1
|
Duan C, Li B, Liu H, Zhang Y, Yao X, Liu K, Wu X, Mao X, Wu H, Xu Z, Zhong Y, Hu Z, Gong Y, Xu H. Sirtuin1 Suppresses Calcium Oxalate Nephropathy via Inhibition of Renal Proximal Tubular Cell Ferroptosis Through PGC-1α-mediated Transcriptional Coactivation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408945. [PMID: 39498889 DOI: 10.1002/advs.202408945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/15/2024] [Indexed: 11/07/2024]
Abstract
Calcium oxalate (CaOx) crystals induce renal tubular epithelial cell injury and subsequent nephropathy. However, the underlying mechanisms remain unclear. In the present study, single-cell transcriptome sequencing is performed on kidney samples from mice with CaOx nephrocalcinosis. Renal proximal tubular cells are identified as the most severely damaged cell population and are accompanied by elevated ferroptosis. Further studies demonstrated that sirtuin1 (Sirt1) effectively reduced ferroptosis and CaOx crystal-induced kidney injury in a glutathione peroxidase 4 (GPX4)-dependent manner. Mechanistically, Sirt1 relies on peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) to promote resistance to ferroptosis in the tubular epithelium, and PGC-1α can recruit nuclear factor erythroid 2-related factor 2 (NRF2) to the promoter region of GPX4 and co-activate GPX4 transcription. This work provides new insight into the mechanism of CaOx crystal-induced kidney injury and identifies Sirt1 and PGC-1α as potential preventative and therapeutic targets for crystal nephropathies.
Collapse
Affiliation(s)
- Chen Duan
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Bo Li
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Haoran Liu
- School of Medicine, Stanford University, Stanford, CA, 94303, USA
| | - Yangjun Zhang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xiangyang Yao
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Kai Liu
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430011, China
| | - Xiongmin Mao
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Huahui Wu
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhenzhen Xu
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430011, China
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Hua Xu
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
2
|
Wang W, Zhou K, Wang L, Qin Q, Liu H, Qin L, Yang M, Yuan L, Liu C. Aging in chronic lung disease: Will anti-aging therapy be the key to the cure? Eur J Pharmacol 2024; 980:176846. [PMID: 39067566 DOI: 10.1016/j.ejphar.2024.176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Chronic lung disease is the third leading cause of death globally, imposing huge burden of death, disability and healthcare costs. However, traditional pharmacotherapy has relatively limited effects in improving the cure rate and reducing the mortality of chronic lung disease. Thus, new treatments are urgently needed for the prevention and treatment of chronic lung disease. It is particularly noteworthy that, multiple aging-related phenotypes were involved in the occurrence and development of chronic lung disease, such as blocked proliferation, telomere attrition, mitochondrial dysfunction, epigenetic alterations, altered nutrient perception, stem cell exhaustion, chronic inflammation, etc. Consequently, senescent cells induce a series of pathological changes in the lung, such as immune dysfunction, airway remodeling, oxidative stress and regenerative dysfunction, which is a critical issue that needs special attention in chronic lung diseases. Therefore, anti-aging interventions may bring new insights into the treatment of chronic lung diseases. In this review, we elaborate the involvement of aging in chronic lung disease and further discuss the application and prospects of anti-aging therapy.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Kai Zhou
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Leyuan Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Qiuyan Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Huijun Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| |
Collapse
|
3
|
Li S, Li Q, Xiang H, Wang C, Zhu Q, Ruan D, Zhu YZ, Mao Y. H 2S Donor SPRC Ameliorates Cardiac Aging by Suppression of JMJD3, a Histone Demethylase. Antioxid Redox Signal 2024. [PMID: 39212692 DOI: 10.1089/ars.2024.0605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aims: S-propargyl-cysteine (SPRC) is an endogenous hydrogen sulfide (H2S) donor obtained by modifying the structure of S-allyl cysteine in garlic. This study aims to investigate the effect of SPRC on mitigating cardiac aging and the involvement of jumonji domain-containing protein 3 (JMJD3), a histone demethylase, which represents the primary risk factor in major aging related diseases, in this process, elucidating the preliminary mechanism through which SPRC regulation of JMJD3 occurs. Results: In vitro, SPRC mitigated the elevated levels of reactive oxygen species, senescence-associated β-galactosidase, p53, and p21, reversing the decline in mitochondrial membrane potential, which represented a reduction in cellular senescence. In vivo, SPRC improved Dox-induced cardiac pathological structure and function. Overexpression of JMJD3 accelerated cardiomyocytes and cardiac senescence, whereas its knockdown in vitro reduced the senescence phenotype. The potential binding site of the upstream transcription factor of JMJD3, sheared X box binding protein 1 (XBP1s), was determined using online software. SPRC promoted the expression of cystathionine γ-lyase (CSE), which subsequently inhibited the IRE1α/XBP1s signaling pathway and decreased JMJD3 expression. Innovations: This study is the first to establish JMJD3 as a crucial regulator of cardiac aging. SPRC can alleviate cardiac aging by upregulating CSE and inhibiting endoplasmic reticulum stress pathways, which in turn suppress JMJD3 expression. Conclusions: JMJD3 plays an essential role in cardiac aging regulation, whereas SPRC can suppress the expression of JMJD3 by upregulating CSE, thus delaying cardiac aging, which suggests that SPRC may serve as an aging protective agent, and pharmacological targeting of JMJD3 may also be a promising therapeutic approach in age-related heart diseases.
Collapse
Affiliation(s)
- Sha Li
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Qixiu Li
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Hong Xiang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Chenye Wang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Qi Zhu
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Danping Ruan
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Yi Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yicheng Mao
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Ding Y, Xie D, Xu C, Hu W, Kong B, Jia S, Cao L. Fisetin disrupts mitochondrial homeostasis via superoxide dismutase 2 acetylation in pancreatic adenocarcinoma. Phytother Res 2024; 38:4628-4649. [PMID: 39091056 DOI: 10.1002/ptr.8296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/06/2024] [Accepted: 02/11/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is one of the most lethal malignant tumors with an urgent need for precision medicine strategies. The present study seeks to assess the antitumor effects of fisetin, and characterize its impact on PDAC. Multi-omic approaches include proteomic, transcriptomic, and metabolomic analyses. Further validation includes the assessment of mitochondria-derived reactive oxygen species (mtROS), mitochondrial membrane potential, as well as ATP generation. Molecular docking, immunoprecipitation, and proximity ligation assay were used to detect the interactions among fiseitn, superoxide dismutase 2 (SOD2), and sirtuin 2 (SIRT2). We showed that fisetin disrupted mitochondrial homeostasis and induced SOD2 acetylation in PDAC. Further, we produced site mutants to determine that fisetin-induced mtROS were dependent on SOD2 acetylation. Fisetin inhibited SIRT2 expression, thus blocking SOD2 deacetylation. SIRT2 overexpression could impede fisetin-induced SOD2 acetylation. Additionally, untargeted metabolomic analysis revealed an acceleration of folate metabolism with fisetin. Collectively, our findings suggest that fisetin disrupts mitochondrial homeostasis, eliciting an important cancer-suppressive role; thus, fisetin may serve as a promising therapeutic for PDAC.
Collapse
Affiliation(s)
- Yimin Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dafei Xie
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyi Hu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binyue Kong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Wu H, Qiu Z, Wang L, Li W. Renal Fibrosis: SIRT1 Still of Value. Biomedicines 2024; 12:1942. [PMID: 39335456 PMCID: PMC11428497 DOI: 10.3390/biomedicines12091942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments.
Collapse
Affiliation(s)
- Huailiang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| | - Liyan Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| |
Collapse
|
6
|
Xu F, Feng Y, Zhong X. Higher triglyceride‑glucose index is associated with increased risk of stroke among middle-aged and elderly Chinese: a national longitudinal study. Sci Rep 2024; 14:19054. [PMID: 39154111 PMCID: PMC11330459 DOI: 10.1038/s41598-024-70008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Stroke is a severe cerebrovascular disease. This study aimed to determine the association between triglyceride‑glucose (TyG) index and stroke among middle-aged and elderly Chinese. Data was extracted from China Health and Retirement Longitudinal Study survey 2015 and survey 2018. Logistic regression, trend test and subgroup analysis were conducted to assess the association. Possible nonlinear relationships were explored with restricted cubic spline (RCS). Propensity score matching (PSM) was conducted to attenuate the effect of confounding factors. ORs of stroke was positively associated with TyG index. The ORs in RCS analysis also increased with the rising TyG, though p for non-linearity was bigger than 0.05. After PSM, the ORs in the full adjusted models were 1.28 (1.01, 1.62). TyG was suggested as an independent risk factor for stroke in the middle aged and elderly Chinese.
