1
|
Martín Hernández S, Rivero Santana A, Tórtola-Navarro A, Perestelo Pérez L. [Relationship between consumption of sports supplements and addiction to sport in road and mountain runners]. NUTR HOSP 2024. [PMID: 39446123 DOI: 10.20960/nh.05197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION sports nutrition and supplementation (SD) are commonly used by road and mountain runners to achieve their goals and increased performance. However, sometimes sports practice can become an obsession and/or addiction, although the literature on the use of DS and sports addiction (SD) is scarce. OBJECTIVE to describe and analyse the relationship between SD use and AD in asphalt and mountain runners in the Canary Islands. METHODOLOGY a cross-sectional observational study in a sample of 613 adult athletes, using a self-administered online questionnaire that assessed SD use and AD, disseminated by federations, sports clubs, race organisers and social networks. RESULTS 75.7 % of participants reported taking some form of SD and being younger was associated with a higher likelihood of taking SD. On the total SD scale (SAS-15) the mean was 9.19 (SD = 3.24), above the midpoint of the theoretical range (0-15). Among participants taking and not taking DS, there is higher AD in those taking versus those not; and among those taking DS, AD is significantly higher in those taking weight management recoverers and supplements. CONCLUSIONS the sample had indicators of WD and, for the most part, were consuming some form of DS. In addition, there is a significant relationship between the use of DS and WD in road and mountain runners, with the level of WD being a predictor of DS consumption.
Collapse
Affiliation(s)
| | - Amado Rivero Santana
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC). Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS). Red Española de Agencias de Evaluación de Tecnologías Sanitarias y Prestaciones del Sistem
| | - Aida Tórtola-Navarro
- Facultad de Ciencias de la Salud. Universidad Isabel I. Centro de Estudios Universitarios Cardenal Spínola CEU
| | - Lilisbeth Perestelo Pérez
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS). Red Española de Agencias de Evaluación de Tecnologías Sanitarias y Prestaciones del Sistema Nacional de Salud (RedETS). Servicio de Evaluación (SESCS). Servicio Canar
| |
Collapse
|
2
|
Pradhan R, Dieterich W, Natarajan A, Schwappacher R, Reljic D, Herrmann HJ, Neurath MF, Zopf Y. Influence of Amino Acids and Exercise on Muscle Protein Turnover, Particularly in Cancer Cachexia. Cancers (Basel) 2024; 16:1921. [PMID: 38791998 PMCID: PMC11119313 DOI: 10.3390/cancers16101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer cachexia is a multifaceted syndrome that impacts individuals with advanced cancer. It causes numerous pathological changes in cancer patients, such as inflammation and metabolic dysfunction, which further diminish their quality of life. Unfortunately, cancer cachexia also increases the risk of mortality in affected individuals, making it an important area of focus for cancer research and treatment. Several potential nutritional therapies are being tested in preclinical and clinical models for their efficacy in improving muscle metabolism in cancer patients. Despite promising results, no special nutritional therapies have yet been validated in clinical practice. Multiple studies provide evidence of the benefits of increasing muscle protein synthesis through an increased intake of amino acids or protein. There is also increasing evidence that exercise can reduce muscle atrophy by modulating protein synthesis. Therefore, the combination of protein intake and exercise may be more effective in improving cancer cachexia. This review provides an overview of the preclinical and clinical approaches for the use of amino acids with and without exercise therapy to improve muscle metabolism in cachexia.
Collapse
Affiliation(s)
- Rashmita Pradhan
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Walburga Dieterich
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anirudh Natarajan
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Raphaela Schwappacher
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dejan Reljic
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hans J. Herrmann
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
| | - Yurdagül Zopf
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
3
|
Nielsen LLK, Lambert MNT, Haubek D, Bastani NE, Skålhegg BS, Overgaard K, Jensen J, Jeppesen PB. The Effect of Alginate Encapsulated Plant-Based Carbohydrate and Protein Supplementation on Recovery and Subsequent Performance in Athletes. Nutrients 2024; 16:413. [PMID: 38337697 PMCID: PMC10857232 DOI: 10.3390/nu16030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
The main purpose of this study was to investigate the effect of a novel alginate-encapsulated carbohydrate-protein (CHO-PRO ratio 2:1) supplement (ALG) on cycling performance. The ALG, designed to control the release of nutrients, was compared to an isocaloric carbohydrate-only control (CON). Alginate encapsulation of CHOs has the potential to reduce the risk of carious lesions. METHODS In a randomised cross-over clinical trial, 14 men completed a preliminary test over 2 experimental days separated by ~6 days. An experimental day consisted of an exercise bout (EX1) of cycling until exhaustion at W~73%, followed by 5 h of recovery and a subsequent time-to-exhaustion (TTE) performance test at W~65%. Subjects ingested either ALG (0.8 g CHO/kg/hr + 0.4 g PRO/kg/hr) or CON (1.2 g CHO/kg/hr) during the first 2 h of recovery. RESULTS Participants cycled on average 75.2 ± 5.9 min during EX1. Levels of plasma branched-chain amino acids decreased significantly after EX1, and increased significantly with the intake of ALG during the recovery period. During recovery, a significantly higher plasma insulin and glucose response was observed after intake of CON compared to ALG. Intake of ALG increased plasma glucagon, free fatty acids, and glycerol significantly. No differences were found in the TTE between the supplements (p = 0.13) nor in the pH of the subjects' saliva. CONCLUSIONS During the ALG supplement, plasma amino acids remained elevated during the recovery. Despite the 1/3 less CHO intake with ALG compared to CON, the TTE performance was similar after intake of either supplement.
