domain, and in cells, they exist in cytosolic as well as membranous forms. They are predominantly present in intracellular organelles and have recently been shown to be localized to cardiomyocyte mitochondria as well as exosomes. In fact, a member of this family, CLIC5, is the first mitochondrial chloride channel to be identified on the molecular level in the inner mitochondrial membrane, while another member, CLIC4, is located predominantly in the outer mitochondrial membrane. In this review, we discuss this unique class of intracellular chloride channels, their role in pathologies, such as cardiovascular, cancer, and neurodegenerative diseases, and the recent developments concerning their usage as theraputic targets.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Neel J Patel
- Department of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
36
|
DNA methylation landscape of triple-negative ductal carcinoma in situ (DCIS) progressing to the invasive stage in canine breast cancer. Sci Rep 2020; 10:2415. [PMID: 32051475 PMCID: PMC7015930 DOI: 10.1038/s41598-020-59260-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/16/2020] [Indexed: 11/09/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer unresponsive to traditional receptor-targeted treatments, leading to a disproportionate number of deaths. Invasive breast cancer is believed to evolve from non-invasive ductal carcinoma in situ (DCIS). Detection of triple-negative DCIS (TN-DCIS) is challenging, therefore strategies to study molecular events governing progression of pre-invasive TN-DCIS to invasive TNBC are needed. Here, we study a canine TN-DCIS progression and investigate the DNA methylation landscape of normal breast tissue, atypical ductal hyperplasia (ADH), DCIS and invasive breast cancer. We report hypo- and hypermethylation of genes within functional categories related to cancer such as transcriptional regulation, apoptosis, signal transduction, and cell migration. DNA methylation changes associated with cancer-related genes become more pronounced at invasive breast cancer stage. Importantly, we identify invasive-only and DCIS-specific DNA methylation alterations that could potentially determine which lesions progress to invasive cancer and which could remain as pre-invasive DCIS. Changes in DNA methylation during TN-DCIS progression in this canine model correspond with gene expression patterns in human breast tissues. This study provides evidence for utilizing methylation status of gene candidates to define late-stage (DCIS and invasive), invasive stage only or DCIS stage only of TN-DCIS progression.
Collapse
|
37
|
Zhao D, Peng Q, Wang L, Li C, Lv Y, Liu Y, Wang Z, Fang R, Wang J, Liu Z, Xu W. Identification of a six-lncRNA signature based on a competing endogenous RNA network for predicting the risk of tumour recurrence in bladder cancer patients. J Cancer 2020; 11:108-120. [PMID: 31892978 PMCID: PMC6930402 DOI: 10.7150/jca.35801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer (BC) is the most common malignancy involving the urinary system, and is characterized by a high recurrence rate. It is important to identify potential lncRNA signatures capable of predicting tumour recurrence risk and assessing recurrence prognosis in BC patients. We extracted data from The Cancer Genome Atlas and identified 381 differentially expressed lncRNAs, 855 mRNAs and 70 miRNAs between non-recurrent and recurrent BC tissues. Subsequently, a competing endogenous RNA (ceRNA) network composed of 29 lncRNAs, 13 miRNAs and 4 mRNAs was established. We used univariate and multivariate Cox regression to analyse the relationship between the 29 lncRNAs and recurrence-free survival (RFS) in BC patients. Six lncRNAs had significant prognostic values, and their cumulative risk score indicated that this 6-lncRNA signature independently predicted RFS in BC patients. We applied a receiver operating characteristic (ROC) analysis to assess the efficiency of our prognostic models. High-risk patients exhibited a poorer prognosis than low-risk patients did. Additionally, the 6-lncRNA signature showed a significant correlation with BC clinicopathological characteristics, which indicates that it could be used for effective risk stratification. The current study provides novel insights into the lncRNA-related ceRNA network and this 6-lncRNA signature may be an independent prognostic factor in predicting the recurrence of BC patients.