Collapse
Affiliation(s)
- Feifei Xu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Yan Feng
- Department of Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Xi Zhong
- Department of Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Xing G, Mu L, Han B, Zhu R. The silent information regulator 1 agonist SRT1720 reduces experimental intracerebral hemorrhagic brain injury by regulating the blood-brain barrier integrity. Neuroreport 2024; 35:679-686. [PMID: 38874950 DOI: 10.1097/wnr.0000000000002052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Intracerebral hemorrhage (ICH) is a significant public health matter that has no effective treatment. ICH-induced destruction of the blood-brain barrier (BBB) leads to neurological deterioration. Astrocytic sonic hedgehog (SHH) alleviates brain injury by maintaining the integrity of the BBB after ICH. Silent information regulator 1 (SIRT1) is neuroprotective in several central nervous system diseases via BBB regulation. It is also a possible influential factor of the SHH signaling pathway. Nevertheless, the role of SIRT1 on BBB and the underlying pathological process associated with the SHH signaling pathway after ICH remain unclear. We established an intracerebral hemorrhagic mouse model by collagenase injection. SRT1720 (a selective agonist of SIRT1) was used to evaluate the effect of SIRT1 on BBB integrity after ICH. SIRT1 expression was reduced in the mouse brain after ICH. SRT1720 attenuated neurobehavioral impairments and brain edema of ICH mouse. After ICH induction, SRT1720 improved BBB integrity and tight junction expressions in the mouse brain. The SHH signaling pathway-related factors smoothened and glioma-associated oncogene homolog-1 were increased with the intervention of SRT1720, while cyclopamine (a specific inhibitor of the SHH signaling pathway) reversed these effects. These findings suggest that SIRT1 protects from ICH by altering BBB permeability and tight junction expression levels. This process is associated with the SHH signaling pathway, suggesting that SIRT1 may be a potential therapeutic target for ICH.
Collapse
Affiliation(s)
- Gebeili Xing
- Departments of Neurology, Inner Mongolia People's Hospital
| | - Lei Mu
- Geriatrics, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Bing Han
- Departments of Neurology, Inner Mongolia People's Hospital
| | - Runxiu Zhu
- Departments of Neurology, Inner Mongolia People's Hospital
| |
Collapse
|
8
|
Garcia-Ryde M, van der Burg NMD, Berlin F, Westergren-Thorsson G, Bjermer L, Ankerst J, Larsson-Callerfelt AK, Andersson CK, Tufvesson E. Expression of Stress-Induced Genes in Bronchoalveolar Lavage Cells and Lung Fibroblasts from Healthy and COPD Subjects. Int J Mol Sci 2024; 25:6600. [PMID: 38928305 PMCID: PMC11203587 DOI: 10.3390/ijms25126600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is commonly caused from smoking cigarettes that induce biological stress responses. Previously we found disorganized endoplasmic reticulum (ER) in fibroblasts from COPD with different responses to chemical stressors compared to healthy subjects. Here, we aimed to investigate differences in stress-related gene expressions within lung cells from COPD and healthy subjects. Bronchoalveolar lavage (BAL) cells were collected from seven COPD and 35 healthy subjects. Lung fibroblasts were derived from 19 COPD and 24 healthy subjects and exposed to cigarette smoke extract (CSE). Gene and protein expression and cell proliferation were investigated. Compared to healthy subjects, we found lower gene expression of CHOP in lung fibroblasts from COPD subjects. Exposure to CSE caused inhibition of lung fibroblast proliferation in both groups, though the changes in ER stress-related gene expressions (ATF6, IRE1, PERK, ATF4, CHOP, BCL2L1) and genes relating to proteasomal subunits mostly occurred in healthy lung fibroblasts. No differences were found in BAL cells. In this study, we have found that lung fibroblasts from COPD subjects have an atypical ER stress gene response to CSE, particularly in genes related to apoptosis. This difference in response to CSE may be a contributing factor to COPD progression.
Collapse
Affiliation(s)
- Martin Garcia-Ryde
- Respiratory Medicine, Allergology and Palliative Medicine, Department of Clinical Sciences, Lund, Lund University, 221 84 Lund, Sweden; (M.G.-R.); (N.M.D.v.d.B.); (L.B.); (J.A.)
| | - Nicole M. D. van der Burg
- Respiratory Medicine, Allergology and Palliative Medicine, Department of Clinical Sciences, Lund, Lund University, 221 84 Lund, Sweden; (M.G.-R.); (N.M.D.v.d.B.); (L.B.); (J.A.)
| | - Frida Berlin
- Respiratory Cell Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (F.B.); (C.K.A.)
| | - Gunilla Westergren-Thorsson
- Lung Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (G.W.-T.); (A.-K.L.-C.)
| | - Leif Bjermer
- Respiratory Medicine, Allergology and Palliative Medicine, Department of Clinical Sciences, Lund, Lund University, 221 84 Lund, Sweden; (M.G.-R.); (N.M.D.v.d.B.); (L.B.); (J.A.)
| | - Jaro Ankerst
- Respiratory Medicine, Allergology and Palliative Medicine, Department of Clinical Sciences, Lund, Lund University, 221 84 Lund, Sweden; (M.G.-R.); (N.M.D.v.d.B.); (L.B.); (J.A.)
| | - Anna-Karin Larsson-Callerfelt
- Lung Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (G.W.-T.); (A.-K.L.-C.)
| | - Cecilia K. Andersson
- Respiratory Cell Biology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; (F.B.); (C.K.A.)
| | - Ellen Tufvesson
- Respiratory Medicine, Allergology and Palliative Medicine, Department of Clinical Sciences, Lund, Lund University, 221 84 Lund, Sweden; (M.G.-R.); (N.M.D.v.d.B.); (L.B.); (J.A.)
| |
Collapse
|
9
|
Zhao Y, Wu Z. TROP2 promotes PINK1-mediated mitophagy and apoptosis to accelerate the progression of senile chronic obstructive pulmonary disease by up-regulating DRP1 expression. Exp Gerontol 2024; 191:112441. [PMID: 38685507 DOI: 10.1016/j.exger.2024.112441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammatory disease characterised by irreversible airflow limitation. The elderly are a vulnerable population for developing COPD. With the growth of age, physiological degenerative changes occur in the thorax, bronchus, lung and vascular wall, which can lead to age-related physiological attenuation of lung function in the elderly, so the prevalence of COPD increases with age. Its pathogenesis has not yet been truly clarified. Mitophagy plays an important role in maintaining the stability of mitochondrial function and intracellular environment by scavenging damaged mitochondria. Currently, studies have shown that trophoblast antigen 2 (TROP2) expression is up-regulated in airway basal cells of patients with COPD, suggesting that TROP2 is involved in the progression of COPD. However, whether it is involved in disease progression by regulating mitochondrial function remains unclear. In this study, compared with non-smoking non-COPD patients, the expression of TROP2 in lung tissues of smoking non-COPD patients and patients with COPD increased, and TROP2 expression in patients with COPD was higher than that in smoking non-COPD patients. To further explore the role of TROP2, we stimulated BEAS-2B with cigarette smoke to construct an in vitro model. We found that TROP2 expression increased, whereas TROP2 silencing reversed the cigarette smoke extract-induced decrease in mitochondrial membrane potential, increased reactive oxygen species content, decreased adenosine triphosphate (ATP) production, increased inflammatory factor secretion and increased apoptosis. In addition, we searched online bioinformatics and screened the gene dynamin-related protein 1 (DRP1) related to mitophagy as the research object. Co-IP assay verified the binding relationship between DRP1 and TROP2. Further study found that TROP2 promoted mitophagy and apoptosis of BEAS-2B cells by up-regulating the expression of DRP1. In addition, PTEN-induced putative kinase 1 (PINK1) is a potential binding protein of DRP1, and DRP1 accelerated mitophagy and apoptosis of BEAS-2B cells by promoting the expression of PINK1. We established a COPD SD rat model by cigarette smoke exposure and LPS instillation and treated it by intraperitoneal injection of si-TROP2. The results showed that TROP2 silencing restored lung function and reduced the secretion of inflammatory factors in bronchoalveolar lavage fluid. In conclusion, TROP2 can be used as a new reference for COPD treatment.
Collapse
Affiliation(s)
- Yipu Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Zhengjie Wu
- Shandong Public Health Clinical Center, Shandong University, Jinan 250013, Shandong, China.
| |
Collapse
|
10
|
Li X, Zhou J, Ling Y, Tan Y, Zhang J, Wang X, Li F, Jiang S, Zhang S, Yu K, Han Y. Matrine induces autophagic cell death by triggering ROS/AMPK/mTOR axis and apoptosis in multiple myeloma. Biomed Pharmacother 2024; 175:116738. [PMID: 38759291 DOI: 10.1016/j.biopha.2024.116738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Despite significant advancements in multiple myeloma (MM) treatment in recent years, most patients will eventually develop resistance or experience relapse. Matrine, a primary active compound of traditional Chinese medicinal herb Sophora flavescens Ait, has been found to have anti-tumor properties in various types of malignant tumors. Whether autophagy plays a crucial role in the anti-MM effect of matrine remain unknown. Herein, we found that matrine could trigger apoptosis and cell cycle arrest, and meanwhile induce autophagy in MM cells in vitro. We further ascertained the role of autophagy by using ATG5 siRNA or the autophagy inhibitor spautin-1, which partially reversed matrine's inhibitory effect on MM cells. Conversely, the combination of matrine with the autophagy inducer rapamycin enhanced their anti-tumor activity. These findings suggest that autophagy induced by matrine can lead to cell death in MM cells. Further mechanism investigation revealed that matrine treatment increased the levels of reactive oxygen species (ROS) and AMPKα1 phosphorylation and decreased the phosphorylation of mTOR in MM cells. Additionally, co-treatment with AMPKα1 siRNA or the ROS scavenger N-acetyl-1-cysteine weakened the increase in autophagy that was induced by matrine. Finally, we demonstrated a synergistic inhibitory effect of matrine and rapamycin against MM in a xenograft mouse model. Collectively, our findings provided novel insights into the anti-MM efficacy of matrine and suggest that matrine induces autophagy by triggering ROS/AMPK/mTOR axis in MM cells, and combinatorial treatment of matrine and rapamycin may be a promising therapeutic strategy against MM.