Collapse
Affiliation(s)
- Lotte L. K. Nielsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Max Norman Tandrup Lambert
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Dorte Haubek
- Municipal Dental Service, Jammerbugt Municipality, Kattedamsvej 34, 9440 Aabybro, Denmark
| | - Nasser E. Bastani
- Department of Nutrition, Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Bjørn S. Skålhegg
- Department of Nutrition, Division of Molecular Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Kristian Overgaard
- Department of Public Health, Section of Sport Science, Aarhus University, Dalgas Avenue 4, 8000 Aarhus, Denmark
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sports Sciences, 0863 Oslo, Norway
| | - Per Bendix Jeppesen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| |
Collapse
|
4
|
Janiczak A, Alcock R, Forsyth A, Trakman GL. A systematic review of interventions targeting modifiable factors that impact dietary intake in athletes. Br J Nutr 2024; 131:229-247. [PMID: 37559383 PMCID: PMC10751945 DOI: 10.1017/s0007114523001769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Appropriate dietary intake has been found to positively impact athletes' performance, body composition and recovery from exercise. Strategies to optimise dietary intake often involve targeting one or more of the many factors that are known to influence dietary intake. This review aims to investigate the types and effectiveness of interventions used to impact modifiable factors of dietary intake in athletes. MEDLINE, CINAHL, SPORTDiscus and Web of Science were searched from inception to May 2022 for intervention studies that measured dietary intake with a quantitative tool and explored at least one factor thought to influence the dietary intake of adult athletes. Study quality was assessed using the ADA Quality Criteria Checklist: Primary Research. Twenty-four studies were included. The most common interventions focused on nutrition education (n 10), macronutrient adjustment (n 7) and physical activity (n 5). The three most common factors thought to influence dietary intake addressed were nutrition knowledge (n 12), hunger and appetite (n 8), and body composition (n 4). Significant changes in dietary intake were found in sixteen studies, with nutrition education interventions returning significant results in the largest proportion of studies (n 8). Study quality within this review was mostly average (n 4 < 50 %, n 19 50-80 %, n 1 > 80 %). As studies included were published between 1992 and 2021, interventions and factors explored in older studies may require up-to-date research to investigate possible differences in results due to time-related confounders.
Collapse
Affiliation(s)
- Amy Janiczak
- Sport, Performance and Nutrition Research Group, Department of Sport, Exercise and Nutrition Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Rebekah Alcock
- Sport, Performance and Nutrition Research Group, Department of Sport, Exercise and Nutrition Sciences, La Trobe University, Melbourne, VIC, Australia
- Essendon Football Club, Melbourne, VIC, Australia
| | - Adrienne Forsyth
- Sport, Performance and Nutrition Research Group, Department of Sport, Exercise and Nutrition Sciences, La Trobe University, Melbourne, VIC, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia
| | - Gina Louise Trakman
- Sport, Performance and Nutrition Research Group, Department of Sport, Exercise and Nutrition Sciences, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Valenzuela PL, Alejo LB, Montalvo-Pérez A, Ojanguren D, Górriz M, Pagola I, Ozcoidi LM, Lucia A, Barranco-Gil D. Pre-sleep protein supplementation in professional cyclists during a training camp: a three-arm randomized controlled trial. J Int Soc Sports Nutr 2023; 20:2166366. [PMID: 36686220 PMCID: PMC9848340 DOI: 10.1080/15502783.2023.2166366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background The effects of pre-sleep protein supplementation on endurance athletes remain unclear, particularly whether its potential benefits are due to the timing of protein intake or solely to an increased total protein intake. We assessed the effects of pre-sleep protein supplementation in professional cyclists during a training camp accounting for the influence of protein timing. Methods Twenty-four professional U23 cyclists (19 ± 1 years, peak oxygen uptake: 79.8 ± 4.9 ml/kg/min) participated in a six-day training camp. Participants were randomized to consume a protein supplement (40 g of casein) before sleep (n = 8) or in the afternoon (n = 8), or an isoenergetic placebo (40 g of carbohydrates) before sleep (n = 8). Indicators of fatigue/recovery (Hooper index, Recovery-Stress Questionnaire for Athletes, countermovement jump), body composition, and performance (1-, 5-, and 20-minute time trials, as well as the estimated critical power) were assessed as study outcomes. Results The training camp resulted in a significant (p < 0.001) increase in training loads (e.g. training stress score of 659 ± 122 per week during the preceding month versus 1207 ± 122 during the training camp), which induced an increase in fatigue indicators (e.g. time effect for Hooper index p < 0.001) and a decrease in performance (e.g. time effect for critical power p = 0.002). Protein intake was very high in all the participants (>2.5 g/kg on average), with significantly higher levels found in the two protein supplement groups compared to the placebo group (p < 0.001). No significant between-group differences were found for any of the analyzed outcomes (all p > 0.05). Conclusions Protein supplementation, whether administered before sleep or earlier in the day, exerts no beneficial effects during a short-term strenuous training period in professional cyclists, who naturally consume a high-protein diet.