Collapse
Affiliation(s)
- Danfeng Zhao
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Qiang Peng
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Lu Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Cong Li
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Yulin Lv
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Yong Liu
- Department of Urology, Qitaihe People's Hospital, Qitaihe, P.R. China
| | - Zhichao Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Ruizhe Fang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Jiaqi Wang
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| | - Zhongqing Liu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, P. R. China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, P. R. China
| |
Collapse
|
38
|
Yu S, Huang S, Ding Y, Wang W, Wang A, Lu Y. Transient receptor potential ion-channel subfamily V member 4: a potential target for cancer treatment. Cell Death Dis 2019; 10:497. [PMID: 31235786 PMCID: PMC6591233 DOI: 10.1038/s41419-019-1708-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022]
Abstract
The transient receptor potential ion-channel superfamily consists of nonselective cation channels located mostly on the plasma membranes of numerous animal cell types, which are closely related to sensory information transmission (e.g., vision, pain, and temperature perception), as well as regulation of intracellular Ca2+ balance and physiological activities of growth and development. Transient receptor potential ion channel subfamily V (TRPV) is one of the largest and most diverse subfamilies, including TRPV1-TRPV6 involved in the regulation of a variety of cellular functions. TRPV4 can be activated by various physical and chemical stimuli, such as heat, mechanical force, and phorbol ester derivatives participating in the maintenance of normal cellular functions. In recent years, the roles of TRPV4 in cell proliferation, differentiation, apoptosis, and migration have been extensively studied. Its abnormal expression has also been closely related to the onset and progression of multiple tumors, so TRPV4 may be a target for cancer diagnosis and treatment. In this review, we focused on the latest studies concerning the role of TRPV4 in tumorigenesis and the therapeutic potential. As evidenced by the effects on cancerogenesis, TRPV4 is a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shuai Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yushi Ding
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
| |
Collapse
|
39
|
Zhou B, Guo R. Integrative Analysis of Genomic and Clinical Data Reveals Intrinsic Characteristics of Bladder Urothelial Carcinoma Progression. Genes (Basel) 2019; 10:genes10060464. [PMID: 31212967 PMCID: PMC6628253 DOI: 10.3390/genes10060464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
The progression of bladder cancer is generally a complex and dynamic process, involving a variety of biological factors. Here, we aimed to identify a set of survival-related genes that play an important role in the progression of bladder cancer and uncover their synergistic patterns. Based on the large-scale genomic profiling data and clinical information of 404 bladder cancer patients derived from The Cancer Genome Atlas (TCGA) database, we first discovered 1078 survival-related genes related to their survival states using univariate and multivariate Cox proportional hazardous regression. We then investigated the dynamic changes of the cooperative behaviors of these 1078 genes by analyzing their respective genomic features, including copy number variations, DNA methylations, somatic mutations, and microRNA regulatory networks. Our analyses showed that during the progression of bladder cancer, the biological disorder involving the identified survival-related genes can be reflected by multiple levels of abnormal gene regulation, ranging from genomic alteration to post-transcriptional dysregulation. In particular, the stage-specific co-expression networks of these genes undergo a series of structural variations. Our findings provide useful hints on understanding the underlying complex molecular mechanisms related to the evolution of bladder cancer and offer a new perspective on clinical diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Bin Zhou
- School of Life Science, Tsinghua University, Beijing 100084, China.