Collapse
Affiliation(s)
- Xue Li
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Jifan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixin Ling
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Yicheng Tan
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Laboratory Animal Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jialing Zhang
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Fanfan Li
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Shenghui Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Laboratory Animal Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China.
| | - Yixiang Han
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Key Laboratory of Hematology, Wenzhou, Zhejiang, China; Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
11
|
Bao L, Liu Q, Wang J, Shi L, Pang Y, Niu Y, Zhang R. The interactions of subcellular organelles in pulmonary fibrosis induced by carbon black nanoparticles: a comprehensive review. Arch Toxicol 2024; 98:1629-1643. [PMID: 38536500 DOI: 10.1007/s00204-024-03719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/21/2024]
Abstract
Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qingping Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Jingyuan Wang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Lili Shi
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
12
|
Wu WF, Chen C, Lin JT, Jiao XH, Dong W, Wan J, Liu Q, Qiu YK, Sun A, Liu YQ, Jin CH, Huang H, Zheng H, Zhou CH, Wu YQ. Impaired synaptic plasticity and decreased glutamatergic neuron excitability induced by SIRT1/BDNF downregulation in the hippocampal CA1 region are involved in postoperative cognitive dysfunction. Cell Mol Biol Lett 2024; 29:79. [PMID: 38783169 PMCID: PMC11112897 DOI: 10.1186/s11658-024-00595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common complication after anesthesia/surgery, especially among elderly patients, and poses a significant threat to their postoperative quality of life and overall well-being. While it is widely accepted that elderly patients may experience POCD following anesthesia/surgery, the exact mechanism behind this phenomenon remains unclear. Several studies have indicated that the interaction between silent mating type information regulation 2 homologue 1 (SIRT1) and brain-derived neurotrophic factor (BDNF) is crucial in controlling cognitive function and is strongly linked to neurodegenerative disorders. Hence, this research aims to explore how SIRT1/BDNF impacts cognitive decline caused by anesthesia/surgery in aged mice. METHODS Open field test (OFT) was used to determine whether anesthesia/surgery affected the motor ability of mice, while the postoperative cognitive function of 18 months old mice was evaluated with Novel object recognition test (NORT), Object location test (OLT) and Fear condition test (FC). The expressions of SIRT1 and other molecules were analyzed by western blot and immunofluorescence staining. The hippocampal synaptic plasticity was detected by Golgi staining and Long-term potentiation (LTP). The effects of SIRT1 and BDNF overexpression as well as chemogenetic activation of glutamatergic neurons in hippocampal CA1 region of 18 months old vesicular glutamate transporter 1 (VGLUT1) mice on POCD were further investigated. RESULTS The research results revealed that older mice exhibited cognitive impairment following intramedullary fixation of tibial fracture. Additionally, a notable decrease in the expression of SIRT1/BDNF and neuronal excitability in hippocampal CA1 glutamatergic neurons was observed. By increasing levels of SIRT1/BDNF or enhancing glutamatergic neuron excitability in the CA1 region, it was possible to effectively mitigate synaptic plasticity impairment and ameliorate postoperative cognitive dysfunction. CONCLUSIONS The decline in SIRT1/BDNF levels leading to changes in synaptic plasticity and neuronal excitability in older mice could be a significant factor contributing to cognitive impairment after anesthesia/surgery.
Collapse
Affiliation(s)
- Wei-Feng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jia-Tao Lin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yong-Kang Qiu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ao Sun
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yi-Qi Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chun-Hui Jin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - He Huang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
13
|
Sun Z, Ji Z, Meng H, He W, Li B, Pan X, Zhou Y, Yu G. Lactate facilitated mitochondrial fission-derived ROS to promote pulmonary fibrosis via ERK/DRP-1 signaling. J Transl Med 2024; 22:479. [PMID: 38773615 PMCID: PMC11106888 DOI: 10.1186/s12967-024-05289-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung diseases, which mainly existed in middle-aged and elderly people. The accumulation of reactive oxygen species (ROS) is a common characteristic of IPF. Previous research also shown that lactate levels can be abnormally elevated in IPF patients. Emerging evidence suggested a relationship between lactate and ROS in IPF which needs further elucidation. In this article, we utilized a mouse model of BLM-induced pulmonary fibrosis to detect alterations in ROS levels and other indicators associated with fibrosis. Lactate could induce mitochondrial fragmentation by modulating expression and activity of DRP1 and ERK. Moreover, Increased ROS promoted P65 translocation into nucleus, leading to expression of lung fibrotic markers. Finally, Ulixertinib, Mdivi-1 and Mito-TEMPO, which were inhibitor activity of ERK, DRP1 and mtROS, respectively, could effectively prevented mitochondrial damage and production of ROS and eventually alleviate pulmonary fibrosis. Taken together, these findings suggested that lactate could promote lung fibrosis by increasing mitochondrial fission-derived ROS via ERK/DRP1 signaling, which may provide novel therapeutic solutions for IPF.
Collapse
Affiliation(s)
- Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China.
| | - Zhihua Ji
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China
| | - Huiwen Meng
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China
| | - Wanyu He
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China
| | - Bin Li
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China
| | - Xiaoyue Pan
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China
| | - Yanlin Zhou
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China
| | - Guoying Yu
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Henan, China.
| |
Collapse
|
14
|
Wang Y, He X, Wang H, Hu W, Sun L. Qingfei xieding prescription ameliorates mitochondrial DNA-initiated inflammation in bleomycin-induced pulmonary fibrosis through activating autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117820. [PMID: 38286157 DOI: 10.1016/j.jep.2024.117820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingfei Xieding prescription was gradually refined and produced by Hangzhou Red Cross Hospital. The raw material includes Ephedra sinica Stapf, Morus alba L., Bombyx Batryticatus, Gypsum Fibrosum, Prunus armeniaca L. var. ansu Maxim., Houttuynia cordata Thunb. , Pueraria edulis Pamp. Paeonia L., Scutellaria baicalensis Georgi and Anemarrhena asphodeloides Bge. It is effective in clinical adjuvant treatment of patients with pulmonary diseases. AIM OF THE STUDY To explore the efficacy and underlying mechanism of Qingfei Xieding (QF) in the treatment of bleomycin-induced mouse model. MATERIALS AND METHODS TGF-β induced fibrotic phenotype in vitro. Bleomycin injection induced lung tissue fibrosis mouse model in vivo. Flow cytometry was used to detect apoptosis, cellular ROS and lipid oxidation. Mitochondria substructure was observed by transmission electron microscopy. Autophagolysosome and nuclear entry of P65 were monitored by immunofluorescence. Quantitative real-time PCR was performed to detect the transcription of genes associated with mtDNA-cGAS-STING pathway and subsequent inflammatory signaling activation. RESULTS TGF-β induced the expression of α-SMA and Collagen I, inhibited cell viability in lung epithelial MLE-12 cells that was reversed by QF-containing serum. TGF-β-mediated downregulation in autophagy, upregulation in lipid oxidation and ROS contents, and mitochondrial damage were rescued by QF-containing serum treatment, but CQ exposure, an autophagy inhibitor, prevented the protective role of QF. In addition to that, the decreased autophagolysosome in TGF-β-exposed MLE-12 cells was reversed by QF and restored to low level in the combination treatment of QF and CQ. Mechanistically, QF-containing serum treatment significantly inhibited mtDNA-cGAS-STING pathway and subsequent inflammatory signaling in TGF-β-challenged cells, which were abolished by CQ-mediated autophagy inhibition. In bleomycin-induced mouse model, QF ameliorated pulmonary fibrosis, reduced mortality, re-activated autophagy in lung tissues and restrained mtDNA-cGAS-STING inflammation pathway. However, the protective effects of QF in bleomycin-induced model mice were also abrogated by CQ. CONCLUSION QF alleviated bleomycin-induced pulmonary fibrosis by activating autophagy, inhibiting mtDNA-cGAS-STING pathway-mediated inflammation. This research recognizes the protection role of QF on bleomycin-induced mouse model, and offers evidence for the potentiality of QF in clinical application for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, PR China.
| | - Xinxin He
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, PR China.
| | - Huijie Wang
- Department of Tuberculosis, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, PR China.