Collapse
Affiliation(s)
- Pedro L. Valenzuela
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain,Department of Systems Biology, University of Alcala, Madrid, Spain
| | - Lidia B. Alejo
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain,Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Diego Ojanguren
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Itziar Pagola
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | - Alejandro Lucia
- Physical Activity and Health Research Group (PaHerg), Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain,Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - David Barranco-Gil
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain,CONTACT David Barranco-Gil Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Fernández-Lázaro D, Mielgo-Ayuso J, del Valle Soto M, Adams DP, Gutiérrez-Abejón E, Seco-Calvo J. Impact of Optimal Timing of Intake of Multi-Ingredient Performance Supplements on Sports Performance, Muscular Damage, and Hormonal Behavior across a Ten-Week Training Camp in Elite Cyclists: A Randomized Clinical Trial. Nutrients 2021; 13:3746. [PMID: 34836002 PMCID: PMC8618318 DOI: 10.3390/nu13113746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Multi-ingredient performance supplements (MIPS), ingested pre- or post-workout, have been shown to increase physiological level effects and integrated metabolic response on exercise. The purpose of this study was to determine the efficacy of pre-and post-training supplementation with its own MIPS, associated with CHO (1 g·kg-1) plus protein (0.3 g·kg-1) on exercise-related benchmarks across a training camp for elite cyclists. Thirty elite male cyclists participated in a randomized non-placebo-controlled trial for ten weeks assigned to one of three groups (n = 10 each): a control group treated with CHO plus protein after training (CG); a group treated with MIPS before training and a CHO plus protein after training, (PRE-MIPS); a group treated with CHO plus protein plus MIPS after training, (POST-MIPS). Performance parameters included (VO2max, peak; median and minimum power (W) and fatigue index (%)); hormonal response (Cortisol; Testosterone; and Testosterone/Cortisol ratio); and muscle biomarkers (Creatine kinase (CK), Lactate dehydrogenase (LDH), and Myoglobin (Mb)) were assessed. MIPS administered before or after training (p ≤ 0.05) was significantly influential in attenuating CK, LDH, and MB; stimulating T response and modulating C; and improved on all markers of exercise performance. These responses were greater when MIPS was administered post-workout.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Miguel del Valle Soto
- Department of Morphology and Cell Biology, University of Oviedo, Health Research Institute of the Principality of Asturias (ISPA), 33003 Oviedo, Spain;
| | - David P. Adams
- Dual Enrollment Program, Point University, Savannah, GA 31419, USA;
| | - Eduardo Gutiérrez-Abejón
- Pharmacological Big Data Laboratory, University of Valladolid, 47005 Valladolid, Spain;
- Technical Direction of Pharmaceutical Assistance, Regional Health Management of Castilla y León, 47005 Valladolid, Spain
| | - Jesús Seco-Calvo
- Physiotherapy Department, Institute of Biomedicine (IBIOMED), University of Leon, Visiting Researcher of Basque Country University, Campus de Vegazana, 24071 Leon, Spain;
| |
Collapse
|
7
|
Carbohydrate and Protein Co-Ingestion Postexercise Does Not Improve Next-Day Performance in Trained Cyclists. Int J Sport Nutr Exerc Metab 2021; 31:466-474. [PMID: 34453013 DOI: 10.1123/ijsnem.2021-0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022]
Abstract
Supplementing postexercise carbohydrate (CHO) intake with protein has been suggested to enhance recovery from endurance exercise. The aim of this study was to investigate whether adding protein to the recovery drink can improve 24-hr recovery when CHO intake is suboptimal. In a double-blind crossover design, 12 trained men performed three 2-day trials consisting of constant-load exercise to reduce glycogen on Day 1, followed by ingestion of a CHO drink (1.2 g·kg-1·2 hr-1) either without or with added whey protein concentrate (CHO + PRO) or whey protein hydrolysate (CHO + PROH) (0.3 g·kg-1·2 hr-1). Arterialized blood glucose and insulin responses were analyzed for 2 hr postingestion. Time-trial performance was measured the next day after another bout of glycogen-reducing exercise. The 30-min time-trial performance did not differ between the three trials (M ± SD, 401 ± 75, 411 ± 80, 404 ± 58 kJ in CHO, CHO + PRO, and CHO + PROH, respectively, p = .83). No significant differences were found in glucose disposal (area under the curve [AUC]) between the postexercise conditions (364 ± 107, 341 ± 76, and 330 ± 147, mmol·L-1·2 hr-1, respectively). Insulin AUC was lower in CHO (18.1 ± 7.7 nmol·L-1·2 hr-1) compared with CHO + PRO and CHO + PROH (24.6 ± 12.4 vs. 24.5 ± 10.6, p = .036 and .015). No difference in insulin AUC was found between CHO + PRO and CHO + PROH. Despite a higher acute insulin response, adding protein to a CHO-based recovery drink after a prolonged, high-intensity exercise bout did not change next-day exercise capacity when overall 24-hr macronutrient and caloric intake was controlled.
Collapse
|
8
|
Zhu R, Zhang R, Liu B. FEASIBILITY STUDY OF HUMAN BIORHYTHM TO IMPROVE SPORTS TRAINING INJURY. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127072021_0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Introduction: Sports injury often occurs in sports teaching and training, which directly affects the performance of the human body function and the improvement of sports performance. Objective: To study the feasibility of improving the biorhythm in sports training injury. Methods: 120 young athletes who are engaged in track and field training in traditional track and field sports schools in Liaoning Province are taken as the research objects. The effective data of the time and types of sports injuries, and the birth date, month and date of the injured athletes during training from 2005 to 2006 were collected. Results: Results show that in the relationship between human body three rhythm and the athlete's sports injury, the probability of sports injury in triple height is smaller; regarding the biological rhythm in one or more than one period or critical period, the damage probability is 95%, showing that most athletes sports injuries occur at a low and critical period stage. Conclusions: The arrangement of sports training must be adapted to the original biological rhythm of the human body, and the corresponding monthly cycle training plan should be made according to changes that occur in athletes’ physical cycles to avoid injury during training. Level of evidence II; Therapeutic studies - investigation of treatment results.