| | - Rui Guo
- Department of Biochemistry and Molecular biology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
40
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
41
|
Sharma J, Deb B, George IA, Kapil S, Coral K, Kakkar N, Pattanaik S, Mandal AK, Mavuduru RS, Kumar P. Somatic Mutations Profile of a Young Patient With Metastatic Urothelial Carcinoma Reveals Mutations in Genes Involved in Ion Channels. Front Oncol 2019; 9:435. [PMID: 31192134 PMCID: PMC6549525 DOI: 10.3389/fonc.2019.00435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/07/2019] [Indexed: 11/15/2022] Open
Abstract
Background: Urothelial carcinoma is the most common malignancy of the bladder and is primarily considered as a disease of the elderly. Studies that address bladder tumor occurrence in young age groups are rare. Case Presentation: A 19-year-old male presented with a gross total painless hematuria. A histology after biopsy revealed a high-grade transitional cell carcinoma with lymph node metastasis. The patient succumbed to the disease on day 72 of the treatment. Here, we used whole-exome sequencing of a paired tumor-normal sample to identify the somatic mutations and the possible targets of treatment. Result: We predicted eight potential driver mutations (TP53 p.V157L, RB1 c.1498+1G>T, MED23 p.L1127P, CTNND1 p.S713C, NSD1 p.P2212A, MED17 p.G556V, DPYD p.Q814K, and SPEN p.S1078*). In addition, we predicted deleterious mutations in genes involved in the ion channels (CACNA1S p.E1581K, CACNG1 p.P71T, CACNG8 p.G404W, GRIN2B p.A1096T, KCNC1 p.G16V, KCNH4 p.E874K, KCNK9 p.R131S, P2RX7 p.A296D, and SCN8A p.R558H). Conclusions: Most likely, mutations in genes involved in ion channels may be responsible for the aggressive behavior of a tumor. Ion channels are the second largest class of drug targets, and may thus serve as a putative potential therapeutic target in advanced stage urothelial carcinoma.
Collapse
Affiliation(s)
- Jyoti Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Irene A George
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | | | - Nandita Kakkar
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Smita Pattanaik
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arup Kumar Mandal
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravimohan S Mavuduru
- Department of Urology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
42
|
D'Arcangelo D, Scatozza F, Giampietri C, Marchetti P, Facchiano F, Facchiano A. Ion Channel Expression in Human Melanoma Samples: In Silico Identification and Experimental Validation of Molecular Targets. Cancers (Basel) 2019; 11:cancers11040446. [PMID: 30934896 PMCID: PMC6520727 DOI: 10.3390/cancers11040446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 12/30/2022] Open
Abstract
Expression of 328 ion channel genes was investigated, by in silico analysis, in 170 human melanoma samples and controls. Ninety-one members of this gene-family (i.e., about 28%) show a significant (p < 0.05) differential expression in melanoma- vs. nevi-biopsies, taken from the GEO database. ROC (receiver operating characteristic) analysis selected 20 genes as potential markers showing the highest discrimination ability of melanoma vs. nevi (AUC > 0.90 and p < 0.0001). These 20 genes underwent a first in silico-validation round in an independent patients-dataset from GEO. A second-in silico-validation step was then carried out on a third human dataset in Oncomine. Finally, five genes were validated, showing extremely high sensitivity and specificity in melanoma detection (>90% in most cases). Such five genes (namely, SCNN1A, GJB3, KCNK7, GJB1, KCNN2) are novel potential melanoma markers or molecular targets, never previously related to melanoma. The “druggable genome” analysis was then carried out. Miconazole, an antifungal drug commonly used in clinics, is known to target KCNN2, the best candidate among the five identified genes. Miconazole was then tested in vitro in proliferation assays; it dose-dependently inhibited proliferation up to 90% and potently induced cell-death in A-375 and SKMEL-28 melanoma cells, while it showed no effect in control cells. Moreover, specific silencing of KCNN2 ion channel was achieved by siRNA transfection; under such condition miconazole strongly increases its anti-proliferative effect. In conclusion, the present study identified five ion channels that can potentially serve as sensitive and specific markers in human melanoma specimens and demonstrates that the antifungal drug miconazole, known to target one of the five identified ion channels, exerts strong and specific anti-melanoma effects in vitro.
Collapse
Affiliation(s)
| | | | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Paolo Marchetti
- Medical Oncology, Sapienza, University of Rome, 00161 Rome, Italy.