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| | - Lifang Sun
- Department of Tuberculosis, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, PR China; Department of Tuberculosis, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
15
|
Wang L, Li J, Jiang M, Luo Y, Xu X, Li J, Pan Y, Zhang H, Xiao ZXJ, Wang Y. SIRT1 Stabilizes β-TrCP1 to Inhibit Snail1 Expression in Maintaining Intestinal Epithelial Integrity to Alleviate Colitis. Cell Mol Gastroenterol Hepatol 2024; 18:101354. [PMID: 38729522 PMCID: PMC11227028 DOI: 10.1016/j.jcmgh.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND & AIMS Dysfunction of the intestinal epithelial barrier comprising the junctional complex of tight junctions and adherent junctions leads to increased intestinal permeability, which is a major cause of uncontrolled inflammation related to inflammatory bowel disease (IBD). The NAD+-dependent deacetylase SIRT1 is implicated in inflammation and the pathologic process of IBD. We aimed to elucidate the protective role and underlying mechanism of SIRT1 in cell-cell junction and intestinal epithelial integrity. METHODS The correlation of SIRT1 expression and human IBD was analyzed by GEO or immunohistochemical analyses. BK5.mSIRT1 transgenic mice and wild-type mice were given dextran sodium sulfate (DSS) and the manifestation of colitis-related phenotypes was analyzed. Intestinal permeability was measured by FITC-dextran and cytokines expression was analyzed by quantitative polymerase chain reaction. The expression of the cell junction-related proteins in DSS-treated or SIRT1-knockdown Caco2 or HCT116 cells was analyzed by Western blotting. The effects of nicotinamide mononucleotide in DSS-induced mice colitis were investigated. Correlations of the SIRT1-β-TrCP1-Snail1-Occludin/Claudin-1/E-cadherin pathway with human IBD samples were analyzed. RESULTS Reduced SIRT1 expression is associated with human IBD specimens. SIRT1 transgenic mice exhibit much-reduced manifestations of DSS-induced colitis. The activation of SIRT1 by nicotinamide mononucleotide bolsters intestinal epithelial barrier function and ameliorates DSS-induced colitis in mice. Mechanistically, DSS downregulates SiRT1 expression, leading to destabilization of β-TrCP1 and upregulation of Snail1, accompanied by reduced expression of E-cadherin, Occludin, and Claudin-1, consequently resulting in increased epithelial permeability and inflammation. The deregulated SIRT1-β-TrCP1-Snail1-Occludin/Claudin-1/E-cadherin pathway correlates with human IBD. CONCLUSIONS SIRT1 is pivotal in maintaining the intestinal epithelial barrier integrity via modulation of the β-TrCP1-Snail1-E-cadhein/Occludin/Claudin-1 pathway.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China; Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinsong Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingshan Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Luo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoke Xu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Pan
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Tian C, Huang R, Xiang M. SIRT1: Harnessing multiple pathways to hinder NAFLD. Pharmacol Res 2024; 203:107155. [PMID: 38527697 DOI: 10.1016/j.phrs.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses hepatic steatosis, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. It is the primary cause of chronic liver disorders, with a high prevalence but no approved treatment. Therefore, it is indispensable to find a trustworthy therapy for NAFLD. Recently, mounting evidence illustrates that Sirtuin 1 (SIRT1) is strongly associated with NAFLD. SIRT1 activation or overexpression attenuate NAFLD, while SIRT1 deficiency aggravates NAFLD. Besides, an array of therapeutic agents, including natural compounds, synthetic compounds, traditional Chinese medicine formula, and stem cell transplantation, alleviates NALFD via SIRT1 activation or upregulation. Mechanically, SIRT1 alleviates NAFLD by reestablishing autophagy, enhancing mitochondrial function, suppressing oxidative stress, and coordinating lipid metabolism, as well as reducing hepatocyte apoptosis and inflammation. In this review, we introduced the structure and function of SIRT1 briefly, and summarized the effect of SIRT1 on NAFLD and its mechanism, along with the application of SIRT1 agonists in treating NAFLD.
Collapse
Affiliation(s)
- Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Yin L, Niu Y, Zheng X, Chu J, Ma T. d-galactose causes embryonic development arrest and placental development disorders in mice by increasing ROS and inhibiting SIRT1/FOXO3a axis. Placenta 2024; 150:52-61. [PMID: 38593636 DOI: 10.1016/j.placenta.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Does an elevation in d-Galactose (D-Gal) levels within the body contribute to abnormal embryonic development and placental dysfunction during pregnancy? METHODS Mouse embryos were cultivated to the blastocyst stage under varying concentrations of D-Gal. The blastocyst formation rate was measured, and the levels of reactive oxygen species (ROS), sirtuin 1 (SIRT1), and forkhead box O3a (FOXO3a) in blastocysts were assessed. Mice were intraperitoneally injected with either saline or D-Gal with or without SRT1720. On the 14th day of pregnancy, the fetal absorption rate and placental weight were recorded. Placental levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were determined. The expression of senescence-related factors, such as senescence-associated β-galactosidase (SA-β-gal) in the placenta was examined, and the expression of placental SIRT1, FOXO3a and p21 was evaluated by immunohistochemistry and Western blotting. RESULTS D-Gal adversely affects early embryonic development in vitro, resulting in a decreased blastocyst formation rate. Furthermore, D-Gal downregulates SIRT1 and FOXO3a while increasing ROS levels in blastocysts. Concurrently, D-Gal induces placental dysfunction, characterized by an elevated fetal absorption rate, reduced placental weight, diminished SOD activity, and increased MDA content. The senescence-related factor SA-β-gal was detected in the placenta, along with altered expression of placental SIRT1, FOXO3a, and p21. The SIRT1 agonist SRT1720 mitigated this damage by increasing SIRT1 and FOXO3a expression. DISCUSSION The inhibition of early embryonic development and placental dysfunction induced by D-Gal may be attributed to the dysregulation of SIRT1. Activating SIRT1 emerges as a potentially effective strategy for alleviating the adverse effects of D-Gal exposure.
Collapse
Affiliation(s)
- Lanlan Yin
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanru Niu
- Laboratory of Bone Science, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiudan Zheng
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiaqi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Tianzhong Ma
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
18
|
Jiang YZ, Huang XR, Chang J, Zhou Y, Huang XT. SIRT1: An Intermediator of Key Pathways Regulating Pulmonary Diseases. J Transl Med 2024; 104:102044. [PMID: 38452903 DOI: 10.1016/j.labinv.2024.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Silent information regulator type-1 (SIRT1), a nicotinamide adenine dinucleotide+-dependent deacetylase, is a member of the sirtuins family and has unique protein deacetylase activity. SIRT1 participates in physiological as well as pathophysiological processes by targeting a wide range of protein substrates and signalings. In this review, we described the latest progress of SIRT1 in pulmonary diseases. We have introduced the basic information and summarized the prominent role of SIRT1 in several lung diseases, such as acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung cancer, and aging-related diseases.
Collapse
Affiliation(s)
- Yi-Zhu Jiang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xin-Ran Huang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Chang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, China.
| |
Collapse
|
19
|
Yang J, Pan X, Xu M, Li Y, Liang C, Liu L, Li Z, Wang L, Yu G. Downregulation of HMGCS2 mediated AECIIs lipid metabolic alteration promotes pulmonary fibrosis by activating fibroblasts. Respir Res 2024; 25:176. [PMID: 38658970 PMCID: PMC11040761 DOI: 10.1186/s12931-024-02816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Abnormal lipid metabolism has recently been reported as a crucial signature of idiopathic pulmonary fibrosis (IPF). However, the origin and biological function of the lipid and possible mechanisms of increased lipid content in the pathogenesis of IPF remains undetermined. METHODS Oil-red staining and immunofluorescence analysis were used to detect lipid accumulation in mouse lung fibrosis frozen sections, Bleomycin-treated human type II alveolar epithelial cells (AECIIs) and lung fibroblast. Untargeted Lipid omics analysis was applied to investigate differential lipid species and identified LysoPC was utilized to treat human lung fibroblasts and mice. Microarray and single-cell RNA expression data sets identified lipid metabolism-related differentially expressed genes. Gain of function experiment was used to study the function of 3-hydroxy-3-methylglutaryl-Coa Synthase 2 (HMGCS2) in regulating AECIIs lipid metabolism. Mice with AECII-HMGCS2 high were established by intratracheally delivering HBAAV2/6-SFTPC- HMGCS2 adeno-associated virus. Western blot, Co-immunoprecipitation, immunofluorescence, site-directed mutation and flow cytometry were utilized to investigate the mechanisms of HMGCS2-mediated lipid metabolism in AECIIs. RESULTS Injured AECIIs were the primary source of accumulated lipids in response to Bleomycin stimulation. LysoPCs released by injured AECIIs could activate lung fibroblasts, thus promoting the progression of pulmonary fibrosis. Mechanistically, HMGCS2 was decreased explicitly in AECIIs and ectopic expression of HMGCS2 in AECIIs using the AAV system significantly alleviated experimental mouse lung fibrosis progression via modulating lipid degradation in AECIIs through promoting CPT1A and CPT2 expression by interacting with PPARα. CONCLUSIONS These data unveiled a novel etiological mechanism of HMGCS2-mediated AECII lipid metabolism in the genesis and development of pulmonary fibrosis and provided a novel target for clinical intervention.