Collapse
Affiliation(s)
| | | | - Bo Liu
- GuangZhou BeauCare Clinics, China
| |
Collapse
|
9
|
Heweiqi, Tambovskij A. AEROBIC AND ANAEROBIC EXERCISE ABILITY OF ATHLETES COMBINED WITH BALANCED NUTRITION. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127022020_0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Balanced nutrition is very important for athletes’ health and competition performance, and balanced nutrition has become a hot topic in the sports industry. In this study, 30s anaerobic work test and maximal oxygen uptake test were used to test anaerobic exercise ability and aerobic exercise ability, respectively. Four groups were set up in the two test methods, and the corresponding functional test indexes, heart rate recovery index and blood lactic acid recovery value were determined. The anaerobic capacity test showed that the maximum power of male athletes in the experimental group had significant statistical difference before and after dietary balance management, and the fatigue index of female athletes in the experimental group had a significant downward trend. Five minutes and nine minutes after exercise, the blood lactic acid value of males in the experimental group was lower than before balanced nutrition. The aerobic capacity test showed that the exhaustion time of male athletes in the experimental group was significantly different before and after balanced nutrition. After the balanced nutrition, the blood lactic acid value of male athletes in the experimental group was lower than before the management immediately and nine minutes after exercise, and the heart rate value of the male athletes in the experimental group was far lower than before the management.
Collapse
Affiliation(s)
- Heweiqi
- Jiangsu normal university kewen college, China
| | | |
Collapse
|
10
|
Karami H, Dehnou VV, Nazari A, Gahreman D. Regular training has a greater effect on aerobic capacity, fasting blood glucose and blood lipids in obese adolescent males compared to irregular training. J Exerc Sci Fit 2021; 19:98-103. [PMID: 33343671 PMCID: PMC7736980 DOI: 10.1016/j.jesf.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND/OBJECTIVE It is not clear whether the regularity of training affects the outcomes of aerobic exercise. This study aimed to compare the effects of regular with irregular training on aerobic fitness, blood markers, and anthropometric characteristics of obese adolescent males. METHODS Twenty three male students between 16 and 17 years old were randomly assigned into regular exercise (RE) group and performed exercises on specific time and days each week, or irregular exercise (IE) group and performed exercise on randomly selected days each week. The intervention programs consisted of self-paced progressive running program (20 min in week one and 44 min in week 8), three times per week for eight weeks. Anthropometric characteristics, blood lipids, fasting blood glucose, and aerobic capacity were assessed before and after the intervention using a two-way ANOVA. RESULTS There was a significant interaction of time and condition on total cholesterol (TC) F (1, 21) = 5.427, p = 0.030,η P 2 = 0.205, and high-density lipoprotein to low-density lipoprotein ratio (HDL)/(LDL) F (1, 21) = 5.951, p = 0.024,η P 2 = 0.221), with a greater reduction observed in RE group. LDL decreased only in RE group demonstrating a significant effect of time F (1, 21) = 4.897, p = 0.038,η P 2 = 0.189. Body mass, body mass index (BMI), and waist circumference decreased, and VO2peak increased in both groups with no significant difference between groups. There was no significant effect of time or condition on waist to hip ratio (WHR), fasting blood glucose (FBG), triglycerides (TG), HDL, TC/HDL, or TG/HDL (p > 0.05). CONCLUSION Although both RE and IE improved VO2peak and some anthropometric measures, changes in TC, LDL, and HDL/LDL were more predominant in response to RE. Therefore, to achieve greater adaptations to aerobic exercise, overweight and obese adolescents should perform exercise regularly.
Collapse
Affiliation(s)
- Hosein Karami
- Sports Sciences Department, Faculty of Literature & Human Sciences, Lorestan University, Khorramabad, Iran
| | - Vahid Valipour Dehnou
- Sports Sciences Department, Faculty of Literature & Human Sciences, Lorestan University, Khorramabad, Iran
| | - Afshin Nazari
- Razi Herbal Medicines Research Center, Department of Physiology, Lorestan University of Medical Sciences, Khoramabad, Iran
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Daniel Gahreman
- College of Health and Human Sciences, Charles Darwin University, Northern Territory, Australia
| |
Collapse
|
11
|
USALP S, KEMAL HS, AKPINAR O, CERİT L, DUYGU H. Diyete protein eklenmesi sporcuların kardiyovasküler sistemini etkiler mi? CUKUROVA MEDICAL JOURNAL 2020. [DOI: 10.17826/cumj.733444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 2020; 121:23-66. [PMID: 33106933 DOI: 10.1007/s00421-020-04534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability. METHODS Narrative review. RESULTS Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown. CONCLUSIONS In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|
13
|
Hansen M, Oxfeldt M, Larsen AE, Thomsen LS, Rokkedal-Lausch T, Christensen B, Rittig N, De Paoli FV, Bangsbo J, Ørtenblad N, Madsen K. Supplement with whey protein hydrolysate in contrast to carbohydrate supports mitochondrial adaptations in trained runners. J Int Soc Sports Nutr 2020; 17:46. [PMID: 32894140 PMCID: PMC7487963 DOI: 10.1186/s12970-020-00376-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022] Open
Abstract
Background Protein supplementation has been suggested to augment endurance training adaptations by increasing mixed muscle and myofibrillar protein synthesis and lean body mass. However, a potential beneficial effect on mitochondrial adaptations is yet to be clarified. The aim of the present study was to investigate the effect of consuming whey protein hydrolysate before and whey protein hydrolysate plus carbohydrate (PRO-CHO) after each exercise session during a six-week training period compared to similarly timed intake of isocaloric CHO supplements on biomarkers of mitochondrial biogenesis, VO2max and performance in trained runners. Methods Twenty-four trained runners (VO2max 60.7 ± 3.7 ml O2 kg− 1 min1) completed a six-week block randomized controlled intervention period, consisting of progressive running training. Subjects were randomly assigned to either PRO-CHO or CHO and matched in pairs for gender, age, VO2max, training and performance status. The PRO-CHO group ingested a protein beverage (0.3 g kg− 1) before and protein-carbohydrate beverage (0.3 g protein kg− 1 and 1 g carbohydrate kg− 1) after each exercise session. The CHO group ingested an energy matched carbohydrate beverage. Resting muscle biopsies obtained pre and post intervention were analyzed for mitochondrial specific enzyme activity and mitochondrial protein content. Subjects completed a 6 K time trial (6 K TT) and a VO2max test pre, midway (only 6 K TT) and post intervention. Results Following six weeks of endurance training Cytochrome C (Cyt C) protein content was significantly higher in the PRO-CHO group compared to the CHO group (p < 0.05), with several other mitochondrial proteins (Succinate dehydrogenase (SDHA), Cytochrome C oxidase (COX-IV), Voltage-dependent anion channel (VDAC), Heat shock protein 60 (HSP60), and Prohibitin (PHB1)) following a similar, but non-significant pattern (p = 0.07–0.14). β-hydroxyacyl-CoA dehydrogenase (HAD) activity was significantly lower after training in the CHO group (p < 0.01), but not in the PRO-CHO group (p = 0.24). VO2max and 6 K TT was significantly improved after training with no significant difference between groups. Conclusion Intake of whey PRO hydrolysate before and whey PRO hydrolysate plus CHO after each exercise session during a six-week endurance training period may augment training effects on specific mitochondrial proteins compared to intake of iso-caloric CHO but does not alter VO2max or 6 K TT performance. Trial registration clinicaltrials.gov, NCT03561337. Registered 6 June 2018 – Retrospectively registered.