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy.
| | - Antonio Facchiano
- Istituto Dermopatico dell'Immacolata (IDI-IRCCS), 00167 Rome, Italy.
| |
Collapse
|
43
|
Barbieri F, Verduci I, Carlini V, Zona G, Pagano A, Mazzanti M, Florio T. Repurposed Biguanide Drugs in Glioblastoma Exert Antiproliferative Effects via the Inhibition of Intracellular Chloride Channel 1 Activity. Front Oncol 2019; 9:135. [PMID: 30918838 PMCID: PMC6424887 DOI: 10.3389/fonc.2019.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of in-depth knowledge about the molecular determinants of glioblastoma (GBM) occurrence and progression, combined with few effective and BBB crossing-targeted compounds represents a major challenge for the discovery of novel and efficacious drugs for GBM. Among relevant molecular factors controlling the aggressive behavior of GBM, chloride intracellular channel 1 (CLIC1) represents an emerging prognostic and predictive biomarker, as well as a promising therapeutic target. CLIC1 is a metamorphic protein, co-existing as both soluble cytoplasmic and membrane-associated conformers, with the latter acting as chloride selective ion channel. CLIC1 is involved in several physiological cell functions and its abnormal expression triggers tumor development, favoring tumor cell proliferation, invasion, and metastasis. CLIC1 overexpression is associated with aggressive features of various human solid tumors, including GBM, in which its expression level is correlated with poor prognosis. Moreover, increasing evidence shows that modification of microglia ion channel activity, and CLIC1 in particular, contributes to the development of different neuropathological states and brain tumors. Intriguingly, CLIC1 is constitutively active within cancer stem cells (CSCs), while it seems less relevant for the survival of non-CSC GBM subpopulations and for normal cells. CSCs represent GBM development and progression driving force, being endowed with stem cell-like properties (self-renewal and differentiation), ability to survive therapies, to expand and differentiate, causing tumor recurrence. Downregulation of CLIC1 results in drastic inhibition of GBM CSC proliferation in vitro and in vivo, making the control of the activity this of channel a possible innovative pharmacological target. Recently, drugs belonging to the biguanide class (including metformin) were reported to selectively inhibit CLIC1 activity in CSCs, impairing their viability and invasiveness, but sparing normal stem cells, thus representing potential novel antitumor drugs with a safe toxicological profile. On these premises, we review the most recent insights into the biological role of CLIC1 as a potential selective pharmacological target in GBM. Moreover, we examine old and new drugs able to functionally target CLIC1 activity, discussing the challenges and potential development of CLIC1-targeted therapies.
Collapse
Affiliation(s)
- Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy
| | - Ivan Verduci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Valentina Carlini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Gianluigi Zona
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Aldo Pagano
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università di Genoa, Genoa, Italy
| | - Michele Mazzanti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
44
|
Yu W, Cui R, Qu H, Liu C, Deng H, Zhang Z. Expression and prognostic value of CLIC1 in epithelial ovarian cancer. Exp Ther Med 2018; 15:4943-4949. [PMID: 29805518 PMCID: PMC5952105 DOI: 10.3892/etm.2018.6000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/14/2018] [Indexed: 12/27/2022] Open
Abstract
The clinical significance of the chloride intracellular channel 1 (CLIC1) protein in ovarian cancer is yet to be determined. The present study aimed to investigate the association between CLIC1 expression, and clinicopathological features and prognosis of patients with epithelial ovarian cancer. In this retrospective study, CLIC1 level was determined by reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemical staining. The association between CLIC1 expression and clinicopathological characteristics were evaluated. Progression-free survival and overall survival were assessed by univariate, and multivariate analyses. mRNA and protein levels of CLIC1 were significantly higher in cancerous tissues than in healthy ovarian tissues (P<0.001). CLIC1 signals in epithelial ovarian cancer tissues were significantly higher than that in healthy tissues (P<0.001). CLIC1 expression was significantly higher in higher-grade tumors than in low-grade tumors (P<0.001). Moreover, overexpression of CLIC1 was associated with cisplatin resistance (P<0.001). CLIC1 expression was an independent factor that predicted shorter progression-free survival (P=0.006) and overall survival (P=0.002) for patients with epithelial ovarian cancer. These findings indicate that CLIC1 is overexpressed and is associated with poor prognosis in patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Wentao Yu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China.,Department of Vascular Surgery, Brigham and Women's Hospital, Harvard Medical University, Boston, MA 02115, USA