Collapse
Affiliation(s)
- Juntang Yang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xin Pan
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Min Xu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yingge Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Chenxi Liang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Lulu Liu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Zhongzheng Li
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Lan Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
20
|
Yan W, He Q, Long P, Chen T, Zhang L, Wang H. Effect of molecular hydrogen, a novelly-established antioxidant, on the retinal degeneration of hereditary retinitis pigmentosa: an in-vivo study. Front Pharmacol 2024; 14:1294315. [PMID: 38638334 PMCID: PMC11025393 DOI: 10.3389/fphar.2023.1294315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/05/2023] [Indexed: 04/20/2024] Open
Abstract
Objective Our research was performed in order to explore the effects of molecular hydrogen (H2), a novelly-established antioxidant, on the retinal degeneration in rd1 mice, an animal model of inherited retinitis pigmentosa (RP). Methods The rd1 mice were divided randomly into control and H2 intervention groups. Mice from other groups received H2 intervention in three modes, two modes of the hydrogen gas (HG) and one model of hydrogen-rich saline (HRS). At 14 days post born (P14) and P21, various indicators were detected in all mice, including eletroretinogram (ERG), fundus phography, optical coherence tomography (OCT), and retinal immunotaining of microglia cells' marker, Iba1. Results The ERG amplitude in mice from the control and H2 intervention groups showed no statistical differences (p > 0.05). At P14 and P21, no significant difference in the distance from the retinal pigment epithelium to the outer plexiform layer on OCT from mice of the above two groups was found (p > 0.05). The thickness of the outer nuclear layer (ONL) in mice at P14 and P21 showed no statistical differences between the control group and the H2 intervention group (p > 0.05). In the aspect of the number of Iba1-positive cells, we did not found any significant differences between the two groups (p > 0.05). Conclusion Different forms of H2 intervention (hydrogen-rich saline and hydrogen gas) had no obvious effects on the course of retinal degeneration in rd1 mice. The specific mechanism of photoreceptor degeneration in the hereditary RP mouse model may be different, requiring different medical interventions.
Collapse
Affiliation(s)
- Weiming Yan
- The Shaanxi Eye Hospital, Xi’an People’s Hospital, Xi’an Fourth Hospital, Xi’an, China
- The Third Hospital of Zhangzhou, Zhangzhou, China
- Fuzong Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Qiurui He
- The Third Hospital of Zhangzhou, Zhangzhou, China
| | - Pan Long
- The General Hospital of Western Theatre Command, PLA, Chengdu, China
| | - Tao Chen
- Center of Clinical Aerospace Medicine, Air Force Military Medical University, Xi’an, China
| | - Lei Zhang
- The Shaanxi Eye Hospital, Xi’an People’s Hospital, Xi’an Fourth Hospital, Xi’an, China
| | - Haiyan Wang
- The Shaanxi Eye Hospital, Xi’an People’s Hospital, Xi’an Fourth Hospital, Xi’an, China
| |
Collapse
|
21
|
Zhang TX, Duan XC, Cui Y, Zhang Y, Gu M, Wang ZY, Li WY. Clinical significance of miR-9-5p in NSCLC and its relationship with smoking. Front Oncol 2024; 14:1376502. [PMID: 38628672 PMCID: PMC11018953 DOI: 10.3389/fonc.2024.1376502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose Dysregulated expression of microRNA (miRNAs) in lung cancer has been wildly reported. The clinicopathologic significance of miR-9-5p in non-small-cell lung cancer (NSCLC) patients and its effect on NSCLC progression were explored in this study. Patients and methods A total of 76 NSCLC patients were included. miR-9-5p expression was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Then, in vitro experiments including cell growth curve assays, colony formation assays, and transwell migration assays were performed. Further clinicopathological and prognostic values were explored using bioinformatics analysis of the TCGA database. Results miR-9-5p expression was significantly increased in tumor tissues (both P < 0.0001). miR-9-5p expression was relatively higher in larger tumors (P = 0.0327) and in lung squamous carcinoma (LUSC) (P = 0. 0143). In addition, miR-9-5p was significantly upregulated in the normal lung tissues of cigarette smokers (P = 0.0099). In vitro, miR-9-5p was correlated with cell proliferation and migration. After that, bioinformatics analysis of the TCGA database indicated that miR-9-5p was correlated with tumor size (P = 0.0022), lymphatic metastasis (P = 0.0141), LUSC (P < 0.0001), and smoking history (P < 0.0001). Finally, a prognostic study indicated high miR-9-5p expression was correlated with poor prognosis in LUAD (P = 0.0121). Conclusion Upregulation of miR-9-5p may have an oncogenic effect in NSCLC and may be related to smoking. The conclusion of this study may help find new prognostic and therapeutic targets for NSCLC and the exploration of the relationship between smoking and lung cancer.
Collapse
Affiliation(s)
- Tian-Xiang Zhang
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xin-Chun Duan
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ye Zhang
- Department of Infectious Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zi-Yu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei-Ying Li
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
22
|
Sung JY, Kim SG, Kang YJ, Park SY, Choi HC. SIRT1-dependent PGC-1α deacetylation by SRT1720 rescues progression of atherosclerosis by enhancing mitochondrial function. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159453. [PMID: 38244675 DOI: 10.1016/j.bbalip.2024.159453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Vascular smooth muscle cell (VSMC) senescence promotes atherosclerosis via lipid-mediated mitochondrial dysfunction and oxidative stress. However, the mechanisms of mitochondrial dysfunction and VSMC senescence in atherosclerosis have not been established. Here, we investigated the mechanisms whereby signaling pathways regulated by SRT1720 enhance or regulate mitochondrial functions in atherosclerotic VSMCs to suppress atherosclerosis. Initially, we examined the effect of SRT1720 on oleic acid (OA)-induced atherosclerosis. Atherosclerotic VSMCs exhibited elevated expressions of BODIPY and ADRP (adipose differentiation-related protein) and associated intracellular lipid droplet markers. In addition, the expression of collagen I was upregulated by OA, while the expressions of elastin and α-SMA were downregulated. mtDNA copy numbers, an ATP detection assay, transmission electron microscopy (TEM) imaging of mitochondria, mitochondria membrane potentials (assessed using JC-1 probe), and levels of mitochondrial oxidative phosphorylation (OXPHOS) were used to examine the effects of SRT1720 on OA-induced mitochondrial dysfunction. SRT1720 reduced mtDNA damage and accelerated mitochondria repair in VSMCs with OA-induced mitochondria dysfunction. In addition, mitochondrial reactive oxygen species (mtROS) levels were downregulated by SRT1720 in OA-treated VSMCs. Importantly, SRT1720 significantly increased SIRT1 and PGC-1α expression levels, but VSMCs senescence, inflammatory response, and atherosclerosis phenotypes were not recovered by treating cells with EX527 and SR-18292 before SRT1720. Mechanistically, the upregulations of SIRT1 and PGC-1α deacetylation by SRT1720 restored mitochondrial function, and consequently suppressed VSMC senescence and atherosclerosis-associated proteins and phenotypes. Collectively, this study indicates that SRT1720 can attenuate OA-induced atherosclerosis associated with VSMC senescence and mitochondrial dysfunction via SIRT1-mediated deacetylation of the PGC-1α pathway.
Collapse
Affiliation(s)
- Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea.
| |
Collapse
|
23
|
Zhang M, Xue X, Lou Z, Lin Y, Li Q, Huang C. Exosomes from senescent epithelial cells activate pulmonary fibroblasts via the miR-217-5p/Sirt1 axis in paraquat-induced pulmonary fibrosis. J Transl Med 2024; 22:310. [PMID: 38532482 PMCID: PMC10964553 DOI: 10.1186/s12967-024-05094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Paraquat (PQ) is a widely used and highly toxic herbicide that poses a significant risk to human health. The main consequence of PQ poisoning is pulmonary fibrosis, which can result in respiratory failure and potentially death. Our research aims to uncover a crucial mechanism in which PQ poisoning induces senescence in epithelial cells, ultimately regulating the activation of pulmonary fibroblasts through the exosomal pathway. METHODS Cellular senescence was determined by immunohistochemistry and SA-β-Gal staining. The expression of miRNAs was measured by qPCR. Pulmonary fibroblasts treated with specific siRNA of SIRT1 or LV-SIRT1 were used to analysis senescent exosomes-mediated fibroblasts activation. Luciferase reporter assay and western blot were performed to elucidated the underlying molecular mechanisms. The effects of miR-217-5p antagomir on pulmonary fibrosis were assessed in PQ-poisoned mice models. RESULTS Impairing the secretion of exosomes effectively mitigates the harmful effects of senescent epithelial cells on pulmonary fibroblasts, offering protection against PQ-induced pulmonary fibrosis in mice. Additionally, we have identified a remarkable elevation of miR-217-5p expression in the exosomes of PQ-treated epithelial cells, which specifically contributes to fibroblasts activation via targeted inhibition of SIRT1, a protein involved in cellular stress response. Remarkably, suppression of miR-217-5p effectively impaired senescent epithelial cells-induced fibroblasts activation. Further investigation has revealed that miR-217-5p attenuated SIRT1 expression and subsequently resulted in enhanced acetylation of β-catenin and Wnt signaling activation. CONCLUSION These findings highlight a potential strategy for the treatment of pulmonary fibrosis induced by PQ poisoning. Disrupting the communication between senescent epithelial cells and pulmonary fibroblasts, particularly by targeting the miR-217-5p/SIRT1/β-catenin axis, may be able to alleviate the effects of PQ poisoning on the lungs.