Collapse
Affiliation(s)
- Mette Hansen
- Section for Sport Sciences, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark.
| | - Mikkel Oxfeldt
- Section for Sport Sciences, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark
| | - Anne E Larsen
- Section for Sport Sciences, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark
| | - Lise S Thomsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | | | - Britt Christensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Nikolaj Rittig
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ørtenblad
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Klavs Madsen
- Section for Sport Sciences, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
14
|
Huecker M, Sarav M, Pearlman M, Laster J. Protein Supplementation in Sport: Source, Timing, and Intended Benefits. Curr Nutr Rep 2020; 8:382-396. [PMID: 31713177 DOI: 10.1007/s13668-019-00293-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide background on the present literature regarding the utility and effectiveness of protein supplements, including protein source and nutrient timing. RECENT FINDINGS In the setting of adequate dietary protein consumption, research suggests some benefit particularly in sport or exercise activities. Protein supplements command a multi-billion-dollar market with prevalent use in sports. Many individuals, including athletes, do not consume optimal dietary protein on a daily basis. High-protein diets are remarkably safe in healthy subjects, especially in the short term. Some objective outcomes are physiologic and may not translate to clinically relevant outcomes. Athletes should, however, consider long-term implications when consuming high quantities of protein in dietary or supplement form.
Collapse
Affiliation(s)
- Martin Huecker
- Dept of Emergency Medicine, University of Louisville School of Medicine, 530 S Jackson St C1H17, Louisville, KY, 40202, USA.
| | - Menaka Sarav
- Division of Nephrology and Hypertension, NorthShore University HealthSystem-University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Michelle Pearlman
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Miami Health Systems, Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
15
|
Dahl MA, Areta JL, Jeppesen PB, Birk JB, Johansen EI, Ingemann-Hansen T, Hansen M, Skålhegg BS, Ivy JL, Wojtaszewski JFP, Overgaard K, Jensen J. Coingestion of protein and carbohydrate in the early recovery phase, compared with carbohydrate only, improves endurance performance despite similar glycogen degradation and AMPK phosphorylation. J Appl Physiol (1985) 2020; 129:297-310. [DOI: 10.1152/japplphysiol.00817.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endurance athletes competing consecutive days need optimal dietary intake during the recovery period. We report that coingestion of protein and carbohydrate soon after exhaustive exercise, compared with carbohydrate only, resulted in better performance the following day. The better performance after coingestion of protein and carbohydrate was not associated with a higher rate of glycogen synthesis or activation of anabolic signaling compared with carbohydrate only. Importantly, nitrogen balance was positive after coingestion of protein and carbohydrate, which was not the case after intake of carbohydrate only, suggesting that protein synthesis contributes to the better performance the following day.
Collapse
Affiliation(s)
- Marius A. Dahl
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - José Lisandro Areta
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Jesper Bratz Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Egil I. Johansen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | | | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Division for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - John L. Ivy
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Lam FC, Khan TM, Faidah H, Haseeb A, Khan AH. Effectiveness of whey protein supplements on the serum levels of amino acid, creatinine kinase and myoglobin of athletes: a systematic review and meta-analysis. Syst Rev 2019; 8:130. [PMID: 31151484 PMCID: PMC6544960 DOI: 10.1186/s13643-019-1039-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Consuming whey protein supplements, along with physiotherapy and psychotherapy, have been recognised in sports performance. Whey protein supplements (WPS) is one of the commonly used supplements as ergogenic aids for athletes to enhance their muscle performance and recovery during sport-related injuries. The purpose of this systematic review is to investigate the effectiveness of WPS over the blood biochemistry mainly amino acids, creatinine kinase and myoglobin which influence performance and recovery among athletes. METHOD A comprehensive literature search was conducted to identify randomised control trials (RCTs) and non-RCTs that investigated the effectiveness of WPS on amino acids, creatinine kinase and myoglobin among athletes. Risk of Bias in Non-Randomised Studies of Interventions tool (ROBINS-I) and Cochrane Risk of Bias Assessment tool were used to rule out the quality of studies. Meta-analysis was performed using a random effect model with STATA version 14.2. The weighted mean difference was used to estimate the effectiveness of WPS against other supplements. RESULTS A total of 333,257 research articles were identified; of these, 15 records were included to proceed with the analysis. Meta-analysis has shown that WPS has significantly overall increased the level of essential amino acids level by 624.03 nmol/L (CI = 169.27, 1078.8; I2 = 100%; p = 0.00) and branched-chain amino acids level by 458.57 nmol/L (CI = 179.96, 737.18; I2 = 100%; p = 0.00) compared to the control group (without WPS). Moreover, was observed to decrease myoglobin level by 11.74 ng/ml (CI = - 30.24, 6.76; I2 = 79.6%; p = 0.007) and creatine kinase level by 47.05 U/L (CI = - 129.47, 35.37; I2 = 98.4%; p = 0.000) compared to the control group. CONCLUSION The findings revealed that the clinical evidence supports the effectiveness of WPS as a positive ergogenic aid on athletes' amino acids, creatinine kinase and myoglobin.