| | - Ran Cui
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Hong Qu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
45
|
Analysis of meat quality traits and gene expression profiling of pigs divergent in residual feed intake. Meat Sci 2018; 137:265-274. [DOI: 10.1016/j.meatsci.2017.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/08/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022]
|
46
|
Klumpp L, Sezgin EC, Skardelly M, Eckert F, Huber SM. KCa3.1 Channels and Glioblastoma: In Vitro Studies. Curr Neuropharmacol 2018; 16:627-635. [PMID: 28786347 PMCID: PMC5997865 DOI: 10.2174/1570159x15666170808115821] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several tumor entities including brain tumors aberrantly overexpress intermediate conductance Ca2+ activated KCa3.1 K+ channels. These channels contribute significantly to the transformed phenotype of the tumor cells. METHOD PubMed was searched in order to summarize our current knowledge on the molecular signaling upstream and downstream and the effector functions of KCa3.1 channel activity in tumor cells in general and in glioblastoma cells in particular. In addition, KCa3.1 expression and function for repair of DNA double strand breaks was determined experimentally in primary glioblastoma cultures in dependence on the abundance of proneural and mesenchymal stem cell markers. RESULTS By modulating membrane potential, cell volume, Ca2+ signals and the respiratory chain, KCa3.1 channels in both, plasma and inner mitochondrial membrane, have been demonstrated to regulate many cellular processes such as migration and tissue invasion, metastasis, cell cycle progression, oxygen consumption and metabolism, DNA damage response and cell death of cancer cells. Moreover, KCa3.1 channels have been shown to crucially contribute to resistance against radiotherapy. Futhermore, the original in vitro data on KCa3.1 channel expression in subtypes of glioblastoma stem(-like) cells propose KCa3.1 as marker for the mesenchymal subgroup of cancer stem cells and suggest that KCa3.1 contributes to the therapy resistance of mesenchymal glioblastoma stem cells. CONCLUSION The data suggest KCa3.1 channel targeting in combination with radiotherapy as promising new tool to eradicate therapy-resistant mesenchymal glioblastoma stem cells.
Collapse
Affiliation(s)
| | | | | | | | - Stephan M. Huber
- Address correspondence to this author at the Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; Tel: +49-(0)7071-29-82183; E-mail:
| |
Collapse
|
47
|
Zhang K, Mu L, Ding MC, Xu R, Ding ZJ, Liang J. NFκB mediated elevation of KCNJ11 promotes tumor progression of hepatocellular carcinoma through interaction of lactate dehydrogenase A. Biochem Biophys Res Commun 2017; 495:246-253. [PMID: 29108994 DOI: 10.1016/j.bbrc.2017.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 01/10/2023]
Abstract
It has been well documented that changes in ion fluxes across cellular membranes is fundamental in maintaining cellular homeostasis. Dysregulation and/or malfunction of ion channels are critical events in the pathogenesis of diverse diseases, including cancers. In this study, we focused on the study of K+ channels in hepatocellular carcinoma (HCC). By data mining TCGA cohort, the expression of 27 K+ channels was investigated and KCNJ11 was identified as a key dysregulated K+ channels in HCC. KCNJ11 was differentially expressed in HCC and predicted a poor prognosis in HCC patients. Inhibition of NFκB signaling suppressed KCNJ11 expression in HCC cells. Knockdown of KCNJ11 expression inhibited cell proliferation, promoted cell apoptosis, and reduced cell invasive capacity. Mechanistically, we found that KCNJ11 promotes tumor progression through interaction with LDHA and enhancing its enzymatic activity. Pharmacological inhibition of LDHA largely compromised the oncogenic function of KCNJ11 in cell proliferation, cell apoptosis, and cell invasion. Collectively, our data, as a proof of principle, demonstrate that KCNJ11 acts as an oncogene in HCC though forming a complex with LDHA and suggest that targeting KCNJ11 can be developed as a candidate tool to dampen HCC.