Collapse
Affiliation(s)
- Min Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Xiang Xue
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Zhenshuai Lou
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Yanhong Lin
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Qian Li
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China
| | - Changbao Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, Anhui, People's Republic of China.
| |
Collapse
|
24
|
Lu X, Li G, Liu Y, Luo G, Ding S, Zhang T, Li N, Geng Q. The role of fatty acid metabolism in acute lung injury: a special focus on immunometabolism. Cell Mol Life Sci 2024; 81:120. [PMID: 38456906 PMCID: PMC10923746 DOI: 10.1007/s00018-024-05131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Reputable evidence from multiple studies suggests that excessive and uncontrolled inflammation plays an indispensable role in mediating, amplifying, and protracting acute lung injury (ALI). Traditionally, immunity and energy metabolism are regarded as separate functions regulated by distinct mechanisms, but recently, more and more evidence show that immunity and energy metabolism exhibit a strong interaction which has given rise to an emerging field of immunometabolism. Mammalian lungs are organs with active fatty acid metabolism, however, during ALI, inflammation and oxidative stress lead to a series metabolic reprogramming such as impaired fatty acid oxidation, increased expression of proteins involved in fatty acid uptake and transport, enhanced synthesis of fatty acids, and accumulation of lipid droplets. In addition, obesity represents a significant risk factor for ALI/ARDS. Thus, we have further elucidated the mechanisms of obesity exacerbating ALI from the perspective of fatty acid metabolism. To sum up, this paper presents a systematical review of the relationship between extensive fatty acid metabolic pathways and acute lung injury and summarizes recent advances in understanding the involvement of fatty acid metabolism-related pathways in ALI. We hold an optimistic believe that targeting fatty acid metabolism pathway is a promising lung protection strategy, but the specific regulatory mechanisms are way too complex, necessitating further extensive and in-depth investigations in future studies.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
25
|
Pramanik S, Sil AK. Cigarette smoke extract induces foam cell formation by impairing machinery involved in lipid droplet degradation. Pflugers Arch 2024; 476:59-74. [PMID: 37910205 DOI: 10.1007/s00424-023-02870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The formation of foam cells, lipid-loaded macrophages, is the hallmark event of atherosclerosis. Since cigarette smoking is a risk factor for developing atherosclerosis, the current study investigated the effects of cigarette smoke extract (CSE) on different events like expressions of genes involved in lipid influx and efflux, lipophagy, etc., that play vital roles in foam cell formation. The accumulation of lipids after CSE treatment U937 macrophage cells was examined by staining lipids with specific dyes: Oil red O and BODIPY493/503. Results showed an accumulation of lipids in CSE-treated cells, confirming foam cell formation by CSE treatment. To decipher the mechanism, the levels of CD36, an ox-LDL receptor, and ABCA1, an exporter of lipids, were examined in CSE-treated and -untreated U937 cells by real-time PCR and immunofluorescence analysis. Consistent with lipid accumulation, an increased level of CD36 and a reduction in ABCA1 were observed in CSE-treated cells. Moreover, CSE treatment caused inhibition of lipophagy-mediated lipid degradation by blocking lipid droplets (LDs)-lysosome fusion and increasing the lysosomal pH. CSE also impaired mitochondrial lipid oxidation. Thus, the present study demonstrates that CSE treatment affects lipid homeostasis by altering its influx and efflux, lysosomal degradation, and mitochondrial utilization, leading to the formation of lipid-loaded foam cells. Moreover, the current study also showed that the leucine supplement caused a significant reduction of CSE-induced foam cell formation in vitro. Thus, the current study provides insight into CS-induced atherosclerosis and an agent to combat the disease.
Collapse
Affiliation(s)
- Soudipta Pramanik
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Ballygunge, Kolkata, West Bengal, India, PIN-700019
| | - Alok Kumar Sil
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Ballygunge, Kolkata, West Bengal, India, PIN-700019.
| |
Collapse
|
26
|
Ghorab D, Abu-El-Rub EM, Gharaibeh MH, Khasawneh RR, Almazari RA, Al-Emam A, Helaly AM. The toxic profile of tramadol combined with nicotine on the liver and testicles: evidence from endoplasmic reticulum stress. Mol Biol Rep 2023; 50:9887-9895. [PMID: 37864661 DOI: 10.1007/s11033-023-08903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Tramadol is one of the most commonly abused substances in the Middle East. Furthermore, smoking is extremely common among the population. METHODS An experimental study was performed on Sprague-Dawley rats to explore the effects of both nicotine and tramadol on the liver and testes. The tramadol was administered at 10 and 20 mg/kg, respectively, while the nicotine was administered at 125 mg/kg. Histological examination and androgen receptor ELISA assay showed mild effects on the liver and proofed safety on the testis. Western blot analysis of BIP (immunoglobulin heavy-chain binding protein) and CHOP (CCAAT-enhancer-binding protein homologous protein) revealed that fewer problems were induced by adding nicotine to tramadol. Autophagy marker LCIII and apoptosis marker caspase-8 showed similar effects to CHOP and BIP on liver samples. The real-time PCR of BIP expression showed similar but not identical results. CONCLUSIONS The results showed mild endoplasmic reticulum stress, autophagy, and apoptosis in the liver samples. Histological examination revealed stable spermatogenesis with average androgen receptor blood levels in the different groups.
Collapse
Affiliation(s)
- Doaa Ghorab
- Basic Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ejlal M Abu-El-Rub
- Basic Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohamed Hamdi Gharaibeh
- Basic Veterinary Department, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Ar-Ramtha, Jordan
| | - Ramada R Khasawneh
- Basic Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Rawan A Almazari
- Basic Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ahmed Al-Emam
- Pathology Department, Medical School, King Khaled University, Abha, Kingdom of Saudi Arabia
- Forensic and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Mohamed Helaly
- Clinical Sciences Department, Faculty of Medicine, Yarmouk University, Irbid, Jordan.
- Forensic and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
27
|
Lu H, Zhang R, Zhang S, Li Y, Liu Y, Xiong Y, Yu X, Lan T, Li X, Wang M, Liu Z, Zhang G, Li J, Chen S. HSC-derived exosomal miR-199a-5p promotes HSC activation and hepatocyte EMT via targeting SIRT1 in hepatic fibrosis. Int Immunopharmacol 2023; 124:111002. [PMID: 37804655 DOI: 10.1016/j.intimp.2023.111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Exosomes have been implicated in inflammation-related diseases, such as hepatic fibrosis (HF) and renal fibrosis, via transferring bioactive cargoes to recipient cells. This study aimed to investigate the possible effect of hepatic stellate cell (HSC)-derived exosomes on the initiation and development of HF by delivering microRNA (miR)-199a-5p. In HF rats with cholestasis induced by ligating the common bile duct, miR-199a-5p was upregulated while SIRT1 was downregulated in liver tissues from bile duct ligation (BDL) rats compared with that of sham rats. Furthermore, miR-199a-5p expression was upregulated, but the mRNA and protein expression levels of SIRT1 were downregulated in TGF-β1-activated LX-2. miR-199a-5p promoted the proliferation and further activation of LX-2 and enhanced the expression levels of the HF markers COL1A1 and α-SMA. Subsequently, the binding of miR-199a-5p to the 3'UTR of SIRT1 mRNA was predicted by bioinformatics websites and evidenced by fluorescent reporter assay. Knocking down SIRT1 enhanced the abilities of LX-2 cell proliferation, migration, and colony formation and increased the expression levels of the HF markers α-SMA and COL1A1. LX-2-derived exosomal miR-199a-5p transferred to LX-2 and THLE-2, inhibited the proliferation of THLE-2, and promoted the epithelial mesenchymal transition (EMT) and senescence of THLE-2. Furthermore, in vivo results suggested that miR-199a-5p overexpression aggravated HF in BDL rats; increased miR-199a-5p, α-SMA, and COL1A1 expression levels; and significantly upregulated the serum ALT, AST, TBA, and TBIL levels. However, reverse results were obtained with inhibited miR-199a-5p expression. In conclusion, HSC-derived exosomal miR-199a-5p may promote HF by accelerating HSC activation and hepatocyte EMT by targeting SIRT1, suggesting that miR-199a-5p and SIRT1 may serve as potential therapeutic targets for HF.