Collapse
Affiliation(s)
- Fui-Ching Lam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Tahir Mehmood Khan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia. .,The Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Outfall Road, Lahore, Pakistan.
| | - Hani Faidah
- College of Medicine, Umul Qura University, Makkah, Saudi Arabia
| | - Abdul Haseeb
- College of Pharmacy, Umul Qura University, Makkah, Saudi Arabia.,School of Pharmaceutical Science, University Sains Malaysia, Penang, Malaysia
| | - Amer Hayat Khan
- School of Pharmaceutical Science, University Sains Malaysia, Penang, Malaysia
| |
Collapse
|
17
|
Williamson E, Kato H, Volterman KA, Suzuki K, Moore DR. The Effect of Dietary Protein on Protein Metabolism and Performance in Endurance-trained Males. Med Sci Sports Exerc 2019; 51:352-360. [PMID: 30252774 DOI: 10.1249/mss.0000000000001791] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recommendations for dietary protein are primarily based on intakes that maintain nitrogen (i.e., protein) balance rather than optimize metabolism and/or performance. PURPOSE This study aimed to determine how varying protein intakes, including a new tracer-derived safe intake, alter whole body protein metabolism and exercise performance during training. METHODS Using a double-blind randomized crossover design, 10 male endurance-trained runners (age, 32 ± 8 yr; V˙O2peak, 65.9 ± 7.9 mL O2·kg·min) performed three trials consisting of 4 d of controlled training (20, 5, 10, and 20 km·d, respectively) while consuming diets providing 0.94 (LOW), 1.20 (MOD), and 1.83 (HIGH) g protein·kg·d. Whole body protein synthesis, breakdown, and net balance were determined by oral [N]glycine on the first and last day of the 4-d controlled training period, whereas exercise performance was determined from maximum voluntary isometric contraction, 5-km time trial, and countermovement jump impulse (IMP) and peak force before and immediately after the 4-d intervention. RESULTS Synthesis and breakdown were not affected by protein intake, whereas net balance showed a dose-response (HIGH > MOD > LOW, P < 0.05) with only HIGH being in positive balance (P < 0.05). There was a trend (P = 0.06) toward an interaction in 5-km Time Trial with HIGH having a moderate effect over LOW (effect size = 0.57) and small effect over MOD (effect size = 0.26). IMP decreased with time (P < 0.01) with no effect of protein (P = 0.56). There was no effect of protein intake (P ≥ 0.06) on maximum voluntary isometric contraction, IMP, or peak force performance. CONCLUSION Our data suggest that athletes who consume dietary protein toward the upper end of the current recommendations by the American College of Sports Medicine (1.2-2 g·kg) would better maintain protein metabolism and potentially exercise performance during training.
Collapse
Affiliation(s)
- Eric Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, CANADA
| | - Hiroyuki Kato
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, CANADA.,Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, JAPAN
| | - Kimberly A Volterman
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, CANADA
| | - Katsuya Suzuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa, JAPAN
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, CANADA
| |
Collapse
|
18
|
Lam FC, Bukhsh A, Rehman H, Waqas MK, Shahid N, Khaliel AM, Elhanish A, Karoud M, Telb A, Khan TM. Efficacy and Safety of Whey Protein Supplements on Vital Sign and Physical Performance Among Athletes: A Network Meta-Analysis. Front Pharmacol 2019; 10:317. [PMID: 31068804 PMCID: PMC6491698 DOI: 10.3389/fphar.2019.00317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction: Athletes train physically to reach beyond their potential maximum aerobic threshold. Whey protein supplements (WPS) are often used in conjunction with physiotherapy and psychotherapy to regain better vital sign and physical performances. This review aimed to explore the clinical evidence on the efficacy and safety of WPS in sports performance and recovery among athletes. Methodology: A comprehensive literature search was performed to identify relevant randomized control trials (RCTs) that investigated the efficacy and safety of WPS on the vital sign and physical performance among athletes. The Cochrane Risk of Bias (ROB) Assessment tools were used to assess the quality of the studies. Meta-analysis was conducted using the frequentist model with STATA version 14.2®. Results: A total of 333,257 research articles were identified out of which 20 RCTs were included for qualitative synthesis and network meta-analysis with 351 participants. Among the studies, 7 had low ROB and 3 RCTs had high ROB. Of these 20 trials, 16 trials were randomized clinical trials which compared whey protein supplements (WPS) with various comparators i.e., L-alanine, bovine colostrum, carbohydrate, casein, leucine, maltodextrin, rice, protein + caffeine were compared with placebo. Analysis from the pairwise meta-analysis revealed that for respiratory exchange ratio (RER) WPS was found to be significantly improving compared to maltodextrin (WMD = 0.012; 95%CI = 0.001, 0.023). Similarity to RPE (Rate Perceived Exertion), slight difference between WPS and the comparators, however, when the estimation was favorable to the comparators, there was moderate-high heterogeneity. For VO2max, high heterogeneity appeared when WPS compared to maltodextrin with the I2 = 97.8% (WMD = 4.064; 95% CI = −4.230, 12.359), meanwhile bovine colostrum (WMD = −2.658; 95%CI = −6.180, 0.865) only comparator that was better than WPS. According to the estimated effect of the supplements on physical performance outcome results, maximum power (8 studies, 185 athletes), highest ranked was bovine colostrum (SUCRA = 70.7%) and the lowest ranked was placebo (SUCRA = 17.9%), yet all insignificant. Then again, on average power (nine studies, 187 athletes), WPS was the highest ranked (SUCRA = 75.4 %) about −112.00 watt (−187.91, −36.08) and most of the estimations were significant. Body mass was reported in 10 studies (171 athletes), carbohydrate may be at the highest ranked (SUCRA = 66.9%) but it is insignificant. Thought the second highest ranked was WPS (SUCRA = 64.7%) and it is significant (WMD = −6.89 kg; CI = −8.24, −5.54). Conclusion: The findings of this review support the efficacy and safety of WPS as an ergogenic aid on athletes' sports performance and recovery. The overall quality of clinical evidence was found to be valid and reliable from the comprehensive search strategy and ROB assessment.