Collapse
Affiliation(s)
- Ke Zhang
- Qingdao University, Qingdao 266003, China; Institute of Oncology, Rizhao City People's Hospital, Rizhao 276800, China
| | - Ling Mu
- Medical Center, Rizhao City People's Hospital, Rizhao 276800, China
| | - Ming-Cui Ding
- Institute of Oncology, Rizhao City People's Hospital, Rizhao 276800, China
| | - Rui Xu
- Intervention Section, Rizhao City People's Hospital, Rizhao 276800, China
| | - Zhao-Jun Ding
- Institute of Oncology, Rizhao City People's Hospital, Rizhao 276800, China
| | - Jun Liang
- Institute of Oncology, Hospital Affiliated to Qingdao University, Qingdao 266003, China; Institute of Oncology, Peking University International Hospital, Beijing 102200, China.
| |
Collapse
|
48
|
MtHsp70-CLIC1-pulsed dendritic cells enhance the immune response against ovarian cancer. Biochem Biophys Res Commun 2017; 494:13-19. [PMID: 29061300 DOI: 10.1016/j.bbrc.2017.10.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
Approximately 80% of ovarian cancer (OC) is diagnosed at late stages, and most patients die within 5 years of diagnosis due to recurrence or drug resistance. Novel treatments are required to improve patient survival. Immune therapy against cancer is promising; however, therapeutic vaccination has been limited by the inability of tumor antigens to induce effective immune responses. Chloride intracellular channel 1 (CLIC1) was previously identified as a possible tumor marker for OC. In this study, we constructed a recombinant protein by conjugating the extracellular domain of CLIC1 to the carboxyl terminus of Mycobacterium tuberculosis heat shock protein 70 (MtHsp70). Human dendritic cells (DCs) derived from cortical blood were pulsed with the fusion protein, and the antitumor effect of human cytotoxic T lymphocytes (CTLs) stimulated by autologous DCs was assessed in NOG mice. MtHsp70-CLIC1 promoted the phenotypic maturation of human DCs and the secretion of Th1-associated cytokines in vitro. MtHsp70-CLIC1-stimulated CTLs generated a CLIC1-specific immune response both in vitro and in vivo. These results indicate that DCs pulsed with MtHsp70-CLIC1 can enhance antitumor immunity against OC, providing a novel immune therapeutic strategy.
Collapse
|
49
|
D'Arcangelo D, Tinaburri L, Dellambra E. The Role of p16 INK4a Pathway in Human Epidermal Stem Cell Self-Renewal, Aging and Cancer. Int J Mol Sci 2017; 18:ijms18071591. [PMID: 28737694 PMCID: PMC5536078 DOI: 10.3390/ijms18071591] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
The epidermis is a self-renewing tissue. The balance between proliferation and differentiation processes is tightly regulated to ensure the maintenance of the stem cell (SC) population in the epidermis during life. Aging and cancer may be considered related endpoints of accumulating damages within epidermal self-renewing compartment. p16INK4a is a potent inhibitor of the G1/S-phase transition of the cell cycle. p16INK4a governs the processes of SC self-renewal in several tissues and its deregulation may result in aging or tumor development. Keratinocytes are equipped with several epigenetic enzymes and transcription factors that shape the gene expression signatures of different epidermal layers and allow dynamic and coordinated expression changes to finely balance keratinocyte self-renewal and differentiation. These factors converge their activity in the basal layer to repress p16INK4a expression, protecting cells from senescence, and preserving epidermal homeostasis and regeneration. Several stress stimuli may activate p16INK4a expression that orchestrates cell cycle exit and senescence response. In the present review, we discuss the role of p16INK4a regulators in human epidermal SC self-renewal, aging and cancer.
Collapse
Affiliation(s)
- Daniela D'Arcangelo
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Lavinia Tinaburri
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Elena Dellambra
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
50
|
Reply to the Letter to the Editor by D. D’Arcangelo et al.: “Ion Channels in Brain Metastasis”—Ion Channels in Cancer Set up and Metastatic Progression Ion Channels in Brain Metastasis. Int J Mol Sci 2017; 18:ijms18040719. [PMID: 28350326 PMCID: PMC5412305 DOI: 10.3390/ijms18040719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 11/16/2022] Open
|