Collapse
Affiliation(s)
- Hongjian Lu
- North China University of Science and Technology Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Ronghua Zhang
- North China University of Science and Technology Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Shukun Zhang
- Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China
| | - Yufeng Li
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan 063001, China
| | - Yankun Liu
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan 063001, China
| | - Yanan Xiong
- North China University of Science and Technology Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Xiaohan Yu
- North China University of Science and Technology Affiliated Hospital, School of Public Health, Hebei Provincial Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan 063000, China
| | - Tao Lan
- Hepatobiliary Pancreatic Surgery Department, Cangzhou People's Hospital, Cangzhou 061000, China
| | - Xin Li
- Hepatobiliary Pancreatic Surgery Department, Cangzhou People's Hospital, Cangzhou 061000, China
| | - Meimei Wang
- North China University of Science and Technology Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Zhiyong Liu
- Health Science Center, North China University of Science and Technology, Tangshan 063210, China
| | - Guangling Zhang
- North China University of Science and Technology Affiliated Hospital, School of Public Health, Hebei Provincial Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, Tangshan 063000, China.
| | - Jingwu Li
- The Cancer Institute, Hebei Key Laboratory of Molecular Oncology, Tangshan People's Hospital, Tangshan 063001, China.
| | - Shuang Chen
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China.
| |
Collapse
|
28
|
Zhao K, Nie H, Tang Z, Chen G, Huang J. Paroxetine protects against bleomycin-induced pulmonary fibrosis by blocking GRK2/Smad3 pathway. Aging (Albany NY) 2023; 15:10524-10539. [PMID: 37815883 PMCID: PMC10599755 DOI: 10.18632/aging.205092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/09/2023] [Indexed: 10/12/2023]
Abstract
G protein-coupled receptor kinase-2 (GRK2) is involved in TGF-β1-induced activation of lung fibroblasts, which could give rise to the pathogenesis of pulmonary fibrosis. Paroxetine (PRXT) serves as a selective GRK2 inhibitor which is widely used to treat anxiety and depression for several decades. However, whether PRXT could inhibit TGF-β1-induced activation of lung fibroblasts and combat bleomycin-induced pulmonary fibrosis remains unclear. Here, we investigated the effects of PRXT on pulmonary fibrosis in C57/BL6 caused by bleomycin as well as on the activation of murine primary lung fibroblasts stimulated with TGF-β1. The results demonstrated that PRXT markedly improved the pulmonary function and 21-day survival in bleomycin-induced mice. Meanwhile, PRXT significantly decreased collagen deposition, inflammation, and oxidative stress in lung tissues from bleomycin-induced mice. Furthermore, we found that PRXT could inhibit the protein and mRNA expression of GRK2 and Smad3 in lung tissues from bleomycin-induced mice. In vitro experiments also PRXT could inhibit cell activation and collagen synthesis in a concentration-dependent manner in TGF-β1-induced lung fibroblasts. In addition, we found that Smad3 overexpression by adenovirus transfection could offset anti-fibrotic and antioxidative effects from PRXT in TGF-β1-induced lung fibroblasts, which showed no effects on the protein expression of GRK2. In conclusion, PRXT mediates the inhibition of GRK2, which further blocks the transcription of Smad3 in TGF-β1-induced lung fibroblasts, providing an attractive therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Kaochang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zheng Tang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guozhong Chen
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jizhen Huang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
29
|
Luo Y, Hu N, Zhao Y, Lai J, Luo X, Liu J. Resveratrol‑mediated activation of SIRT1 inhibits the PERK‑eIF2α‑ATF4 pathway and mitigates bupivacaine‑induced neurotoxicity in PC12 cells. Exp Ther Med 2023; 26:433. [PMID: 37602306 PMCID: PMC10433439 DOI: 10.3892/etm.2023.12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and apoptosis play significant roles in the development of neurotoxicity caused by bupivacaine (BUP). By activating sirtuin 1 (SIRT1), resveratrol (RSV) can regulate various cellular processes associated with anti-oxidative stress, anti-apoptosis and anti-inflammatory responses, thereby exerting neuroprotective effects. However, it remains unknown whether the activation of SIRT1 by RSV is able to attenuate BUP-induced ER stress and apoptosis. Therefore, the present study aimed to explore the effect of RSV on BUP-induced cytotoxicity in PC12 cells and the underlying mechanism. Cell Counting Kit-8 assays, flow cytometry and inverted phase-contrast microscopy were used to assess the viability, apoptosis rate and morphological changes of the cells, respectively. Western blotting and immunofluorescence staining were used to analyze the levels of SIRT1, the apoptosis-related proteins Bax, Bcl-2 and cleaved caspase-3, the ER stress-related proteins glucose-regulated protein 78, caspase-12 and CHOP, and the protein kinase RNA-like ER kinase (PERK)-eukaryotic translation initiation factor 2 α (eIF2α)-activating transcription factor 4 (ATF4) pathway-associated proteins phosphorylated (p)-PERK, PERK, p-eIF2α, eIF2α and ATF4. The results revealed that BUP induced cell apoptosis and decreased cell viability, accompanied by the downregulation of SIRT1. However, RSV restored SIRT1 protein expression, downregulated the expression of the pro-apoptotic protein Bax, upregulated the expression of the anti-apoptotic protein Bcl-2, decreased the apoptosis rate of the cells and increased cell viability. Furthermore, the anti-apoptotic effects exhibited by RSV were associated with inhibition of the PERK-eIF2α-ATF4 pathway of ER stress. However, the protective effect of RSV was significantly mitigated by the SIRT1 inhibitor EX527. These results indicate that the activation of SIRT1 by RSV alleviates BUP-induced PC12 cell ER stress and apoptosis via regulation of the PERK-eIF2α-ATF4 pathway. These findings offer insights into the molecular mechanism underlying BUP-induced apoptosis and suggest the potential of RSV as a therapeutic agent against the neurotoxicity caused by BUP.
Collapse
Affiliation(s)
- Yunpeng Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Na Hu
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yang Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Lai
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xi Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jingchen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
30
|
Sun C, Bai S, Liang Y, Liu D, Liao J, Chen Y, Zhao X, Wu B, Huang D, Chen M, Wu D. The role of Sirtuin 1 and its activators in age-related lung disease. Biomed Pharmacother 2023; 162:114573. [PMID: 37018986 DOI: 10.1016/j.biopha.2023.114573] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Aging is a major driving factor in lung diseases. Age-related lung disease is associated with downregulated expression of SIRT1, an NAD+-dependent deacetylase that regulates inflammation and stress resistance. SIRT1 acts by inducing the deacetylation of various substrates and regulates several mechanisms that relate to lung aging, such as genomic instability, lung stem cell exhaustion, mitochondrial dysfunction, telomere shortening, and immune senescence. Chinese herbal medicines have many biological activities, exerting anti-inflammatory, anti-oxidation, anti-tumor, and immune regulatory effects. Recent studies have confirmed that many Chinese herbs have the effect of activating SIRT1. Therefore, we reviewed the mechanism of SIRT1 in age-related lung disease and explored the potential roles of Chinese herbs as SIRT1 activators in the treatment of age-related lung disease.
Collapse
|
31
|
Han S, Lu Q, Liu X. Advances in cellular senescence in idiopathic pulmonary fibrosis (Review). Exp Ther Med 2023; 25:145. [PMID: 36911379 PMCID: PMC9995810 DOI: 10.3892/etm.2023.11844] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/05/2023] [Indexed: 02/17/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible and fatal interstitial lung disease of unknown cause, with a median survival of 2-3 years. Its pathogenesis is unclear and there is currently no effective treatment for IPF. Approximately two-thirds of patients with IPF are >60 years old, with a mean age of 66 years, suggesting a link between aging and IPF. However, the mechanism by which aging promotes development of PF remains unclear. Senescence of alveolar epithelial cells and lung fibroblasts (LFs) and their senescence-associated secretion phenotype (SASP) may be involved in the occurrence and development of IPF. The present review focus on senescence of LFs and epithelial and stem cells, as well as SASP, the activation of profibrotic signaling pathways and potential treatments for pathogenesis of IPF.
Collapse
Affiliation(s)
- Shan Han
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Qiangwei Lu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Xiaoqiu Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
32
|
Solorio-Rodriguez SA, Williams A, Poulsen SS, Knudsen KB, Jensen KA, Clausen PA, Danielsen PH, Wallin H, Vogel U, Halappanavar S. Single-Walled vs. Multi-Walled Carbon Nanotubes: Influence of Physico-Chemical Properties on Toxicogenomics Responses in Mouse Lungs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061059. [PMID: 36985953 PMCID: PMC10057402 DOI: 10.3390/nano13061059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/27/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are nanomaterials with one or multiple layers of carbon sheets. While it is suggested that various properties influence their toxicity, the specific mechanisms are not completely known. This study was aimed to determine if single or multi-walled structures and surface functionalization influence pulmonary toxicity and to identify the underlying mechanisms of toxicity. Female C57BL/6J BomTac mice were exposed to a single dose of 6, 18, or 54 μg/mouse of twelve SWCNTs or MWCNTs of different properties. Neutrophil influx and DNA damage were assessed on days 1 and 28 post-exposure. Genome microarrays and various bioinformatics and statistical methods were used to identify the biological processes, pathways and functions altered post-exposure to CNTs. All CNTs were ranked for their potency to induce transcriptional perturbation using benchmark dose modelling. All CNTs induced tissue inflammation. MWCNTs were more genotoxic than SWCNTs. Transcriptomics analysis showed similar responses across CNTs at the pathway level at the high dose, which included the perturbation of inflammatory, cellular stress, metabolism, and DNA damage responses. Of all CNTs, one pristine SWCNT was found to be the most potent and potentially fibrogenic, so it should be prioritized for further toxicity testing.
Collapse
Affiliation(s)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Per Axel Clausen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Pernille Høgh Danielsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Håkan Wallin
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
- Department of Public Health, University of Copenhagen, 1353 Copenhagen, Denmark
- National Institute of Occupational Health, 0304 Oslo, Norway
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; (S.S.P.); (K.B.K.); (K.A.J.); (P.A.C.); (P.H.D.); (H.W.); (U.V.)