Collapse
Affiliation(s)
- Fui-Ching Lam
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Allah Bukhsh
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia.,Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Habib Rehman
- Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Khurram Waqas
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nabeel Shahid
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Adil Mohammed Khaliel
- Department of Urology, Bourn Hall Fertility Clinic Dubai, Jumeriah, United Arab Emirates
| | - Ahlam Elhanish
- Department of Urology, Bourn Hall Fertility Clinic Dubai, Jumeriah, United Arab Emirates
| | - Mustfa Karoud
- Department of Orthopedics, Canadian Specialist Hospital, Abuhail, United Arab Emirates
| | - Ahmed Telb
- Department of Radiology, Emirates Hospital, Jumeriah, United Arab Emirates
| | - Tahir Mehmood Khan
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia.,Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
19
|
Sollie O, Jeppesen PB, Tangen DS, Jernerén F, Nellemann B, Valsdottir D, Madsen K, Turner C, Refsum H, Skålhegg BS, Ivy JL, Jensen J. Protein intake in the early recovery period after exhaustive exercise improves performance the following day. J Appl Physiol (1985) 2018; 125:1731-1742. [DOI: 10.1152/japplphysiol.01132.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to investigate the effect of protein and carbohydrate ingestion during early recovery from exhaustive exercise on performance after 18-h recovery. Eight elite cyclists (V̇o2max: 74.0 ± 1.6 ml·kg−1·min−1) completed two exercise and diet interventions in a double-blinded, randomized, crossover design. Participants cycled first at 73% of V̇o2max (W73%) followed by 1-min intervals at 90% of V̇o2max until exhaustion. During the first 2 h of recovery, participants ingested either 1.2 g carbohydrate·kg−1·h−1 (CHO) or 0.8 g carbohydrate + 0.4 g protein·kg−1·h−1 (CHO + PROT). The diet during the remaining recovery period was similar for both interventions and adjusted to body weight. After an 18-h recovery, cycling performance was assessed with a 10-s sprint test, 30 min of cycling at W73%, and a cycling time trial (TT). The TT was 8.5% faster (41:53 ± 1:51 vs. 45:26 ± 1:32 min; P < 0.03) after CHO + PROT compared with CHO. Mean power output during the sprints was 3.7% higher in CHO + PROT compared with CHO (1,063 ± 54 vs. 1,026 ± 53 W; P = 0.01). Nitrogen balance in the recovery period was negative in CHO and neutral in CHO + PROT (−82.4 ± 11.5 vs. 7.0 ± 15.4 mg/kg; P < 0.01). In conclusion, TT and sprint performances were improved 18 h after exhaustive cycling by CHO + PROT supplementation during the first 2 h of recovery compared with isoenergetic CHO supplementation. Our results indicate that intake of carbohydrate plus protein after exhaustive endurance exercise more rapidly converts the body from a catabolic to an anabolic state than carbohydrate alone, thus speeding recovery and improving subsequent cycling performance. NEW & NOTEWORTHY Prolonged high intensity endurance exercise depends on glycogen utilization and high oxidative capacity. Still, exhaustion develops and effective recovery strategies are required to compete in multiday stage races. We show that coingestion of protein and carbohydrate during the first 2 h of recovery is superior to isoenergetic intake of carbohydrate to stimulate recovery, and improves both endurance time-trial and 10-s sprint performance the following day in elite cyclists.
Collapse
Affiliation(s)
- Ove Sollie
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Per B. Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Daniel S. Tangen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Fredrik Jernerén
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Birgitte Nellemann
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Ditta Valsdottir
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Department of Medical Sciences, Atlantis Medical University College, Oslo, Norway
| | - Klavs Madsen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Department of Public Health–Sport Science, Aarhus University, Aarhus, Norway
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Nutrition, Section for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - Bjørn S. Skålhegg
- Department of Nutrition, Section for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - John L. Ivy
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| |
Collapse
|
20
|
Knuiman P, Hopman MTE, Verbruggen C, Mensink M. Protein and the Adaptive Response With Endurance Training: Wishful Thinking or a Competitive Edge? Front Physiol 2018; 9:598. [PMID: 29875696 PMCID: PMC5974122 DOI: 10.3389/fphys.2018.00598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
The significance of carbohydrates for endurance training has been well established, whereas the role of protein and the adaptive response with endurance training is unclear. Therefore, the aim of this perspective is to discuss the current evidence on the role of dietary protein and the adaptive response with endurance training. On a metabolic level, a single bout of endurance training stimulates the oxidation of several amino acids. Although the amount of amino acids as part of total energy expenditure during exercise is relatively low compared to other substrates (e.g., carbohydrates and fat), it may depress the rates of skeletal muscle protein synthesis, and thereby have a negative effect on training adaptation. A low supply of amino acids relative to that of carbohydrates may also have negative effects on the synthesis of capillaries, synthesis and turn-over of mitochondrial proteins and proteins involved in oxygen transport including hamoglobin and myoglobin. Thus far, the scientific evidence demonstrating the significance of dietary protein is mainly derived from research with resistance exercise training regimes. This is not surprising since the general paradigm states that endurance training has insignificant effects on skeletal muscle growth. This could have resulted in an underappreciation of the role of dietary protein for the endurance athlete. To conclude, evidence of the role of protein on endurance training adaptations and performance remains scarce and is mainly derived from acute exercise studies. Therefore, future human intervention studies must unravel whether dietary protein is truly capable of augmenting endurance training adaptations and ultimately performance.