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A0K9, Canada; (S.A.S.-R.); (A.W.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
33
|
Li S, Huang Q, He B. SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease. Lung 2023; 201:201-215. [PMID: 36790647 DOI: 10.1007/s00408-023-00607-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, preventable, and treatable disease characterized by irreversible airflow obstruction and lung function decline. It is well established that COPD represents a major cause of morbidity and mortality globally. Due to the substantial economic and social burdens associated with COPD, it is necessary to discover new targets and develop novel beneficial therapies. Although the pathogenesis of COPD is complex and remains to be robustly elucidated, numerous studies have shown that oxidative stress, inflammatory responses, cell apoptosis, autophagy, and aging are involved in the pathogenesis of COPD. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to the silent information regulator 2 (Sir2) family. Multiple studies have indicated that SIRT1 plays an important role in oxidative stress, apoptosis, inflammation, autophagy, and cellular senescence, which contributes to the pathogenesis and development of COPD. This review aimed to discuss the functions and mechanisms of SIRT1 in the progression of COPD and concluded that SIRT1 activation might be a potential therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Siqi Li
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Baimei He
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
34
|
Tian Y, Duan C, Feng J, Liao J, Yang Y, Sun W. Roles of lipid metabolism and its regulatory mechanism in idiopathic pulmonary fibrosis: A review. Int J Biochem Cell Biol 2023; 155:106361. [PMID: 36592687 DOI: 10.1016/j.biocel.2022.106361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. Several lung cell types, including alveolar epithelial cells and fibroblasts, have been implicated in the development and progression of fibrosis. However, the pathogenesis of idiopathic pulmonary fibrosis is still incompletely understood. The latest research has found that dysregulation of lipid metabolism plays an important role in idiopathic pulmonary fibrosis. The changes in the synthesis and activity of fatty acids, cholesterol and other lipids seriously affect the regenerative function of alveolar epithelial cells and promote the transformation of fibroblasts into myofibroblasts. Mitochondrial function is the key to regulating the metabolic needs of a variety of cells, including alveolar epithelial cells. Sirtuins located in mitochondria are essential to maintain mitochondrial function and cellular metabolic homeostasis. Sirtuins can maintain normal lipid metabolism by regulating respiratory enzyme activity, resisting oxidative stress, and protecting mitochondrial function. In this review, we aimed to discuss the difference between normal and idiopathic pulmonary fibrosis lungs in terms of lipid metabolism. Additionally, we highlight recent breakthroughs on the effect of abnormal lipid metabolism on idiopathic pulmonary fibrosis, including the effects of sirtuins. Idiopathic pulmonary fibrosis has its high mortality and limited therapeutic options; therefore, we believe that this review will help to develop a new therapeutic direction from the aspect of lipid metabolism in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yunchuan Tian
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunyan Duan
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jiayue Feng
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Jie Liao
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China; Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China
| | - Yang Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
35
|
Xu W, Hu Z, Zhang J, Tang Y, Xing H, Xu P, Ma Y, Niu Q. Cross-talk between autophagy and ferroptosis contributes to the liver injury induced by fluoride via the mtROS-dependent pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114490. [PMID: 36628887 DOI: 10.1016/j.ecoenv.2022.114490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Fluoride can induce hepatotoxicity, but the mechanisms responsible are yet to be investigated. This study sought to investigate the role and mechanism of mitochondrial reactive oxygen species (mtROS), autophagy, and ferroptosis in fluoride-induced hepatic injury with a focus on the role of mtROS-mediated cross-talk between autophagy and ferroptosis. To this end, an in vivo Sprague-Dawley rat model and in vitro BRL3A cells were exposed to sodium fluoride (NaF). The results revealed that NaF exposure diminished the mitochondrial membrane potential, increased mtROS production and TOMM20 expression, and induced autophagic flux blockage and ferroptosis in vivo and in vitro. Furthermore, the autophagy activator (RAPA) enhanced GPX4 expression while inhibiting ACSL4 expression, reduced the accumulation of ferrous ions in BRL3A cells, and restored lipid peroxidation levels, thus inhibiting ferroptosis. Fer-1, a ferritinase inhibitor, downregulated the expression of LC3-II and p62, increased the number of autolysosomes while decreasing the number of autophagosomes, and alleviated the blockage of autophagic flux by improving autophagic degradation. These results suggest the occurrence of a cross-talk between autophagy and ferroptosis. The mtROS inhibitor (Mito-TEMPO) could alleviate autophagic flux blockage and inhibit ferroptosis in NaF-induced liver injury. In addition, the cross-talk between NaF-induced autophagy and ferroptosis was dependent on the mtROS pathway.
Collapse
Affiliation(s)
- Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
36
|
Zheng Z, Li X, Nie K, Wang X, Liang W, Yang F, Zheng K, Zheng Y. Identification of berberine as a potential therapeutic strategy for kidney clear cell carcinoma and COVID-19 based on analysis of large-scale datasets. Front Immunol 2023; 14:1038651. [PMID: 37033923 PMCID: PMC10076552 DOI: 10.3389/fimmu.2023.1038651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Background Regarding the global coronavirus disease 2019 (COVID)-19 pandemic, kidney clear cell carcinoma (KIRC) has acquired a higher infection probability and may induce fatal complications and death following COVID-19 infection. However, effective treatment strategies remain unavailable. Berberine exhibits significant antiviral and antitumour effects. Thus, this study aimed to provide a promising and reliable therapeutic strategy for clinical decision-making by exploring the therapeutic mechanism of berberine against KIRC/COVID-19. Methods Based on large-scale data analysis, the target genes, clinical risk, and immune and pharmacological mechanisms of berberine against KIRC/COVID-19 were systematically investigated. Results In total, 1,038 and 12,992 differentially expressed genes (DEGs) of COVID-19 and KIRC, respectively, were verified from Gene Expression Omnibus and The Cancer Genome Atlas databases, respectively, and 489 berberine target genes were obtained from official websites. After intersecting, 26 genes were considered potential berberine therapeutic targets for KIRC/COVID-19. Berberine mechanism of action against KIRC/COVID-19 was revealed by protein-protein interaction, gene ontology, and Kyoto Encyclopedia of Genes and Genomes with terms including protein interaction, cell proliferation, viral carcinogenesis, and the PI3K/Akt signalling pathway. In COVID-19 patients, ACOX1, LRRK2, MMP8, SLC1A3, CPT1A, H2AC11, H4C8, and SLC1A3 were closely related to disease severity, and the general survival of KIRC patients was closely related to ACOX1, APP, CPT1A, PLK1, and TYMS. Additionally, the risk signature accurately and sensitively depicted the overall survival and patient survival status for KIRC. Numerous neutrophils were enriched in the immune system of COVID-19 patients, and the lives of KIRC patients were endangered due to significant immune cell infiltration. Molecular docking studies indicated that berberine binds strongly to target proteins. Conclusion This study demonstrated berberine as a potential treatment option in pharmacological, immunological, and clinical practice. Moreover, its therapeutic effects may provide potential and reliable treatment options for patients with KIRC/COVID-19.
Collapse
Affiliation(s)
- Zhihua Zheng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiushen Li
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Kechao Nie
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoyu Wang
- Department of Nephrology, Health College of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wencong Liang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Fuxia Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Kairi Zheng
- Traditional Chinese Medicine Department, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- *Correspondence: Kairi Zheng, ; Yihou Zheng,
| | - Yihou Zheng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- *Correspondence: Kairi Zheng, ; Yihou Zheng,
| |
Collapse
|
37
|
Liu M, Sun X, Chen B, Dai R, Xi Z, Xu H. Insights into Manganese Superoxide Dismutase and Human Diseases. Int J Mol Sci 2022; 23:ijms232415893. [PMID: 36555531 PMCID: PMC9786916 DOI: 10.3390/ijms232415893] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Redox equilibria and the modulation of redox signalling play crucial roles in physiological processes. Overproduction of reactive oxygen species (ROS) disrupts the body's antioxidant defence, compromising redox homeostasis and increasing oxidative stress, leading to the development of several diseases. Manganese superoxide dismutase (MnSOD) is a principal antioxidant enzyme that protects cells from oxidative damage by converting superoxide anion radicals to hydrogen peroxide and oxygen in mitochondria. Systematic studies have demonstrated that MnSOD plays an indispensable role in multiple diseases. This review focuses on preclinical evidence that describes the mechanisms of MnSOD in diseases accompanied with an imbalanced redox status, including fibrotic diseases, inflammation, diabetes, vascular diseases, neurodegenerative diseases, and cancer. The potential therapeutic effects of MnSOD activators and MnSOD mimetics are also discussed. Targeting this specific superoxide anion radical scavenger may be a clinically beneficial strategy, and understanding the therapeutic role of MnSOD may provide a positive insight into preventing and treating related diseases.
Collapse
Affiliation(s)
- Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Xueyang Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Boya Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
- Correspondence: (Z.X.); (H.X.)
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Engineering Research Center, Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
- Correspondence: (Z.X.); (H.X.)
| |
Collapse
|