Collapse
Affiliation(s)
- Pim Knuiman
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| | - Maria T E Hopman
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands.,Department of Physiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Conor Verbruggen
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| | - Marco Mensink
- Division of Human Nutrition, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
21
|
Abstract
The ability of athletes to train day after day depends in large part on adequate restoration of muscle glycogen stores, a process that requires the consumption of sufficient dietary carbohydrates and ample time. Providing effective guidance to athletes and others wishing to enhance training adaptations and improve performance requires an understanding of the normal variations in muscle glycogen content in response to training and diet; the time required for adequate restoration of glycogen stores; the influence of the amount, type, and timing of carbohydrate intake on glycogen resynthesis; and the impact of other nutrients on glycogenesis. This review highlights the practical implications of the latest research related to glycogen metabolism in physically active individuals to help sports dietitians, coaches, personal trainers, and other sports health professionals gain a fundamental understanding of glycogen metabolism, as well as related practical applications for enhancing training adaptations and preparing for competition.
Collapse
Affiliation(s)
- Bob Murray
- Sports Science Insights, LLC, Crystal Lake, Illinois, USA
| | | |
Collapse
|
22
|
Huang WC, Chang YC, Chen YM, Hsu YJ, Huang CC, Kan NW, Chen SS. Whey Protein Improves Marathon-Induced Injury and Exercise Performance in Elite Track Runners. Int J Med Sci 2017; 14:648-654. [PMID: 28824296 PMCID: PMC5562115 DOI: 10.7150/ijms.19584] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/17/2017] [Indexed: 01/02/2023] Open
Abstract
Whey protein has been widely applied to athletes and the fitness field for muscle growth and performance improvement. Limited studies focused on the beneficial effects of whey on aerobic exercise according to biochemical assessments. In the current study, 12 elite male track runners were randomly assigned to whey and maltodextrin groups for 5 weeks' supplementation. The aim of this study was to investigate the effect of whey protein on physiological adaptions and exercise performance. During this period, three time points (pre-, post-, and end-test) were used to evaluate related biochemical parameters, body composition, and performance. The post-test was set 1 day after a marathon for injury status evaluation and the end-test was also assessed after 1-week recovery from endurance test. The results showed that the whey group exhibited significantly lower aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and creatine kinase indicators after the marathon (post-test), as well as at the end-test (p<0.016). The endurance performance in twelve-minute walk/run was also significantly elevated (p<0.012) possibly due to an increase in the muscle mass and amelioration of exercise injuries. In the current study, we demonstrated that whey protein can also be used for aerobic exercise for better physiological adaptation, in addition to resistance training. Whey protein could be also a potential nutrient supplement with a variety of benefits for amateur runners.
Collapse
Affiliation(s)
- Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
| | - Yung-Cheng Chang
- Department of Sports Training Science-Athletics, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Yi-Ming Chen
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Nai-Wen Kan
- Center for General Education, Taipei Medical University, Taipei 11031, Taiwan
| | - Sheng-Shih Chen
- Department of General Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| |
Collapse
|
23
|
Supplemental Protein during Heavy Cycling Training and Recovery Impacts Skeletal Muscle and Heart Rate Responses but Not Performance. Nutrients 2016; 8:nu8090550. [PMID: 27618091 PMCID: PMC5037535 DOI: 10.3390/nu8090550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022] Open
Abstract
The effects of protein supplementation on cycling performance, skeletal muscle function, and heart rate responses to exercise were examined following intensified (ICT) and reduced-volume training (RVT). Seven cyclists performed consecutive periods of normal training (NT), ICT (10 days; average training duration 220% of NT), and RVT (10 days; training duration 66% of NT). In a crossover design, subjects consumed supplemental carbohydrate (CHO) or an equal amount of carbohydrate with added protein (CP) during and following each exercise session (CP = +0.94 g/kg/day protein during ICT; +0.39 g/kg/day during RVT). A 30-kilometer time trial performance (following 120 min at 50% Wmax) was modestly impaired following ICT (+2.4 ± 6.4% versus NT) and returned to baseline levels following RVT (−0.7 ± 4.5% versus NT), with similar responses between CHO and CP. Skeletal muscle torque at 120 deg/s benefited from CP, compared to CHO, following ICT. However, this effect was no longer present at RVT. Following ICT, muscle fiber cross-sectional area was increased with CP, while there were no clear changes with CHO. Reductions in constant-load heart rates (at 50% Wmax) following RVT were likely greater with CP than CHO (−9 ± 9 bpm). Overall it appears that CP supplementation impacted skeletal muscle and heart rate responses during a period of heavy training and recovery, but this did not result in meaningful changes in time trial performance.
Collapse
|